
Functional Programming 4

jens.jensen@stfc.ac.uk
0000-0003-4714-184X

CC-BY 4.0

April 24, 2022

Outline of Talks

▶ Previous talks (talks 1-3):
▶ Introibo
▶ Pure Functional Programming Principles
▶ Mapping
▶ Labels and naming
▶ Lists

▶ This talk (Talk 4):
▶ Advanced(ish) Topics

▶ Impure Functional? Side E�ects

▶ Category Theory

▶ Categories and Functions

▶ Categories and Computation

Still written in the author's spare time!

Very much a personal perspective, and not following any particular
textbook. Using meditations and exercises � solutions to all
exercises given during the talks.

Superpowertools � Lemonodor fame awaits!
Summarising the Lisp functional programming Super Power Power
Tools we have met (plus one from an earlier talk):

▶ Recursion, the elegant engine of functional programming;

▶ list and list tools, designed for the �rst/rest paradigm;

▶ cond and friends for dividing and conquering;

▶ Mapping functions (and reduce) implement functional
patterns concisely (including recursion, without recursing)

▶ Sequence functions such as reduce

▶ Functions: funcall, lambda, apply; multivalued in CL

▶ lambda lists in Lisp are much more powerful than other
functional languages � more powerful than other languages;

▶ flet and labels for de�ning local functions;

▶ macros, because Lisp macros are superpowertools for
everything

▶ stubs, and trace (the latter CL only, but see later)

Common/Advanced(ish) Features of Functional Languages

1. Lambda (anonymous (unnamed) functions) and currying

2. List comprehension

3. Functions � mutually recursive, higher order

4. Symbols

5. Tail recursion

6. Scope and extent (Lisp)

7. Types and type inference

8. Branch-on-pattern-matching and guards

9. Memoisation

10. Lazy evaluation types

11. Pipes (not the lazy kind) style composition
▶ h(g(f (x))) ≡ (h (g (f x))) ≡ x |f |g |h

12. Monads: theoretical framework for types and computation

13. Applied monads: Maybe, Arrays

14. Bonus section for survivors of MonadLand: Lisp Hacking

Common Features of Functional Languages - Currying
▶ Currying (binding some but not all function arguments)

▶ In this example + is curryed, binding its second argument to 2
▶ (Assuming + is considered as a function of two args (which it

isn't))

▶ �Proper� functional languages like F# do this more elegantly
▶ As long as we bind the �rst argument
▶ E.g. + 2 would be the function that adds two to something

(mapcar (lambda (x) (+ x 2)) '(1 2 3 4))

(3 4 5 6)

▶ Hence the type notation of a function + :: int → int → int

▶ After currying the (�rst) argument, the expr has type
:: int → int

▶ Of course in Lisp, #'+ takes any number of arguments (incl 0)

▶ In talk 2 we had (apply #'mapcar #'list rows) where
apply e�ectively curryes mapcar by binding #'list as its �rst
argument

Lambdas

Almost but not quite a translation of λ calculus. Taking the Quine

((λx .(xx))(λx .(xx)))

becomes in EL

((lambda (x) (list x x)) (lambda (x) (list x x)))

((closure (t) (x) (list x x)) (closure (t) (x) (list x x)))

which is a Quine if you appreciate that evaluating lambda coerces
the lambda expression into a function

(lambda (v) (+ v 2))

(closure (t) (v) (+ v 2))

(coerce (lambda (v) (+ v 2)) 'function)

(closure (t) (v) (+ v 2))

Lambdas

In CL, functions can return multiple values (including none) but
special tools are needed to capture the not-�rst values:

(floor 12 7)

1

5

(multiple-value-bind (q r) (floor 12 7)

(+ (* q 7) r))

12

When not used in a multiple value context, only floor's �rst value
is used (as in EL where it returns only one value):

(+ (floor 12 7) 3)

4

Lambdas

Both lambda and let create variable bindings:

((lambda (v)

(+ v (let ((v 2)) (* 3 v))))

6)

12

▶ The inner v is bound by let to the value 2

▶ The outer v is bound by lambda to the value 6

▶ It's the same symbol v but the inner binding shadows the
outer during execution of the let

▶ The outermost parenthesis

List comprehension
List comprehension is the idea of constructing elements

(f (x , y , . . .)|x ∈ A, y ∈ B(x), . . .)

analogous to how sets are constructed (this is obviously not a
precise de�nition but a it-will-do-for-now expression of the idea).

Arguably, list comprehension for Lisp is loop, even though it looks
imperative sometimes:

(loop for i from 1 to 10 collecting (* i i))

(1 4 9 16 25 36 49 64 81 100)

but this could be done with iota functionally. It can express
actions on lists (and vectors) equally naturally:

(loop for a in '(1 2) nconcing

(loop for b in '(3 4) collecting (cons a b)))

((1 . 3) (1 . 4) (2 . 3) (2 . 4))

List comprehension

Another common case is calling a function (with side e�ects!) n

times, collecting the results (which means we can't just use
dotimes):

(loop repeat 10 collect (random 10))

(4 9 1 2 9 3 8 0 0 8)

The alternative could be

(map 'vector (lambda (x) (random 10)) (make-vector 10 0))

[8 3 3 9 8 6 5 0 5 3]

which would have made more sense with CL's map-into

(let ((v (make-array 10)))

(map-into v

(lambda (x) (declare (ignore x)) (random 10))

v))

Mutually recursive functions

A puzzle: given a number N, create an array of length 2N with
each of the digits 1, . . . ,N occurring precisely twice, such that for
every digit k ∈ {1, . . . ,N} there is k digits between the two
occurrences of the digit k .

Example for N = 3: 312132. Starting digits may be given, e.g.
starting with *1*1**

Solving it functionally, the original design had three functions
calling each other � now we're down to two...

Functions � Mutually recursive functions

find−k

find−k−1

solve−pos

solve−1

solve

build−array

place

Functions � Hooks and callbacks

Getting one value out of a deeply nested computation: throw it.

(... (when (goalp state) (throw 'found state)) ...)

(for some hypothetical function goalp.) When we need to collect
multiple values, a callback makes sense:

(... (when (goalp state) (funcall cb state)) ...)

Later we shall look at other ways of solving the same problem.

Functions � Hooks and callbacks

Suppose for a moment we want Fibonacci numbers (to which we
will also return later), starting with the CL version:

(defun fib (k &optional (a 0) (b 1))

(if (zerop k) b

(fib (1- k) b (+ a b))))

FIB

(fib 10)

89

Functions � Hooks and callbacks
In CL we can now do

(trace fib)

(FIB)

(fib 5)

0: (FIB 5)

1: (FIB 4 1 1)

2: (FIB 3 1 2)

3: (FIB 2 2 3)

4: (FIB 1 3 5)

5: (FIB 0 5 8)

5: FIB returned 8

4: FIB returned 8

3: FIB returned 8

2: FIB returned 8

1: FIB returned 8

0: FIB returned 8

8

(untrace fib)

T

Functions � Hooks and callbacks

In EL, the fib function could look like this:

(defun fib (k &optional a b)

(if (zerop k) (or b 1)

(fib (1- k) (or b 1) (+ (or a 0) (or b 1)))))

fib

(fib 10)

89

Functions � Hooks and callbacks

EL uniquely allows us to alter functions with advice:

(defun my-trace (name func args)

;; Enter function

(princ (format "%s: %s\n" name args))

;; Call function and remember value

(let ((val (apply func args)))

;; Print result

(princ (format "%s => %s\n" name val))

val))

(advice-add 'fib :around

(lambda (func &rest args) (my-trace 'fib func args))

'((name . trace)))

nil

In this respect, advice work quite a lot like methods (speci�cally,
standard method combination) in CLOS

Functions � Hooks and callbacks

(fib 5)

fib: (5)

fib: (4 1 1)

fib: (3 1 2)

fib: (2 2 3)

fib: (1 3 5)

fib: (0 5 8)

fib => 8

fib => 8

fib => 8

fib => 8

fib => 8

fib => 8

8

(advice-remove 'fib 'trace)

nil

Functions � Hooks and callbacks

Emacs uses hooks a lot, callbacks called at speci�c times. Normal
hooks are single function or (more or less) lists of functions to be
called without arguments:

text-mode-hook

(text-mode-hook-identify)

(add-hook 'text-mode-hook 'auto-fill-mode)

(auto-fill-mode text-mode-hook-identify)

c++-mode-hook

(irony-mode)

(add-hook 'c++-mode-hook

(lambda () (message "Hack and be merry!"))

10)

(irony-mode (closure (t) nil (message "Hack and be merry!")))

Functions � Higher order functions

(defun compose (f g)

"Compose two functions calling g first then f"

(lambda (&rest data) (funcall f (apply g data))))

compose

(funcall (compose #'sqrt #'+) 2 3 4)

3.0

(mapcar (compose #'sqrt #'abs) '(-1 -4 9 -16))

(1.0 2.0 3.0 4.0)

Functions � Higher order functions

The CL standard (ANSI X3J13) has tried to deprecate the -if-not
functions in favour of the -ifs:

(remove-if-not #'evenp '(1 2 3 4 5 6))

(2 4 6)

(remove-if (complement #'evenp) '(1 2 3 4 5 6))

(2 4 6)

The �rst of these works �ne in EL but EL does not have
complement. However, we can easily write it:

(defun complement (func)

"Logical complement of a function of any number of args"

(lambda (&rest args)

(not (apply func args))))

Notice that no funcall is required when we use it (why not?)

Symbols
Symbols are one of the important tools of Lisp, as

▶ Names � of variables, functions, catches, types, structures,
classes, etc.

▶ Enums (eg. (list 'Jan 'Feb 'Mar ...))

▶ Keys for hooks or looking up stu�

▶ Anywhere else where you need an atom

What is going on here (this is EL but could be CL with one
di�erence):

(atom nil)

t

(eq 'fred 'Fred)

nil

(eq 'fred 'fred)

t

(eq (make-symbol "fred") (make-symbol "fred"))

nil

Symbols

A symbol has precisely three things:

▶ A name (or more accurately, a print name):

(symbol-name 'fred)

"fred"

(symbol-name (make-symbol "wilma"))

"wilma"

▶ A package (sort of, EL doesn't really do packages)

▶ A property list:

(symbol-plist 'fred)

nil

(symbol-plist 'car)

(byte-compile byte-compile-one-arg byte-opcode byte-car ...

... byte-optimizer byte-optimize-predicate

side-effect-free t)

Symbols
If we take the plist �rst, it provides key/value lookup. Each symbol
has its own plist.

(get 'fred 'foo)

nil

(setf (get 'fred 'foo) 'blemps)

blemps

(get 'fred 'foo)

blemps

(setf (get 'fred 'bar) 17)

17

(symbol-plist 'fred)

(foo blemps bar 17)

It works exactly like an alist except
▶ for hysterical raisins the structure is di�erent
▶ it returns the value rather than the key/value
▶ it does not normally shadow
▶ it has fewer lookup functions (no equiv of assoc-if)

Symbols

Unlike CL, Emacs uses property lists extensively:

(get 'sort 'side-effect-free)

nil

(get 'mapcar 'side-effect-free)

nil

(get 'cons 'side-effect-free)

error-free

(get '+ 'side-effect-free)

t

Keys should normally be symbols, though values need not be

(setf (get 'fred "name") "jones")

"jones"

(get 'fred "name")

nil

Symbols

Removing a key (�tag�) from a plist is slightly di�erent:

(remprop 'fred 'foo)

t

(symbol-plist 'fred)

(bar 17)

Altering plists of EL's built in functions is not advisable!

There are functions to work directly on plists:

(let ((plist (list 'a 1 'b 2)))

(setf (getf plist 'c) 3)

(remf plist 'b)

plist)

(c 3 a 1)

Symbols
Let's return to the packages. In simpli�ed terms, a package is a
context where symbols can be looked up; when the Reader �rst
reads a symbol it is created:

(eq 'fred 'fred)

t

The same symbol is referenced twice, so obviously eq. However, a
small number of functions and macros create symbols that are not

in any package, so cannot be looked up again:

(make-symbol "fred")

fred

(eq (make-symbol "fred") 'fred)

nil

Here 'fred is in the package but make-symbol creates one that
isn't, so they can never be eq: e�ectively, symbols not in the
(same) package cannot be eq even if they have the same name.

Symbols
We use this construction to write macros (this is CL from the
author's Advent of Code 14/12/2021):

(defmacro incf-list2-entry (list x y delta)

"Create or add delta to the entry in list for the pair x y"

(let ((bzz (gensym)) (garg (gensym)))

`(let* ((,bzz (cons ,x ,y))

(,garg (assoc ,bzz ,list :test #'equal)))

(if ,garg

(incf (cdr ,garg) ,delta)

(setf ,list (acons ,bzz ,delta ,list)))

,list)))

(For EL code, leave out the :test #'equal). Dodgy names apart,
the macro is a variation on incf for alists of the form

(((C . B) . 1) ((N . C) . 1) ((N . N) . 1))

� looking up a pair (x . y), it creates or adds to the pair.

Symbols

The Reader can also create symbols not-in-any-package using
Reader macros:

(eq '#:fred 'fred)

nil

(eq '#:fred '#:fred)

nil

(symbol-name '#:fred)

"fred"

The Reader macro #: creates a symbol with the same print name
but it is in no package; the next time the Reader reads the same
characters, a di�erent symbol is created.

Symbols

Since it is created by the Reader (before Eval), we need to use
other Reader constructions to reference the symbol (EL code):

(defmacro incf-list2-entry (list x y delta)

`(let* ((#1=#:bzz (cons ,x ,y))

(#2=#:garg (assoc #1# ,list)))

(if #2#

(incf (cdr #2#) ,delta)

(setf ,list (acons #1# ,delta ,list)))

,list))

incf-list2-entry

(let ((mylist (list '((a . b) . 3))))

(incf-list2-entry mylist 'a 'b 2))

(((a . b) . 5))

(let ((mylist (list '((a . b) . 3))))

(incf-list2-entry mylist 'x 'y 17))

(((x . y) . 17) ((a . b) . 3))

Symbols
Now let's return to symbols that are in �the� package, called
interned symbols (symbols not in a package are called uninterned):

(eq 'fred (intern "fred"))

t

(eq (intern "fred") (intern "fred"))

t

Symbols are atoms and not sequences; if we really wanted to turn a
list of two elements (fizz buzz) into a single symbol fizzbuzz,
we'd have to do (EL code)

(defun join-symbols (w)

(if (endp (cdr w)) ; 0-1 elt

(first w)

(intern (concat (symbol-name (first w))

(symbol-name (second w))))))

join-symbols

(join-symbols '(fizz buzz))

fizzbuzz

Symbols
Symbols � whether interned or not � have few restrictions on their
names: this is a single symbol:

(symbolp 'b^2-4*a*c/2*a)

t

but notice we cannot add parentheses for the denominator as the
Reader would start constructing a list. Likewise, 1- is a symbol, the
name of the function

(symbol-function #'1-)

#<subr 1->

Also note that in CL (but not in EL), the Reader maps all symbols
to upper case:

* (eq 'fred 'FRED)

T

* 'fred

FRED

	Introibo
	Advanced(ish) Functional Programming
	Impure Functional? Side Effects
	Category Theory
	Categories and Functions
	Categories and Computation

