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Abstract 10 

Neutron reflectometry (NR) is a large-facility technique used to examine structure at interfaces. 11 

In this brief review an introduction to the utilisation of NR in the study of protein-lipid 12 

interactions is given. Cold neutron beams penetrate matter deeply, have low energies, 13 

wavelengths in the Ångstrom regime and are sensitive to light elements. High differential 14 

hydrogen sensitivity (between protium and deuterium) enables solution and sample isotopic 15 

labelling to be utilized to enhance or diminish the scattering signal of individual components 16 

within complex biological structures. The combination of these effects means NR can probe 17 

buried structures such as those at the solid liquid interface and encode molecular level structural 18 

information on interfacial protein-lipid complexes revealing the relative distribution of 19 

components as well as the overall structure. Model biological membrane sample systems can 20 

be structurally probed to examine phenomena such as antimicrobial mode of activity, as well 21 

as structural and mechanistic properties peripheral/integral proteins within membrane 22 

complexes. Here, the example of the antimicrobial protein α1-purothionin binding to a model 23 

Gram negative bacterial outer membrane is used to highlight the utilisation of this technique, 24 

detailing how changes in the protein/lipid distributions across the membrane before and after 25 

the protein interaction can be easily encoded using hydrogen isotope labelling.   26 

Introduction 27 

Biological membranes are the key structural material of biology at the cellular level. Yet, due 28 

to its small transverse size and vast compositional complexity, gaining a precision 29 

understanding of membrane biochemical events can be challenging. It has long been known 30 
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that the diversity of membrane bound or embedded proteins was immense[1], that this class of 31 

proteins are well represented in terms of drug targets (between 40% and 60%[2]) but under-32 

represented in the data bank of known protein structures[3]. Perhaps the most famous group of 33 

membrane proteins are the G-protein coupled receptor (GPCR) superfamily which is involved 34 

in a myriad of different signalling and sensing pathways[4], and itself, accounts for ~35% of 35 

known drug targets[5]. Other examples include the photosystem membrane complexes which 36 

are key components of photosynthesis in plants and algae[6] and the B-cell lymphoma family 37 

which regulate cell death[7].    38 

Recently there has been an increased emphasis on examining the lipid components of the 39 

membranes, which have been revealed to contain more complexity than once thought, with 40 

over a thousand lipid types currently known across the kingdoms of life[8][9]. Lipid organisation 41 

within the membrane has also revealed ever increasing complexity[10][11]. Many membranes 42 

possess heterogeneous distributions of lipids both across and within the plane of the 43 

membrane[4][12][13] and there has been interest in examining the heterogeneity of lipid 44 

distributions induced by membrane proteins[13]. As most biochemical processes involve 45 

membrane bound or associated proteins, the interaction of these with the lipid component of 46 

the membrane are increasingly of interest in understanding membrane protein function[1][14][15]. 47 

Neutron reflectometry (NR) is a structural analytical tool available at large national and 48 

international facilities, usually through a proposal access system. NR is unique among the 49 

techniques used to resolve bio membrane structure as it is non-damaging, can probe deeply into 50 

buried interfaces and, most important, resolve the relative distribution of components across 51 

model biological membranes and thus can quantitatively determining the relative protein and 52 

lipid distributions before and after biochemically relevant processes. In this mini-review the 53 

utilisation of NR in the structural examination protein-lipid complexes is discussed. Of 54 

particular interest to biochemical scientists is how this technique combined with sample and 55 

solution deuterium labelling can be utilized to detail the relative distribution of macromolecular 56 

components across a model biological membrane, this is therefore emphasized in the text. 57 

Neutron Scattering  58 

The use of neutron scattering as an analytical tool to examine molecular and atomic structure 59 

began in earnest as a by-product of nuclear weapon and reactor development[16]. By the late 60 

1960’s research reactors, such as the Institut Laue Lavengin in Grenoble, France, were being 61 

built specifically to enable the use neutron scattering techniques in academic research. Neutron 62 



scattering facilities fall into two categories, reactor sources in which nuclear fission provides 63 

the neutron source or spallation sources in which a pulsed beam of protons are fired at a heavy 64 

metal target which causes the ejection (“spallation”) of neutrons which can then be utilized in 65 

scattering experiments.  66 

The neutron beams used in scattering studies are generally composed of thermal, epithermal 67 

and cold neutrons. These have wavelengths in the Ångstrom range, meaning the scattering of 68 

these can encode Ångstrom level structural details, but have energies that are the same, slightly 69 

above or below that of materials at room temperature, meaning they are essentially non-70 

damaging to biological samples. For non-magnetic samples, neutrons scatter directly from the 71 

atomic nucleus. This leads to two beneficial effects, firstly neutrons can penetrate deeply into 72 

matter due to the low volume the nucleus occupies. Secondly, and perhaps most importantly 73 

for the biological sciences, the nuclear nature of the neutron scattering event means that the 74 

neutron scattering magnitude, called the scattering length, is not coupled with atomic number 75 

as is found with X-ray scattering from the electron cloud and, in fact, is random across the 76 

periodic table. Elements such as carbon, nitrogen and oxygen have neutron scattering lengths 77 

comparable with heavy elements such as gold, silver and lead, making neutron scattering 78 

techniques sensitive to the presence of light elements. 79 

Neutron scattering lengths can vary between different isotopes of same element.  The scattering 80 

length of the two naturally occurring forms of hydrogen, protium (~99.98% natural abundance) 81 

and deuterium (~0.015% natural abundance) differ by a relatively large degree. Deuterium has 82 

a scattering length similar to that of carbon while protium has a negative value. This means 83 

water with natural abundance hydrogen (99.98% protium, H2O) and heavy water (D2O) have 84 

widely different neutron scattering length densities (nSLD, scattering length divided by 85 

molecular volume). The scattering length density of proteins, ribonucleic acids, lipids and 86 

complex sugars, the major bio-macromolecules, are between that of H2O and D2O. This means 87 

that by changing H2O and D2O mixture surrounding a bio-macromolecular complex the 88 

scattering from individual components can be enhanced or diminished. By utilising this effect 89 

through the collection of a series of data sets in differing H2O and D2O mixtures, not only can 90 

the overall structure of a bio-macromolecular complex be resolved, but also, with good 91 

experimental design, the relative spatial distribution of components can be encoded in the 92 

scattering data. Additionally, deuterium labelling of the individual components can be used to 93 

further enhance the “contrast” (difference in nSLD) between similar components and allow for 94 



the distribution of domains within protein only complexes[17] or differing lipids within a 95 

membrane to be resolved[18].  96 

Differing neutron scattering techniques allow for differing questions of biological samples to 97 

be answered. Macromolecular diffraction measurements allow for the understanding of 98 

hydrogen distributions within high resolution protein structures[19], quasi elastic neutron 99 

scattering allows for dynamical processes within biological complexes to be probed, small 100 

angle neutron scattering is a versatile molecular level probe for particle shape and distributions 101 

in solution[17] and can be utilized to examine interactions with lipid vesicles[20]. Neutron 102 

reflectometry (NR), allows for structure at interfaces to be resolved. Like small angle scattering 103 

it does this with molecular precision, i.e. does not give the positions of individual atoms but 104 

rather entire molecules. This technique has been used to biologically relevant interactions with 105 

planar models of biological membranes[21][22][23][24][25][26]. 106 

Dedicated NR instrumentation was first developed in the late 1980’s and initially used in 107 

physical/colloid chemistry and hard condensed matter physics studies[27][28][29][30]. Studies on 108 

lipid bilayers using NR began in the 1990’s[31][32], with an increasing uptake of the technique 109 

to examine model membranes[33], membrane interactions and protein-lipid complexes since 110 

this time. NR is unique in its capabilities for this science as it can readily structurally probe the 111 

solid liquid interface due to the high penetration power of neutron beams. Complex biological 112 

architectures such as protein-lipid complexes can be examined at the interface and the 113 

compositional complexity of the structure unravelled.  114 

Membrane structural and interaction studies undertaken by NR are, except in a few cases[34][35], 115 

on model biological membrane systems. These are planar lipid membranes, of reduced 116 

complexity compared to that found in vivo, which allow for precise structural and biophysical 117 

analysis. The complexity of the interfacial membrane models ranges from air/liquid lipid 118 

monolayers which are simple yet controllable representations of a single lipid leaflet of a 119 

membrane to a range of different supported lipid bilayer (SLB) types at the solid liquid 120 

interface[36]. In this mini-review I will concentrate on examining protein-lipid interactions with 121 

supported lipid bilayers. In its simplest form these model membrane constructs are composed 122 

of lipid bilayers deposited onto a solid substrate material by Langmuir Blodgett/ Langmuir 123 

Schaefer deposition[37] or vesicle rupture[38]. More biologically accurate advanced models 124 

include polymer cushioned, surface tethered and floating planar membrane systems[39][40][41]. 125 

The examination of lipid nanodiscs with and without embedded proteins at interfaces has been 126 



an area of interest for reflectometry studies in recent years [42][43][44][45], with peptide coated 127 

nanodiscs being used recently to create supported lipid bilayers containing well orientated 128 

integral membrane proteins[46].  129 

NR examination of  model membrane sample systems can complement studies using atomic 130 

force microscopy[47], solid state NMR spectroscopy[48], quartz crystal microbalance 131 

measurements[49], Cryo-electron microscopy[50], surface plasmon resonance[51] and 132 

ellipsometry[52] with NR, uniquely, providing the complex structure across the membrane.  133 

 134 

 135 



Figure 1, a schematic representation of a neutron reflectometry beamline, the process of reflection and 136 

refraction through a protein bound SLB at the solid/liquid interface and the use of solution isotopic contrast 137 

to sensitize the experimental reflectivity profiles to differing components of this interfacial protein-lipid 138 

complex. A collimated beam of neutrons illuminates the solid/liquid interface within a flow cell, the angle of the 139 

sample surface and the detector relative to the incoming neutron beam are increased to probe higher Qz values 140 

(A). At the solid liquid interface reflection and refraction will occur at the interfaces of any layered material 141 

present giving rise to an interference pattern in the NR data in the form of Kiessig fringes, a protein bound SLB 142 

is shown as an example of such an interfacial structure (B). Changing the ratio of H2O and D2O within the sample 143 

cell can enhance or reduce the contribution of differing components of the protein-lipid complex to the 144 

reflectometry data (C).  145 

Neutrons are reflected and refracted at interfacial scattering length density boundaries such as 146 

the solid/liquid, air/liquid or solid/air interfaces (Fig 1, B). The relative magnitude of reflection 147 

vs. refraction is related on the angle of incidence, neutron wavelength and difference in nSLD 148 

between the bulk phases (as described by Fresnel for the reflection of light[53]). In NR the 149 

reflected intensity is measured against Qz (wave vector transfer in the Z direction i.e. normal 150 

to the interface or out-of-plane) which is a convenient way to combine data collected at 151 

different angles and wavelengths with:   152 

𝑄𝑧 =  
4𝜋𝑆𝑖𝑛𝜃

λ
 153 

Therefore Qz is proportional to the incident angle (θ) and inversely proportional to the 154 

wavelength (λ). For a bare interface the reflectivity intensity will decay with a gradient 155 

proportional to Qz
-4. If any material is present at the interface (such as the protein bound SLB 156 

shown in Fig 1B), and has a difference in scattering length density (also referred to as contrast) 157 

from its surrounding environment, reflections will occur on both the upper and lower sides of 158 

this material (we describe this as a layer). The interference between these reflections will give 159 

rise to oscillations in the NR data known as Kiessig fringes[3]. The repeat distance of the fringes 160 

in Qz is  inversely proportional to thickness of the layer while the amplitude of the constructive 161 

regions is proportional to the difference in nSLD between the layer and its surroundings, which 162 

is connected to the identity of the material through knowledge of its chemical composition and 163 

isotopic labelling. If the surrounding media is water, changing the H2O and D2O ratio will 164 

modify the intensity of these fringes, highlighting or dampening the contribution from an 165 

individual layer/component to the NR data. In these studies, heavy water (D2O) and water 166 

(H2O) buffers are produced using the same methodology with the exception that the measured 167 

pH probe reading of the D2O solution should be 0.45 lower than that of the water (H2O) buffer 168 



solution to account for the weaker acidity of deuterons compared to protons and produce a pD 169 

value which matches the pH of the H2O buffer solution[54].  170 

Reflectometry data from biological macromolecular complexes is often a superposition of 171 

Kiessig fringes produced by multiple individual components. Figure 1. C shows a series of 172 

schematic contrast diagrams from a protein-lipid complex. Here shading is used to represent 173 

nSLD, the darker the shade the higher the nSLD value. By changing the nSLD of the solution 174 

through D2O/H2O exchange, the contribution of differing components of a protein-lipid 175 

complex (in Fig 1 C, a protein bound supported lipid bilayer) can be highlighted or reduced in 176 

the reflectivity data. Lipid tails, for example, have an nSLD similar to that of H2O, meaning 177 

this solution contrast will be more sensitive to the structural distribution of the head groups and 178 

the protein component (and less sensitive to the tail structure). Conversely, in silicon matched 179 

water (Si-MW, 38% D2O) the nSLD of the lipid head groups and protein component will be 180 

close to the solution (i.e. “matched out”), meaning this contrast will be mainly sensitive to the 181 

lipid tail distribution. All components, lipid tails, head groups and protein will contribute to the 182 

NR data in D2O meaning this contrast describes the overall envelope of the protein-lipid 183 

complex. By combined fitting of all three data sets not only is the overall structure of the 184 

complex best resolved but the relative distribution of components within that complex is 185 

unambiguously elucidated. For a quantitative description on the use solution contrast in NR 186 

studies on protein-lipid complexes see a recent article by Heinrich et al [55].  187 

As well a solution isotope labelling, deuterium labelling of components within the membrane 188 

complex allows for additional manipulation of nSLD and is particularly useful when there is a 189 

need to resolve the relative distributions of two similar components (or components of similar 190 

nSLD), such as determining the organisation of different lipid types across the membrane[18][56]. 191 

Figure 2 shows an example of this for the interaction of the antimicrobial seed defence protein 192 

α1-purothionin (-Pth) with a supported lipid bilayer model of the Gram negative bacterial outer 193 

membrane. This type of model membrane system was the topic of a recent review by us[57] and 194 

is composed of a biologically relevant asymmetric distribution of phospholipid and rough 195 

mutant bacterial lipopolysaccharides on a silicon support surface[18]. The relative distribution 196 

of components across the model membrane both before and after the interaction of α1-Pth is 197 

resolved from simultaneously fitting the three isotopic contrasts (Fig 2, A, 100% D2O, Si-MW 198 

(38% D2O) and 100% H2O).  199 



Deuterium labelling of the phospholipid component (inner leaflet) allows the relative 200 

distribution of this and the hydrogenous (natural abundance hydrogen) lipopolysaccharide to 201 

be resolved across the SLB. The deuterated phospholipid tails dominate the reflectivity in the 202 

H2O contrast data sets, while the h-LPS tails are prevalent in the D2O data sets. Both 203 

components contribute to the Si-MW data set. The position of the core oligosaccharide is well 204 

defined in both the D2O and H2O data sets due to the intermediate nSLD values of this 205 

component (~2×10-6 Å-2 in H2O and ~4×10-6 Å-2 in D2O
[18], the difference between the two 206 

being due to the exchange of labile hydrogens with their surroundings). The analysis of the NR 207 

produces nSLD vs. distance profiles (shown in Fig 2 B, C and D, note that distance is on the Å 208 

scale). The data prior to the α1-Pth binding is shown in blue (Fig 2 B) while the data after 209 

protein binding is shown in red (Fig 2 C). Like the core oligosaccharide the protein component 210 

of the membrane has an intermediate nSLD (between that of H2O and D2O) being 1.9×10-6 Å-211 

2 in H2O and 3.2×10-6 Å-2 in D2O, meaning the protein distribution across the membrane is 212 

encoded for in both the D2O and H2O contrasts. Conversely, the Si-MW solution is near the 213 

match point of the protein (~42% D2O) so will not contain significant information about this 214 

component.  215 

From the nSLD profile prior to α1-Pth binding (Fig 2 B) we identify a sinusoidal shape across 216 

the membrane moving away from the bulk interface (> 0 Å on the plot, Fig. 2 B and C), due to 217 

the high nSLD of the inner leaflet phospholipid tails and the low nSLD of the outer leaflet h-218 

LPS tails. Next to this (again moving away from the bulk interface) is the core oligosaccharide 219 

region of the LPS on the outer surface of the bilayer. This layer is highly hydrated hence the 220 

strong difference in nSLD between this region in the nSLD profiles of the D2O and H2O data 221 

sets (Fig 2 C). Adjacent to the core oligosaccharide is the bulk solution.   222 

Upon the interaction of α1-Pth with the model membrane the lipid distribution remains 223 

unchanged, but we can observe the presence of a new, diffuse and highly hydrated layer of 224 

protein on the surface of the membrane (Fig 2 B and D). The thickness of this layer was found 225 

to be ~26 Å and the membrane surface coverage of protein (not including protein hydrating 226 

water) was ~35%. A comparison of this thickness with the crystal structure suggest a single 227 

layer of bound thionin to the outer surface of the membrane[58]. The comparison of the nSLD 228 

of the outer (LPS) tails before and after protein interaction suggests that a small proportion of 229 

the bound protein (≤ 10% volume fraction) had penetrated into the LPS tail and the core 230 

oligosaccharide region of the outer membrane outer leaflet. This can be seen in fig 2B where 231 

there is a difference in the nSLD of the tail and core regions upon protein binding Fig 2 B 232 



dotted circle). Although this change was not determined to be significant by ambiguity analysis 233 

(ambiguity of the resolved structure is shown as a line width). A conclusive assessment of the 234 

membrane penetration by NR would come through repeating this experiment using a differing 235 

isotopic contrast series. An optimised contrast strategy for this interaction would be to examine 236 

a deuterated form the protein interacting with a fully hydrogenous SLB, as larger changes in 237 

the experimental reflectometry profiles in H2O/Si-MW would be observed from the protein 238 

density distribution across the membrane yielding a less ambiguous identification of protein 239 

penetration into the membrane (Fig 3 shows a contrast diagrams comparing these two differing 240 

labelling strategies).  241 

 242 



 243 

 244 

Figure 2, Neutron reflectometry data and associated scattering length density profiles for a model Gram 245 

negative outer membrane prior to and after the interaction of the antimicrobial protein α1-purothionin. 246 

The NR data was collected under three solution isotopic contrast conditions, before and after protein binding, 247 

deuterium labelling of inner membrane leaflet phospholipid was used to differentiate this from the 248 

lipopolysaccharide (A). NR data is shown in an R×Q4 format to remove the inherent Q-4 gradient on the data and 249 

highlight the Keissig fringes. Combining the bilayer and solution hydrogen isotope labelling approaches allowed 250 

for the relative distribution of the phospholipid, lipopolysaccharide, water and protein across the membrane to be 251 

determined through interrogation of the scattering length density profiles (B, C and D). The nSLD profiles overlaid 252 

onto a schematic representation of the surface structure before (C) and after (D) the interaction α1-Pth are given. 253 



It should be noted the membrane bound protein distribution was conclusively resolved while the membrane 254 

penetrated protein distribution was not.  255 

NR Studies on protein-lipid complexes 256 

Figure 2 shows antimicrobial protein disruption of a model membrane by a lipid interacting 257 

antimicrobial compounds. This area of study is increasingly utilising NR’s ability to provide 258 

structural insights into the mechanisms of antimicrobial activity by elucidating  the resulting 259 

changes in the distribution of components across the membrane (like the example shown). 260 

Examples of this are in studies on peptide disruption of lipid monolayers[23] and venom toxin 261 

disruption of supported lipid bilayers[22]. Recently NR has been used to examine the 262 

antimicrobial activity of new peptide based antibiotics[25][59][60][61] and provide a precision 263 

understanding of the activity of natural antimicrobial peptides[21][62][63][64]. Biochemically 264 

relevant protein-lipid interactions are another area where NR is able to provide unique insights. 265 

Information such as the protein distribution relative to the membrane surface[65] and the 266 

orientation of surface bound peripheral membrane proteins[66] provides unique molecular level 267 

insights into membrane biochemistry. Integral membrane protein distribution within the lipid 268 

matrix is an increasingly utilized area. Currently this has been used to benchmark 269 

biotechnological sensor systems[67] or new integral membrane protein containing membrane 270 

sample systems[68][46]. Biochemical structural studies on integral membrane proteins provide a 271 

means of structurally probing function within the membrane environment[48][69][70][71]. 272 

For further reading about examples of the biological work undertaken with NR please refer to 273 

review articles by Gerelli[72], Wacklin[73], Lakey[74], Heinrich and Lösche [75] and Fragneto et 274 

al[76]. More technical details on performing NR experiments to examine protein-lipid 275 

interactions can be found in a methods chapter by us[77]. Additionally, we recently published a 276 

techniques review article detailing how to use a series of complementary analytical techniques, 277 

including NR, to examine interactions with planar membrane models[36] and an article detailing 278 

the application of a variety of neutron scattering techniques to study biological membranes[20]. 279 

 280 



 281 

Figure 3, Contrast diagram comparing the two differing isotopic labelling strategies used to examine the 282 

distribution of components across a model biological membrane. The contrast diagram of the labelling strategy 283 

used in figure 2 is shown (A), this gives a good structural description of the lipid distribution and is sensitive to 284 

the protein distribution but less so than deuterated protein interacting with a fully hydrogenous SLB (B), however, 285 

in the latter case we would lose sensitivity to the lipid distribution as a result.  286 

Outlook 287 

The applied use of neutron reflectometry for unravelling the structural complexity of protein-288 

lipid interactions is still in its infancy. However, examples of the utilisation of this technique 289 

are growing and biologists using NR beamlines to answer questions of membrane biology is 290 

becoming more commonplace. New instrumentation is being built with this science as one of 291 

the major drivers and most facilities now employ scientists who specialize in developing and 292 

assisting users with bio related NR studies, enabling more complex and sophisticated structural 293 

studies to be undertaken. Key to the continued advance of this technique is a drive towards 294 

accurate in vitro membrane models that allow for precision structural data to be obtained under 295 

biologically accurate conditions and advances in data analysis, particularly towards the 296 

incorporation of molecular dynamics simulations.   297 

Accessing NR instrumentation 298 

Biologists interested in undertaking NR studies should contact their nearest neutron scattering 299 

facility who will put them in contact with facility scientists who will guide the novice on the 300 

mechanisms by which experimental beam time can be sought and provide the expertise and 301 

sample environment required to enable experimental success. 302 



Perspectives 303 

 Neutron reflectometry is a powerful technique that is uniquely able to structurally 304 

resolve the compositional complexity within model biological membranes.  305 

 Key to the utilisation of this technique is the use of solution and sample deuterium 306 

labelling and accurate model membrane systems.  307 

 Future improvements in model membrane systems, data collection times and analysis 308 

strategies will allow for ever increasing and complex membrane relevant biochemical 309 

interactions to be examined using NR. 310 
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