
Functional Programming 5

jens.jensen@stfc.ac.uk
0000-0003-4714-184X

CC-BY 4.0

May 22, 2022

Outline of Talks

1. Basics of functional programming
▶ Recursion, dividing problems into sub-cases, immutable

variables

2. Mapping

3. Lists and conses
▶ Basic structure: helper functions, naming

4. Lambdas, higher order functions
▶ list comprehension
▶ symbols

Still written in the author's spare time!
Very much a personal perspective, and not following any particular
textbook. Using meditations and exercises � solutions to all
exercises given during the talks.

Common/Advanced(ish) Features of Functional Languages

1. Lambda (anonymous (unnamed) functions) and currying

2. List comprehension

3. Functions � mutually recursive, higher order

4. Symbols

5. Tail recursion

6. Scope and extent (Lisp)

7. Types and type inference

8. Branch-on-pattern-matching and guards

9. Memoisation

10. Lazy evaluation types

11. Pipes (not the lazy kind) style composition
▶ h(g(f (x))) ≡ (h (g (f x))) ≡ x |f |g |h

12. Monads: theoretical framework for types and computation

13. Applied monads: Maybe, Arrays

14. Bonus section for survivors of MonadLand: Lisp Hacking

TRO 1 (Tail Recursion Optimisation)

(disassemble 'fact)

0 dup

1 constant 0

2 eqlsign

3 goto-if-nil 1

6 constant 1

7 return

8:1 dup

9 constant fact

10 stack-ref 2

11 sub1

12 call 1

13 mult

14 return

TRO 2

(defun fact (k)

(if (zerop k) 1 (* k (fact (1- k)))))

uses tail recursion but is not optimisable; this one is:

(defun fact (k result)

(if (zerop k) result

(fact (1- k) (* k result))))

By the time the function calls itself, the �rst version has to
remember (* k ...); the second version doesn't need to
remember anything. Compilers can optimise the recursion call away
and make it a loop (though it becomes harder to debug as the
extra stack frame is missing).

EL does not do tail recursion optimisation (TRO) but it is an
important technique in functional programming (and some day EL
may do it too)

TRO 3
fact has an extra parameter, so we need to call (fact 12 1).
Here is iota from before in the same style (note, no nreverse �
meditate on why it is not needed):

(defun iota (k result)

(if (zerop k) result (iota (1- k) (cons k result))))

Notice it generates a list of 1, . . . , k ; sometimes (iota k) is
expected to generate 0, . . . , k − 1
One way to �x the extra parameter is to make result optional.
Unfortunately, ELisp does not have default values for optional
parameters.

(defun fact (k &optional result)

(if (zerop k) (or result 1)

(fact (1- k) (* k (or result 1)))))

fact

(fact 12)

479001600

TRO 4

This would also do the trick, using a local recursive function
de�ned with labels to do the actual work:

(defun fact (k)

(labels ((fact1 (k result)

(if (zerop k) 1 (fact1 (1- k) (* k result)))))

(fact1 k 1)))

Creating a helper function (scoped to the inside of fact) which can
call itself recursively (hence using labels instead of flet). Now
fact1 is TRO-able and the recursion will be optimised as a loop.

TRO 5

Using a wrapper function could also help with type checks:

(defun fact (k)

(unless (and (integerp k) (>= k 0))

(error "Improper argument to fact: %s" k))

(labels ((fact1 (k result)

(if (zerop k) 1 (fact1 (1- k) (* k result)))))

(fact1 k 1)))

As we have seen before, this takes the check out of the loop.
Previously we used a standalone helper function for fact, but in
principle a section of code could have local optimisation parameters
(at least in CL), allowing for extra optimisation of the helper
function as before.

The Same Length Question

From Talk 1, a check that all sequences have the same length:

(defun check-same-length (lists)

"For a list of sequences, check that they are all the same length"

(if (endp (cdr lists)) ; zero or one elts

t

(check-same-length-1 (length (first lists)) (rest lists))))

(defun check-same-length-1 (len lists)

"Helper function for check-same-length: check that all seqs in lists have length len"

(cond

((endp lists) t)

((/= (length (first lists)) len) nil)

(t (check-same-length-1 len (rest lists)))))

(check-same-length '((1 2) [2 3] "AB"))

t

(check-same-length '((1 2) (2) (3 4)))

nil

Types

Meditation: what is the di�erence between

(defun process-list (k)

(if (null k) t

(reduce #'bar (map 'list #'foo k))))

and

(defun process-list (k)

(if (endp k) t

(reduce #'bar (map 'list #'foo k))))

Hint: think of (process-list [1 2])

Types

What about this version?

(defun process-list (k)

(declare (type list k))

(if (null k) nil

(reduce #'bar (map 'list #'foo k))))

Meditation: What does declare do? Hint: consider the di�erence
between:

▶ ELisp checks that the argument is a list when it's passed in

▶ The programmer promises that k is a list, and consequences
are unde�ned if it's not

▶ It's a hint to the compiler that what comes in is likely to be a
list, and the compiler is free to ignore it

▶ It's like a comment

Answer: next slide

Types

Types are important for two reasons:

▶ Correctness � tracking types (at read/compile time) helps
ensure that the program is correct

▶ Performance and optimisation � the compiler can make
optimisations if it knows the speci�c type (eg. of a sequence or
sequence element type)

Types can be speci�ed in two ways:

▶ By the programmer. It is an error if a programmer-speci�ed
type does not match.
▶ In CL, the consequences of a type error depend on the

circumstances and what the standard/implementation de�ne

▶ It can be inferred.
▶ For example, in the sexp (+ (floor a 6) (mod b 12)),

▶ a must be an integer, (floor a 6) is an integer
▶ b must be an integer; (mod b 12) is of type (and (integer

0 12) fixnum) (or similar)
▶ + can specialise to an integer-only (and only two parameters)

Types

Functional languages support type inference. For example, this will
not work in ML-based languages:

let a = [2; (3,1); "ada"]

in ...

as the language will try to infer a list-of-something but it sees a
number, a pair and a string.
In contrast, Lisp will cheerfully accept

(let ((a '(2 (3 . 1) "ada")))

...)

Although Emacs's type system is simpler it is worth learning (some
of) CL's, partly for understanding functional programming as a
paradigm, partly to uderstand Emacs' better.

Types and Inference

In a functional language like F#, types are inferred (in Linux, run
fsharpi to get the interpreter):

> [2;3;4] ;;

val it : int list = [2; 3; 4]

Unlike arrays, in Lisp (E or C), we cannot directly specify the
elements of a list:

(typep '(2 3 4) 'list)

t

but in CL we can do

(defun intseqp (w) (every #'integerp w))

INTSEQP

(typep '(2 3 4) '(and list (satisfies intseqp)))

T

Types
In Lisp, everything is part of a type hierarchy:

float

real

rational

number

integer

t

fixnum

sequence

list

vectorstring
arraysimple−array

bit−vector

symbol

null

cons

function

signed−byte

unsigned−byte

short−float

single−float

double−float

long−float

complex

simple−string

nil

This picture illustrates only the more important types. Note four
specialised �oat types: SBCL provides only two, with long and
double being con�ated, and short and single con�ated. In EL:

pi

3.141592653589793

(type-of pi)

float

Types and Inference

In CL, types like array and complex (but not list) are compound
types and can optionally specify their element types:

(type-of #(1 2 3))

(SIMPLE-VECTOR 3)

(typep #(1 2 3) '(array integer *))

T

The array speci�er is specialised with the type of element in the
array and the dimensions. The symbol * may be used as a
short-hand for �anything.� Similarly, a rank-2 array could be
speci�ed with dimensions (* *):

(typep #2A((1 2) (3 4)) '(array * (* *)))

T

Meditation: Note that (array t) is a proper subtype of (array
*) � why?

Types � Generic Programming

Compare this with generic programming where the type is not
known (until later):

let list_length x =

let rec list_length1 x l =

match x with

| [] -> l

| _ :: x1 -> list_length1 x1 (1+l)

in list_length1 x 0

printfn "%d" (list_length [1;2;3])

printfn "%d" (list_length ["abra";"ca";"dabra"])

The type of list_length will be 'a list -> int, meaning a list
of a type 'a mapping to an int.

map (in F#) would have type

('a -> 'b) -> 'a list -> 'b list

Types � Generic Programming

Suppose we wanted a list of mixed items: but F# will refuse the
following

[3;"abc"; 1.2]

as the elements are three di�erent types. Instead we use a
�discriminated union�:

type Mixed =

| String of string

| Int of int

| Float of float

printfn "%d" (list_length [Int 3; String "abc"; Float 1.2])

Types � Generic Programming
In C++, the types are managed in exactly the same way:

template<typename X>

std::size_t

list_length1(typename std::list<X>::const_iterator list,

typename std::list<X>::const_iterator nil,

std::size_t count)

{

if(list == nil)

return count;

return list_length1<X>(++list, nil, 1+count);

}

template<typename X>

std::size_t

list_length(std::list<X> const &list)

{

return list_length1<X>(list.cbegin(), list.cend(), 0);

}

Types � Generic Programming
In contrast, Lisp will (unless told otherwise) assume the most
generic type:
▶ Lists are always assumed to be lists of t
▶ Arrays are assumed to be arrays of t (CL: unless spec'd)

(defun list-length (l)

(labels ((list-length1 (l c)

(if (endp l) c

(list-length1 (cdr l) (1+ c)))))

(list-length1 l 0)))

list-length

(list-length '(3 "abc" 1.2))

3

This will happily work with any type (including user-de�ned types):
▶ The Lisp code is not duplicated for each type, like the C++

code is
▶ However, (as in C++), specialisations are possible in CLOS

(CL only)

Pattern Matching and Guards

A common example in (other) functional language is a sort of
generalisation of cond (if such a thing can be imagined) where
each case is a pattern with an optional guard � this is a contrived
example in F#:

let rec func data sum =

match data with

| [] -> sum

| (a,b) :: rest when a>b -> func rest (sum+a)

| (_,b) :: rest -> func rest (sum+b)

| _ -> failwith "could not parse data"

let test = [(3, 1) ; (4,1); (2,3) ; (-1, 2)]

in printfn "%d" (func test 0)

When run, it prints 12. Meditation: which simple refactoring would
improve this function? (answer in a few slides)

Pattern Matching and Guards

The Mixed type from before can be deconstructed similarly:

type Mixed =

| Float of float

| String of string

| Int of int

let explain (elt : Mixed) =

match elt with

| Float g -> printfn "Float %f" g

| String s -> printfn "String %s" s

| Int i -> printfn "Int %d" i

List.iter explain [Int 2; Float 2.71828; String "ada"]

In Lisp the same e�ect can be achieved with typecase (which
works like case but matches on the type)

Pattern Matching and Guards

Lisp has the pattern matching function from macros' lambda lists
as a standalone generalisation of let:

(destructuring-bind (a (b . c)) '(2 ((f g . y)))

(list a b c))

(2 (f g . y) nil)

This will raise an error:

(destructuring-bind (a (b c)) '(1 2) (list a b c))

This means we can use it to bind variables in an expression, but not
easily in a negative match.

Pattern Matching and Guards

Obviously we could write the function the conventional way (still
without the helpful refactoring):

(defun func (data sum)

(cond

((endp data) sum)

((> (caar data) (cdar data))

(func (rest data) (+ sum (caar data))))

((and (consp (car data)) (atom (cdar data)))

(func (rest data) (+ sum (cdar data))))

(t (error "Failed to process ~S" data))))

That third test is a bit hand-made (it tests for a cons cell). Things
to note:

▶ Unlike F#, it doesn't make any bindings in the clauses

▶ It doesn't pattern match in the sense that
destructuring-bind does

Pattern Matching and Guards

Of course we could still write the pattern explicitly:

(cond

((endp data) sum)

((ignore-errors

(destructuring-bind (a . b) (first data)) (> a b))

(func (rest data) (+ sum a)))

...

Here, ignore-errors will return nil if destructuring-bind
fails to match; if it does match, the value of the test (> a b) is
returned. As before, if the clause is true, the function is called
recursively.

In CL's Alexandria library, there is a destructuring-case. In EL,
dash has -when-let (as a clause) and -let can do destructuring.

Pattern Matching and Guards

Here is a cleaner way of handling the problem:

(defun func (sum val)

(destructuring-bind (a . b) val

(+ sum (if (> a b) a b))))

func

(reduce #'func

'((3 . 1) (4 . 1) (2 . 3) (-1 . 2))

:initial-value 0)

12

Incidentially, loop can also destructure:

(loop for (a . b) in '((3 . 1) (4 . 1) (2 . 3) (-1 . 2))

summing (max a b))

12

	Introibo
	Advanced(ish) Functional Programming

