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Abstract

This report describes an algorithm for the efficient computation of several extreme eigenvalues and

corresponding eigenvectors of a large-scale standard or generalized real symmetric or complex Hermitian

eigenvalue problem. The main features are: (i) a new conjugate gradient scheme specifically designed for

eigenvalue computation; (ii) the use of the preconditioning as a cheaper alternative to matrix factorization

for large discretized differential problems; (iii) simultaneous computation of several eigenpairs by subspace

iteration; and (iv) the use of efficient stopping criteria based on error estimation rather than the residual

tolerance.
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1 Introduction

This report describes an algorithm for computing several leftmost eigenvalues and corresponding

eigenvectors of a real symmetric matrix L of order n or of the generalized problem

Lx = λMx, (1.1)

where M is a real symmetric positive-definite matrix of order n. We do not discuss the case where the

rightmost eigenvalues are wanted since this is trivially available by working with −L. The algorithm

in question is implemented by the authors as a code called HSL EA19 that is available within the HSL

mathematical software library (HSL 2007). There is also a version of the code for Hermitian matrices, but

we consider only the real case here, since the changes for the Hermitian case are very straightforward.

Because HSL EA19 is designed primarily for the case where n is very large, it does not require that the

matrices L and M are available explicitly. It returns to the user from time to time with a request that

a given n × k matrix Y be multiplied by L or M . This reverse communication interface provides great

flexibility over the way that the multiplications are performed.

In this report, we enumerate the eigenvalues λj and corresponding eigenvectors xj in ascending order

of λj , each counted as many times as its multiplicity, and assume that they are M -orthogonalized,

(Mxj , xj) = 1. Here and throughout the report (u, v) stands for
∑

i uivi, and ‖u‖ for
√

(u, u).

Occasionally, we also make use of the notation (u, v)M ≡ (Mu, v) and ‖u‖M =
√

(u, u)M . For matrices

we use the following two norms: ‖H‖ is the maximal singular value and ‖H‖F the Frobenius norm (the

square root of the trace of HTH).

Our algorithm is based on considering the Rayleigh quotient,

λ(u) =
(Lu, u)

(Mu, u)
, (1.2)

whose minimum is attained at u = x1 with the value λ1. To find x1 and λ1, we use the method of

preconditioned conjugate gradients (PCG), which differs from the standard conjugate gradient method in

that the gradient is multiplied by an n× n matrix K called the preconditioner. Available bounds for the

convergence factor of PCG iterations are monotonically increasing functions of the ratio of the rightmost

to the leftmost positive eigenvalue of K(L − λ1M) (see Ovtchinnikov, 2006d). If L is positive definite,1

this is bounded by cond(KL)λ(2)/(λ(2) − λ1), where λ(2) is the second distinct eigenvalue, and cond(KL)

denotes the condition number of KL. Thus, if λ1 and λ(2) are well separated, the use of a preconditioner

for which cond(KL) is close to 1 ensures good convergence.

To accommodate the computation of several eigensolutions and the case where the eigenvalues are not

well separated, we bring into play the so-called Rayleigh-Ritz procedure, intimately related to the minimax

principle

λj = min
Uj

[
max
u∈Uj

λ(u)

]
, (1.3)

where the minimum is taken over all j-dimensional subspaces. The minimum is attained when Uj is

the space spanned by the first j eigenvectors. If we restrict the choice of Uj to vectors in a subspace of

dimension l, called in this context the trial subspace, we will obtain over-estimates of the first l eigenvalues,

called Ritz values. The corresponding approximate eigenvectors are called Ritz vectors.

If the columns vj of the n×l matrix V span the trial subspace, any vector u in the subspace can be

written as V y, where y is an l-vector. For the Rayleigh quotient, we find

λ(u) =
(LV y, V y)

(MV y, V y)
=

(V TLV y, y)

(V TMV y, y)
(1.4)

which is the Rayleigh quotient for the l-dimensional problem

V TLV y = λV TMV y. (1.5)

1If it is not, one just needs to consider an equivalent shifted problem (L − σM)x = (λ− σ)M with some σ < λ1.
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We use this to obtain approximate eigenvalues of the given problem.

We replace the line search for the new approximate eigenvector xi+1
1 employed on each step of PCG

by a search for the subspace spanning several approximate eigenvectors xi+1
j , j = 1, 2, . . ., m. We require

the user to choose m to be large enough to include all the wanted eigenvalues. It is desirable that it

also be such that λm+1 − λj is not small for a wanted λj . The subspace search procedure is described in

§2.2; for now we just mention that each new approximation xi+1
j is defined as a linear combination of all

approximate eigenvectors from the previous iteration and respective search directions satisfying certain

optimality conditions. Convergence results of Ovtchinnikov (2006a) show that, for a positive-definite L,

the convergence rate for the j-th eigenvalue can be estimated in terms of cond(KL)λm+1/(λm+1 − λj).

Hence, the convergence is not adversely affected by the distance between λj and any of the other m

leftmost eigenvalues: we may say that the subspace iterations are cluster robust because the convergence

is not adversely affected by a wanted eigenvalue λj being in a tight cluster.

The choice of the preconditioner K is the user’s responsibility. Again, the matrix itself is not required;

instead HSL EA19 returns to the user with a request that a given matrix Y be multiplied by K.

The Rayleigh-Ritz procedure employed at each iteration of our algorithm is rather expensive. To

reduce the cost, we use a process known as deflation. Any approximate eigenvectors that we deem to be

sufficiently accurate are removed from V and the remaining vectors are M -orthogonalized with respect to

them. If there are k such vectors, this reduces the size of the eigenproblem by k. Thus it is important that

the code recognises convergent eigenpairs early, i.e. that the error estimates used by the code are accurate.

In Section 3.2, we briefly discuss error estimates commonly used in practical eigenvalue computation,

comment on their limitations, and make the case for the new error estimates and corresponding stopping

criteria employed in HSL EA19.

We use the order notation O (. . .) for quantities that become small in late iterations and are assumed to

be negligible by our code. Formally, if i is the iteration index, yi = O
(
zi
)

means that there is a constant

c that depends on the problem but not on i such that |yi| ≤ c|zi|.
The rest of this report is organized as follows. Section 2 concerns the PCG iteration, starting with a

subsection on the case with m = 1, following with one on the general case, and finally providing a summary

of the whole algorithm. Section 3 concerns implementation details, with subsections on the implementation

of the Rayleigh-Ritz procedure, the convergence criteria, and deflation (freezing of converged eigenvectors).

Finally, in Section 4, we report on numerical experiments.

2 Jacobi-conjugated preconditioned gradient algorithm

2.1 PCG for the Rayleigh quotient minimization

PCG is a minimization algorithm that computes a sequence of approximations xi to the minimum point

of a given functional ψ(u) by the following update scheme:

xi+1 = xi − αiy
i (2.1)

yi+1 = Kgi+1 + βiy
i, (2.2)

where gi+1 is the gradient of ψ(u) at u = xi+1 and K is the preconditioner, starting from a given x0 with

y0 = Kg0. In (2.1), αi is chosen to minimize ψ(xi+1) for this xi and yi, so we refer to this step as the

line search. The role of βi in (2.2), referred to as the conjugation of search directions, is to improve the

new search direction yi+1 and thereby achieve convergence acceleration compared to the preconditioned

steepest descent (the case βi = 0). In the case of a quadratic functional with positive-definite Hessian, it

is possible to choose βi in such a way that each search direction is globally optimal, i.e. each xi+1 is not

merely the point of local minimum on a line, but also the point of minimum in the hyperplane

{x0 + y : y ∈ span{y0, . . . , yi}} = {x0 + y : y ∈ span{Kg0, . . . ,Kgi}}. (2.3)
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Beyond the quadratic case, the global optimality is no longer possible, and various formulae used for

βi are supported by asymptotic considerations based on the fact that any smooth functional is ‘almost

quadratic’ in the vicinity of the global minimum. The corresponding variations of (2.1)-(2.2), which are

mathematically equivalent in the quadratic case, are called CG schemes.

The application of PCG to the Rayleigh quotient minimization meets with additional difficulties as

the Hessian H(u) of λ(u) is not positive definite. Apart from placing this case beyond the remit of

available convergence results, the indefiniteness hinders practical implementation of one of the only two

CG schemes for non-quadratic optimization for which the convergence results have been obtained, notably,

the one where βi is such that (H(xi+1)yi+1, yi) = 0 (‘exact conjugation’, or Daniel scheme), i.e. βi =

−(H(xi+1)Kgi+1, yi)/(H(xi+1)yi, yi).

The scale-invariance of the Rayleigh quotient allows a number of modifications1 in the standard PCG

update scheme (2.1)-(2.2): the vector iterate xi can be normalized, the gradient replaced with the residual

vector ri = Lxi − λ(xi)Mxi, to which it is collinear, and, most importantly, the line search step (2.1) can

be replaced with the Rayleigh-Ritz procedure:

xi+1 = RR1( span{xi, yi}), (2.4)

where we denote by RRk(V) the set of M -normalized Ritz vectors of (1.1) in the trial subspace V
corresponding to k leftmost Ritz values. This facilitates the extension of (2.1)-(2.2) to simultaneous

computation of eigenpairs, as we show in the next section.

The Rayleigh-Ritz procedure may be employed to automate the choice of βi as well as αi by noting

that the relationship

xi+1 = xi − αiKg
i − αiβi−1y

i−1 = xi − αiKg
i − αiβi−1(x

i − xi−1)/αi−1

allows us to write, in the quadratic case,

xi+1 = arg min
v∈ span{Kgi,xi−xi−1}

ψ(xi + v), (2.5)

since the plane {xi +v : v ∈ span{Kgi, xi−xi−1}} lies in the hyperplane (2.3), and the global optimality

implies the local optimality. This approach to computing βi was suggested by Takahashi (1965), and the

resulting update scheme is known as locally optimal. In the case of the Rayleigh quotient minimization,

(2.5) is equivalent to2

xi+1 = RR1( span{xi,Kgi, xi−1}). (2.6)

This, too, is useful in the next section.

2.2 Block PCG for computing several eigenpairs simultaneously

A straightforward extension of (2.2) and (2.4) to simultaneous computation of m eigenpairs is

X i+1 = RRm( span{X i, Y i}), (2.7)

Y i+1 = KRi+1 + Y iBi, (2.8)

where X i = [xi
1, . . . , x

i
m], Y i = [yi

1, . . . , y
i
m], Ri = [ri

1, . . . , r
i
m], ri

j = Lxi
j − λ(xi

j)Mxi
j , and Bi is an m×m

matrix. We note that the conjugation scheme (2.8) was first suggested by Longsine & McCormick (1980),

who considered two options: Bi = βiIm, where βi is a scalar,3 and Im is the m×m identity (i.e. essentially,

1With some schemes, these modifications produce equivalent xi+1. In the general case, they are asymptotically equivalent

– see Ovtchinnikov (2008a).
2We note though that unlike (2.5) for the quadratic ψ(u), (2.6) is not equivalent to other PCG schemes, although some

produce asymptotically close xi+1 (Ovtchinnikov 2008a).
3No explicit formula for βi was given in the cited paper; various suggestions can be found in Edelman et al. (1998).
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a scalar), and Bi = diag{βi
jj}m

j=1, where βi
jj is computed as in (2.2) for respective ri+1

j and yi
j or ri

j , e.g.

βi
jj = ‖ri+1

j ‖2/‖ri
j‖2 (preconditioning was not used). Both schemes were discarded: the former for not

delivering ‘a commensurate increase in power’ (compared to a hybrid successive-simultaneous scheme they

favoured), and the latter for being ‘improper extension of Rayleigh quotient minimization by CG’, since

conjugacy of n-by-m matrices ‘is not a well-defined concept’. Both conjugation schemes were subsequently

used by other authors (being, apparently, re-invented, since references to Longsine & McCormick (1980)

were absent): Bi = βiIm with various scalars βi was used by Edelman et al. (1998) (with a different

generalization of the line search step in place of (2.7), although (2.7) is also mentioned as an option), and

the mentioned diagonal Bi by Arbenz et al. (2005).

The numerical tests of Ovtchinnikov (2008c) demonstrate that the block PCG scheme (2.7)-(2.8) works

remarkably well for a range of conjugation matrices Bi, including the two mentioned in the previous

paragraph. They demonstrate also that the choice of Bi does affect the convergence, and thus the worries

of Longsine & McCormick (1980) regarding the lack of well-defined concept of block conjugation are not

unfounded. It is observed by Ovtchinnikov (2008c) that the trial subspace in (2.7) is contained in the trial

subspace of the locally optimal block PCG (LOBPCG) method of Knyazev (2001) – yet another block

PCG method whereby

X i+1 = RRm( span{X i,KRi, X i−1}), (2.9)

which is the generalization of (2.6). Consequently, the new approximations computed by (2.7) cannot be

better than those computed by (2.9). In fact, the numerical tests of Ovtchinnikov (2008c) demonstrate that

the convergence of (2.7)-(2.8) with the scalar or diagonal Bi is considerably worse than that of LOBPCG,

although the scheme with a diagonal Bi outperformed LOBPCG in terms of CPU time, owing to a less

computationally expensive update. At the same time, the tests of Ovtchinnikov (2008c) demonstrate that

it is possible for a block scheme (2.7)-(2.8) to match LOBPCG in terms of the convergence rate, and

therefore outperform the latter in terms of the CPU time (owing to the use of a smaller trial subspace) by

a proper choice of Bi. Also, it is more economical with storage.

Based on the theoretical convergence analysis of (2.7)-(2.8), Ovtchinnikov (2008b) has made a

suggestion for Bi that enjoys the optimality property that Bi be such that each search direction yi
j is

‘individually’ asymptotically optimal in the sense that no other choice of Bi can substantially reduce

λ̃i+1
j = λ(x̃i+1

j ) = minτ λ(x
i
j − τyi

j). It is shown by Ovtchinnikov (2008b) that the sum of λ̃i+1
j is

asymptotically equal to the sum of Ritz values in the subspace spanning x̃i+1
j . The latter subspace, called

‘core’ subspace in the cited paper is contained both in the trial subspace of (2.7) and that of (2.9), and

a remarkable similarity of convergence of these two block PCG schemes suggests that the individual line

searches implicitly present in these schemes play major role in the error reduction, which motivates the

described ‘individual’ optimality approach.

In order to obtain a compact formulae for the entries of Bi, Ovtchinnikov (2008b) observes that the

update scheme (2.7)-(2.8) can be equivalently4 reformulated as follows:

[X i+1, Zi+1] = RRmi
( span{X i, Y i}), mi = dim span{X i, Y i}, (2.10)

Y i+1 = KRi+1 + Zi+1Bi. (2.11)

The dimension mi of span{X i, Y i} may be less than 2m because of the possible linear dependence of

vectors xi
1, . . . , y

i
m. If it is m+m′, then Zi+1 is an m×m′ matrix. The entries β

(i)
kj of Bi are shown to be

given by an explicit formula

β
(i)
kj =

((λ(xi+1
j )M − L)Kri+1

j , zi+1
k )

λ(zi
k) − λ(xi

j)
(2.12)

(if λ(zi
k) = λ(xi

j), which we have not observed in practice, we set β
(i)
kj = 0).

4Excluding the case where the angle between span{Xi} and span{Xi+1} is π/2.
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The main theoretical tool used by Ovtchinnikov (2008b) in the derivation of this new block

PCG update scheme is the so-called Jacobi orthogonal complement correction equation of Sleijpen &

van der Vorst (1996) and its generalization by Brandts (2003); hence, (2.10)-(2.12) is called Jacobi-

conjugate preconditioned gradient (JCPG) method by Ovtchinnikov (2008a), Ovtchinnikov (2008b), and

Ovtchinnikov (2008c).

2.3 Algorithm summary

Setting aside, for the time being, various implementation issues, such as the stopping criteria and deflation

and detecting almost linearly dependent vectors, the JCPG algoritm can be summarized as follows.

• Input: linearly independent vectors v1, . . . , vm.

• Output: approximate eigenvalues λ1, . . . , λm and eigenvectors x1, . . . , xm.

1. Initialization

(a) Compute L̂ = V TLV and M̂ = V TMV , where V = [v1, . . . , vm].

(b) Compute eigenvectors x̂j of the generalized problem L̂x̂ = λ̂M̂ x̂ normalized by ‖x̂j‖M = 1.

(c) Compute xj = V x̂j . Set X = [x1, . . . , xm].

2. Main CG loop (to be repeated until convergence)

(a) Compute λj = λ(xj) and rj = Lxj − λjMxj , j = 1, . . . ,m.

(b) Compute yj = Krj , j = 1, . . . ,m. Set Y = [y1, . . . , ym].

(c) If not the first iteration, then

i. Compute (using (2.12)) the m′ ×m matrix B with entries βkj given by

βkj =






λj(Myj , zk) − (Lyj, zk)

λm+k − λj
, λm+k > λj ,

0, λm+k = λj ,
k = 1, . . . ,m′, j = 1, . . . ,m,

where m′, Z = [z1, . . . , zm′ ] and λj (j = 1, . . .m+m′) are computed at steps (2e), (2h) and

(2g), respectively, on the previous iteration.

ii. Update Y = Y + ZB.

(d) M -orthogonalize Y to X , i.e. ensure (MY,X) = 0, discarding any yj that form too small an

angle with span{X}.
(e) M -orthogonalize Y , i.e. ensure for j 6= k (Myj , yk) = 0, discarding any almost linearly

dependent yj. Set m′ to be the number of remaining columns in Y .

(f) Compute the matrices

L̂ =

[
XTLX XTLY

Y TLX Y TLY

]
, M̂ =

[
XTMX XTMY

Y TMX Y TMY

]
. (2.13)

(g) Compute eigenvectors q̂j of the eigenproblem L̂q̂j = λjM̂ q̂j , j = 1 . . . ,m +m′, normalized by

‖q̂j‖M̂
= 1. Set Q̂ = [q̂1, . . . , q̂m+m′ ].

(h) Update

[X,Z] = [X,Y ]Q̂. (2.14)

In the next section, we give a more detailed description of steps 2d and 2e of this algorithm.

We note that it is a good idea to set m to a slightly greater value than the number of wanted eigenpairs

because this improves the convergence to rightmost wanted eigenpairs (cf. the convergence estimate of

Ovtchinnikov (2006a) mentioned in the Introduction) and facilitates the error estimation (cf. §3.2.1).
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3 The implementation of JCPG

3.1 The implementation of the Rayleigh-Ritz procedure

The straightforward implementation of the Rayleigh–Ritz procedure outlined in §1 may fail if the columns

of V are ‘almost’ linearly dependent, as can be seen from the following simple example.

Let M = I and let L be the matrix obtained by the standard 5-point finite difference discretization of

Dirichlet boundary value problem for the two-dimensional Laplace operator in a rectangle. If the sizes of

the rectangle are ax and ay, and we use (nx+1)-by-(ny+1) mesh, then L is ny×ny block tridiagonal matrix

with nx×nx blocks. The diagonal blocks are tridiagonal matrices with 2(h−2
x +h−2

y ) on the main diagonal,

where hx = ax/(nx + 1) and hy = ay/(ny + 1), and −h−2
x on the two adjacent diagonals, and the non-

zero off-diagonal blocs are nx×nx identity matrices multiplied by h−2
y . Now consider the Rayleigh–Ritz

procedure in the trial subspace spanned by vj = Lj−1v1/‖Lj−1v1‖, j = 2, 3, . . ., where v1 = [1, . . . , 1]T . As

j increases, vj approach the eigenvector x1 of L, and hence v1, . . . , vl become ‘almost’ linearly dependent

for l large enough. To see how this affects the Rayleigh–Ritz procedure in practice, let as set ax = ay = 1

and nx = ny = 11. The Ritz values for l = 13 and 14 produced by the LAPACK eigensolver subroutine

DSYGV applied to (1.5) are given in Table 3.1.

Table 3.1: Instability of the Rayleigh-Ritz procedure with ill-conditioned basis

l = 13 l = 14

-655.97607

19.62671 19.62673

94.15728 94.17159

162.95198 171.62060

219.74592 225.10133

273.91863 333.86539

372.57971 390.01678

486.08180 502.69981

569.65790 589.44838

712.04108 721.51902

851.42629 856.97597

968.34324 973.67487

1051.49771 1054.87070

1130.45281 1131.68478

Clearly, the first Ritz value for l = 14 is a spurious one that is there due to the round-off errors: in

exact arithmetic all Ritz values would be positive due to the positive definiteness of L. We observe also

that all remaining computed Ritz values for l = 14 are greater than those for l = 13. Hence, not only

a spurious eigenvalue has appeared, but also the accuracy in the remaining eigenvalues has deteriorated

(exact eigenvalues are smaller than the Ritz values, in particular, those for l = 13, due to the minimax

principle).

To see what exactly went wrong, let us have a look at the way DSYGV handles the problem at hand.

First, Cholesky factorization is applied to MV = V TMV i.e. an upper-triangular matrix U is computed

such that MV = UTU . The variable change y = Ux transforms the generalized eigenvalue problem

LV x = λMV x, where LV = V TLV , into the standard one for LV U−1 = U−TLV U
−1, which is then solved

by the subroutine DSYEV. The computation of LV U−1 involves the solution of systems Uv = u. In the case

at hand, U is poorly conditioned: near-linear-dependence of v1, v2, . . . , v14 translates into near-singularity

of MV and further into near-singularity of U . Consequently, the solution of Uv = u is inaccurate, and the

computed LV U−1 deviates significantly from the exact one.

It should be stressed that the appearance of a spurious eigenvalue is not DSYGV’s fault. ‖V x‖ may be

6



very small compared to ‖x‖ because the columns of V are ‘almost’ linearly dependent. In this case, (x, λ)

will be an approximate eigenpair for any reasonable value of λ because ||LV x− λMV x|| will be small. As

a result, one may end up with spurious eigenvalues.

An obvious way to avoid problems caused by near linear dependence is to orthogonalize the columns of

V using the Gram-Schmidt procedure. In HSL EA19 we opt for a different approach that allows our code

to benefit from highly optimized BLAS matrix multiplication subroutines rather than use considerably

less efficient matrix-vector multiplication subroutines on which the Gram-Schmidt procedure is based.

Our approach is based on the observation that the difference between the eigenvalue λ̃i computed by

LAPACK subroutines for solving the generalized symmetric eigenvalue problem L̂q̂ = λ̂M̂ q̂ and the exact

one λ̂i is (see LAPACK User Guide) approximately

EERRBD(i) =
(
‖M̂−1‖‖L̂‖ + |λ̃i|κ

)
ǫ,

where κ is the (spectral) condition number of M̂ (the ratio of the largest to smallest eigenvalue) and ǫ is

the machine accuracy (the value returned by the Fortran 95 intrinsic function EPSILON). The first term

inside the brackets is at most κmaxi |λ̂i|.5 Hence,

max
i

EERRBD(i) ≤ ǫκmax
i

(
|λ̂i| + |λ̃i|

)
≈ 2ǫκmax

i
|λ̂i|,

and in order to keep the effect of the round-off errors under control, we need to make sure that the value κ

is not too large. In HSL EA19 we employ the following procedure that ensures that κ ≤ κ0, where κ0 = 103

in the single precision package and κ0 = 106 in the double precision one. In what follows, we use the

notation of §2.3.

1. We compute the matrix M̂ given in (2.13) and compute its eigenvalues. If the ratio of the largest to

smallest eigenvalue is not greater than κ0, the remaining steps are not performed.

2. We M -orthogonalize the columns of Y to those of X , i.e. update Y := Y −XMX,Y , where MX,Y =

XTMY was computed on the previous step, and compute MX,Y again.

3. We discard a column yj of the new Y if the angle it forms with span(X) deviates significantly from

a right angle, which it would have been in exact arithmetic. The precise criterion for discarding is

as follows: we calculate the norm of XTMyj , which is equal to the M -norm of the projection of yj

onto span(X), and if ‖XTMyj‖ ≥ θ‖yj‖M where 0 < θ < 1 (θ = 0.5 in the current version), this

search direction is discarded.

4. We re-orthogonalize yj to X if ‖XTMyj‖ ≥ γ0√
m
‖yj‖M , where γ0 = κ0−1

κ0+1 .

5. We M -normalize Y , compute the matrix MY = Y TMY and its eigenpairs {νj , qj} and update

Y := Y Q, where Q is the matrix whose columns are the normalized eigenvectors qj enumerated in

descending order of corresponding eigenvalues. We discard any new yj with M -norm too close to ǫ

(less than 10ǫ in the current version), and M -normalize the rest.

6. We compute the matrix M̂ given by (2.13) and, if necessary, discard some of the last rows and

columns to arrive at a sub-matrix with the condition number not exceeding κ0. This is done as

follows (below m′ stands for the number of remaining search direction: note that this number may

decrease while this step is performed).

do while (m′ > 1)

Apply the estimates of Lemma 1 of §A (with A = XTMX , B = Y TMY and C = Y TMX) to

compute the upper bound for the condition number of current M̂ . If this bound is less or equal

to κ0, then exit this loop.

5We have L̂ = M̂1/2M̂−1/2L̂M̂−1/2M̂1/2 and ‖M̂1/2‖ = ‖M̂‖1/2. The norm of M̂−1/2L̂M̂−1/2 is the absolute maximum

of eigenvalues of L̂x̂ = λ̂M̂ x̂. The condition number of M̂ is equal to ‖M̂−1‖‖M̂‖.

7



do i = 2, m′

Use Lemma 1 to compute a lower bound for the i-th largest eigenvalue of M̂ and an upper

bound for the i-th smallest eigenvalue of M̂ , in order to find a lower bound κ̃i for the

condition number κi that M̂ would have if its last i− 1 rows and columns are removed. If

κ̃i ≤ κ0, remove the last i− 1 rows and columns from M̂ , decrement m′ by i− 1 and exit

this loop.

end do

end do

The rationale for this procedure is as follows.

Assume for a moment that we use exact arithmetic. Since after step 5 the updated Y satisfy Y TMY =

QTMYQ, and the latter matrix is a diagonal one with νj on the diagonal, the columns of the new Y are

orthogonal, and their M -norms are
√
νj . Since we have also orthogonalized them to X at step 2, the

matrix M̂ is a diagonal one. Hence, after M -normalization of non-zero yj , and discarding zero ones, we

end up with M̂ that has the condition number κ = 1.

In inexact arithmetic, step 2 generally does not make the columns of Y M -orthogonal to those of X .

If a given yj happens to be very close to span(X), then the corresponding column of XMX,Y is very close

to yj , and subtracting one from the other is strongly affected by round-off errors. In fact, if the norm of

the result is too close to ǫ, the updated yj may be linearly dependent on the columns of X despite the

orthogonalization, and the re-orthogonalization may fail. For this reason, in step 3 we discard the new yj

if the angle it forms with span(X) deviates substantially from a right angle. We note that the criterion for

discarding is rather soft because we want to keep as many vectors as possible; discarding vectors generally

affects the convergence, and actually did so in some tests.

Skipping step 4 for the moment, let us discuss the remaining two steps. If we denote Y ′ = Y Q, then

Y = Y ′QT , and hence each yj before update can be represented as the sum yk
j + yd

j , where yk
j is the linear

combination of the columns of Y ′ that we keep and yd
j of those we discard. The square of the M -norm of

yd
j is equal to the sum of νiq

2
ji, where qij are the entries of Q, the sum being taken over i’s corresponding

to discarded columns of Y ′. Since qj are normalized, ‖yd
j ‖2

M is not greater than the maximum of νi taken

over discarded columns of Y ′. Each νi is equal to the square of the norm of the respective column of Y ′,

and hence the M -norm of yd
j is not greater than the maximal M -norm of a discarded direction. Thus, the

criterion for discarding used by step 4 ensures that the M -norm of yd
j is close to the round-off error level,

and hence discarding columns of Y after update in step 4 is equivalent to introducing perturbations O (ǫ)

into the original search directions.

In inexact arithmetic, step 5 does not produce M -orthogonal Y , and the condition number of M̂

may deviate significantly from 1. In order to ensure that κ ≤ κ0, in step 6 we discard some directions

corresponding to smallest νi (as we have just shown, this is equivalent to introducing perturbations O
(√
νj

)

into original directions until either we are left with just one or the condition number of the block of M̂

corresponding to remaining directions is guaranteed to be not greater than κ0. The meaning of the outer

loop of step 6 is fairly obvious, and the rationale for the inner loop is as follows. The i-th smallest

eigenvalue of M̂ is not less than the smallest eigenvalue of the matrix M̂i obtained by removing the last

i − 1 rows and columns from M̂ by virtue of the fact that the eigenvalues of M̂i are Ritz values of M̂ in

the subspace of column vectors with last i − 1 components equal to zero. For the same reason, the i-th

largest eigenvalue of M̂ is not greater than the largest eigenvalue of M̂i. Therefore, the ratio κ̃i computed

in the inner loop is a lower bound for the condition number κi of M̂i. If the former exceeds κ0, then so

does the latter, and we need to remove at least i − 1 last rows and columns from M̂ . The case i = 1 is

excluded because if κ̃i < κ0, then we do not now whether κi is less or greater than κ0. By starting with

i = 2 rather than i = 1 we make sure that after we exit from it to continue the outer loop the dimension

of M̂ has decreased, and thus the procedure terminates after a finite number of steps.

Let us show now that thanks to step 4 we are bound to have κ ≤ κ0, modulo a term O
(
‖XTMX − I‖

)
,

in the case where the procedure used in step 6 terminates because there is only one direction left, in which
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case it does not guarantee the bound κ ≤ κ0.

Step 3 ensures that the vectors yj re-orthogonalized in step 4 form a substantial angle with span(X),

which implies that after the re-orthogonalization the new yj will be orthogonal to X to machine accuracy,

and hence the inequality we check in step 3 cannot hold for them.6 Thus, after the re-orthogonalization,

we have ‖XTMyj‖ < (γ0/
√
m)‖yj‖M for all remaining yj .

Let us denote by qj1 the components of the eigenvector q1 ofMY corresponding to the largest eigenvalue

and normalized so that qT
1 MY q1 = 1. To avoid confusion, in this paragraph we denote by yj the columns

of Y before step 5; thus the direction we are left with after step 6 is Y q1. We have:

‖XTMY q1‖2 ≤




∑

j

‖XTMyj‖|qj1|




2

≤ γ2
0

m




∑

j

‖yj‖M |qj1|




2

≤ γ2
0

∑

j

q2j1 = γ2
0q

T
1 q1 =

γ2
0

ν1

Since the diagonal entries of MY are units, the largest eigenvalue ν1 of MY is not less than 1. Hence,

‖XTMY q1‖ ≤ γ0.

Assuming for a moment XTMX = I, it is not difficult to see (e.g. via (1.33), which become equations

in the case at hand) that the smallest eigenvalue of M̂ is 1 − γ and the largest is 1 + γ, where γ =

‖XTMY q1‖ ≤ γ0. Thus, the condition number of M̂ is not greater than (1 + γ0)/(1 − γ0) = κ0. In

practice, the entries of XTMX deviate from those of the identity matrix, and the estimates of Lemma 1

adjusted accordingly imply that κ may exceed κ0 by a quantity of the order O
(
‖XTMX − I‖

)
, which is

why in step 6 we enforce the condition m′ > 0 rather than rely on this step’s terminating with m′ > 0.

It remains to note that the main computational expenses of the described six-step procedure, assuming

no directions are discarded in step 5, and no re-orthogonalization needed, are dense matrix-matrix

multiplications involving 9nm2 scalar multiplications in total: 3nm2 in step 1, 2nm2 in step 2, 2nm2

in step 5 and 2nm2 in step 6. In comparison, the Gram-Schmidt procedure without re-orthogonalization

would have to use matrix-by-vector multiplications (except for step 1), which are considerably less efficient

than matrix-by-matrix multiplications.7 We note also that the re-orthogonalization in step 4 is an

extremely rare occasion8 – the angle between the search directions and span{X} is usually substantial (if

no preconditioning is used, then search directions are simply orthogonal to span{X}).

3.2 Convergence criteria

In HSL EA19, an eigenpair is considered to have converged if one or more of the following conditions, as

selected by the user, are satisfied:

1. The Euclidean norm of the corresponding residual vector is not greater than max{ǫr,abs, ǫr,rel‖Lx‖},
where ǫr,abs and ǫr,rel are the prescribed absolute and relative tolerance respectively.

2. The estimated eigenvalue error is not greater than max{ǫλ,abs, ǫλ,relδλ}, where ǫλ,abs and ǫλ,rel are

the prescribed absolute and relative tolerance respectively, and δλ is an estimated average distance

between eigenvalues.9

3. The estimated eigenvector error is not greater than than the prescribed relative error tolerance.

6Unless, of course, κ0 is too large, which is not what we have, or m is too large. Regarding the latter case, we note that

m would have to approach ǫ−2 for our assumption about re-orthogonalized yj to cease to be reasonable. Problems of such

size are obviously beyond the capabilities of eithr HSL EA19 or any other known algorithm.
7Computing the product XT Y for two 105-by-102 dense matrices X and Y using a matrix-by-vector multiplication

subroutine DGEMV from BLAS in a loop is about 3 times slower than a single call to a matrix-by-matrix subroutine DGEMM on

a Dell Precision 490 Workstation with Intel Math Kernel Library 6.1. With Intel Math Kernel Library 10.1 it is about 9

times slower.
8It was only observed in our tests when m > n/2, which is unlikely to occur in normal HSL EA19 use since this is intended

for problems with modest m and large n.
9In the current version, for m = 1 the average distance is estimated as twice the Rayleigh quotient on a pseudo-random

vector divided by the problem size; for m > 1, we take the minimal of the two values: the one just mentioned and the average

distance between computed approximate eigenvalues.
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The first condition is fairly straightforward and common in eigenvalue computation. The other two require

a posteriori error estimation, which is rather more complicated, and stopping criteria of such kind do not

appear to be used by available eigensolvers. In this section we describe the two approaches to error

estimation employed by HSL EA19.

3.2.1 Residual error estimation

Let us start with the eigenvalue error estimation for the standard eigenvalue problem (M = I). In this

section we assume all approximate eigenvectors to be normalized in the standard Euclidean norm.

By the well-known Krylov-Weinstein estimate, for any approximate eigenpair {λ̃, x̃} there exists an

eigenvalue λ of A such that

|λ̃− λ| ≤ ‖Ax̃− λ̃x̃‖ (3.15)

(see e.g. Parlett (1980)). The expression in the right-hand side is the norm of the residual vector for

{λ̃, x̃}, which motivates the use of the first stopping criteria listed at the beginning of this section for a

normalized approximate eigenvector x̃ of the standard eigenproblem.

An alternative estimate by Kato and Temple shows that (3.15) is often far too pessimistic: for i such

that λi ≤ λ̃ = λ(x̃) < λi+1 one has

λ̃− λi ≤
‖Ax̃− λ̃x̃‖2

λi+1 − λ̃
. (3.16)

We observe that the upper bound for the relative error (λ̃ − λi)/(λi+1 − λ̃) provided by (3.16) is exactly

the square of that provided by (3.15) for the same λ̃ and x̃. Hence, if an eigensolver relies on (3.15) for

the eigenvalue error estimation, it is likely to perform at least twice as many iterations as actually needed

in the case where the user is interested in eigenvalue accuracy only.

In the case where more that one approximate eigenvector is available, one can benefit from still tighter

estimates produced by Lehmann’s method (Lehmann 1963). The latter computes, for a given value σ (to

which we refer here as Lehmann pole) that is not a Ritz value, a set of values · · · ≤ τ−2 ≤ τ−1 < σ < τ1 ≤
τ2 ≤ · · · such that each semi-closed interval [τ−k, σ) or (σ, τk] contains not less than k exact eigenvalues.

Lehmann intervals can be used for the eigenvalue error estimation in the following manner. Let λ̃j and

x̃j , j = 1, . . . ,m, be the Ritz values and normalized Ritz vectors, and rj = Lx̃j − λ̃j x̃j the corresponding

residual vectors. Assuming

λ̃k−1 < λk, (3.17)

for some k ≤ m+1, one places the Lehmann pole in between λ̃k−1 and λk, strictly right from the former, in

which case the eigenvalue inclusion property of Lehmann intervals implies τj−k ≤ λj , j = 1, . . . , k−1. Since

λj ≤ λ̃j by the minimax principle, the difference λ̃j − τj−k is the upper bound for the error λ̃j − λj ≥ 0.

It remains to note that by Ovtchinnikov (2009), τj−k ≥ νσ
j , where νσ

j are the eigenvalues of the matrix

Lσ = Λ̃ − ST
σ Sσ, (3.18)

where Λ̃ is the k × k diagonal matrix with λ̃1, . . . , λ̃k on the diagonal, and the columns of Sσ are (σ −
λ̃j)

−1/2rj . Thus, λ̃j − λj ≤ λ̃j − νσ
j .

A major practical problem with the Lehmann error estimation scheme is that λk is generally not

available and hence it is not possible to find a proper place for the Lehmann pole, as we may be unable

to ensure that σ ≤ λk. However, in the framework of a subspace iteration algorithm such as the one

implemented by HSL EA19, one usually deals with approximate eigenvalues λ̃j that are close to respective10

10It is theoretically possible that some exact eigenvalues ‘go missing’, i.e. are not approximated by any λ̃j . In

practical eigenvalue computation by subspace iterations this is all but impossible because the convergence to non-consecutive

eigenvalues is unstable and is invariably destroyed either by round-off errors or preconditioning or both – cf. more detailed

arguments of Ovtchinnikov (2009).
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exact eigenvalues λj , at least for some j = 1, . . . , k. Hence, one can employ a lower bound for some λk as the

Lehmann pole, provided that it is not too close to λ̃k−1. The analysis of the properties of Lehmann bounds

by Ovtchinnikov (2009) produced the following algorithm, which is employed, with slight modifications,

by HSL EA19 when the user opts for the residual eigenvalue error estimation.

1. The largest k is identified for which λ̃k − λ̃k−1 ≥ ‖Rk‖+ ǫλ, where Rk = [r1, . . . , rk−1] and ǫλ is the

absolute eigenvalue error tolerance; if none found, k is set to 1.

2. If k > 1, then σ = λ̃k − ǫλ is used as the Lehmann pole for estimating the eigenvalue errors in

λ̃1, . . . , λ̃k−1 via eigenvalues of (3.18).

3. For λ̃k, . . . , λ̃nw
, Kahan’s inequality |λ̃j − λj | ≤ ‖Rk‖ is used, where Rk = [rk, . . . , rnw

] and nw ≤ m

is the number of wanted eigenpairs.

4. Once all wanted eigenpairs have converged, the Lehmann bounds are updated using all the latest

approximate eigenvectors and residual vectors. If all eigenpairs satisfy the convergence criteria, the

iterations are terminated; otherwise, they are restarted using current approximate eigenvectors as

initial vectors.

The use of ǫλ in place of ‖Rk‖, which is, strictly speaking, required on step 1, makes it possible to have

‘rough’ estimates for leftmost eigenvalues before those further to the right have small enough residuals.

The last step of the algorithm replaces ‘rough’ estimates with ‘true’ ones (since now ‖Rk‖ ≤ ǫλ), and

the iterations may be restarted if the former are too rough. We note that since Kahan’s inequality

generally overestimates the actual errors considerably, the convergence to last few eigenpairs may take

large number of iterations. Finally, we observe that ‖Rk‖ ≤ ‖Rk‖F ≡
√

TrRT
kRk and ‖Rk‖ ≤

√
m− k + 1maxk≤j≤m ‖rj‖. In order to simplify the calculation, in HSL EA19, we use Frobenius norm

of Rk on step 1 and the norm of rj as the bound for λ̃j − λj on step 3.

It is shown by Ovtchinnikov (2009) that for a well-separated simple Ritz value λ̃j , the bound λ̃j − νσ
j

for the error λ̃j − λj has the following asymptotics:

λ̃j − νσ
j =

‖rj‖2

σ − λ̃j

+ O
(
‖Rk‖4

)
. (3.19)

This asymptotic relationship allows one to reach beyond the machine accuracy in the following sense.

The relative accuracy in eigenvalues is roughly the square of that for eigenvectors owing to the fact

that the Rayleigh quotient is stationary on eigenvectors. Hence, one can compute eigenvectors to single

precision and then compute Rayleigh quotients for them in double precision, thus achieving nearly double

the accuracy in respective eigenvalues (cf. the second test example in the specification for the package

HSL EA19 that employs this technique). If one takes advantage of such an approach, then Lehmann bounds

are only helpful until the differences between them and corresponding Ritz values are sufficiently above

the single machine accuracy. In HSL EA19, the main term in the right-hand side of (3.19) is used in place

of Lehmann bounds when this is not the case.

Turning to the eigenvector errors, we observe that the results of Ovtchinnikov (2006b) imply that for

any indices p ≤ q < k such that λq < λq+1 and either p = 1 or λp−1 < λp the following estimate for the

angle between x̃j , p ≤ j ≤ q, and the invariant subspace Xp,q = span{xp, . . . , xq} is valid:

sin2{x̃j ;Xp,q} ≤
(
1 + O

(
‖Rk‖2

)) ‖rj‖2

(σ − λ̃j)2
, j = p, . . . , q (3.20)

(see the proof of theorem 4 in the cited paper). We stress that the asymptotically small term in (3.20)

does not depend on the distances between λp, . . . , λq. In HSL EA19, the square root of the main term in

the right-hand side of (3.20) is used as the error estimate for the sine of the angle between x̃j and Xp,q.

No estimates are computed for x̃k, . . . , x̃m.
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3.2.2 Kinematic error estimation

Numerical tests with the error estimation scheme described in the previous section have amply

demonstrated that Lehmann bounds are usually too pessimistic: in fact, they usually overestimate actual

eigenvalue errors by 2-3 orders of magnitude. Another drawback of the residual error estimation is the

fact that in order to apply it to the generalized problem Lx = λMx, one needs to compute the norms

‖rj‖M−1 =
√

(M−1rj , rj) rather than the standard Euclidean norms. To avoid solving auxiliary systems

with the matrix M , one could, in principle, compute the minimal eigenvalue η1 of this matrix and use the

estimate ‖rj‖M−1 ≤ η
−1/2
1 ‖rj‖. However, the computation of η1 is generally not an easy task, and the

mentioned estimate may be too inaccurate in the case of a finite-element problem on a highly non-uniform

mesh.

Extensive numerical testing of the algorithm implemented by HSL EA19 has revealed that one can

obtain much more accurate error estimates by opting for a novel approach described in this section, which

we tentatively call kinematic error estimation, and which employs reasoning similar to that of Reid (1964),

page 23. Consider a trivial observation: if one could have qij such that

λi
j − λj ≤ qij(λ

i−1
j − λj)

(we use the notation of §2.2; i stands for the iteration number), then

λi
j − λj ≤ qij

1 − qij
(λi−1

j − λi
j). (3.21)

Now, for qij one could turn to the convergence estimates of Ovtchinnikov (2008b); however, they involve

quantities that cannot be easily computed. The key observation that unlocks the potential of the trivial

estimate (3.21) is that in practical computation with the block CG schemes described in §2.2, the eigenvalue

errors usually behave as shown in Fig. 3.1, which plots the errors in 60 leftmost eigenvalues of the matrix

si34h36 from Tim Davis’ collection computed by JCPG. Quite remarkably, every single convergence curve

becomes very close to an oblique straight line11 (in semi-logarithmic scale used in the figure) in the course

of iterations, which means that all actual relative eigenvalue reduction ratios qa
ij = (λi

j − λj)/(λ
i−1
j − λj)

tend to constants qj that do not depend on the iteration number.

Figure 3.1: Error histories for eigenvalues of si34h36.

0 10 20 30 40 50
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

Si34H36: 60 eigenpairs

iteration

lo
g1

0 
of

 th
e 

er
ro

r

11The algorithm does not change approximate eigenvalues deemed to have converged, hence the horizontal lines.

12



To exploit the noted feature of the eigenvalue errors, it remains to figure out how to compute the

constants qj based on the approximate eigenvalue’s history. One might start by noticing that if qa
ij → qj

as i→ ∞, then qj is the limit of the geometrical average q
(l)
j of qij , i = i0+1, . . . , l, the so-called asymptotic

convergence factor:

qj = lim
l→∞

q
(l)
j , q

(l)
j =

(
l∏

i=i0+1

qa
ij

) 1
l−i0

=

(
l∏

i=i0+1

λi
j − λj

λi−1
j − λj

) 1
l−i0

=

(
λl

j − λj

λi0
j − λj

) 1
l−i0

, i0 ≥ 0. (3.22)

Next, let us show that that λj can be replaced with its approximation λl
j . If we denote

q̃
(l)
j =

(
λl

j − λl+1
j

λi0
j − λl+1

j

) 1
l−i0

, (3.23)

then

q
(l)
j ≥ q̃

(l)
j ≥ (1 − qa

lj)
1

l−i0 q
(l)
j .

Hence, as l increases, q̃
(l)
j → q

(l)
j → qj .

Thus, one arrives at the following simple error estimate:

λi
j − λj ≈ qij

1 − qij
(λi−1

j − λi
j), qij =

(
λi−1

j − λi
j

λi0
j − λi

j

) 1
i−i0−1

, i = i0 + 2, i0 + 3, . . . (3.24)

It should be emphasized that (3.24) does not provide the upper bound for the eigenvalue error, only an

approximation to the latter, which can be larger or smaller than the actual error. In order to reduce the

risk of underestimation, in HSL EA19 the value q is set to the maximum of the two values: the one given

in (3.24) and

q∗ij = max
i−≤l≤i+

λl
j − λi

j

λl−1
j − λi

j

, (3.25)

where (i−, i+) is a ‘trust’ region. We observe that the ratio in the right-hand side of (3.25) is an

approximation to the actual error ratio (λl
j − λj)/(λ

l−1
j − λj). The trust region is chosen to satisfy

the following requirements:

1. The last iteration index i+ in the trust region is such that the approximate error λl
j −λi

j for l = i+ is

sufficiently larger than λi−1
j − λi

j (10 times larger in the current version), so that the ratio in (3.25)

is close to the ratio of the actual eigenvalue errors before and after l-th iteration.

2. The first iteration index i− in the trust region is such that λl−1
j − λl

j > λl
j − λl+1

j for l = i− +

1, . . . , i+ − 1, whereas λ
i−−1
j − λ

i−
j ≤ λ

i−
j − λ

i−+1
j . This ensures that the convergence curve is not

too ‘wobbly’ in the trust region, i.e. the semi-logarithmic plot of the error always slopes downwards.

For added reliability, the error estimation scheme just described is applied only if λi−1
j − λi

j is less than

the required absolute eigenvalue error; otherwise the j-th approximate eigenpair is not considered to be

close enough to the exact one.

Once the eigenvalue errors have been estimated, one can obtain estimates for the eigenvector errors

using the following estimate that is proved in §A.2: assuming that λi
l < λl+1 for some l < k ≤ m, one has

sin2{X i
l ;Xl} ≤ 1 + ǫi,k

λk+1 − λl

l∑

j=1

(λi
j − λj), (3.26)

where Xl = span{x1, . . . , xl}, X i
l = span{xi

1, . . . , x
i
l} (if l = k, then ǫi,k = 0) and

ǫi,k = 4
λk+1 + λl+1 − 2λ1

(λl+1 − λi
l)

2

k∑

j=l+1

(λi
j − λj). (3.27)
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We remind the reader that the sine of the angle (or the gap) between two subspaces is defined as

sin{U ;V} = max

{
max
u∈U

sin{u;V}, max
v∈V

sin{v;U}
}

(if dimU = dimV then the two maximums inside the curly brackets coincide; otherwise sin{U ;V} = 1).

We emphasize that (3.26) is formulated for a group of eigenvalues rather than for a single one in order to

be efficiently applicable to clustered eigenvalues: for l = 1 the term ǫi,k is not small if λ1 is in a cluster

unless the error in the first k eigenvalues is small compared to (λ2 − λi
1)

2/(λk − λ1). In HSL EA19, we

essentially apply (3.26) to a group of eigenvalues separated from the rest of the spectrum by at least the

estimated average distance δλ between eigenvalues. This allows us to replace the denominator in (3.27)

with δ2λ. The numerator is estimated by 2(λk+1 −λ1), and for k we select the largest index such that error

estimates for λ1, . . . , λk are already available, and ǫi,k computed based on these estimates does not exceed

0.8.

The kinematic error estimation relies on the accurate computation of eigenvalue decrements λi−1
j − λi

j

that are based on the Rayleigh quotients of the corresponding eigenvectors. If this difference is small, the

directly computed value will have poor relative accuracy (or none). The following approach is employed

in HSL EA19 for estimating decrements that are smaller than the LAPACK eigensolver’s error.

Let Q be the matrix whose columns are the eigenvectors of the problem Y TLY q = νY TMY q. If

we are left with m′ ≤ m search directions after the orthogonalization procedure described in §3.1, then

QTY TMYQ = Im′ (the m′-by-m′ identity matrix) and N = QTY TLY Q is diagonal with ν1, . . . , νm′ on

the diagonal. Since we can equivalently use the columns of [X,Y Q] as the basis for the Rayleigh-Ritz

procedure on i-th iteration instead of those of [X,Y ], the new approximate eigenvalues λi
j are the m

leftmost eigenvalues of the problem

L̂x̂i = λiM̂x̂i, L̂ =

[
Λ HT

H N

]
, M̂ =

[
Im GT

G Im′

]
, (3.28)

where Λ = diag{λi−1
1 , . . . , λi−1

m }, H = [h1, . . . , hm] = QTY TLX , and G = [g1, . . . , gm] = QTY TMX . We

observe that the m leftmost columns of the (m + m′)-by-(m + m′) identity matrix are the Ritz vectors

of this problem (in the trial subspace of column vectors with zero last m′ components) corresponding

to the Ritz values λi−1
1 , . . . , λi−1

m , and the corresponding residual vectors form (m + m′)-by-m′ matrix

whose upper m-by-m block is zero and lower m′-by-m block is formed by vectors sj = hj − λi−1
j gj . An

asymptotic equation of Ovtchinnikov (2008b) relating the differences between eigenvalues and Ritz values

to the respective residuals implies that

λi−1
j − λi

j ≈ sT
j (N − λi−1

j Im′)−1sj =
m′∑

l=1

|slj |2
νl − λi−1

j

, sj = [s1j , . . . , sm′j ]
T ,

and HSL EA19 uses these approximations to the decrements λi−1
j −λi

j when the latter approach the round-off

error level.

Let us now have a look at how the kinematic error estimation works in practice compared to the residual

error estimation. Table 3.2 compares the kinematically estimated errors for ten leftmost eigenvalues of

the matrix Si87H76 from Tim Davis’ collection with ‘actual errors’ obtained by computing eigenvalues to

much smaller error tolerance (all results are computed using double precision). We observe that most of

the estimated errors are quite close to the ‘actual’ ones: the ratio of estimated to ‘actual’ error is less than

4 (less than 2 for all but the last two eigenvalues). At the same time, the error in the first eigenvalue is

slightly underestimated.

For comparison, Table 3.3 presents estimated and ‘actual’ errors for ten leftmost eigenvalues of the

same matrix but computed by HSL EA19 with the error estimation option switched to the residual estimates

based on Lehmann bounds (in both cases the absolute eigenvalue error tolerance was set to 0.001). We

observe considerable overestimation of the eigenvalue errors; furthermore, some estimates are confusing.
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Table 3.2: Kinematic error estimates for eigenvalues of Si87H76 vs. actual errors.

eigenvalue estimated error actual error

-1.196375 7.29 · 10−6 7.69 · 10−6

-1.162052 1.06 · 10−5 7.91 · 10−6

-1.162048 1.66 · 10−5 1.19 · 10−5

-1.162042 2.52 · 10−5 1.82 · 10−5

-1.123360 2.26 · 10−5 1.71 · 10−5

-1.123329 9.39 · 10−5 4.75 · 10−5

-1.123267 2.08 · 10−4 1.10 · 10−4

-1.121457 5.87 · 10−6 2.93 · 10−6

-1.121381 1.79 · 10−4 7.97 · 10−5

-1.108059 5.33 · 10−4 1.28 · 10−4

Table 3.3: Lehmann error estimates for eigenvalues of Si87H76 vs. actual errors.

eigenvalue estimated error actual error

-1.196380 6.79 · 10−5 2.30 · 10−6

-1.162060 3.45 · 10−4 4.64 · 10−8

-1.162057 1.29 · 10−4 3.21 · 10−6

-1.162051 1.09 · 10−5 9.24 · 10−6

-1.123377 5.18 · 10−4 9.89 · 10−8

-1.123376 1.70 · 10−5 2.70 · 10−7

-1.123370 1.40 · 10−5 6.59 · 10−6

-1.121460 1.18 · 10−4 2.50 · 10−9

-1.121458 2.14 · 10−6 1.97 · 10−6

-1.108188 7.41 · 10−6 8.73 · 10−8
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Consider, for example, the estimates for the three-eigenvalue cluster formed by second, third and fourth

leftmost eigenvalues. The estimated error for the leftmost eigenvalue of this cluster exceeds the actual

error by four orders of magnitude, whereas the one for the rightmost eigenvalue is remarkably close to

the actual error, which appears to contradict what the first sentence of §3.2.2 says. However, one should

bear in mind that the pairing of Lehmann bounds and Ritz values based simply on their indices can be

misleading. In the case at hand, the Lehmann bound −1.162051 − 1.09 · 10−5 ≈ −1.162061 apparently

corresponds to the second leftmost Ritz value −1.162060 rather than the fourth one. Thus, the estimated

error for the second leftmost eigenvalue is actually about 10−6 and those for the third and fourth are of

the order 10−4. The same reasoning applies to the two-eigenvalue cluster formed by eighth and ninth

eigenvalues, with the ‘correct’ estimate of about 10−7 for the eighth eigenvalue and about 10−4 for the

ninth. Even after such a correction, most estimated errors are about two orders of magnitude above the

actual ones.

In the two tests, the superior accuracy of the kinematic error estimation resulted in about 15% shorter

computation time compared to the run with the Lehmann-based estimation, which represents a tangible

but hardly impressive saving. However, when HSL EA19 was applied to shipsec1 matrix from the same

collection, the Lehmann-based run failed, as the residuals stopped decreasing after few iterations because

of the round-off errors and the large norm of the matrix. It should be stressed that this was not the

JCPG fault, as HSL EA19 actually computed requested eigenvalues to high accuracy after exceeding the

imposed 200 iterations limit, but the employed error estimation scheme completely failed to notice that

the eigenpairs have already converged long ago. With the error estimation switched to the kinematic one,

just 12 iterations produced ten leftmost eigenvalues to about 10−5 absolute accuracy (about 10−4 relative

one).

3.3 Deflation

An iterative scheme for computing the leftmost eigenpair, such as PCG scheme (2.1)-(2.2), can be easily

adapted for the computation of several leftmost eigenpairs with the help of technique known as deflation.

Having computed the leftmost eigenpair, one modifies the problem in such a way that the second leftmost

eigenpair of the original problem becomes the leftmost eigenpair of the modified, or deflated problem

(cf. a similar technique for the computation of the roots of a polynomial). The most commonly used

deflation technique is to minimize the Rayleigh quotient functional λ(u) in the subspace M-orthogonal

to the computed eigenvectors; if the computed eigenvectors are exact, the remaining ones are in this

subspace. If we denote by Xk the matrix whose columns are the k computed approximate eigenvectors,

then new vector iterates xi
k+1 satisfy Pkx

i
k+1 = 0, where Pk = XkX

T
k M is the M -orthogonal projector

onto Xk = span{Xk} (we note that the columns of Xk are M -orthonormal, i.e. XT
k MXk is k-by-k identity,

owing to the way the approximate eigenvectors are computed). Hence, the Rayleigh quotient restricted to

the M -orthogonal complement X⊥
k to Xk can be written down as

λ(u) =
(Lu, u)

(Mu, u)
=

(L(I − Pk)u, (I − Pk)u)

(M(I − Pk)u, (I − Pk)u)
=

((I − Pk)TL(I − Pk)u, u)

((I − Pk)TM(I − Pk)u, u)
≡ λ⊥(u) for u ∈ X⊥

k . (3.29)

The gradient of λ⊥(u) is collinear to the respective ‘deflated’ residual vector

r⊥(u) = (I − Pk)TL(I − Pk)u − λ⊥(u)(I − Pk)TL(I − Pk)u = (I − Pk)r(u) for u ∈ X⊥
k , (3.30)

where r(u) = Lu − λ(u)Mu. We stress that should one rely on residual norms in stopping criteria, the

norm of r⊥(xi
k+1) should be used, as it yields meaningful bounds for the distance from xi

k+1 to the point

of minimum of λ⊥(u) in X⊥
k and for the difference between λ⊥(xi

k+1) and the respective minimal value,

whereas the norm of r(u) is generally non-zero at the point of minimum of λ⊥(u), and may remain above

the required tolerance after any number of iterations.12 It remains to note that, in practical terms, as far

12This kind of the stopping criterion’s failure to detect the convergence was actually observed in tests where the norm of

r(xi+1) was used instead of that of r⊥(xi+1).

16



as PCG scheme (2.1)-(2.2) is concerned, the deflation amounts to using (I − Pk)yi as the search direction

in (2.1) and r⊥(xi+1) in place of gi+1 for the conjugation (2.2).13

In HSL EA19, once an eigenpair satisfies the accuracy requirements, the corresponding new search

direction is not computed, and the approximate eigenvector no longer participates in the Rayleigh-Ritz

procedure. All the remaining search directions are M -orthogonalized to converged eigenvectors so that

the non-converged ones, which are orthogonal to the removed ones at the time of deflation, keep so at

subsequent iterations. It should be stressed that the accuracy of the remaining eigenpairs is affected by the

accuracy of those that are removed. In order to eliminate possible adverse effects of inaccurate removed

‘converged’ eigenvectors, once all wanted eigenpairs are deemed converged, we apply the Rayleigh-Ritz

procedure in the subspace containing all approximate eigenvectors. If the residual-based stopping criteria

are used, then error estimates are computed immediately. If the kinematic error estimation is employed,

then two iterations are performed and errors are estimated based on the last eigenvalue decrements and

previously estimated convergence factors qij . If all eigenvectors satisfy the stopping criteria, then the

iterations are terminated, otherwise the whole procedure is repeated. In other words, the iterations are

continued until all wanted eigenpairs are Ritz pairs that satisfy the accuracy requirements simultaneously.

4 Numerical experiments

In this section, we present the results of a set of tests with the double-precision version of HSL EA19,

illustrating its features. The tests were performed on Dell Precision 490 workstation with Intel Xeon

5130 dual core processor at 2GHz and 3GB RAM. For basic linear algebra operations (dense matrix

multiplications and the like), the highly optimized BLAS and LAPACK routines provided by Intel Math

Kernel Library (version 10.1) were employed. All calculations were in double precision.

We start our presentation with a note on the way the convergence is monitored in the tests in §4.1. In

§4.2, we present the results of preliminary tests with the standard eigenvalue problem for the discretized

Laplace operator in three dimensions and then proceed to problems for some matrices from Tim Davis’

collection in §4.3.1 and §4.3.2, and the generalized eigenvalue problem for three-dimensional elasticity

system discretized by bi-linear finite elements on a rectangular mesh in §4.4. Finally, in §4.5 we compare

the performance of HSL EA19 with that of some other eigensolvers designed for large-scale problems.

4.1 A note on the convergence monitoring

Portraying the convergence of approximate eigenpairs to the exact ones, assuming the latter available, is

not a trivial issue. Three obvious options are: (i) plot the residual norm history, (ii) plot the eigenvalue

errors λi
j − λj history, or (iii) plot the eigenvector errors xi

j − xj history in a suitable norm. It is

shown by Ovtchinnikov (2008a) and Ovtchinnikov (2008b) that these three error measures are actually

asymptotically equivalent, provided that certain special norms are used for residuals and eigenvector errors.

However, the residual norm that is asymptotically equivalent to the eigenvalue error is very expensive to

compute. The eigenvalue and eigenvector errors seem to be readily available if the exact eigenvalues and

eigenvectors are known, but the convergence plots in terms of these are often confusing, owing to the fact

that xi
j might approximate xk for some k 6= j. With eigenvectors, one runs into additional difficulties

caused by clustering and multiple eigenvalues. To avoid these problems in this report, we opt for the

eigenvector error measure of the sines of the angles between a pre-selected number of the exact leftmost

eigenvectors14 and the subspace spanned by the same number of the approximate ones. We note that these

13In the literature, one encounters deflated algorithms that use gi+1 = r(xi+1) rather than gi+1 = r⊥(xi+1). The available

convergence results for such algorithms (see e.g. Dyakonov (1996), Chapter 9, §5) are technically fairly cumbersome, and

there may actually be no practical savings in using r(xi+1) rather than r⊥(xi+1) in (2.2), since one may need to compute

‖r⊥(xi+1)‖ to check for convergence.
14In most tests this number is simply equal to the number of wanted eigenvalues. In tests featuring multiple eigenvalues, we

exclude eigenvectors corresponding to leftmost wanted eigenvalues if their multiplicity is such that not all of the corresponding

eigenvectors have been computed.
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angles are asymptotically, as the iteration number increases, equivalent to the angles between respective

exact and approximate eigenvectors, see e.g., Knyazev (1997), who shows that the asymptotic equivalence

is ‘cluster robust’, i.e. not affected by small distances between clustered eigenvalues.

We note that a computed eigenpair does not change from the iteration in which it is found to satisfy

its convergence criterion until the whole iteration procedure is restarted as a final check. Hence many of

the error curves reduce, then are flat, and finally reduce a bit more.

4.2 Preliminary tests

The tests of this subsection deal with the standard eigenvalue problem for the Laplace equation in the

three-dimensional brick-like domain with strong boundary conditions discretized by standard 7-point finite

differences on a regular rectangular mesh. The eigenvectors and eigenvalues of this problem are available

analytically, which makes it possible to measure errors and thus easily assess the convergence of iterations

and other features of the algorithm implemented by HSL EA19. Furthermore, unlike with the tests on

matrices in §4.3.1 and §4.3.2, one can easily vary the parameters of the problem, such as the size or the

layout of the eigenvalues, which makes it possible to demonstrate the algorithm’s robustness with respect

to the mesh size of the discretization (provided that a suitable preconditioner, such as AMG, is used) and

eigenvalue clustering.

Figure 4.2: Eigenvector errors for 3D Laplacian in the 1-by-1.01-by-1.02 brick discretized by 7-point finite

differences on n× n× n grid, m = 15.
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Figure 4.3: Same as Fig. 4.2 but computed with AMG preconditioner.
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4.2.1 Convergence

We start with a few tests illustrating the convergence properties of the JCPG algorithm and the way

they are affected by preconditioning. In Fig. 4.2, the errors in the first 9 eigenvectors are plotted. The

brick sizes are a = 1, b = 1.01 and c = 1.02 (note that closeness to a unit cube creates tight eigenvalue

clusters), and n-by-n-by-n regular grid is used for four different values of n. No preconditioning is used,

and m = 15. Available convergence results for block gradient-based eigensolvers (see e.g. Ovtchinnikov,

2006a) suggest that in the case of the standard eigenvalue problem, the convergence of iterations is largely

determined by the condition number of the matrix (multiplied by the preconditioner if one is used) in a

very much the same way as in the case of a linear system. For instance, for the steepest descent method, the

number of iterations needed to achieve a given accuracy in eigenpairs is bounded by a value proportional

to this condition number. By extending the analogy to Conjugate Gradients, one expects a bound that is

proportional to the square root of the condition number – see Knyazev (2001). In the case at hand, the

condition number is proportional to n2, hence the linear dependence of the iteration number on n is to be

expected, and the comparison of the four plots in Fig. 4.2, where the range of the ‘iterations’ axis grows

linearly in n, meets this expectation.

The next four tests repeat the same calculation but with the use of an Algebraic Multigrid (AMG)

preconditioner. One remarkable property of the AMG preconditioning, particularities of which are not

relevant to our discussion, is that it delivers convergence that does not depend on the mesh step when

applied to a linear system for the discretized Laplacian (or, more generally, a discretized elliptic partial

differential equation), and the slope of the convergence curves in Fig. 4.3 demonstrates that the same is
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true for the eigenvalue problem.

Although preconditioning substantially increased the CPU time per iteration in these tests, the overall

time reduced dramatically: e.g. in the test with n = 40, the CPU time per iteration doubled, but overall

time reduced from 60 seconds to just 8.

Figure 4.4: Same as Fig. 4.3 for n = 40 but for different sizes a, b and c of the brick.
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The next series of tests illustrate ‘cluster robustness’ of JCPG. The sizes a, b and c of the brick are

varied starting with a = b = c = 1, which produces multiple eigenvalues that split into clusters when b

and c deviate from 1; when deviation is large enough, as in the last test, clusters disappear. The plots in

Fig 4.4 demonstrate that eigenvalue clustering has no tangible effect on the convergence.

4.2.2 Accuracy

The tests of this subsection illustrate the accuracy of HSL EA19. Tables 4.4 and 4.5 present estimated and

actual errors for 10 eigenpairs computed in two tests where good accuracy in eigenvalues was sought. It is

important to emphasize that the ‘estimated eigenvalue errors’ refer to estimates for the differences between

the Rayleigh quotients of computed eigenvectors and exact eigenvalues, where the Rayleigh quotients were

assumed to be computed in higher precision. Since the accuracy in eigenvalues is about twice as good

as that in eigenvectors, the estimated errors thus defined may fall below the double-precision machine

accuracy – see e.g. the last three lines in Table 4.4. The actual errors were computed by subtracting

the exact eigenvalues from approximate in double precision, which sometimes makes the estimated errors

appear to underestimate the actual errors.

In Table 4.4, we used the Lehmann bounds and in Table 4.5, we used the kinematic estimates. We
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note that, discounting the eigenvalues near 105, the kinematic test slightly underestimated some of the

errors but was noticeably closer than when Lehmann bound was in use (cf. §3.2.2).

Table 4.4: Eigenvalue errors for the discretized 3D Laplacian: Lehmann estimates vs. actual errors.

eigenvalue estimated error actual error

29.016893439615 4.35 · 10−11 2.96 · 10−12

57.406397413890 3.66 · 10−11 2.22 · 10−12

57.971348285210 9.47 · 10−11 6.00 · 10−12

58.553332269826 9.47 · 10−11 1.06 · 10−11

86.360852259485 4.57 · 10−11 4.14 · 10−12

86.942836244097 7.68 · 10−11 4.77 · 10−12

87.507787115415 9.56 · 10−11 7.23 · 10−12

104.537088980872 2.89 · 10−18 -5.68 · 10−14

106.039940186432 1.90 · 10−16 1.85 · 10−13

107.588101942254 9.09 · 10−16 2.13 · 10−13

Table 4.5: Same as Tab. 4.4 but with kinematic estimates.

eigenvalue estimated error actual error

29.016893439656 4.45 · 10−11 4.39 · 10−11

57.406397413934 5.24 · 10−11 4.59 · 10−11

57.971348285239 4.98 · 10−11 3.43 · 10−11

58.553332269881 6.47 · 10−11 6.55 · 10−11

86.360852259487 7.92 · 10−12 6.51 · 10−12

86.942836244149 4.86 · 10−11 5.74 · 10−11

87.507787115460 6.57 · 10−11 5.28 · 10−11

104.537088980871 3.37 · 10−19 -1.71 · 10−13

106.039940186432 2.23 · 10−14 1.42 · 10−13

107.588101942254 4.20 · 10−14 8.53 · 10−14

Tables 4.6 and 4.7 present the results of two similar tests that computed eigenvectors to near machine

accuracy in double precision. Again, the kinematic estimates are more accurate.

Table 4.6: Eigenvector errors for the discretized 3D Laplacian: residual estimates vs. actual errors.

eigenvalue estimated error actual error

29.016893439612 8.99 · 10−11 1.39 · 10−11

57.406397413881 8.95 · 10−11 1.10 · 10−11

57.971348285204 9.40 · 10−11 1.37 · 10−11

58.553332269816 9.73 · 10−11 1.91 · 10−11

86.360852259481 8.98 · 10−11 1.15 · 10−11

86.942836244092 9.05 · 10−11 1.28 · 10−11

87.507787115408 9.35 · 10−11 1.37 · 10−11

104.537088980871 8.24 · 10−13 2.68 · 10−14

106.039940186432 9.43 · 10−11 1.38 · 10−11

107.588101942254 9.41 · 10−11 1.46 · 10−11
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Table 4.7: Same as Tab. 4.6 but with kinematic estimates.

eigenvalue estimated error actual error

29.016893439612 4.33 · 10−11 2.18 · 10−11

57.406397413888 6.00 · 10−12 3.16 · 10−12

57.971348285204 7.90 · 10−12 5.06 · 10−12

58.553332269816 4.78 · 10−11 2.62 · 10−11

86.360852259480 1.07 · 10−12 4.56 · 10−13

86.942836244092 1.04 · 10−11 4.63 · 10−12

87.507787115408 7.07 · 10−11 2.99 · 10−11

104.537088980872 9.14 · 10−14 2.02 · 10−14

106.039940186432 6.76 · 10−11 2.97 · 10−11

107.588101942254 6.92 · 10−11 3.02 · 10−11

4.3 Tests on matrices from Tim Davis’ collection

In this section, we present the results of the tests with matrices from Tim Davis’ (University of Florida)

matrix collection.

4.3.1 PARSEC matrices

In this section, we present the results of the tests with matrices from PARSEC group of Tim Davis’

collection. The exact eigenpairs were not available, hence we used high accuracy approximations to

eigenpairs (computed with the eigenvector error tolerance of 10−12) in place of exact ones. The matrices

of the PARSEC group arise from the 37-point central finite difference discretization of a second order

elliptic partial differential equation in a 3D domain of the form H = −α∆ψ + V ψ, where −∆ is the

Laplace operator, α is a scalar and V a non-differential operator.

The preconditioner that was used in the tests was constructed as follows. We approximated H and

∆ on the same grid using the standard 7-point finite-difference discretization and computed the leftmost

eigenvalue λ̃1 of this low-order discretization of H by using HSL EA19 with an Algebraic Multigrid (AMG)

preconditioner for the low-order discretization of −∆. To precondition the high-order discretization, we

used the AMG preconditioner of the low-order discretization of H − λ̃1I. This preconditioning gave a

good convergence rate and the preconditioning cost was modest because of being based on the low-order

discretization: e.g. in the test where 20 eigenpairs of the matrix Si41Ge41H72 were computed, the cost

per iteration increased by less than 50%.

The distribution of the leftmost eigenvalues of the matrices Si34H36 (n = 97,569; 5,156,379 nonzeros)

and Si41Ge41H72 (n = 185,639; 15,011,265 nonzeros) selected for our tests are shown on Fig. 4.5 and 4.6

respectively.

Figure 4.5: The spectrum of Si34H36: 100 leftmost eigenvalues.

Typical convergence behaviour of HSL EA19 for PARSEC matrices is illustrated by the four plots of

Fig. 4.7 showing eigenvector error histories. Four different amounts of eigenpairs of the matrix Si34H36

are computed. Preliminary tests suggested that setting the iterated subspace dimension m to the number

of wanted eigenpairs plus 5 delivered the best overall performance in terms of CPU time. We observe
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Figure 4.6: The spectrum of Si41Ge41H72: 100 leftmost eigenvalues.

Table 4.8: CPU per eigenpair (sec) for PARSEC matrices.

number of eigenpairs 20 40 60 80

Si34H36 2.0 2.0 1.8 1.6

Si41Ge41H72 10.2 6.7 7.4 8.6

a remarkably fast convergence in the test computing 80 eigenpairs, thanks to the sizeable gap in the

spectrum between 85-th and 86-th eigenvalue (the second largest gap in Fig. 4.5) making the relative

distance between the leftmost 80 eigenvalues and 86-th one, which determines the convergence rates, quite

substantial.

The performance of HSL EA19 in terms of the CPU time per eigenpair is summarized in Table 4.8.

We observe that the computation time remains approximately the same when the number m of iterated

eigenpairs grows (the same 10−6 accuracy in eigenvectors was requested in all tests). Thus, the dependence

of the total computation time on m is almost linear, which is apparently due to improved convergence

as m increases and the use of highly-optimized BLAS subroutines for dense linear algebra tasks involving

O
(
nm2

)
floating-point operations.

Tables 4.9 and 4.10 compare the ‘actual’ errors in eigenpairs with those estimated using Lehmann and

residual bounds of §3.2.1 and kinematic bounds pf §3.2.2 respectively. Just like with Laplacian, we observe

that the kinematic bounds are noticeably more accurate.

4.3.2 DNVS matrices

In this section, we present the results of the tests with matrices from DNVS group of Tim Davis’ collection.

Since the exact eigenpairs were not available, we used those computed to 10−7 eigenvector accuracy instead.

For preconditioning, we computed v = Ku as the approximate solution of the system Lv = u after 5

iterations of CG with diagonal preconditioning, which added about 200% to CPU time per iteration but

made it possible to compute wanted eigenpairs within minutes rather than hours.

The distribution of the leftmost eigenvalues of the matrices shipsec1 (n = 140,874; 3,568,176 nonzeros)

and shipsec5 (n = 179,860; 4,598,604 nonzeros) selected for our tests are shown on Fig. 4.8 and 4.9

respectively. Typical convergence behaviour is shown on Fig. 4.10 and the performance on Table 4.11;

these are pretty much the same as for PARSEC matrices. In all tests, m is greater than the number of

wanted eigenpairs by 10, as preliminary tests with various m suggested to be optimal, and 10−3 accuracy

in eigenvectors was requested. Finally, the ‘actual’ and estimated accuracy in eigenpairs is demonstrated

by Table 4.12 (the number of wanted eigenvalues is 10); the Lehmann and residual error estimates for

these matrices provide bounds that are too far off the mark, apparently due to the large values of matrix

entries, to be of any use (cf. the discussion at the end of §3.2.2).
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Figure 4.7: Convergence to eigenvectors of Si34H36.
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Figure 4.8: The spectrum of shipsec1: 100 leftmost eigenvalues.

Figure 4.9: The spectrum of shipsec5: 90 leftmost eigenvalues.
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Table 4.9: Lehmann/residual-estimated and actual errors for 12 leftmost eigenpairs of si34h36.

eigenvalue eigenvalue error eigenvector error

estimated actual estimated actual

-1.15862684250 9.4 · 10−9 4.2 · 10−10 1.8 · 10−4 1.7 · 10−5

-1.12438397505 1.8 · 10−7 7.2 · 10−9 8.5 · 10−4 7.7 · 10−5

-1.12438282394 3.1 · 10−8 1.3 · 10−9 3.7 · 10−4 3.2 · 10−5

-1.12438126267 2.7 · 10−8 1.2 · 10−9 3.3 · 10−4 3.3 · 10−5

-1.07704852744 7.8 · 10−8 2.7 · 10−9 6.0 · 10−4 5.5 · 10−5

-1.07704725618 9.1 · 10−8 3.6 · 10−9 6.9 · 10−4 6.3 · 10−5

-1.06245139726 6.1 · 10−8 2.0 · 10−9 5.6 · 10−4 5.0 · 10−5

-1.06245055613 1.1 · 10−7 3.9 · 10−9 7.6 · 10−4 6.7 · 10−5

-1.06245016280 2.8 · 10−8 9.3 · 10−10 4.0 · 10−4 3.1 · 10−5

-1.01335308149 1.2 · 10−7 3.0 · 10−9 9.1 · 10−4 6.8 · 10−5

-1.01335027853 1.1 · 10−7 3.0 · 10−9 9.1 · 10−4 6.6 · 10−5

-1.01334990091 5.9 · 10−8 1.7 · 10−9 6.6 · 10−4 5.4 · 10−5

Table 4.10: Same as Table 4.9 but with kinematic estimates.

eigenvalue eigenvalue error eigenvector error

estimated actual estimated actual

-1.15862684284 1.6 · 10−10 7.7 · 10−11 2.4 · 10−5 8.8 · 10−6

-1.12438398209 5.8 · 10−10 1.3 · 10−10 4.8 · 10−5 1.1 · 10−5

-1.12438282523 1.1 · 10−10 1.8 · 10−11 2.1 · 10−5 4.3 · 10−6

-1.12438126386 8.1 · 10−11 1.8 · 10−11 1.8 · 10−5 3.9 · 10−6

-1.07704853006 4.0 · 10−10 7.5 · 10−11 4.4 · 10−5 9.1 · 10−6

-1.07704725963 5.2 · 10−10 1.0 · 10−10 5.1 · 10−5 1.1 · 10−5

-1.06245139922 3.3 · 10−10 5.7 · 10−11 4.2 · 10−5 8.1 · 10−6

-1.06245055992 5.9 · 10−10 9.4 · 10−11 5.6 · 10−5 1.0 · 10−5

-1.06245016370 1.7 · 10−10 2.7 · 10−11 3.0 · 10−5 5.5 · 10−6

-1.01335308418 2.1 · 10−9 3.1 · 10−10 1.2 · 10−4 2.0 · 10−5

-1.01335028147 8.3 · 10−10 9.7 · 10−11 7.7 · 10−5 1.2 · 10−5

-1.01334990253 4.8 · 10−10 5.8 · 10−11 5.8 · 10−5 9.5 · 10−6

Table 4.11: CPU per eigenpair (sec) for DNVS matrices.

number of eigenpairs 20 40 60 80

shipsec1 4.8 4.1 4.5 4.6

shipsec5 4.2 4.4 4.9 4.1
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Table 4.12: Kinematically estimated and actual errors for 10 leftmost eigenpairs of shipsec1.

eigenvalue eigenvalue error eigenvector error

estimated actual estimated actual

0.1884713114 4.9 · 10−10 3.2 · 10−9 5.7 · 10−5 6.3 · 10−5

0.1884713199 3.3 · 10−9 1.2 · 10−8 1.5 · 10−4 2.2 · 10−5

0.1986679707 1.1 · 10−9 3.0 · 10−9 8.6 · 10−5 3.1 · 10−5

0.1986679726 1.9 · 10−9 4.9 · 10−9 1.2 · 10−4 3.0 · 10−5

0.2201740222 1.6 · 10−10 2.9 · 10−10 3.7 · 10−5 8.6 · 10−6

0.2201740223 1.5 · 10−10 3.8 · 10−10 3.5 · 10−5 9.4 · 10−6

0.2201741172 4.2 · 10−11 1.8 · 10−10 1.9 · 10−5 7.9 · 10−6

0.2201741177 1.8 · 10−10 7.7 · 10−10 3.9 · 10−5 7.7 · 10−6

0.2337364025 2.1 · 10−9 2.4 · 10−9 1.4 · 10−4 3.8 · 10−5

0.2337364064 5.0 · 10−9 6.3 · 10−9 2.2 · 10−4 3.7 · 10−5

Figure 4.10: Convergence to eigenvectors of shipsec1.
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4.4 Tests on matrices generated by 3D FEM for linear elasticity.

The tests reported in this section were run on the generalized eigenvalue problem generated by the finite

element method with bilinear shape functions applied to 3D linear elasticity (Lamé) equations in a 5-by-

2-by-1 brick domain. The uniform mesh of k-by-k-by-k elements was used, with k = 30 and k = 40; the

two problems solved are referred below as brick30 (n = 86,490; 6,558,552 nonzeros) and brick40 (n =

201,720; 15,548,742 nonzeros). AMG preconditioning was used, which added up to 300% to the CPU time

per iteration but removed the dependence of the convergence on the mesh step size as can be seen from

Table 4.13. The distribution of leftmost eigenvalues of brick30 and brick40 are shown on Fig. 4.11 and

4.12 respectively. The convergence behaviour of JCPG iterations is portrayed by eigenvector error histories

in Fig. 4.13, and the performance of HSL EA19 by Table 4.13. In all tests the eigenvector accuracy is set to

10−3 and m exceeds the number of wanted eigenpairs by 5 (found to be a suitable margin in preliminary

tests). Finally, Table 4.14 compares the kinematically estimated errors in eigenpairs with ‘actual’ ones

calculated based on eigenvectors computed to 10−12 accuracy.

Figure 4.11: The spectrum of brick30: 100 leftmost eigenvalues.

Figure 4.12: The spectrum of brick40: 100 leftmost eigenvalues.

Table 4.13: CPU per eigenpair (sec) for 3D elasticity matrices.

number of eigenpairs 20 40 60 80

brick30 8.2 6.9 7.0 7.0

brick40 16.0 13.3 13.4 14.1

4.5 Comparisons with other eigensolvers

In this section, we compare the performance of HSL EA19 with that of the two eigensolver packages: the

package HSL EA16 by Meerbergen & Scott (2000) and JADAMILU by Bollhoefer & Notay (2007).

In comparing different eigensolver packages, it is important to pay attention to the actual accuracy of

eigenpairs they compute – failing to take note of the accuracy may produce misleading results. Regrettably,

neither HSL EA16 nor JADAMILU actually allow the user to compute eigenpairs to a desired accuracy:

instead, the user has to set the required residual tolerance. However, computing eigenpairs to the same

residual tolerance with different algorithms may result in significantly different levels of accuracy. The

comparisons with HSL EA16 are even more complicated, since the residual tolerance is imposed on the

residuals for inverted-shifted problem rather than the original one. With the discretized differential

problems in the tests, this results in relatively higher level of ‘short wavelength’ error component in
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Figure 4.13: Convergence to eigenvectors of brick30.
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eigenvectors computed by HSL EA16, immediately seen from the fact that Rayleigh quotients differed

considerably from the computed eigenvalues. For a fair comparison, in the reported tests with HSL EA16

and JADAMILU, their residual tolerances were set to the values that delivered comparable accuracy to that

of HSL EA19, judged by applying the Rayleigh-Ritz procedure to their computed eigenvectors.

Table 4.14: Kinematically estimated and actual errors for 10 leftmost eigenpairs of brick30.

eigenvalue eigenvalue error eigenvector error

estimated actual estimated actual

0.00401985 3.4 · 10−7 1.5 · 10−7 2.3 · 10−4 7.2 · 10−5

0.01356786 3.2 · 10−7 1.3 · 10−7 2.2 · 10−4 6.5 · 10−5

0.05894886 8.2 · 10−7 2.5 · 10−7 3.5 · 10−4 8.5 · 10−5

0.11771536 3.8 · 10−7 9.4 · 10−8 2.4 · 10−4 5.4 · 10−5

0.24612525 3.9 · 10−7 9.7 · 10−8 2.5 · 10−4 5.5 · 10−5

0.24945256 2.4 · 10−10 5.6 · 10−11 6.2 · 10−6 1.2 · 10−6

0.53316553 1.4 · 10−6 3.3 · 10−7 4.8 · 10−4 1.2 · 10−4

0.67561794 7.1 · 10−7 1.3 · 10−7 3.4 · 10−4 7.2 · 10−5

1.14044579 8.7 · 10−7 1.7 · 10−7 4.0 · 10−4 8.0 · 10−5

1.50602761 2.2 · 10−6 3.5 · 10−7 6.5 · 10−4 1.2 · 10−4
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4.5.1 HSL EA19 vs. HSL EA16

The HSL package HSL EA16 implements implicitly restarted block (rational) Lanczos method. Since the

leftmost eigenvalues are poorly separated from the rest of the spectrum in all of the test problems, we

took advantage of the option to employ shift-and-invert technique provided by HSL EA16 to avoid slow

convergence. For the factorization of shifted matrix and subsequent solves we used the HSL package

HSL MA77. With HSL EA19, the preconditioners described in subsections 4.3.2 and 4.4 were used.

Table 4.15: The performance of HSL EA16 and HSL EA19 on shipsec1.

HSL EA16

number of eigenpairs 20 40 60 80

CPU per eigenpair 6.0 5.8 4.5 6.5

max eigenvalue error 3.1 · 10−8 1.1 · 10−7 2.0 · 10−4 1.2 · 10−6

max eigenvector error 1.8 · 10−4 3.7 · 10−4 3.2 · 10−3 5.3 · 10−3

HSL EA19

number of eigenpairs 20 40 60 80

CPU per eigenpair 4.8 4.1 4.5 4.6

max eigenvalue error 1.3 · 10−8 3.4 · 10−8 3.1 · 10−8 3.2 · 10−8

max eigenvector error 1.1 · 10−4 9.0 · 10−5 1.1 · 10−4 1.2 · 10−4

Table 4.15 summarizes the performance of HSL EA16 and HSL EA19 on the shipsec1 matrix. The

residual tolerance for HSL EA16 is set to 10−3. We observe that HSL EA19 was slightly faster, despite using

a not very efficient preconditioner, save for the test with 60 eigenpairs; in the latter, however, the accuracy

of HSL EA16 was noticeably lower.

Table 4.16: The performance of HSL EA16 and HSL EA19 on brick30.

HSL EA16

number of eigenpairs 20 40 60 80

CPU per eigenpair 6.8 5.4 5.0 5.7

max eigenvalue error 1.3 · 10−7 3.0 · 10−6 7.4 · 10−4 7.1 · 10−4

max eigenvector error 2.0 · 10−5 4.8 · 10−4 4.9 · 10−3 8.5 · 10−3

HSL EA19

number of eigenpairs 20 40 60 80

CPU per eigenpair 8.2 6.9 7.0 7.0

max eigenvalue error 2.2 · 10−6 3.9 · 10−6 6.6 · 10−6 3.0 · 10−5

max eigenvector error 7.0 · 10−4 8.0 · 10−4 1.4 · 10−3 4.5 · 10−3

Table 4.16 compares the performance of HSL EA16 and HSL EA19 on the brick30 problem. The residual

tolerance for HSL EA16 is set to 10−4. We observe that HSL EA16 was faster than HSL EA19. However, if one

turns to the results for brick40 reported by Table 4.17 (the same residual tolerance was requested), one

finds a completely different picture: now HSL EA19 is about twice as fast as HSL EA16. The explanation

of the difference between the two tests is fairly simple: sparse factorization algorithms require O
(
n2
)

arithmetic operations for the discretized 3D problems and O
(
n4/3

)
memory storage.15 We note that

15For this reason, comparisons on PARSEC matrices were not feasible.
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due to the latter, in the brick40 tests a considerable number of exchanges with external memory was

apparently performed, slowing down the computation considerably. In contrast, the computational cost

of HSL EA19 with AMG preconditioning is linear in the size of the problem, as can be clearly seen by

comparing the results for brick30 and brick40.

Table 4.17: The performance of HSL EA16 and HSL EA19 on brick40.

HSL EA16

number of eigenpairs 20 40 60 80

CPU per eigenpair 33.8 25.3 33.2 39.9

max eigenvalue error 1.2 · 10−5 6.8 · 10−5 6.1 · 10−4 2.1 · 10−3

max eigenvector error 1.8 · 10−4 5.8 · 10−4 7.4 · 10−3 1.7 · 10−2

HSL EA19

number of eigenpairs 20 40 60 80

CPU per eigenpair 16.0 13.3 13.4 14.1

max eigenvalue error 1.5 · 10−5 8.1 · 10−6 2.9 · 10−5 2.0 · 10−5

max eigenvector error 3.1 · 10−4 1.4 · 10−3 2.5 · 10−3 3.9 · 10−3

It should be stressed that the reported comparison results must not be misinterpreted as the evidence

that HSL EA19 makes HSL EA16 obsolete. In this report, we applied HSL EA16 and HSL EA19 to computing

several leftmost eigenpairs, whereas the former package actually has much wider range of eigenvalue

problems to which it can be efficiently applied. Futhermore, in many structural engineering applications

the problem domains are ‘almost’ two-dimensional, and the computational cost of sparse factorizations is

significantly lower, which makes HSL EA16 more efficient for such problems for now, i.e. until more efficient

preconditioners become available.

4.5.2 HSL EA19 vs. JADAMILU

JADAMILU and HSL EA19 share two important features: (i) preconditioning, and (ii) Rayleigh quotient

minimization. In fact, the algorithms implemented by the two packages, the PCG and Generalized

Davidson algorithms, would be identical in exact arithmetic were they applied to the minimization of a

quadratic functional with positive-definite Hessian rather than the Rayleigh quotient. The most essential

differences between the two eigensolvers actually is the fact that JADAMILU computes one eigenpair at a

time, whereas HSL EA19 computes several eigenpairs simultaneously. This implies that JADAMILU iterations

are much cheaper especially in terms of memory storage, however, the convergence of approximate

eigenpairs to exact ones is considerably faster with HSL EA19, and missing an eigenpair is practically

impossible with the latter, very much unlike the former.16 Another important implication is that JADAMILU

cannot possibly benefit from the advanced error estimation techniques described in this report; as a result,

the error estimates provided by this package have little to do with actual errors.

JADAMILU package comes with built-in multilevel incomplete LU (MILU) preconditioner, however, the

user can opt for a one of their own. Since direct access to the MILU preconditioner is not provided, in

the tests reported here we used, for a fair comparison, the same AMG preconditioner as that used with

HSL EA19.

Tables 4.18 and 4.19 present the performance comparisons between the two packages in question on

PARSEC matrices. The residual tolerance for JADAMILU was 10−4. Clearly, JADAMILU is competitive only

16The two ways to avoid missing an eigenpair when using JADAMILU proved to be (in the reported tests): (i) using high

enough accuracy, and (ii) computing more eigenpairs than needed because the missing eigenpair will appear sooner or later.

The problem is that it is not clear what accuracy or how many extra eigenpairs are needed.
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Table 4.18: The performance of JADAMILU and HSL EA19 on si34h36.

JADAMILU

number of eigenpairs 20 40 60 80

CPU per eigenpair 1.6 2.3 2.9 3.2

max eigenvalue error 7.9 · 10−9 5.6 · 10−9 6.4 · 10−9 1.3 · 10−7

max eigenvector error 5.1 · 10−4 3.9 · 10−4 5.2 · 10−4 7.0 · 10−3

HSL EA19

number of eigenpairs 20 40 60 80

CPU per eigenpair 2.0 2.0 1.8 1.6

max eigenvalue error 6.6 · 10−10 1.9 · 10−9 7.2 · 10−9 3.2 · 10−10

max eigenvector error 4.6 · 10−5 1.4 · 10−4 3.4 · 10−4 2.3 · 10−5

when the number of eigenpairs is not too large: the CPU time per eigenpair grows steadily as this number

increases (this fact is admitted by Bollhoefer & Notay (2007)).

Table 4.19: The performance of JADAMILU and HSL EA19 on si41ge41h72.

JADAMILU

number of eigenpairs 20 40 60 80

CPU per eigenpair 10.9 11.6 13.4 14.7

max eigenvalue error 4.7 · 10−8 4.6 · 10−9 7.3 · 10−9 5.8 · 10−9

max eigenvector error 1.7 · 10−3 3.2 · 10−4 2.3 · 10−3 5.3 · 10−4

HSL EA19

number of eigenpairs 20 40 60 80

CPU per eigenpair 10.2 6.7 7.4 8.6

max eigenvalue error 1.1 · 10−8 1.1 · 10−8 1.5 · 10−8 2.3 · 10−8

max eigenvector error 3.7 · 10−4 1.9 · 10−4 3.8 · 10−4 3.8 · 10−4

Table 4.20: The performance of JADAMILU on shipsec1.

number of eigenpairs 20 40

CPU per eigenpair 33.7 48.9

max eigenvalue error 8.8 · 10−9 3.2 · 10−8

max eigenvector error 2.1 · 10−4 1.7 · 10−4

Comparing the results presented in Table 4.20 with those in Table 4.15 clearly demonstrates that

shipsec1 is not a matrix on which JADAMILU is competitive to either HSL EA16 or HSL EA19 (to which

it might be added that the residual tolerance had to be set to as large value as 1 to obtain the reported

accuracy in eigenpairs – something that the user would have no way of knowing when applying JADAMILU

to this matrix).

Finally, the comparison of Table 4.21 to Table 4.16 demonstrates that HSL EA19 outperformed JADAMILU

considerably in the tests with brick30.
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Table 4.21: The performance of JADAMILU on brick30.

number of eigenpairs 20 40 60 80

CPU per eigenpair 12.9 12.7 14.1 15.2

max eigenvalue error 2.7 · 10−5 2.3 · 10−6 1.3 · 10−5 7.5 · 10−5

max eigenvector error 2.1 · 10−4 1.9 · 10−5 1.1 · 10−4 4.2 · 10−4

5 Code availability

HSL EA19 is included in the 2007 release of HSL. All use of HSL requires a licence. Licences are available

without charge to individual academic users for their personal (non-commercial) research and for teaching;

for other users, a fee is normally charged. Details of how to obtain a licence and further details of all HSL

packages are available at www.cse.clrc.ac.uk/nag/hsl/.

A Auxiliary results

A.1 Section 3.1

The following auxiliary result is used on step 5 for estimating the condition number of M̂ . For the

sake of simplicity of formulation, here we employ the dual notation for eigenvalue enumeration: positive

indices are used for counting eigenvalues from the left and negative for counting them from the right

(cf. Parlett (1980)), i.e. eigenvalues νi of a real symmetric/Hermitian matrix N of size n are indexed as

ν1 ≤ ν2 ≤ · · · ≤ νn and also as ν−1 ≥ ν−2 ≥ · · · ≥ ν−n (in other words, for a positive i, νi is the i-th

leftmost eigenvalue and ν−i the i-th rightmost). We observe that in both cases νi is non-decreasing in i,

and thus we may say that νi are enumerated in the increasing order in either case.

Lemma 1 Consider a 2-by-2 block matrix

H =

[
A CT

C B

]
,

where blocks A and B are symmetric and A positive definite. Denote by S the Schur complement of A,

i.e. S = B−CA−1CT . Denote by ηi, αi and σi the eigenvalues of H, A and S respectively enumerated in

the increasing order. The following inequalities are valid for any positive i that is less than the size of H:

• if ηi ≤ 0 then σi ≤ ηi;

• if 0 ≤ ηi < α1 then

2α1σi

α1 + σi + γ2 +
√

(α1 + σi + γ2)2 − 4α1σi

≤ ηi ≤ σi, (1.31)

where γ = ‖C‖√
α1

;

• if α−1 < η−i then

σ−i ≤ η−i ≤
2α−1σ−i

α−1 + σ−i + γ2 −
√

(α−1 + σ−i + γ2)2 − 4α−1σ−i

. (1.32)

Proof.

We start by applying the Schur complement technique to the equation Hz = ηz, in the same way as

it is done e.g. by Mathias (1998). The underlying idea is to rewrite this equation as a system of two

equations

Ax+ CT y = ηx

Cx+By = ηy,
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and then exclude the x-component. Equivalently, one computes the product Hη = UT (H − ηIH)U , where

U =

[
IA −(A− ηIA)−1CT

0 IB

]
,

where IH , IA and IB are the identity matrices of the same sizes as H , A and B respectively, and we

assume that η is not an eigenvalue of A. It is easy to see that Hη is a block diagonal matrix with diagonal

blocks A − ηIA and Sη − ηIB , where Sη = B − C(A − ηIA)−1CT . By the matrix inertia theorem, Hη

has the same number of negative, zero and positive eigenvalues as H − ηIH . Hence, the i-th leftmost

eigenvalue of H that lies strictly left from the spectrum of A is also the i-th leftmost eigenvalue of Sηi
,

and, symmetrically, the i-th rightmost eigenvalue that lies strictly right from the spectrum of A is also the

i-th rightmost eigenvalue of Sη−i
. Based on this fact, Mathias (1998) derives bounds for eigenvalues of H

in terms of those of B and the norm of C that are somewhat less accurate than (1.31) and (1.32) in the

case at hand (for one thing, for any positive ηi our lower bound is positive).

In order to prove the inequalities of the lemma, we observe that

Sη = S + C(A−1 − (A− ηIA)−1)CT = S − ηCA−1(A− ηIA)−1CT = S − ηTη.

If η < α1, then Tη is positive definite. Hence, for ηi ≤ 0, Sηi
− S is positive semi-definite, which implies

the first inequality of the lemma. If 0 ≤ ηi < α1, then S − Sηi
is positive semi-definite, which implies the

right-hand side inequality in (1.31). To prove the left-hand side one, we observe that by Weyl’s theorem

σi − ηi ≤ ‖S − Sηi
‖ = ηi‖CA−1(A− ηiIA)−1CT ‖ ≤ ηi

‖C‖2

α1(α1 − ηi)
=

γ2ηi

α1 − ηi
, (1.33)

and via simple calculation we arrive at the inequality in question. The inequalities (1.32) are proved in

the same way.

A.2 Section 3.2

In the proof of (3.26) we employ the following auxiliary result.

Lemma 2 Let x̃j and λ̃j , j = 1, . . . ,m. be Ritz vectors and values of a Hermitian positive-definite operator

L enumerated in the increasing order of λ̃i and denote r̃j = Lx̃j − λ̃j x̃j. The following inequality is valid:

m∑

j=1

1

λ̃j

‖r̃j‖2
L−1

‖x̃j‖2
L

≤
m∑

j=1

(
1

λj
− 1

λ̃j

)
. (1.34)

Proof.

The normalization of x̃j does not affect (1.34), hence assume ‖x̃j‖ = 1. Denote X̃ = [x̃1, . . . , x̃m],

R̃ = [r̃1, . . . , r̃m] and Λ̃ = diag{λ̃1, . . . , λ̃m}. We have R̃ = LX̃ − X̃Λ̃, and X̃T R̃ = 0, and hence

R̃TL−1R̃ = (X̃TL− Λ̃X̃T )L−1(LX̃ − X̃Λ̃) = −Λ̃ + Λ̃X̃TL−1X̃Λ̃

i.e.

Λ̃−1R̃TL−1R̃Λ̃−1 = X̃TL−1X̃ − Λ̃−1.

The eigenvalues of X̃TL−1X̃ are Ritz values of L−1, and hence they are not greater than 1/λ1, . . . , 1/λm.

Hence, taking the trace of both sides of the obtained equation, we arrive at

m∑

j=1

‖r̃j‖2
L−1

λ̃2
≤

m∑

j=1

(
1

λj
− 1

λ̃j

)
,

and thus at (1.34) because ‖x̃j‖2
L = λ̃j . QED

Another ingredient of the proof of (3.26) is the following result (Lemma 5 of Ovtchinnikov (2006b)).
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Lemma 3 Let µ1 ≥ µ2 ≥ · · · be eigenvalues of a Hermitian operator M acting in a linear space H with

the scalar product (u, v)H and norm ‖u‖H = (u, u)2H. Let µ̃1 ≥ µ̃2 ≥ · · · ≥ µ̃m be the Ritz values of M in

a subspace V ⊂ H of dimension m. For any l ≤ m the following inequality holds:

m∑

j=l

(µj − µm+1) sin2
H{xj ;V} ≤

m∑

j=l

(µj − µ̃j), (1.35)

where

sinH{u,V} = min
v∈V

‖u− v‖H
‖u‖H

.

Remark 1 It is not difficult to verify that the proof of the quoted result given by Ovtchinnikov (2006b)

does not use the assumption µm > µm+1 which is present in the formulation of Lemmata 4 and 5 of the

cited paper.

Turning now to (3.26), let us denote λ̃j = λi
j , x̃j = xi

j , X̃l = X i
l , and X̃k = span{x̃1, . . . , x̃k}, and let

us assume for now that L is positive definite. Assuming x̃j normalized, we have

l∑

j=1

(λk+1 − λ̃j) =

l∑

j=1

(λk+1x̃j − Lx̃j , x̃j) ≤
l∑

j=1

k∑

i=1

(λk+1 − λi)|(x̃j , xi)|2 =

l∑

j=1

l∑

i=1

(λk+1 − λi)|(x̃j , xi)|2 +

l∑

j=1

k∑

i=l+1

(λk+1 − λi)|(x̃j , xi)|2. (1.36)

We observe that

l∑

j=1

|(x̃j , xi)|2 = cos2{xi; X̃l} = 1 − sin2{xi; X̃l}. (1.37)

Since x̃j is a Ritz vector in X̃k, (rj , x̃) = 0 for any x̃ ∈ X̃k, and hence

(λi − λ̃j)(x̃j , xi) = (Lx̃j − λ̃j x̃j , xi) = (rj , xi) = (rj , xi − x̃) ≤ ‖rj‖L−1‖xi − x̃‖L,

i.e.

|(x̃j , xi)| ≤
‖rj‖L−1

λi − λ̃j

min
x̃∈X̃k

‖xi − x̃‖L.

Introducing the n-dimensional vector space H with the scalar product (u, v)H = (Lu, v) and the norm

‖u‖H = (Lu, u)1/2, we can rewrite the last inequality as

|(x̃j , xi)| ≤
‖rj‖L−1

λi − λ̃j

sinH{xi; X̃k}‖xi‖L =

√
λi‖rj‖L−1

λi − λ̃j

sinH{xi; X̃k}.

Applying Lemma 3 to L−1, we obtain

k∑

i=l+1

(
1

λi
− 1

λk+1

)
sin2

H{xi; X̃k} ≤
k∑

i=l+1

(
1

λi
− 1

λ̃i

)
,

and thus

l∑

j=1

k∑

i=l+1

(λk+1 − λi)|(x̃j , xi)|2 ≤
l∑

j=1

k∑

i=l+1

λk+1 − λi

(λi − λ̃j)2
λi sin2

H{xi; X̃k}‖rj‖2
L−1 =

l∑

j=1

‖rj‖2
L−1

k∑

i=l+1

λk+1λ
2
i

(λi − λ̃j)2

(
1

λi
− 1

λk+1

)
sin2

H{xi; X̃k} ≤
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λk+1

l∑

j=1

λ2
l+1

(λl+1 − λ̃j)2
‖rj‖2

L−1

k∑

i=l+1

(
1

λi
− 1

λk+1

)
sin2

H{xi; X̃k} ≤

λk+1

λ2
l+1λ̃

2
l

(λl+1 − λ̃l)2

l∑

j=1

‖rj‖2
L−1

λ̃2
j

k∑

i=l+1

(
1

λi
− 1

λk+1

)
sin2

H{xi; X̃k} ≤

λk+1

λ2
l+1λ̃

2
l

(λl+1 − λ̃l)2

l∑

j=1

(
1

λj
− 1

λ̃j

)
k∑

i=l+1

(
1

λi
− 1

λ̃i

)
≤

λk+1

λ2
l+1λ̃

2
l

(λl+1 − λ̃l)2
1

λ2
1

l∑

j=1

(λ̃j − λj)
1

λ2
l+1

k∑

j=l+1

(λ̃j − λj) =

λk+1

λ2
1

λ̃2
l

(λl+1 − λ̃l)2

l∑

j=1

(λ̃j − λj)

k∑

j=l+1

(λ̃j − λj) ≤

λk+1λ
2
l+1

λ2
1

1

(λl+1 − λ̃l)2

l∑

j=1

(λ̃j − λj)

k∑

j=l+1

(λ̃j − λj).

Substituting this estimate into (1.36) and taking into account (1.37) yields

l∑

j=1

(λk+1 − λj) sin2{xj ; X̃l} ≤ (1 + ǫ)

l∑

j=1

(λ̃j − λj), (1.38)

where

ǫ =
λk+1λ

2
l+1

λ2
1

1

(λl+1 − λ̃l)2

k∑

j=l+1

(λ̃j − λj).

Now, if we apply (1.38) to L shifted by 2λ1−λl+1 (which is positive definite for any L, hence the assumption

that L is positive definite can be dropped), then ǫ becomes

ǫ = 4
λl+1 + λk+1 − 2λ1

(λl+1 − λ̃l)2

k∑

j=l+1

(λ̃j − λj).

It remains to note that dimXl = dim X̃l = l, and hence

sin2{Xl; X̃l} = max
x∈Xl

sin2{x, X̃l} ≤
l∑

j=1

sin2{xj ; X̃l},

and we arrive at (3.26).
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