
RAL-TR-2009-014

July 10th, 2009

Mario Arioli and Daniel Ruiz

Flexible deflation in Krylov methods with
Chebyshev-based polynomial filters

c© Science and Technology Facilities Council

Enquires about copyright, reproduction and requests for additional copies of this report should
be addressed to:

Library and Information Services
SFTC Rutherford Appleton Laboratory
Harwell Science and Innovation Campus
Didcot
OX11 0QX
UK
Tel: +44 (0)1235 445384
Fax: +44(0)1235 446403
Email: library@rl.ac.uk

The STFC ePublication archive (epubs), recording the scientific output of the Chilbolton,
Daresbury, and Rutherford Appleton Laboratories is available online at:
http://epubs.cclrc.ac.uk/

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their reports
or in any communication about their tests or investigation

RAL-TR-2009-014

Flexible deflation in Krylov methods with Chebyshev-based
polynomial filters

Mario Arioli1 and Daniel Ruiz2

ABSTRACT
We consider the solution of ill-conditioned symmetric and positive definite large sparse
linear systems of equations. These arise, for instance, when using some symmetrizing pre-
conditioning technique for solving a general (possibly unsymmetric) ill-conditioned linear
system, or in domain decomposition of a numerically difficult elliptic problem.
Combining Chebyshev iterations with the Lanczos algorithm, we propose a way to identify
and extract precise information related to the ill-conditioned part of the given linear
system. This approach is equivalent to a flexible deflation based on Chebyshev filters.
The potential of this combination, which can be related to the factorization and direct
solution of linear systems, is illustrated numerically and theoretically. In particular, we
also present a general theory that relates the level of filtering to the accuracy of the
computed solution.

Keywords: Chebyshev polynomial, Lanczos method, Filtering.

Current reports available by anonymous ftp to ftp.numerical.rl.ac.uk in directory pub/reports.
1 M.Arioli@rl.ac.uk, Rutherford Appleton Laboratory,
2 Daniel.Ruiz@enseeiht.fr, Ecole Nationale Supérieure d’Electrotechnique, d’Electronique, d’Informatique,
et d’Hydraulique de Toulouse, Institut de Recherche en Informatique de Toulouse, 2 rue Camichel,
31071 Toulouse Cedex, France.

Computational Science and Engineering Department
Atlas Centre
Rutherford Appleton Laboratory
Oxon OX11 0QX

July 20th, 2009

Contents

1 Introduction 1

2 Chebyshev filters 2

3 The algorithm 5

4 An analysis of Lanczos and filtering interaction 9

5 Error Analysis 11

6 Practical and numerical issues 13
6.1 A small example . 13
6.2 A PDE example . 15
6.3 Solution phase and multiple right-hand sides . 18

7 Conclusion 19

i

1 Introduction

The solution of large, sparse, and ill-conditioned linear systems of equations, such as

Au = b , A ∈ Rn×n (1.1)

arises in many scientific and engineering problems. Several of these problems come from the
numerical approximation of the mathematical models of complex physical phenomena. It is
important to observe that in many of these problems the matrices are very large, and the con-
secutive solution of several linear systems with the same matrix and changing right-hand sides
is frequently required. It is not always possible to solve the system by means of a direct solver,
and there are case where the iterative methods are the only feasible approach. In this respect,
preconditioned Krylov subspace methods are one of the most powerful techniques used.

We assume that the matrix A in (1.1) is symmetric and positive definite (SPD). The SPD
matrix A may arise when using some symmetrizing preconditioning technique (see [14]) for solving
a general (possibly unsymmetric) ill-conditioned linear system, or in domain decomposition of
some numerically difficult elliptic problem. As we will see in our numerical experiments, even if
the preconditioner is robust with a preconditioned system having condition number independent
of n, few eigenvalues are still very small. The conjugate gradient method (and Krylov methods
in general) will then have a low rate of convergence.

The technique we shall develop in the following computes the basis of an approximate invariant
subspace associated with these smallest eigenvalues, and this is used to construct a projector
that can extract the eigencomponents of the solution relative to this invariant subspace. This
technique is based on a combination of the Lanczos method and Chebyshev filters which purpose
is to deflate in some way the invariant subspace linked with the non-targetted largest eigenvalues.
We want to point out immediately that our method builds some partial spectral factorization of
the given iteration matrix and should be considered, as with direct methods, when more than
one solution with the same matrix is required. Indeed, if the solutions corresponding to several
right-hand sides appearing in sequence are required, at the cost of computing and storing few
dense vectors, these subsequent solutions can be obtained in a much cheaper way.

Arioli and Ruiz [4] have already proposed a two-phase iterative approach, which first performs
a partial spectral decomposition of the given matrix, and which afterwards uses the previously
derived information to compute solutions for subsequent right-hand sides. They first compute
and store a basis for the invariant subspace associated with the smallest eigenvalues of the given
SPD matrix A by using inverse subspace iteration (see [18], [16]). To compute the sets of mul-
tiple solutions required in the inverse subspace iteration algorithm, they use the block conjugate
gradient algorithm, since it is particularly well designed for simultaneously computing multiple
solutions and suffers less from the particular numerical properties of the linear systems under
consideration.

This work has been furthermore developped and analysed theoretically by Balsa et.al. (see [7],
[5], and [6]). From an inner-outer convergence analysis, they propose a strategy to reduce the total
amount of computational work by controlling the accuracy during the solution of linear systems
at each inverse iteration. They also incorporate Chebyshev polynomials as a spectral filtering
tool when building the starting vectors to improve the global convergence of the algorithm. They
perform an analysis of costs and benefits, in terms of floating point operations, to validate how
this strategy can speed up the solution of symmetric and positive definite linear systems. For
such a particular use, the computed approximate eigenvectors need not be very accurate. The
proposed convergence analysis suggests a stopping criterion that enables to control explicitely
the invariance degree of this information, and they illustrate this experimentally.

1

Golub et.al. [12] also propose a similiar technique combining the conjugate gradient method
with Chebyshev filtering polynomials as preconditionners, that target some specific convergence
properties of the conjugate gradient method. In their approach, the Chebyshev preconditioner
is applied only to a part of the spectrum of the coefficient matrix and puts a large number of
eigenvalues near one but does not degrade the distribution of the smallest ones. This procedure
enables them to construct a lower dimensional Krylov basis that is very rich with respect to
the smallest eigenvalues and associated eigenvectors, which can also be stored and exploited
in a straightforward way to solve sequences of systems with little extra work. They illustrate
experimentally that the gains can be rather effective and the cost for precomputing the Krylov
basis can rapidly be compensated when solving several linear systems with the same matrix but
changing right-hand sides.

As opposed to classical polynomial preconditioning techniques, where the degree of Chebyshev
polynomials is fixed, we propose to monitor at each Lanczos iteration the number of Chebyshev
filtering steps in order to maintain under some predetermined level the filtered eigencomponents
in the computed Lanczos vectors. With respect to the Chebyshev preconditionners proposed
in [12], our method is more flexible in the sense that it adapts iteratively the degree of the
Chebyshev polynomials and offers the possibility to reduce substantially the computational cost
in the precomputation of the targetted low dimensional Krylov basis.

Additionally, because of the uniform convergence properties of the Chebyshev polynomi-
als, our algorithm is designed to control explicitly the relative gap between eigencomponents in
the computed Krylov vectors. This eigen-componentwise relative separation of information also
enables us to control a priori, with some forward error analysis, the A-norm of the error in sub-
sequent solutions of linear systems with the same matrix, and is a complement to more classical
backward error analysis (see e.g. [2]).

The paper is organised as follows. Section 2 motivates the proposed method, and introduces
the Chebyshev filters. The algorithm is presented and discussed in Section 3. The convergence
properties and the error analysis of the algorithm are given in Section 4 and Section 5 respectively.
Finally, we discuss some of the numerical issues in Section 6 using selected numerical tests. Some
open questions and conclusions are discussed in Section 7.

2 Chebyshev filters

As already mentioned in the introduction, we want to compute an approximation of the invariant
subspace associated with the smallest eigenvalues of the given ill-conditioned SPD matrix A.

To do so, we start with an initial randomly generated vector z and we use Chebyshev poly-
nomials in A to “damp”, in this starting vector z, the eigencomponents associated with all the
eigenvalues in some predetermined range. In the following, we shall denote by λmin the minimum
eigenvalue of A, and by λmax the maximum one. We can fix, for instance, a positive number µ,
with λmin < µ < λmax, and decide to compute a basis the invariant subspace of A associated with
all the eigenvalues in the range [λmin, µ]. The computation of λmax is usually not too difficult,
and in some cases, a sharp upper-bound may be already available through some a priori knowl-
edge of the numerical properties of A. For example, in the small case study shown in Figure 2.1,
there are 19 eigenvalues inside the interval [λmin, λmax/100], and 26 eigenvalues inside the interval
[λmin, λmax/10].

To “filter out” the unwanted eigenvalues in the range [µ, λmax], and focus only on the few
remaining ones in [λmin, µ], we consider Chebyshev polynomials, which can be defined by the

2

following 2-term recurrence formula (see [14, page 46]):
{

T0(ω) = 1 , T1(ω) = ω
Tk+1(ω) = 2ωTk(ω)− Tk−1(ω) k ≥ 1.

. (2.2)

The optimal properties of Chebyshev polynomials given in Theorem 4.2.1 in [14, page 47] can be
summarised as follows: if we consider d > 1 and

Fk(ω) =
Tk(ω)
Tk(d)

,

then Fk has minimum l∞ norm on the interval [−1, 1] over all polynomials Qk of degree less than
of equal to n and satisfying the condition Qk(d) = 1, and we have

max
ω∈[−1,1]

|Fk(ω)| = 1
Tk(d)

. (2.3)

We will denote in the following the values Tk(d) by σk. These values can easily computed from
the recurrence (2.2). Now, consider the translation plus homothetic transformation:

λ ∈ R 7−→ ωµ(λ) =
λmax + µ− 2λ

λmax − µ
= dµ − αλ,

with
dµ =

λmax + µ

λmax − µ
> 1 and α =

2
λmax − µ

,

and λmin < µ < λmax as given above. This transformation maps λmax to −1, µ to 1, and 0 to
ωµ(0) = dµ > 1. Then, introducing

Fk(λ) =
Tk(ωµ(λ))

Tk(dµ)
, (2.4)

we easily see, because of the optimal properties recalled above, that Fk(λ) has minimum l∞
norm on the interval [µ, λmax] over all polynomial Qk of degree less than or equal to n satisfying

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 26 eigs. are below the threshold (µ = λ
max

/10) ←

 Smallest eig. = 1.0897e−13; Largest eig. = 2.5923

Figure 2.1: Eigenvalue distribution of a sample iteration test matrix
(size of matrix is 137).

3

Qk(0) = 1. Finally, from (2.2), we have

F0(λ) = 1, F1(λ) =

dµ − αλ

σ1
= 1− 2λ

λmax + µ

σk+1Fk+1(λ) = 2σk

(
dµ − αλ

)
Fk(λ)− σk−1Fk−1(λ),

(2.5)

which gives the recurrence formula to compute Fk(λ).
Let us denote by

A = UΛUT

the eigendecomposition of the SPD matrix A, with Λ = diag(λi), the matrix with the eigenvalues
of A on the diagonal (in increasing order, for instance) and U the unitary matrix whose columns
are the corresponding normalized eigenvectors of A. If we multiply any vector z, which can be
decomposed in the eigenbasis of A as

z =
n∑

i=1

uiξi,

with ξi = uT
i z, i = 1, . . . , n, by the matrix Fk(A) we get

v = Fk(A)z =
n∑

i=1

ui (Fk(λi)ξi) ,

which shows that the eigencomponents of the resulting vector v are close to that of the initial
vector z for all i such that λi is close to 0 (since Fk(0) = 1), and relatively much smaller for
large enough degree n and all i such that λi ∈ [µ, λmax]. This is how we can easily damp the
eigencomponents of any vector in the range [µ, λmax] using classical Chebyshev iteration. The
number of Chebyshev iterations needed to reach some level ε for eigencomponents associated with
eigenvalues in the range [µ, λmax], starting with normalized random vectors, is directly linked with
the ratio λmax/µ (see [14] and [11]), and can be very easily monitored using (2.3).

We can interpret the use of Chebyshev polynomials as a filtering tool that increases the degree
of colinearity with some selected eigenvectors. Indeed, after “filtering” the initial starting vector,
we obtain a vector with eigencomponents below a certain level ε for those eigenvalues in the range
[µ, λmax], and relatively much bigger eigencomponents linked with the smallest eigenvalues in A.

Of course, to be efficient, this approach relies on the fact that the spectrum of A is mostly
concentrated in the range [µ, λmax], with reasonable value of µ (like λmax/100, or λmax/10, for
instance) so that the number of Chebyshev iterations required to reach a given filtering level
ε is not too large. In that respect, a preliminary preconditioner applied to A, with classical
preconditioning techniques, may be used so that the number of remaining eigenvalues inside the
predetermined range [λmin, µ] (with some reasonable µ) is small compared to the size of the linear
system.

One of the main drawbacks with the Lanczos algorithm is that it does not maintain this nice
property of the filtered vectors, and gradually (and rather quickly, indeed) the Lanczos vectors
may again have eigencomponents all about the same level. It must be mentioned beforehand
that this problem is inherent to the Lanczos iteration, and is not at all due to any kind of
loss of orthogonality in the Lanczos basis. In Figure 2.2, we show (in a logarithmic scale) the
eigendecomposition of the Krylov basis obtained after 30 steps of the Lanczos algorithm starting
with a vector initially “filtered” to a level close to machine precision with Chebyshev polynomial
in the range [λmax(A)/10, λmax].

4

5
10

15
20

25

20
40

60
80

100
120

−15

−10

−5

0

Eigencomponents of the computed
Lanczos basis, starting with a filtered
initial vector (Chebyshev filter with
µ = λmax/10).

5 10 15 20 25
510152025

−25

−20

−15

−10

−5

0

Logarithm of the absolute values of the
scalar products between each pair of
Lanczos vectors (e.g. no loss of orthog-
onality).

• on the left subplot, the eigencomponents are indexed on the X-axis (from 1
to 136) in increasing order of their corresponding eigenvalue,
• the indexes (from 1 to 28) of the vectors in the current Lanczos basis are
indicated on the Y-axis,
• the Z-axis indicates the logarithm of the absolute values of the eigencompo-
nents in each of the 30 computed Lanczos vectors.

Figure 2.2: Eigendecomposition of the Krylov basis obtained after 28
Lanczos steps (with full reorthogonalization). The iteration matrix in
use is the one with spectrum given in Figure 2.1.

From the small test experiment of Figure 2.1, it can be seen that “near” invariance with
respect to those eigenvectors linked to the 26 eigenvalues in the range [λmin, λmax/10] can be
completely lost, and the termination of the Lanczos algorithm may not occur after building a
basis of dimension close to 26. It must be mentioned beforehand that this problem is inherent to
the Lanczos/Block Lanczos iteration, and is not at all due to any kind of loss of orthogonality in
the Lanczos basis. To produce these results, we have indeed performed a full re-orthogonalization
of the Lanczos vectors at each iteration, and this is explicitly illustrated by the second graph in
Figure 2.2 which shows the scalar products (in a logarithmic scale) between each pair of computed
Lanczos vectors. The reasons for this will be analyzed and identified more theoretically in Sec-
tion 4, and we first introduce in the next section the modifications we incorporate to the Lanczos
algorithm to compensate this inherent behavior and maintain the filtered eigencomponents under
some fixed level.

3 The algorithm

The algorithm we shall detail in this section is decomposed in the same spirit as direct methods,
with a factorization phase, which we call a “partial spectral factorization phase”, followed by a
cheap “solution phase” in two steps, but it offers the possibility of not building the matrix A
explicitly, since only matrix-vector multiplications are needed at every stage of the algorithm.

To maintain, during the spectral factorization, the value of the filtered eigencomponents in
the computed Krylov basis under some level ε, we propose to perform, at each Lanczos iteration,
a few extra Chebyshev iterations on the newly generated Lanczos vector v(k+1). In this way,

5

“near” invariance can be maintained. To describe the algorithm, let us first denote by

z = Chebyshev Filter(y, ε, [µ, λmax],A)

the application of a Chebyshev polynomial in A to the vector y, viz. z = Fk(A)y, where Fk is
defined as in (2.4) with a degree such that it is L∞ norm over the interval [µ, λmax] is less than ε.
Using this notation, and fixing the cut-off eigenvalue µ, with λmin < µ < λmax, and the filtering
level ε ¿ 1, we can then detail the various algorithmic steps of this partial spectral factorization
phase in Algorithm 1.

It must be mentioned, beforehand, that the nice property of the Krylov spaces, which makes
tridiagonal the projected matrix VTAV in the Lanczos method, is lost after re-filtering the
current v(k+1). We cannot simplify the orthogonalization step when computing the next Krylov
vectors and iterate with a simple 3 term recurrence formula in the usual way, as in the classical
Lanczos algorithm, and it is therefore necessary to orthogonalize at each iteration the filtered
vectors against all the previously constructed ones. However, if the number k of eigenvalues in
the range [λmin, µ] is small, the algorithm is an inverse-free technique that will build directly a
basis of dimension k, and with a precise control on the eigencomponents relative to eigenvalues
outside that range. Figure 3.3 illustrates the benefit of these additional filtering steps performed
at each Lanczos iteration on the same test case as the one of Figure 2.2.

Note also that the starting point in Algorithm 1 implies two steps of filtering of the initial
randomly generated basis. The issue there is that randomly generated vectors have eigencom-
ponents all about the same size (at least on average) and, thus, after the first filtering step, the
resulting vector may have a much smaller norm depending on how many eigenvalues in A remain
outside the damping interval [µ, λmax]. Then, the orthonormalization step that occurs after fil-
tering this vector may increase the actual level ε of the filtered eigencomponents. The purpose
of the second filtering step is to ensure that the filtering level of these eigencomponents in the
starting vector is actually very close to ε. In Section 4, we will discuss why this can be necessary
and, in Section 5, we will justify the chosen stopping criterion threshold. We have also forced
a double process of filtering in algorithm 3, where we repeated the steps (3.6) twice. Indeed,
the application of Chebyshev polynomial filtering to v(k+1) in (3.6) may also induce a loss of
information, in particular when the vectors v(k+1) have mostly large eigencomponents associated
with eigenvalues close to the cut-off value µ. In this case, and because of the continuity of the
Chebyshev polynomials over the whole interval [λmin, λmax], the resulting filtered vectors z(k+1)

may have a norm that gets close to δ (e.g. the current level of re-filtering on the interval [µ, λmax]).
This can be detected in the actual value of δ2 after normalization of the resulting vectors, and
applying a second time the filtering process (3.6) helps to guaranty that ‖Ψ‖ ≤ ε

√
m(n−m)

(where m is the rank of Ψ), at least until convergence is not about to be reached. Moreover, we
will show in Section 6 how this heuristic has a favourable cost/benefit.

We want to stress that our approach is not a polynomial preconditioning of the given linear
system. We exploit Chebyshev polynomials as a spectral filtering tool to perform implicitly
some sort of deflation with respect to the invariant subspace linked with the largest eigenvalues
in the given coefficient matrix A. Chebyshev filtering polynomials, in that respect, do not
present the same nice properties as projectors used commonly in such deflation, which have
explicit eigenvalues equal to 0 and 1. Still, they can partly mimic these properties, and offer an
alternative to achieve the same behavior in the Lanczos iteration as with deflation techniques,
but without having to effectively compute the basis vectors associated with this deflation. In
Section 4, we analyse in more details the theoretical aspects in this algorithm and discuss how
to monitor appropriately its convergence.

Once the near-invariant subspace linked to the smallest eigenvalues is obtained, we can use it
for the computation of further solutions. Several techniques have been proposed in the literature

6

Algorithm 1 (Chebyshev-based Partial Spectral Factorization
(Chebyshev-PSF))

p(0) = random(n, 1); and q(0) =
p(0)

||p(0)|| ;

z(0) = Chebyshev Filter(q(0), ε, [µ, λmax],A);

q̂(0) =
z(0)

||z(0)|| ; and set δ0 = ||z(0)|| and k = 0;

ẑ(0) = Chebyshev Filter(q̂(0), δ0, [µ, λmax],A);

V = v(0) =
ẑ(0)

||ẑ(0)|| ; and set δ2 = 1;

w = Av(0); and set G = g(1) = VTw;

while δ2 > ε
√

k(n− k) do :

p(k+1) = w −Vg(k+1); v(k+1) =
p(k+1)

||p(k+1)|| ;

set δ1 = ||p(k+1)||/λmax and δ = max(ε, δ1 × δ2);

for i = 1, 2 % the second round is optional %

z(k+1) = Chebyshev Filter(v(k+1), δ, [µ, λmax],A);

y(k+1) = z(k+1) −VVTz(k+1);

v(k+1) =
y(k+1)

||y(k+1)|| ;

set δ2 = ||y(k+1)|| and δ = δ2;

(3.6)

if (δ2 ≥ 0.1), break; % re-filtering is not useful % (3.7)

end

V = [V;v(k+1)]; and w = Av(k+1);

g(k+1) = VTw; and G =

g
(k+1)
1

G
...

g
(k+1)
k

g
(k+1)
1 · · · g

(k+1)
k g

(k+1)
k+1

.

set k = k + 1;

end.

that consist of either updating the preconditioner or enforcing conjugate gradient to work in the
orthogonal complement of an invariant subspace associated with the smallest eigenvalues. In
[10] and [9], Giraud et.al. exploit the Chebyshev-based Partial Spectral Factorization algorithm

7

(Algorithm 1 above) to generate an orthonormal basis of a near-invariant subspace of A associated
with the smallest eigenvalues. They vary, in particular, the level of filtering from 10−16 to 10−2

and use the resulting information in combination with different solution techniques to compare
their behaviour and numerical efficiency with respect to the quality of the near-invariant basis.

Amongst these various solution techniques, one of our favorite remains what they called
Init-Chebyshev and which resumes in using the classical Chebyshev algorithm with eigenvalue
bounds given by µ and λmax, as explained in [14, Chapter 4], to compute a first part of the solution,
and in performing an oblique projection of the residual onto the pre-computed near invariant
subspace in order to get the eigencomponents in the solution corresponding to the smallest
eigenvalues. The nice feature of this solution technique is that it exploits classical Chebyshev
polynomials which do not require scalar products, as with conventional Krylov solvers, and
presents therefore a good potential for parallel computation in distributed memory environments.
Additionally, the uniform convergence properties of Chebyshev polynomials also enables a forward
error analysis in this solution technique, and this will be the topic of Section 5.

To describe this solution phase, we also denote by

[r1,x1] = Chebyshev Solve(r0,x0, δ, [µ, λmax],A)

the application of Chebyshev polynomial in A the purpose of which is to reduce by a factor of δ
the eigencomponents in r0 associated with the eigenvalues in the range [µ, λmax], providing thus
the resulting residual r1 = Fk(A)r0 and the corresponding update x1 such that b −Ax1 = r1.
The polynomials 1−Fk are homogeneous and

1−Fk(λ) = λGk−1(λ).

From this, and with the recurrence formula (2.5), it is easy to derive an equivalent 3-term recur-
rence formula that can be used to construct Gk−1(A)r0 and which corresponds to x1 above. For
technical details, we refer to [9, § 3.1] where this recurrence formula is given explicitely. Using
this shortcut, the solution phase can be summarized as

5
10

15
20

25

20
40

60
80

100
120

−30

−20

−10

0

The Z-axis indicates the logarithm of the absolute values of
the eigencomponents in each Krylov vector.

Figure 3.3: Eigendecomposisiton of the Krylov basis obtained after 28
iterations of the Chebyshev-PSF algorithm starting with the same ini-
tial filtered set of vectors as that corresponding to the experiments in
Figure 2.2.

8

Algorithm 2 (Solution phase (Init-Chebyshev))

For any right-hand side vector b, set x0 and r0 = b−Ax0,

and perform the two following consecutive steps:

[r1,x1] = Chebyshev Solve(r0,x0, ε, [µ, λmax],A)

r = r1 −AVG−1VT r1, and x = x1 + VG−1VT r1

In Figure 3.4, we illustrate the behaviour of the solution phase error, on our small example,
for the values ε = 10−8 and ε = 10−16. In Section 5, we will prove a general result that establishes
an upper bound of the error in the energy norm (i.e. the norm of the non preconditioned A).
The numerical results of Figure 3.4, are consistent with the theoretical upper bound and show
its tightness. It is also possible to iterate on that solution phase, and improve the solution with

0 20 40 60 80 100 120 140
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Eigencomponents of residual Rk
Eigencomponents of error (Xk − Xsol)

0 20 40 60 80 100 120 140
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Eigencomponents of residual Rk
Eigencomponents of error (Xk − Xsol)

Figure 3.4: Computation of the solution of a linear system with a right-
hand side vector b corresponding to a given random exact solution vector
x∗. The filtering level ε has been fixed at 10−8 for the left plot and 10−16

for the right plot in both phases of the algorithm.

iterative refinement in the usual way. Finally, we can observe that, in Algorithm 1, we may store
only the upper triangular part of matrix G and this will be enough for performing the Cholesky
decomposition of G in Algorithm 2.

4 An analysis of Lanczos and filtering interaction

Let us first analyse in more detail why the eigencomponents in the Krylov vectors that were
initially damped under some level ε must increase at each Lanczos step, and how we may maintain
the desired level of “filtering” in these eigencomponents.

If V exactly spans the invariant subspace associated with all eigenvalues in the range [λmin, µ],
the Chebyshev iteration and the oblique projection steps in this solution phase can be performed,
though sequentially, in any order a priori. However, since Span(V) is only an approximation of
this invariant subspace, we prefer to perform the Chebyshev step first, followed then by the
oblique projection, because this enables us to increase the accuracy of the oblique projection by
“minimizing” the influence of the eigencomponents corresponding to the eigenvalues greater or
equal to µ in the inner product VT r1 above. This can be of particular interest when the filtering

9

level ε is not close to machine precision.
Consider, for instance, that we have built a current Krylov orthonormal basis V = [v(0), . . . ,v(k)]

with the property that

V = U1Γ + U2Ψ, and ‖Ψ‖ ≤ ε,
with A = U1Λ1UT

1 + U2Λ2UT
2 ,

(4.8)

Λ1 being the diagonal matrix made with all eigenvalues of A less than µ and U1 the set of
corresponding eigenvectors in matrix form, and Λ2 and U2 the complementary corresponding
matrices.

Now, the next step in the Lanczos process is to build

p(k+1) = Av(k) −VVTAv(k)

and to orthonormalize the set of s vectors p(k+1) to get the next entry v(k+1) in the Krylov
orthonormal basis V. Using the decomposition (4.8), we can then write

p(k+1) = U1

(
Λ1γ

(k) − ΓΓTΛ1γ
(k) − ΓΨTΛ2ψ

(k)
)

+ U2

(
Λ2ψ

(k) −ΨΨTΛ2ψ
(k) −ΨΓTΛ1γ

(k)
)

,
(4.9)

where γ(k) and ψ(k) are the columns in Γ and Ψ corresponding to the vectors v(k) in V.
Let us assume also, for simplicity, that ε ≤ 10−8 so that we can neglect to a first approximation

the terms in O(‖Ψ‖2) The factor of U1 in (4.9) reduces to

U1

(
Λ1γ

(k) − ΓΓTΛ1γ
(k)

)
,

and corresponds simply to the Krylov update one would obtain when working directly with a
projected matrix whose spectrum corresponds to Λ1. The factor of U2 in (4.9) reduces to

U2

(
Λ2ψ

(k) −ΨΓTΛ1γ
(k)

)
,

where the term Λ2ψ
(k) is dominant since the maximum eigenvalue in Λ1 is less than the minimum

one in Λ2. Therefore, the cancellation due to the orthogonalization process (4.9) occurs mostly
within the part in U1 and, additionally, since all eigenvalues in Λ1 are less than µ, the norm
of the resulting part in U1 must also decrease by a factor of (µ/λmax) relatively to the part in
U2. These two combined causes are responsible for the “staircase” effect that one can observe in
Figure 2.2 in the eigencomponents relative to U2 of the Krylov iterates.

For these reasons, we have introduced the extra Chebyshev filtering steps (3.6) after the
actual Lanczos step in algorithm 1, in order to recover the above described loss of information
and maintain the norm of Ψ(k+1) (= UT

2 v(k+1)) in the next set of Lanczos vectors close to that of
Ψ(k), and recursively close to the actual value of ‖ψ(0)‖ in the initial set of filtered vectors v(0).

Convergence or near invariance with respect to U1 can be detected when the new vectors
that are built become mostly collinear to the unwanted eigenvectors (in U2), meaning that the
eigenbasis we look for is contained in the current Lanczos basis and resulting in an update
y(k+1) in (3.6) with a norm close to ε. This means that some of the filtered vectors, after being
orthogonalized against the previously computed basis V, still get a norm close to ε and thus must
become collinear to the subspace generated by U2 (as described in the previous section).

10

5 Error Analysis

In the Solution phase we perform an oblique projection of the filtered residual. This implies
that we operate within Rn with scalar product xTAx. Therefore, the residual is a linear form
belonging to the dual space, and the natural norm of the dual space is (rTA−1r)1/2. We observe
that:

||r||A−1 = ||x∗ − x||A.

The value ||r||A−1 can be evaluated by using the following expression:

A− 1
2 r = (I−A

1
2 V(VTAV)−1VTA

1
2)A− 1

2Pk(A)r0

= (I−A
1
2 V(VTAV)−1VTA

1
2)A

1
2Pk(A)e0

= ℘A
1
2 v||Pk(A)e0||2,

where ℘ = (I−A
1
2 V(VTAV)−1VTA

1
2), e0 = A−1r0 = x∗ − x0, and

v = Pk(A)e0/||Pk(A)e0||2. (5.10)

Thus, because ||Pk(A)||2 ≤ 1 and ||e0||2 ≤ ||A− 1
2 ||2||r0||A−1 we have

||r||A−1 ≤ ||℘A
1
2 v||2||r0||A−1 ||A− 1

2 ||2. (5.11)

Moreover, we can introduce the following representation for v:

v = Vζ + (I−VVT)v
ζ = arg min ||Vy − v||2.

Then the following relations hold:

||℘A
1
2 v||2 = ||℘A

1
2 (Vζ + (I−VVT)v)||2

= ||℘A
1
2 (I−VVT)v||2

≤ ||℘||2||A
1
2 ||2||(I−VVT)v||2

≤ ||A 1
2 ||2||(I−VVT)v||2.

Finally, from (5.11) we have:

||r||A−1

||r0||A−1

≤ ||A 1
2 ||2||A− 1

2 ||2||(I−VVT)v||2. (5.12)

The following theorem gives an upper bound for ||(I−VVT)v||2 in terms of the filtering level ε.

Theorem 1 Let U1 ∈ Rn×m be the matrix of the eigenvectors of A corresponding to Λ1 and
U2 ∈ Rn×(n−m) be the matrix of the remaining eigenvectors of A. Let V ∈ Rn×` be the full
basis generated by Algorithm 1 using a filtering level ε and v be the vector defined by (5.10). If
c(n,m)ε ¿ 1 (c(n,m) =

√
(n−m)m) and ` ≥ m then

||(I−VVT)v||2 ≤ 2εc(n,m)(1 + εc(n,m)).

11

We give the proof in the case n− ` ≥ ` ≥ m: the case n− ` < ` can be proved making few and
evident adjustments on the matrix Σ in the CS-decomposition that appears in the following. The
filtering process at the start and during the algorithm computes a matrix V and vector v such
that their representations in the eigenvector basis U = [U1;U2] of A have the form: V = UH
and v = Uv̂, with HTH = I, and

m︷︸︸︷ `−m︷︸︸︷

H =
[

H•1 H•2
]

=
[

H11 H12

H21 H22

] }m
}n−m

,

v̂ =
[

v̂1

v̂2

] }m
}n−m

.

Moreover, each entry in H21 and v̂2 is bounded by ε and we have

||H21||2 ≤ ||H21||F ≤ c(n,m)ε
||v̂2||2 ≤ √

n−mε.

Owing to the orthogonality of H, we have that

I−VVT = U(I−HHT)UT = U(I− [H•1H•2] [H•1H•2]T)UT

= U(I−H•1HT
•1 −H•2HT

•2)U
T

= U(I−H•1HT
•1)(I−H•2HT

•2)U
T

= U(I−H•2HT
•2)(I−H•1HT

•1)U
T

Under the hypothesis n− ` ≥ ` ≥ m, the CS-decomposition of H•1 takes the form [17]:

H•1 = WΣQT

where WTW = WWT = I, QTQ = QQT = I, and

W =
[

W1 0m×(n−m)

0T
m×(n−m) W2

]
, Σ =

C
0n−2m,m

S

 ,

with C = diag(c1, . . . , cm), S = diag(s1, . . . , sm), and C2 +S2 = I. Moreover, because ||H21||2 ≤
c(n,m)ε then ||S||2 ≤ c(n,m)ε and

√
1− c2(n,m)ε2 ≤ ||C||2 = ||H11||2 ≤ 1 owing to the

hypothesis c(n,m)ε ¿ 1.
Therefore, we have

(I−VVT)v = U(I−H•2HT
•21)(I−H•1HT

•1)v̂

= U(I−H•2HT
•2)W(I−ΣΣT)

[
WT

1 v̂1

WT
2 v̂2

]
.

From the CS-decomposition, it follows that

(I−ΣΣT) =

I−C2 0 −CS
0 In−2m 0

−CS 0 I− S2

 =

S2 0 −CS
0 In−2m 0

−CS 0 C2

 .

12

Then, we have

(I−VVT)v =

U(I−H•2HT
•2)W

S2WT
1 v̂1 −CSWT

2 v̂2

[
0 0

−CS 0

]
WT

1 v̂1 +
[

In−2m 0
0 C2

]
WT

2 v̂2

 .

(5.13)

Finally, from (5.13) we obtain

||(I−VVT)v||2 ≤
∣∣∣∣
∣∣∣∣

c2(n,m)ε2‖v̂1‖2 + c(n,m)ε||v̂2||2
c(n,m)ε||v̂1||2 + ||v̂2||2

∣∣∣∣
∣∣∣∣
2

≤
∣∣∣∣
∣∣∣∣

c2(n,m)ε2||v̂1||2 + c(n, m)ε||v̂2||2
c(n,m)ε||v̂1||2 + ||v̂2||2

∣∣∣∣
∣∣∣∣
1

. (5.14)

The thesis follows from the bounds ||v̂2||2 ≤ ε and
√

1− ε2 ≤ ||v̂1||2 ≤ 1.
Finally, from the previous theorem and (5.12), we have

||r||A−1

||r0||A−1

≤ 4c(n,m)ε||A 1
2 ||2||A− 1

2 ||2. (5.15)

The choice ε equal to machine precision is adequate when an “a priori” information on
the condition number κ(A) = ‖A‖‖A−1‖ is not available. However, this choice can be quite
conservative. Inequality (5.15) gives the possibility to choose the value of ε as a function of a
threshold τ we want to impose on the scaled dual norm of the residual

||r||A−1

||r0||A−1

≤ τ.

In this case, given an approximation of the square root of the condition number of the matrix A,
we can choose ε as

ε =
τ√

κ(A)
.

In this way, one may even expect to obtain a solution as good as with a filtering level close
to machine precision but without the expense of computing a basis with such a high numerical
quality.

Remark 1 Another way, directly connected to Theorem 1, of testing convergence or near invari-
ance with respect to U1 in Algorithm 1 is:

to generate an extra random vector at the beginning,

to filter it under the level ε and normalize it, and

to test when appropriate (e.g. when δ2 becomes small) if the norm of the orthogonal projection
of this vector onto the orthogonal complement of the computed basis V is close to ε or not.

6 Practical and numerical issues

6.1 A small example

The small example used in order to illustrate some numerical aspects of the algorithm has been
generated by extracting a 137×137 submatrix from a more complex problem. The example is not

13

completely artificial and it can be downloaded at the home page of the authors1. In Figure 2.1,
we present the spectrum of this matrix and we poit out that only 26 eigenvalues are within the
interval [λmin, λmax/10] = [1.0897 10−13, 2.5923/10]. In Table 6.1, we illustrate the behaviour of
Algorithm 1 on our small test example for both ε = 1.0 10−8 and ε = 2.2 10−16 and µ = λmax/10.

Finally, it is important to notice that the number of extra filtering Chebyshev iterations at
each Lanczos step is less than the number of Chebyshev iterations performed at the starting
point, since the degradation of the information is very gradual (see Table 6.1) until the very last
steps when the dimension of the invariant subspace associated with all eigenvalues in the range
[λmin, µ] is about to be reached.

Filtering level : ε = 2.2e-16 Filtering level : ε = 1.0e-8
1st filter step 2nd filter step 1st filter step 2nd filter step

Basis Cheb. Value Cheb. Value Cheb. Value Cheb. Value
Vector iter. of δ2 iter. of δ2 iter. of δ2 iter. of δ2

v(0) 60 – 2 – 31 – 3 –
v(1) 14 0.89 12 0.64
v(2) 11 0.64 10 0.67
v(3) 10 0.80 10 0.58
v(4) 10 0.56 10 0.79
v(5) 10 0.61 10 0.67
v(6) 10 0.85 12 0.88
v(7) 11 0.60 10 0.66
v(8) 14 0.99 13 0.19
v(9) 15 0.95 10 0.25
v(10) 13 0.19 14 0.98
v(11) 10 0.26 15 0.98
v(12) 15 0.99 16 0.45
v(13) 17 0.99 12 5.6e-2 6 0.72
v(14) 20 0.76 9 0.12
v(15) 15 1.8e-2 7 0.26 17 1.00
v(16) 9 0.37 24 1.00
v(17) 20 1.00 21 1.00
v(18) 27 1.00 27 1.00
v(19) 29 1.00 27 0.29
v(20) 28 1.00 22 1.2e-2 9 1.00
v(21) 33 0.92 17 1.2e-3 12 5.7e-2
v(22) 27 6.0e-4 13 1.00 13 2.8e-2 7 8.6e-2
v(23) 19 5.3e-4 13 0.58 31 1.00
v(24) 20 1.00 31 1.00
v(25) (∗) 49 1.00 31 7.4e-4 13 1.00
v(26) (†) 58 3.2e-16 58 3.7e-16 31 8.2e-9 31 8.2e-9
v(27) (†) 60 4.9e-17 60 9.7e-17 31 8.0e-9 31 8.1e-9

Table 6.1: History of convergence for the small sample of size 137, µ = λmax/10

1http://www.numerical.rl.ac.uk/people/marioli/ArioliRuiz/small137.mat

14

In Table 6.1, we compare the number of Chebyshev iterations at each filtering step with two
values of ε. We observe that these mostly differ in the first and last filtering steps, and that during
the intermediate stages when building the near-invariant subspace, the number of Chebyshev
iterations do not vary much with the choice of ε. Indeed, the intermediate Chebyshev iterations
simply aim to recover some potential increase in the level of filtering when we orthogonalize the
current Krylov vectors with respect to the previous ones and, as described in Section 4, this may
not be influenced by the choice of the filtering level at least for values of ε less than the square
root of machine precision.

The first filtering step is obviously directly linked to the choice of the filtering level ε since
its purpose is to filter some random starting set of vectors under that level. At the final stage
also, when convergence or near invariance with respect to U1 is reached in the partial spectral
factorization phase, some vectors in the last computed set have become strongly collinear to the
unwanted invariant subspace generated by U2, and a full re-filtering similar to the starting one
is required again.

Remark 2 If we sum the filtering steps for v̂1 to v̂2 during the anaysis phase for both ε =
10−16 and ε = 10−8 in Table 6.1, we have respectively 489 = 456 + 33 and 471 = 424 + 47
before convergence is achieved. Therefore, the global cost of matrix by vector product increases as
function of ε only during the initialization phase and the solution phase.

As discussed in Section 5, the filtering level with respect to U2 in the computed near-invariant
subspace also influences the “numerical quality” of the computed solution in the second phase
of the algorithm. Figure 3.4 shows the eigencomponents of the error and residual obtained after
completion of the solution phase, with a filtering level with respect to U2 equal to 10−8 in both
phases of the algorithm. The right-hand side vector b corresponds to an exact solution with
random entries. We can observe that the eigencomponents relative to U2 in the residual are all
close to ε, and that those relative to U1 are even smaller and close to ε2, with the eigencomponents
in the error vector being simply divided by their corresponding eigenvalue. This observation is
reflected by the error analysis in Section 5 and the results in equation (5.14) where we can see
block-wise that the projected filtered vector (I −VVT)v has eigencomponents of order ε2 with
respect to U1 and of order ε with respect to U2. Of course, this result holds for an orthogonal
projection and not an oblique projection such as that actually performed in the solution phase.

Following this discussion and that of the previous sections, we may also expect to be capable
of improving the solution using iterative refinement in the usual way, provided that the filtering
level ε is less than the square root of the condition number of the iteration matrix A.

6.2 A PDE example

We generated our test problem using pdetool c© under Matlab c©. Let Ω be a simply connected
bounded polygonal domain in IR2, defined by a closed curve Γ. In the following, we will denote
by H1(Ω) the space of all distributions u(x) defined in Ω that satisfy

||u||1,Ω =
(∫

Ω
|∇u(x)|2dx +

∫

Ω
|u(x)|2dx

)1/2

< +∞ .

Finally, we will denote by H1
0 (Ω) the closure of the space of all infinitely differentiable functions

with compact support in Ω in H1(Ω), and by H−1(Ω) the dual space of H1
0 (Ω). Let

a(u, v) =
∫

Ω
K(x)∇u · ∇vdx, ∀u, v ∈ H1

0 (Ω) (6.16)

15

be a continuous and coercive bilinear form: ∀u, v ∈ H1
0 (Ω), ∃γ ∈ IR+ and ∃M ∈ IR+ such that

γ||u||21,Ω ≤ a(u, u) (6.17)
a(u, v) ≤M||u||1,Ω||v||1,Ω , (6.18)

and L(v) =
∫
Ω f(x)v(x)dx be a continuous linear functional, L(v) ∈ H−1(Ω). Using the hypothe-

ses stated above the problem
{

Find u ∈ H1
0 (Ω) such that

a(u, v) = L(v), ∀v ∈ H1
0 (Ω),

(6.19)

has a unique solution. Our test problem is define on a L-shape domain Ω of IR2 and we chose
boundary condition zero.

In Fig. 6.5, we plot the geometry of the domain Ω. In problem (6.19), we choose the functional
L(v) =

∫
Ω 10v(x)dv, ∀v ∈ H1

0 (Ω), and in the bilinear form (6.16), the function K(x) ∈ L∞(Ω)
takes different values in each subdomain:

K(x) =

1 x ∈ Ω \ {Ω1 ∪ Ω2 ∪ Ω3},
106 x ∈ Ω1,
104 x ∈ Ω2.

Using pdetool c©, we generated a mesh satisfying the usual regularity conditions of Ciarlet [8,

Ω

Ω
Ω

1

2

(−1,−1)

(0,1)

(−1,1) (1,1)

(0,−1)

(0,0)

Figure 6.5: Geometry of the domain Ω.

page 132] and we computed a finite-element approximation of problem (6.19) with the use of
continuous piece-wise linear elements. The approximated problem is equivalent to the following
system of linear equations:

Au = b. (6.20)

In our mesh, the largest triangle has an area of 3.123×10−4, therefore, the resulting linear system
(6.20) has 16256 triangles, 8289 nodes, and 7969 degrees of freedom.

Moreover, we used three kinds of preconditioners: the classical Jacobi diagonal matrix,
M = diag(A), the incomplete Cholesky decomposition of A with zero fill-in, and the incom-
plete Cholesky decomposition of A with drop tolerance 10−2 [13, 15]. Using the incomplete

16

M κ(M−1A) ε λmin λmax

I 2.6 109 4 10−7 3.7 10−3 9.6 106

Jacobi 6.8 108 1 10−6 3.1 10−9 2.08
Inc. Cholesky(0) 9.4 107 3 10−6 1.7 10−8 1.6
Inc. Cholesky(10−2) 6.2 106 1 10−5 1.8 10−7 1.1

Table 6.2: Estimates for κ(M−1A), λmin, λmax.

µ = λmax/γ Preconditioner M
γ Identity Jacobi scaling Inc. Cholesky(0) Inc. Cholesky(10−2)

109 3
108 41
107 >200
103 3
500 5
200 18
100 43 3
50 89 11
20 >200 32
10 68 3
5 157 9
2 >200 40

Table 6.3: Number of eigenvalues in [λmin, µ].

Cholesky decompositions, we computed the lower triangular matrix L such that M = LLT . In
Table 6.2, we report on the values of the condition numbers κ(A) and κ(M−1A). The condi-
tion numbers of the preconditioned matrices M−1A are still very high, and only the incomplete
Cholesky preconditioner with drop tolerance 10−2 is an effective choice. For these class of elliptic
problems when finite-element method is used, Arioli [1] showed that the threshold τ in (5.15) can
be set to O(h) = O(

√
6.246× 10−4) the square root of twice the area of the largest triangle in

the mesh. This choice will allow to achieve a final error in energy norm of the same order as the
final finite-element approximation error. Own to (5.15), we fixed the value of ε as

ε =
τ√

κ(M−1A)
.

In Table 6.2, we exhibit the chosen values of ε computed by the previous expression, and in
Table 6.3 we exhibit the number of eigenvalues in [λmin, µ] for selected values of the parameter
µ and for each preconditioner. From the data, we can see that the original matrix is very badly
scaled, and the Jacobi preconditioner is able to cluster the eigenvalues even if the matrix has still
few small eigenvalues.

In Table 6.4, we summarize the behaviour of Algorithm 1 plus Algorithm 2 in computing the
solution.

We can observe, for different values of the parameter µ, the total number of Chebyshev
filtering iterations performed in the spectral factorization phase, as well as the actual size of the
computed Lanczos basis. We also indicate the number of Chebyshev iterations that have been
performed in the solution phase, as well as the final energy norm of the error corresponding
to the computed solution. The number between parenthesis are those obtained for a value of

17

µ = λmax/γ Spectral Factorization Solution phase
γ Tot. Chebyshev Size V Chebyshev Error Energy

Iterations Iterations Norm
Jacobi

1000 1030 (1004) 3 231 7 10−3 (2.6 10−5)
500 1101 (1114) 5 163 6 10−4 (7.0 10−6)
200 2234 (2615) 19 103 2.5 10−4 (4 10−6)

Inc. Cholesky(0)
100 433 (248) 5 (3) 68 7.4 10−3 (1.8 10−5)
50 462 (503) 9 48 3 10−3 (1.3 10−5)

Inc. Cholesky(10−2)
10 55 (70) 3 19 8.2 10−3 (3.3 10−6)

Table 6.4: Summary of the results of Algorithm 1 plus Algorithm 2

the filtering level ε fixed to 10−8, the other values being obtained with the level ε indicated in
Table 6.2.

In the experiments, u(k) is the computed value at iteration k of our algorithm and we use the
energy norm for the vectors:

‖y‖A =
√

yTAy.

Finally, we assume that the solution u computed by a direct solver applied to (6.20) is exact, and
we assume that E , the energy norm of the solution ũ on the finer mesh with ≈ 129409 degrees
of freedom, is a good approximation of

√
a(u, u), the energy norm of the solution u(x) of the

continuous problem (6.19). We then consider

E(u) =

√
1− uTAu

E2
,

which is equal in this case to 3.6 10−2, as a good estimate of the finite-element error [1]. We can
observe in Table 6.4, that the level of the energy norm of the error for our computed solution
is always below E(u). Finally, we point out that E(u) = O(h) which justifies our choice for the
value of τ above.

6.3 Solution phase and multiple right-hand sides

It is also possible to make a different choice for the final solution phase. We can use, for instance,
the conjugate gradient method in combination with the Chebyshev-filtering technique to solve the
problem. To take advantage of the information computed in the first phase within the conjugate
gradient method, it is sufficient to project the initial residual by the oblique projection onto the
invariant subspace represented by V, viz.

u(0) = R−1V
(
VTR−TAR−1V

)−1
VTR−Tb,

in order to get the eigencomponents in the solution corresponding to the smallest eigenvalues as
described in Section 2. Then, we can apply straightforward the conjugate gradient method on the
preconditioned system with the above starting guess u(0). In [10], an estensive experimentation
of this approach is presented. We point out that the matrix VTR−TAR−1V can be computed
during the spectral factorization in Algorithm 1.

18

We are also concerned with the consecutive solution of several linear systems with the same
matrix and different right-hand sides. In such cases, the consecutive runs of some iterative
methods like the conjugate gradient algorithm without any deflation can be computationally
prohibitive.

From the costs of the spectral factorization illustrated in Table 6.4, we can then see that within
7 successive solutions in the worst case, we can counterbalance the extra cost in terms of matrix-
vector operations paid when building the near-invariant basis in the partial spectral factorization
phase. This amortization is even quicker when the initial preconditioner manages to cluster well
the eigenvalues in A, as for instance with incomplete Cholesky with drop tolerance 10−2 in the
case of this PDE test problem. However, it is also clear from the results presented in [10] that the
conjugate gradient method achieves in much less iterations than the Chebyshev based solution
phase the same level in the energy norm of the error. Obviously, the conjugate gradient method
minimizes explicitly this energy norm in the course of the iterations, whereas the Chebyshev semi-
iterative method minimizes the L∞ norm of the residuals over the interval [µ, λmax]. Nevertheless,
the Chebyshev semi-iterative method involves only matrix-vector products but no dot products,
and this can be of some advantage in particular in parallel distributed memory environments.

7 Conclusion

We have introduced a two-phase iterative-based approach for the solution of ill-conditioned linear
systems. The method is based on a deflation process that identifies the ill-conditioned part of
the matrix, and involves the use of Chebyshev polynomials as a filtering tool. The preliminary
experiments indicate that the proposed technique has a good numerical potential.

Moreover, this algorithm is based only on kernels commonly used in iterative methods that
enable us to keep the given ill-conditioned matrix in implicit form. It requires only matrix-vector
products plus some vector updates, but no dot-products. This remark is also of some importance
in the context of parallel computing, and in particular in distributed memory environments.

We plan to investigate if some of the ideas from the adaptive Chebyshev iterative method (see
[11, 14]) can be incorporated to adapt the value of µ slightly during the process. At present, the
cut-off eigenvalue µ is fixed a priori and does not change afterwards. However, the experiments
indicate that it is better not to choose µ too small because it will result in a strong increase in
the overall number of Chebyshev iterations. Moreover, it is important that µ falls in between two
clusters of eigenvalues and is not in the middle of a cluster. Indeed, in the latter case, it could
be interesting to move the value of µ slightly to incorporate more eigenvectors into the unwanted
invariant subspace U2 and to decrease substantially the dimension of the subspace that will be
approximated and, consequently, the total number of operations to perform.

References

[1] M. Arioli, A stopping criterion for the conjugate gradient algorithm in a finite element
method framework, Numer. Math., DOI: 10.1007/s00211-003-0500-y (2003), pp. 1–24.

[2] M. Arioli, I. S. Duff, and D. Ruiz, Stopping criteria for iterative solvers, SIAM Journal
on Matrix Analysis and Applications, 13 (1992), pp. 138–144.

[3] M. Arioli, I. S. Duff, D. Ruiz, and M. Sadkane, Block Lanczos techniques for accelerat-
ing the Block Cimmino method, SIAM J. Scient. Statist. Comput., 16 (1995), pp. 1478–1511.

[4] M. Arioli and D. Ruiz, Block conjugate gradient with subspace iteration for solving linear
systems, in Iterative Methods in Linear Algebra, II. Volume 3 in the IMACS Series in

19

Computational and Applied Mathematics. Proceedings of The Second IMACS International
Symposium on Iterative Methods in Linear Algebra., S. D. Margenov and P. S. Vassilevski,
eds., 1995.

[5] C. Balsa, M. Daydé, R. Guivarch, J. Palma, and D. Ruiz, Monitoring the Block
Conjugate Gradient Convergence within the Inexact Inverse Subspace Iteration, in 6th In-
ternational Conference on Parallel Processing and Applied Mathematics, Poznan, Poland,
11/09/05-14/09/05, Lecture Notes in Computer Sciences, septembre 2005.

[6] C. Balsa, M. Daydé, J. Palma, and D. Ruiz, Improving the Numerical Simulation of an
Airflow Problem with the BlockCGSI Algorithm, in International Conference on Vector and
Parallel Processing (VECPAR), Rio de Janeiro, Brésil, 10/07/2006-13/07/2006, no. 4395 in
LNCS, http://www.springerlink.com/, 2006, Springer-Verlag, pp. 281–291.

[7] C. Balsa, J. Palma, and D. Ruiz, Partial Spectral Information from Linear Systems to
Speed-up Numerical Simulations in Computational Fluid Dynamics , in High Performance
Computing for Computational Science – VECPAR’2004. Sixth International Conference ,
Valencia, Espanha, 28/06/04-30/06/04, Springer-Verlag., J. Dongarra, V. Hernandez, and
J. Palma, eds., Berlin, juin 2004, Lecture Notes in Computer Science. Selected Papers and
Invited Talks from VECPAR’2004. Springer-Verlag, pp. 703–719.

[8] P. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam,
The Netherlands, 1978.

[9] L. Giraud, D. Ruiz, and A. Touhami, Krylov and polynomial iterative solvers combined
with partial spectral factorization for spd linear systems, in VECPAR, M. J. Daydé, J. Don-
garra, V. Hernández, and J. M. L. M. Palma, eds., vol. 3402 of Lecture Notes in Computer
Science, Springer, 2004, pp. 637–656.

[10] L. Giraud, D. Ruiz, and A. Touhami, A comparative study of iterative solvers exploiting
spectral information for SPD systems, SIAM Journal on Scientific Computing, 27 (2006),
pp. 1760–1786.

[11] G. H. Golub and M. D. Kent, Estimates of eigenvalues for iterative methods, Math.
Comp., 53 (1989), pp. 619–626.

[12] G. H. Golub, D. Ruiz, and A. Touhami, A Hybrid Approach Combining Chebyshev
Filter and Conjugate Gradient for Solving Linear Systems with Multiple Right-Hand Sides,
SIAM Journal on Matrix Analysis and Applications, 29 (2007), pp. 774–795.

[13] A. Greenbaum, Iterative Methods for Solving Linear Systems, Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1997.

[14] L. A. Hageman and D. M. Young, Applied Iterative Methods, Academic Press, New York
and London, 1981.

[15] G. Meurant, Computer Solution of Large Linear Systems, vol. 28 of Studies in Mathematics
and its Application, Elsevier/North-Holland, Amsterdam, The Netherlands, 1999.

[16] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ.,
1980.

[17] G. W. Stewart, An algorithm for computing the CS decomposition of a partitioned or-
thonormal matrix, Numer. Math., 40 (1982), pp. 297–306.

[18] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, England,
1965.

20

