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Challenges in Modeling Gas-Phase
Flow in Microchannels: From Slip
to Transition

ROBERT W. BARBER and DAVID R. EMERSON
Centre for Microfluidics and Microsystems Modelling, CCLRC Daresbury Laboratory, Warrington, UK

It has long been recognized that the fluid mechanics of gas-phase microflows can differ significantly from the macroscopic
world. Non-equilibrium effects such as rarefaction and gas-surface interactions need to be taken into account, and it is well
known that the no-slip boundary condition of the Navier-Stokes equations is no longer valid. Following ideas proposed by
Maxwell, it is generally accepted that the Navier-Stokes equations can be extended into the slip-flow regime, provided the
Knudsen number is less than 10−1. Improvements in micro-fabrication techniques, however, are now enabling devices to be
constructed with sub-micron feature sizes. At this scale, the flow will depart even further from equilibrium and will enter the
transition regime. In recent years, there has been considerable success in the implementation of second-order slip-boundary
conditions to extend the Navier-Stokes equations into the transition regime. Unfortunately, as yet, no consensus has been
reached on the correct form of higher-order approach, with theoretical and experimental studies revealing large discrepancies
in the magnitude of the second-order slip coefficient. It is believed that these discrepancies can be explained by the fact that
continuum flow analyses neglect the Knudsen layer, which extends approximately one mean-free path from the channel wall.
In addition, comparisons between kinetic and continuum slip-boundary formulations reveal another important source of
error due to different definitions in the first-order slip coefficient. The paper explains how these discrepancies have arisen
and describes future research directions that may help reconcile the different forms of higher-order approach.

INTRODUCTION

During the last decade, the development of precision batch-
processing fabrication techniques for constructing micro-
electro-mechanical systems (MEMS) has led to the develop-
ment of an increasing number of microfluidic technologies. The
potential application areas for gas-phase microflows are numer-
ous and include miniaturized heat exchangers for cooling in-
tegrated circuits, portable gas chromatography systems for the
detection of air-borne pollutants, micro-reactors for generating
small quantities of dangerous or expensive chemicals, and novel
high-throughput gas flow cytometers. The emergence of MEMS,
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however, has resulted in the growing realization that the fluid me-
chanics in such small-scale devices is not necessarily the same
as that experienced in the macroscopic world. This has led to
numerous questions regarding the applicability of conventional
analysis tools for gas-phase microflows [1–3].

The present paper highlights some of the challenges that need
to be addressed when extending the Navier-Stokes equations
into the transition regime. Initially, the paper focuses on the
three fundamental assumptions that need to be satisfied for the
Navier-Stokes equations to remain valid. We then describe the
different length scales and dimensionless parameters that can be
used to characterize the breakdown of the Navier-Stokes equa-
tions. Finally, the paper presents a summary of the main theoret-
ical and experimental higher-order slip-velocity boundary con-
ditions that can be used to extend the Navier-Stokes equations
into the transition regime. Throughout the paper, we emphasize
the discrepancies between the various higher-order slip formu-
lations in an attempt to concentrate future research efforts into
providing a clearer understanding of the boundary conditions
within the transition regime.

3

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
7
:
2
5
 
1
8
 
M
a
y
 
2
0
1
0



4 R. W. BARBER AND D. R. EMERSON

NAVIER-STOKES ASSUMPTIONS

In conventional macroscale applications, the mass flow and
heat transfer can be modeled using the principle of conservation
of mass, momentum (Newton’s second law), and energy (first
law of thermodynamics). In addition, the heat transfer processes
are constrained by the second law of thermodynamics. These
principles are generally expressed using a continuum-based de-
scription of the fluid. The resulting mass flow and heat trans-
fer equations, collectively known as the Navier-Stokes-Fourier
equations, form a set of nonlinear coupled partial differential
equations. However, as discussed by Gad-el-Hak [3], there are
three fundamental assumptions that need to be satisfied for the
equations to remain valid:

1. Newtonian framework. The Navier-Stokes equations are
based on a Newtonian framework that assumes the fluid mo-
tion is non-relativistic (i.e., the characteristic velocity has to
be much smaller than the speed of light). As pointed out by
Gad-el-Hak [3], the Newtonian framework is an excellent
modeling tool for most flow problems (including MEMS),
the only exception being the flow of very high-energy parti-
cles at the atomistic length scale or stars/galaxies at the other
extreme of length scale.

2. Continuum approximation. The Navier-Stokes equations are
based on the assumption that the fluid is infinitely divisi-
ble. In other words, local flow properties such as density,
pressure, velocity, and shear stress can be defined as aver-
ages computed over fluid elements that are sufficiently large
compared to the microscopic structure of the fluid, but small
enough in comparison to the macroscopic gradients to allow
the use of differential calculus to describe the variation in the
flow properties. Gad-el-Hak [3] has stated that the contin-
uum approximation is almost always satisfied, the exception
being flows where the spatial length scale is comparable to
the mean distance between the molecules, such as in nan-
odevices and in shock waves that are extremely thin rela-
tive to the molecular separation distance. It should be noted
that the continuum approximation leads to an indeterminate
set of equations that can only be closed by expressing the
functional relationship between the stresses and the rate of
strain and between the heat flux and the temperature gradi-
ent. The continuum approximation by itself does not lead to
the Navier-Stokes equations. For example, higher-order con-
stitutive relations between the stresses and the rate of strain
(as found in the Burnett equations) can be used to close the
conservation equations (as seen in [4]).

3. Thermodynamic equilibrium. The Navier-Stokes equations
are also based on the assumption that all flow properties are
in the local thermodynamic equilibrium, implying that the
macroscopic quantities within the fluid have sufficient time
to adjust to their surroundings. The rate at which a fluid can
attain the equilibrium condition depends fundamentally on
the time between molecular collisions. If the temporal and

length scales of the molecular collisions are small in compar-
ison to the macroscopic flow variations, then the fluid will
be able to adjust quickly to the new conditions. The char-
acteristic length scale describing the molecular collisions is
known as the mean-free path, λ, and is defined as the aver-
age distance traveled by a gas molecule before colliding with
another molecule. When the mean-free path is, for example,
one order of magnitude smaller than the characteristic length
scale of the device, the macroscopic flow quantities will vary
almost linearly in space. The assumption of thermodynamic
equilibrium, therefore, implies that the shear stress is linearly
dependent on the rate of strain (Newton’s law of viscosity),
and the heat flux is linearly proportional to the temperature
gradient (Fourier’s law). In addition, thermodynamic equi-
librium gives rise to the no-slip and no-temperature-jump
boundary conditions found in all macroscale flow descrip-
tions. The crucial issue in modeling gas-phase microflows is
that the mean-free path of the gas molecules is often compa-
rable to the length scale of the device, thereby invalidating
the assumption of thermodynamic equilibrium. Under these
circumstances, a discontinuity will occur in the velocity at the
wall, and the gas will effectively slide over the solid surface.

GAS-PHASE MICROFLOWS

Length Scales and Non-Dimensionalized Parameters

The analysis of gas-phase microflows depends on a number of
important characteristic length scales and non-dimensionalized
parameters. At the molecular scale, an important parameter is the
ratio of the mean molecular spacing, δ, and the mean molecular
diameter, d. Gases which satisfy the following equation:

δ

d
> 7 (1)

are often referred to as dilute gases [3, 5]. Conversely, if the
condition in Eq. (1) is not satisfied, the gas can be described as
being a dense gas.

In a dilute gas, the intermolecular forces can be neglected,
and the molecules spend most of their time in free flight be-
tween successive collisions. The probability of more than two
molecules colliding is extremely low, and thus most molecular
interactions take the form of binary collisions.

The dilute gas approximation (binary collision assumption)
leads to the kinetic theory of gases and the Boltzmann trans-
port equation. For a simple hard-sphere gas in thermodynamic
equilibrium, the mean-free path, λ, can be shown to be given by

λ = 1√
2 π d2n

, (2)

where d is the mean molecular diameter and n is the number
density (the number of molecules per unit volume), given by
n = δ−3. In addition, it can be shown that the root mean square

heat transfer engineering vol. 27 no. 4 2006

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
7
:
2
5
 
1
8
 
M
a
y
 
2
0
1
0



R. W. BARBER AND D. R. EMERSON 5

molecular speed crms is given by

crms =
√

3RT , (3)

where R is the specific gas constant and T is the temperature.
The characteristic time between molecular collisions can thus
be written as

tc = λ

crms
. (4)

The assumption of a thermodynamic equilibrium requires
that the characteristic time between molecular collisions, tc, is
small in comparison to the characteristic timescale of the macro-
scopic variations. In practice, the validity of the thermodynamic
equilibrium assumption in the Navier-Stokes equations can be
related to the Knudsen number, Kn, which is the ratio of the
mean-free path of the molecules to the characteristic length of
the device, L:

Kn = λ

L
< 10−1. (5)

The Navier-Stokes equations (in conjunction with a slip-velocity
boundary condition) are applicable for Kn < 10−1, although the
no-slip boundary condition requires a more stringent constraint
of Kn < 10−3.

The continuum assumption in the Navier-Stokes equations
is only valid when there are sufficient molecules within a given
volume to achieve a stable estimate of the macroscopic flow
properties. As detailed by Bird [5], the ratio of the characteristic
length scale, L , to the mean molecular spacing, δ, should satisfy

L

δ
> 100 (6)

to achieve a statistically stable estimate of the macroscopic prop-
erties. In other words, there should be at least 100 molecular
spacings along each face of the sample volume, giving a total
of 1 million molecules within the volume. If the region of inter-
est is smaller than the constraint shown in Eq. (6), the macro-
scopic quantities obtained by averaging will suffer from exces-
sive molecular fluctuations.

Classification of the Flow Regime

The earliest classification system to differentiate between the
various flow regimes within a rarefied gas was proposed by
Schaaf and Chambré [6]. Their classification system was based
solely on the magnitude of the local Knudsen number:

• For Kn < 10−2, the continuum and thermodynamic equilib-
rium assumptions are appropriate, and the flow can be de-
scribed by the Navier-Stokes equations using conventional
no-slip boundary conditions, although Gad-el-Hak [2] has
suggested that the breakdown in the thermodynamic equilib-
rium assumption is discernible at Knudsen numbers as low as
Kn = 10−3.

• In the range, 10−2 < Kn < 10−1 (commonly referred to as the
slip-flow regime), the Navier-Stokes equations remain valid,
provided tangential slip-velocity and temperature-jump
boundary conditions are implemented at the walls of the flow
domain.

• In the range, 10−1< Kn < 10 (the transition flow regime),
the continuum and thermodynamic equilibrium assumptions
of the Navier-Stokes equations begin to break down, and al-
ternative methods of analysis using the Burnett equations [4]
or particle-based direct simulation Monte Carlo (DSMC) ap-
proaches [5] must be employed. The difficulty in analyzing the
transition regime from a continuum perspective arises from the
fact that the stress-strain relationship for the fluid becomes
non-linear within approximately one mean-free path of the
wall (the so-called Knudsen layer).

• Finally, for Kn > 10, the conditions can be described as being
a free molecular flow. Under such conditions, the mean-free
path of the molecules is far greater than the characteristic
length scale, and consequently, molecules reflected from a
solid surface travel on average many length scales before col-
liding with other molecules. The intermolecular collisions are
thus negligible in comparison to the collisions between the
gas molecules and the walls of the flow domain.

It should be emphasized that the limiting Knudsen numbers in
the above classification system are somewhat empirical, and that
the boundaries between the different flow regimes often depend
upon the particular geometric details of the problem. This can be
attributed to the fact that the choice of the characteristic length
scale, L , is rarely unique [7]. As detailed elsewhere [2, 5, 7], it
is preferable to define the characteristic length scale using the
gradient of a macroscopic quantity, for example, the density, ρ:

L = ρ

|∇ρ| . (7)

Figure 1 presents a graphical representation of the flow
regimes experienced by a range of gas-phase microfluidic com-
ponents, as reported by Beskok [8]. It can be seen that most
microsystems currently operate in the slip-flow or early tran-
sition regimes, with the only exception being the flow through
hard disk drive reader heads, where the Knudsen number ex-
ceeds unity. However, rapid improvements in micro-fabrication
techniques are enabling microsystems to be constructed with
sub-micron feature dimensions. At this scale, the flow will de-
part even further from thermodynamic equilibrium and will enter
the upper transition regime. It should be noted, of course, that
microsystems used in low-pressure flows or vacuum systems
will experience even higher Knudsen numbers.

An alternative method of representing the continuum and
thermodynamic equilibrium conditions is shown in Figure 2.
The graph illustrates the conditions for a hard sphere gas with a
molecular diameter, d = 4×10−10 m, closely approximating the
average molecular diameter of air. The left-hand ordinate rep-
resents the characteristic length scale, L , as defined in Eq. (7),
while the right-hand ordinate shows the length scale normalized
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6 R. W. BARBER AND D. R. EMERSON

Figure 1 Characteristic length scales of typical microfluidic components and
the corresponding Knudsen number, Kn, at standard atmospheric conditions.
Adapted from Beskok [8].

with the molecular diameter, L/d . The bottom abscissa rep-
resents the density normalized with a reference density, ρ/ρ0,
which is equivalent to the normalized number density, n/n0. As
an aside, it should be noted that the density ratio is inversely
proportional to (δ/d)3. Finally, the top abscissa represents the
average distance between the molecules normalized with the
molecular diameter, δ/d.

Figure 2 shows the limits of applicability of the Navier-Stokes
equations as defined by Eqs. (1, 5, and 6), using the values pro-

Figure 2 Limiting criteria for the application of the Navier-Stokes equations.
Adapted from Bird [5].

posed by Bird [5] (δ/d = 7, L/δ = 100, and λ/L = 10−1). The
vertical line in Figure 2 represents the boundary between a di-
lute and a dense gas. Air at standard ambient conditions has a
pressure of 1.013 × 105 N/m2, a number density of 2.68666 ×
1025 m−3, a density ratio of unity (by definition) and δ/d =
8.5 (i.e., air at standard conditions can be assumed to be a
dilute gas). However, it should be emphasized that the value
of δ/d for standard air is close to the limit of the dilute gas
assumption.

The L/δ = 100 line in Figure 2 represents the limit of molecu-
lar chaos. The continuum approximation is only valid if there are
sufficient molecules within a given volume to achieve a statisti-
cally stable estimate of the macroscopic flow properties. Bird [5]
estimated that there should be at least 100 molecular spacings
along each face of the volume to achieve a reliable estimate of
the macroscopic quantities. The continuum assumption is only
valid above the L/δ = 100 line.

The remaining line (Kn = λ/L = 10−1) represents the limit of
the validity of the thermodynamic equilibrium assumption. Be-
cause the mean-free path is inversely proportional to the number
density, n, the gradient of the thermodynamic equilibrium line
(on a logarithmic graph) is three times steeper than the molecular
chaos line.

Inspection of Figure 2 reveals that for a dilute gas, as the flow
dimensions are reduced in size, the thermodynamic equilibrium
assumption of the Navier-Stokes equations fails first, followed
by a failure in the continuum assumption. Conversely, for a dense
gas, the continuum assumption breaks down first, followed by a
failure in the thermodynamic equilibrium assumption. It is clear
from Figure 2 that the continuum and thermodynamic equilib-
rium constraints are very different. Particular care should there-
fore be taken in the interpretation of the limiting conditions of
the Navier-Stokes equations. It is also apparent that the usual
flow classification system proposed by Schaaf and Chambré
[6], based solely on the magnitude of the local Knudsen num-
ber, is unable to describe the system completely, as the Knudsen
number is not the only parameter that needs to be taken into
account.

PRESSURE-DRIVEN FLOWS IN MICROCHANNELS

Slip-Flow Regime

In traditional flow analyses, a no-slip velocity constraint is
enforced along all solid walls. In practice, the no-slip condi-
tion is found to be appropriate up to a Knudsen number of ap-
proximately 10−3. If the Knudsen number is increased beyond
this value, rarefaction effects start to influence the flow, and the
molecular collision frequency per unit area becomes too small
to ensure thermodynamic equilibrium. Under these conditions,
a discontinuity will occur in the velocity at the wall, and the
gas will effectively slide over the solid surface. The disconti-
nuity in the velocity was first described by Maxwell [9], who
showed that the tangential slip velocity at the wall could be

heat transfer engineering vol. 27 no. 4 2006
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R. W. BARBER AND D. R. EMERSON 7

written as

uslip = ugas − uwall = ± (2 − σ)

σ
λ
∂u

∂y

∣∣∣∣
wall

+ 3

4

µ

ρT

∂T

∂x

∣∣∣∣
wall

, (8)

where u is the velocity, x and y are the streamwise and normal
coordinates, λ is the mean-free path of the gas molecules, σ is
the tangential momentum accommodation coefficient, µ is the
viscosity, and ρ and T are the density and temperature of the gas
at the wall. The second term in Eq. (8) is responsible for thermal
creep (or thermal transpiration), which generates a slip velocity
in the direction of increasing temperature. In the absence of any
temperature variations along the wall (∂T/∂x = 0), Eq. (8)
takes the form of a simple first-order slip-boundary condition in
which the slip velocity is directly proportional to the velocity
gradient normal to the wall.

The tangential momentum accommodation coefficient
(TMAC) is introduced in Eq. (8) to account for the reduction
in the momentum of gas molecules colliding with the wall. For
an idealized surface (perfectly smooth at the molecular level),
the angles of incidence and reflection are identical, and there-
fore the molecules conserve their tangential momentum. This
is referred to as specular reflection and results in perfect slip at
the boundary (σ → 0). Conversely, in the case of an extremely
rough surface, the molecules are reflected at totally random an-
gles and lose, on average, their entire tangential momentum, a
situation referred to as diffusive reflection (σ = 1). For real walls,
some molecules reflect specularly and some reflect diffusively,
and therefore a proportion of the momentum of the incident
molecules is lost to the wall. The tangential momentum accom-
modation coefficient is defined as the fraction of molecules re-
flected diffusively.

A number of experiments have attempted to measure the
TMAC under various conditions [10–12]. The experiments in-
dicate that the accommodation coefficient is a function of the
molecular weight of the gas, the energy of the incoming
molecules, the wall material, the temperature of the gas, and
the condition of the surface. Experimental values for the TMAC
are generally found to be between 0.2 and 1.0: the lower limit is
associated with exceptionally smooth surfaces, while the upper
limit is associated with very rough or highly oxidized surfaces.
Recent experiments conducted by Arkilic et al. [13–16], Maurer
et al. [17], and Colin et al. [18] have measured the flow rates in
silicon micro-machined channels and extracted tangential mo-
mentum accommodation coefficients ranging from 0.8 to 1.0,
demonstrating that the highly polished and ordered crystalline
surface of a silicon substrate exhibits sub-unity (or incomplete)
momentum accommodation.

A similar expression to Eq. (8) was derived by Smoluchowski
[19] to describe the temperature jump at the solid-gas
interface:

Tjump = Tgas − Twall = ± (2 − σT)

σT

[
2γ

(γ + 1)

]
λ

Pr

∂T

∂y

∣∣∣∣
wall

,

(9)

where y is the distance normal to the wall, σT is the thermal
accommodation coefficient, γ is the ratio of the specific heat
capacities, and Pr is the Prandtl number.

Equation (8) is normally remembered as Maxwell’s slip-
velocity boundary condition, but closer scrutiny of the deriva-
tion indicates that the equation should only be applied to pla-
nar surfaces. As a consequence, Maxwell’s boundary condition
is commonly misapplied in practical situations involving sur-
face curvature. Maxwell [9] initially derived the slip boundary
condition in terms of the shear stress (Eq. 66, page 253) but
then simplified the resulting expression, presumably believing
that the variation in wall-normal velocity could be neglected.
However, if the shear stress is retained, then the generalized
version of Maxwell’s slip-velocity boundary condition can be
written as

uslip = ugas − uwall = (2 − σ)

σ

λ

µ
τ

∣∣∣∣
wall

− 3

4

(γ − 1)

γ

Pr

p
q

∣∣∣∣
wall

,

(10)

where τ is the tangential shear stress at the wall, q is the tangen-
tial heat flux at the wall, and p is the pressure. As demonstrated
by Barber et al. [20, 21] and Lockerby et al. [22], the applica-
tion of Eq. (8) instead of Eq. (10) leads to the loss of crucial
physics in the simulation of gas flows over curved or moving
surfaces. A practical example where this might be important
is the modeling of flow around serpentine bends. Another im-
portant application involves the modeling of gas flows around
micro- and nano-particles.

Analytical Models: First-Order Formulations

Pressure-driven slip flow within ducts and channels has re-
ceived considerable attention for many years, possibly as a result
of the ability to formulate analytical or semi-analytical solutions.
Early investigations of non-equilibrium gas flows in channels
were conducted by researchers in the rarefied gas community
who were primarily interested in low-density macroscale appli-
cations. Analytical solutions are available for a number of simple
cross-sections: circular [23–26], annular [27], and rectangular
[27, 28]. In addition, high-aspect ratio rectangular channels can
be approximated using the parallel-plate analogy, as demon-
strated by Arkilic et al. [13–16] and Maurer et al. [17]. Using
the parallel plate assumption, Arkilic et al. [13] showed that the
mass flow rate through a long microchannel under isothermal
conditions is given by

ṁ = H 3W

24 µL RT

{
P2

1 − P2
0 + 12

2 − σ

σ
Kn0 P0(P1 − P0)

}
, (11)

where H , W , and L are the height, width, and length of the
channel, respectively, R is the specific gas constant, T is the
temperature, P1 and P0 are the pressures at the inlet and outlet
of the channel, and Kn0 is the Knudsen number at the outlet.

heat transfer engineering vol. 27 no. 4 2006
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8 R. W. BARBER AND D. R. EMERSON

Analytical Models: Second-Order Formulations

Analytical models derived using the first-order slip boundary
condition in Eq. (8) have been shown to be relatively accurate
up to Knudsen numbers of approximately 10−1 [16, 29]. For Kn
> 10−1, however, experimental studies have shown that mod-
els based on the first-order boundary condition show consider-
able discrepancies against observed data [17, 18, 30]. This has
prompted many authors to investigate the use of second-order
slip-velocity boundary conditions to extend the validity of the
slip-flow regime to higher Knudsen numbers. As yet, no consen-
sus has been reached on the correct form of second-order for-
mulation. For example, Deissler [31] proposed a second-order
slip condition of the form

uslip = ± (2 − σ)

σ
λ
∂u

∂y

∣∣∣∣
wall

− 9

16
λ2

(
2
∂2u

∂y2

∣∣∣∣
wall

+ ∂2u

∂x2

∣∣∣∣
wall

+ ∂2u

∂z2

∣∣∣∣
wall

)
, (12)

while Beskok et al. [32] defined the second-order slip boundary
condition using a Taylor series expansion:

uslip = ± (2 − σ)

σ

(
λ
∂u

∂y

∣∣∣∣
wall

+ λ2

2!

∂2u

∂y2

∣∣∣∣
wall

)
. (13)

More recently, Beskok and Karniadakis [33] have proposed
a “higher-order” boundary-condition of the form

uslip = ± (2 − σ)

σ

Kn

1 − b Kn

∂u

∂ ȳ

∣∣∣∣
wall

, (14)

where b is an empirical parameter dependent upon the geometric
configuration and ȳ is the non-dimensionalized distance normal
to the wall. Using a similar technique, Xue and Fan [34] have
suggested an alternative higher-order boundary condition that
again involves only the first derivative of the velocity gradient
normal to the wall:

uslip = ± (2 − σ)

σ
tanh(Kn)

∂u

∂ ȳ

∣∣∣∣
wall

. (15)

Other second-order formulations have been proposed to re-
move the difficulties associated with the evaluation of the second-
order derivatives at the wall. For example, Jie et al. [35] utilized
the following condition:

uslip = ± (2 − σ)

σ

[
Kn

∂u

∂ ȳ

∣∣∣∣
wall

+ Kn

2
Re

∂ p̄

∂ x̄

∣∣∣∣
wall

]
, (16)

where x̄ and ȳ are the dimensionless streamwise and tangential
coordinates normalized with respect to the channel height and
Re is the local Reynolds number.

Recently, Lockerby et al. [22] have suggested that higher-
order constitutive relations can be used to evaluate the shear
stress and heat flux terms in Maxwell’s generalized slip boundary
condition, Eq. (10). For example, the Burnett equations, which
are derived from terms up to the second-order in a series solution

to the Boltzmann equation, can be used to provide a higher-
order slip-velocity boundary condition. Substituting the Burnett
stress tensor and heat flux vector into Eq. (10) and restricting the
analysis to linear higher-order terms only, Lockerby et al. [22]
proposed the following “linearized Maxwell-Burnett boundary
condition”:

uslip = ± (2 − σ)

σ
λ

(
∂u

∂y
+ ∂v

∂x

) ∣∣∣∣
wall

+ 3

4

µ

ρT

∂T

∂x

∣∣∣∣
wall

+ (2 − σ)

σ
λ

(
2

µ

ρ2

∂2ρ

∂x∂y
− µ

ρT

∂2T

∂x∂y

)∣∣∣∣
wall

+ 3

16π

(γ − 1)

γ
Pr λ2

[
(45γ − 61)

∂2u

∂x2

+ (45γ − 49)
∂2v

∂x∂y
− 12

∂2u

∂y2

]∣∣∣∣
wall

, (17)

where u and v are the velocity components tangential and nor-
mal to the wall, respectively. In flows dominated by gas-surface
interactions, there is some justification in adopting a more ac-
curate model at the boundaries than in the interior of the flow.

It can be seen from Eqs. (12–17) that there are numerous
variations in the second-order slip boundary condition. Further-
more, there is no consensus as to whether the term involving the
accommodation coefficient (i.e., (2−σ)/σ) should be associated
with both the first- and second-order slip components or whether
it should only be associated with the first-order term. Clearly,
this is of little concern for fully-diffusive boundaries but may
introduce considerable discrepancies in the case of incomplete
(i.e., sub-unity) momentum accommodation.

To gain a better appreciation of the problems associated with
the second-order slip boundary condition, it is useful to consider
the simple case of Poiseuille flow between two parallel plates.
The generalized second-order slip boundary condition then takes
the form:

uslip = ±A1 λ
∂u

∂y

∣∣∣∣
wall

− A2 λ2 ∂2u

∂y2

∣∣∣∣
wall

, (18)

where A1 and A2 are the first- and second-order slip coefficients.
Table 1 presents a comparison of the theoretical values of A1

and A2 that have been proposed in the literature [9, 22, 31, 36–
39]. It can be seen that as yet, no agreement has been reached on
the correct value of the second-order coefficient. As discussed
by Lockerby et al. [22], there is also some evidence to suggest
that the slip coefficients may be geometry-dependent.

The lack of a universally accepted second-order slip coeffi-
cient makes it difficult to extend slip-flow predictions into the
transition regime. Moreover, it can be seen from Table 1 that
second-order models based on a simple Taylor series expansion
of Maxwell’s boundary condition [39] predict a decrease in the
slip velocity at the wall, whereas other second-order models
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R. W. BARBER AND D. R. EMERSON 9

Table 1 Theoretical first- and second-order slip coefficients proposed in the
literature for a fully-diffusive boundary

Author Date A1 A2

Maxwell [9] 1879 1 0
Schamberg [36] 1947 1 5π/12
Cercignani and Daneri [37] 1963 1.1466 0.9756
Deissler [31] 1964 1 9/8
Hsia and Domoto [38] 1983 1 0.5
Karniadakis and Beskok [39] 2002 1 −0.5
Lockerby et al. [22] 2004 1 0.15–0.19∗

∗A2 is dependent on the Prandtl number and the ratio of the specific heat capac-
ities of the gas.

predict an increase in the slip velocity. The disparity in the
sign of the A2 coefficient has (until recently) led to consider-
able uncertainty and confusion when trying to extend slip-flow
analyses to higher Knudsen numbers. However, experimental
observations by Lalonde [40] and Aubert and Colin [41] have
conclusively shown that first-order models underestimate the
observed mass flow rate, demonstrating that the second-order
contribution needs to increase the velocity at the wall.

Recent experimental studies [17, 18, 41] have shown that
second-order slip models can be used with considerable success,
provided the second-order coefficient is chosen with care. For
example, Aubert and Colin [41] demonstrated that a second-
order model based upon Deissler’s boundary conditions [31]
can give good agreement with experimental mass flow data up
to an outlet Knudsen number of 0.25. Furthermore, experimen-
tal studies by Maurer et al. [17] have shown that second-order
models can be extended to an outlet Knudsen number of 1.46,
provided the second-order coefficient is suitably calibrated to fit
the experimental data. However, the uncertainties over the cor-
rect value of the second-order coefficient will undoubtedly be
a major problem in extending the Navier-Stokes equations into
the transition flow regime.

ESTIMATION OF THE ACCOMMODATION
COEFFICIENT

One of the most critical parameters affecting any slip-flow
model is the tangential momentum accommodation coefficient,
σ, accounting for the gas-surface interactions at the wall. The
accommodation coefficient is known to be a function of the
molecular weight of the gas, the wall material, the temperature
and the condition (roughness) of the surface. For microchannel
flows, the value of the accommodation coefficient is generally
obtained from experimental mass flow rate versus applied pres-
sure data. For example, recent experiments by Maurer et al. [17]
and Colin et al. [18] have extracted tangential momentum ac-
commodation coefficients for silicon micro-machined channels
ranging from 0.87 to 0.93, as shown in Table 2. These values
are similar to earlier experimental values determined by Arkilic
et al. [15, 16]. Despite the apparent agreement between the dif-

Table 2 Recent experimental estimates of the accommodation coefficient for
silicon micro-machined channels

Maurer et al. [17] Colin et al. [18]
Author
Gas N2 He N2 He

Min. Kn0 0.054 0.17 0.002 0.029
Max. Kn0 1.1 1.46 0.16 0.47
σ 0.87 0.91 0.93 0.93
Slip model Planar (Poiseuille flow) Rectangular second order

second order (Deissler [31])

ferent experimental and data-fitting techniques, it is informative
to revisit the theoretical assumptions that are used to estimate
the accommodation coefficient.

In the absence of thermal creep, Maxwell’s first-order slip-
velocity boundary condition can be written as

uslip = ugas − uwall = ±α
(2 − σ)

σ
λ
∂u

∂y

∣∣∣∣
wall

. (19)

If the mean-free path of the gas molecules is defined as

λ = µ

p

√
πRT

2
, (20)

as in Maxwell’s original analysis, then the value of the coefficient
α in Eq. (19) is unity. However, more rigorous kinetic analyses
of the Boltzmann equation for planar flows [37, 42, 43] have
shown that α needs to be modified to

α = 1.016 × 2√
π

≈ 1.1466. (21)

The “exact” leading coefficient of 1.016191 in Eq. (21) was
obtained numerically by Loyalka et al. [42] using a BGK model
of the Boltzmann equation, whereas Wakabayashi et al. [43]
solved the linearized Boltzmann equation and obtained a value of
0.98737. In practice, α has also been shown to depend upon the
accommodation coefficient [42, 44]. Unfortunately, most of the
recent experimental estimates of the accommodation coefficient
for silicon microchannels have assumed α is unity in accordance
with Maxwell’s original analysis (e.g., [17, 18]). The disparity
between the kinetic (Boltzmann equation) and hydrodynamic
(Maxwell’s) estimate of α has resulted in considerable confusion
among the gas-phase microfluidic community.

Most experimental researchers appear to have adopted
Maxwell’s slip-velocity definition (α = 1) and have shown that
the highly polished and ordered crystalline surface of a silicon
substrate exhibits sub-unity (or incomplete) momentum accom-
modation, with σ typically varying between 0.87 and 0.93. How-
ever, implementing the kinetic theory estimate for α leads to a
totally different interpretation of the gas-surface interactions at
the wall. As shown in Table 3, applying the commonly accepted
kinetic theory estimate of α = 1.1466 to the experimental data
of Maurer et al. [17] and Colin et al. [18] leads to accommo-
dation coefficients much closer to unity, implying that most of
the gas molecules undergo diffusive reflections at the wall. It
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10 R. W. BARBER AND D. R. EMERSON

Table 3 Comparison of recent experimental estimates of the accommodation
coefficient for silicon micro-machined channels using hydrodynamic (α = 1)
and kinetic (α = 1.1466) slip-formulations

Maurer et al. [17] Colin et al. [18]
Author
Gas N2 He N2 He

α = 1.0 σ 0.87 0.91 0.93 0.93
α = 1.1466 σ 0.938 0.978 0.998 0.998

is clear that the disparity between the hydrodynamic and ki-
netic estimate of α has hindered the understanding of gas-phase
microflows and, to a certain extent, has led to a polarization
between the hydrodynamic- and kinetic-based research com-
munities. The importance of standardizing the determination of
the tangential momentum accommodation coefficient cannot be
overemphasized. Without a universally accepted approach, gas-
phase microfluidics will continue to use different definitions of
the slip-velocity boundary condition, hampering the develop-
ment of reliable modeling tools for the slip-flow regime.

ESTIMATION OF THE SECOND-ORDER SLIP
COEFFICIENT

Recent experimental work by Maurer et al. [17] on silicon
microchannels has demonstrated that the second-order slip coef-
ficient, A2, has a value of 0.26 ± 0.1 for nitrogen and 0.23 ± 0.1
for helium. On the other hand, earlier work by Sreekanth [30] on
low-pressure pipe flow determined a somewhat lower value of
0.14 for nitrogen. It should be noted that there are considerable
discrepancies between the experimentally-determined values of
A2 and the theoretical values listed in Table 1. One possible
explanation has been proposed by Hadjiconstantinou [45], who
showed that considerable care is required in interpreting the ex-
perimental data, as the values of A2 are derived from mass flow
rate measurements and not from direct observations of the slip-
velocity. Hadjiconstantinou demonstrated that the effect of the
Knudsen layers within approximately one mean-free path of the
channel walls could result in a significant underestimation of
the experimental value of A2 by as much as 0.3. The lack of
consensus over the correct value of the second-order coefficient
is a major issue in extending the Navier-Stokes equations into
the transition regime.

KNUDSEN LAYER EFFECTS

It is interesting to note that both Arkilic et al. [16] and Maurer
et al. [17] observed an apparent decrease in the value of the tan-
gential momentum accommodation coefficient with increasing
Knudsen number. In both these studies, however, the evidence
to suggest that the TMAC varies with the Knudsen number was
based, rather surprisingly, on an analytical model that assumes
the accommodation coefficient is constant along the microchan-

nel. Arkilic et al. [16] considered a first-order slip model and
investigated flows up to an outlet Knudsen number of 0.4, while
Maurer et al. [17] employed a second-order model and inves-
tigated flows up to an outlet Knudsen number of 1.46. We be-
lieve the apparent decrease in the accommodation coefficient is
merely an indication of the breakdown in the thermodynamic
equilibrium assumption in the Navier-Stokes equations and the
growing importance of non-linear effects within the Knudsen
layers. To support this view, we note that kinetic models are
able to capture Knudsen layer phenomena without the need to
modify the accommodation coefficient.

CONCLUSIONS

This paper has presented a review of currently available
boundary conditions for modeling gas-phase microflows in the
slip-flow regime and has highlighted some of the challenges
that need to be addressed when extending the Navier-Stokes
equations into the transition regime. It is apparent that there is
no consensus on the theoretical value of the second-order slip
coefficient, but it is also surprising to note that there are still
significant discrepancies as to the correct value of the first-order
slip coefficient. Determining the tangential momentum accom-
modation coefficient also remains problematic on account of
the different first-order models. For example, experimental re-
searchers appear to have adopted Maxwell’s slip-velocity defi-
nition and have found that silicon microchannels exhibit incom-
plete momentum accommodation. On the other hand, boundary
conditions derived from kinetic theory lead to accommodation
coefficients much closer to unity, implying that most of the gas
molecules undergo diffusive reflection at the wall. The lack of
any real consensus on the nature of these gas-surface interac-
tions emphasizes the challenges that need to be addressed in un-
derstanding gas-phase microflows. Furthermore, the large vari-
ations in the second-order slip coefficient and the exact form
of the second-order component are likely to remain a major
problem in developing reliable modeling tools based around the
Navier-Stokes equations. It is apparent that there is an urgent
need for precise experimental data that not only focus on the
mass flow rate but also address the measurement of the velocity
profile within the Knudsen layer. Experimental velocity data in
the vicinity of the wall would be invaluable in helping to validate
higher-order boundary conditions.

NOMENCLATURE

A1 first-order slip coefficient
A2 second-order slip coefficient
b geometric parameter dependent on shape
crms root mean square molecular speed, m/s
d mean molecular diameter, m
H channel height, m
Kn Knudsen number, λ/L
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R. W. BARBER AND D. R. EMERSON 11

L characteristic length scale, m
n number density, 1/m3

p pressure, N/m2

P1 pressure at channel inlet, N/m2

P0 pressure at channel outlet, N/m2

Pr Prandtl number
q heat flux, W/m2

R specific gas constant, J/kg·K
Re Reynolds number, ρuL/µ
T temperature, K
tc characteristic collision time interval, s
u, v, w Cartesian velocity components, m/s
W channel width, m
x , y, z Cartesian coordinates, m

Greek Symbols

α coefficient in first-order slip equation
γ ratio of specific heat capacities
δ mean molecular spacing, m
λ mean-free path, m
µ viscosity, Ns/m2

ρ density, kg/m3

σ tangential momentum accommodation coefficient
σT thermal accommodation coefficient
τ shear stress, N/m2
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Gasen, Annalen der Physik und Chemie, vol. 64, pp. 101–130,
1898.

[20] Barber, R. W., Gu, X. J., and Emerson, D. R., Simulation of
Low Knudsen Number Isothermal Flow Past a Confined Spheri-
cal Particle in a Micro-Pipe, Proc. ICMM2004—2nd Int. Conf. on
Microchannels and Minichannels, Rochester, NY, pp. 281–288,
ASME, 2004.

[21] Barber, R. W., Sun, Y., Gu, X. J., and Emerson, D. R., Isothermal
Slip Flow over Curved Surfaces, Vacuum, vol. 76, pp. 73–81, 2004.

[22] Lockerby, D. A., Reese, J. M., Emerson, D. R., and Barber, R. W.,
Velocity Boundary Condition at Solid Walls in Rarefied Gas Cal-
culations, Phys. Rev. E, vol. 70, 017303, 2004.

[23] Kennard, E. H., Kinetic Theory of Gases, McGraw-Hill, New York,
1938.

[24] Brown, G. P., DiNardo, A., Cheng, G. K., and Sherwood, T. K.,
The Flow of Gases in Pipes at Low Pressures, J. Applied Physics,
vol. 17, pp. 802–813, 1946.

[25] Sparrow, E. M., and Lin, S. H., Laminar Heat Transfer in Tubes un-
der Slip-Flow Conditions, Trans. ASME, J. Heat Transfer, vol. 84,
pp. 363–369, 1962.

[26] Shidlovskiy, V. P., Special Case of Viscous Gas Motion in Cylin-
drical Tube in Slip Flow Regime, Proc. 6th Int. Symp. on Rarefied
Gas Dynamics, pp. 215–223, Academic Press, New York, 1969.

[27] Ebert, W. A., and Sparrow, E. M., Slip Flow in Rectangular and An-
nular Ducts, Trans. ASME, J. Basic Engineering, vol. 87, pp. 1018–
1024, 1965.

[28] Morini, G. L., and Spiga, M., Slip Flow in Rectangular Micro-
tubes, Microscale Thermophysical Engineering, vol. 2, pp. 273–
282, 1998.

heat transfer engineering vol. 27 no. 4 2006

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
7
:
2
5
 
1
8
 
M
a
y
 
2
0
1
0



12 R. W. BARBER AND D. R. EMERSON

[29] Harley, J. C., Huang, Y., Bau, H. H., and Zemel, J. N., Gas
Flow in Micro-Channels, J. Fluid Mech., vol. 284, pp. 257–274,
1995.

[30] Sreekanth, A. K., Slip Flow through Long Circular Tubes, Proc.
6th Int. Symp. on Rarefied Gas Dynamics, pp. 667–680, Academic
Press, New York, 1969.

[31] Deissler, R. G., An Analysis of Second-Order Slip Flow and
Temperature-Jump Boundary Conditions for Rarefied Gases, Int.
J. Heat and Mass Transfer, vol. 7, pp. 681–694, 1964.

[32] Beskok, A., Karniadakis, G. E., and Trimmer, W., Rarefaction,
Compressibility and Thermal Creep Effects in Micro-Flows, Proc.
ASME Dynamic Systems and Control Division (DSC), vol. 57,
no. 2, pp. 877–892, 1995.

[33] Beskok, A., and Karniadakis, G. E., A Model for Flows in Chan-
nels, Pipes, and Ducts at Micro and Nano Scales, Microscale Ther-
mophysical Engineering, vol. 3, pp. 43–77, 1999.

[34] Xue, H., and Fan, Q., A New Analytic Solution of the Navier-
Stokes Equations for Microchannel Flows, Microscale Thermo-
physical Engineering, vol. 4, pp. 125–143, 2000.

[35] Jie, D., Diao, X., Cheong, K. B., and Yong, L. K., Navier-Stokes
Simulations of Gas Flow in Micro Devices, J. Micromech. Micro-
eng., vol. 10, pp. 372–379, 2000.

[36] Schamberg, R., The Fundamental Differential Equations and the
Boundary Conditions for High Speed Slip-Flow, and Their Ap-
plication to Several Specific Problems, Ph.D. thesis, California
Institute of Technology, 1947.

[37] Cercignani, C., and Daneri, A., Flow of a Rarefied Gas between
Two Parallel Plates, J. Applied Physics, vol. 34, pp. 3509–3513,
1963.

[38] Hsia, Y.-T., and Domoto, G. A., An Experimental Investiga-
tion of Molecular Rarefaction Effects in Gas Lubricated Bear-
ings at Ultra-Low Clearances, Trans. ASME, J. Lubrication Tech.,
vol. 105, pp. 120–130, 1983.

[39] Karniadakis, G. E., and Beskok, A., Microflows: Fundamentals
and Simulation, Springer-Verlag, New York, 2002.

[40] Lalonde, P., Etude Expérimentale d’Écoulements Gazeux dans
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