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Scientific Machine learning benchmarks 
Jeyan Thiyagalingam*, Mallikarjun Shankar†, Geoffrey Fox‡, and Tony Hey* 

Abstract 

Deep learning has transformed the use of machine learning technologies for the analysis of large 

experimental datasets. In science, such datasets are typically generated by large-scale 

experimental facilities and machine learning focuses on the identification of patterns, trends, and 

anomalies to extract meaningful scientific insights from the data. In upcoming experimental 

facilities, such as the Extreme Photonics Application Centre (EPAC) in the UK or the international 

Square Kilometre Array (SKA), the rate of data generation and the scale of data volumes will 

increasingly require the use of more automated data analysis. However, at present, identifying the 

most appropriate machine learning algorithm for the analysis of any given scientific dataset is a 

challenge. This is due to the potential applicability of many different machine learning frameworks, 

computer architectures, and machine learning models. Historically, for modelling and simulation 

on high performance computing systems these issues have been addressed through benchmarking 

computer applications, algorithms, and architectures. Extending such a benchmarking approach 

and identifying metrics for the application of machine learning methods to scientific datasets is a 

new challenge for both scientists and computer scientists. Here, we introduce the concept of 

machine learning benchmarks for science and review existing approaches. As an example, we 

describe the SciML-Bench suite of scientific machine learning benchmarks. 

1 Introduction 

In the past decade, a sub-field of artificial intelligence (AI), namely Deep Learning (DL) neural 

networks (or deep neural networks, DNNs), has enabled significant breakthroughs in many 
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scientifically and commercially important applications1.  Such neural networks are themselves a 

subset of a wide range of machine learning (ML) methods. 

 

ML methods have been widely used for many years in several domains of science, but DNNs have 

been transformational and are gaining a lot of traction in many scientific communities2,3. Most of 

the national, international, and big laboratories that host large-scale experimental facilities, and 

commercial entities capable of large-scale data processing (big tech) are now relying on DNN-

based data analytic methods to extract insights from their increasingly large datasets. A recent 

success from industry is the use of DL to find solutions to the protein folding problem4. Other areas 

of science are exploring the options for using machine learning techniques for interpreting the 

scientific aspects of systems under study in light of the fact that neural network solutions are data-

driven. Current developments point towards specialising these ML approaches to be more domain-

specific and domain-aware5–7, and aiming to connect the apparent ‘black box’ successes of DNNs 

with the well-understood approaches from science.  

 

The overarching scope of ML in science is broad. A non-exhaustive list includes the identification 

of patterns, anomalies, and trends from relevant scientific datasets; the classification and 

prediction of such patterns, and the clustering of data. The data is not always experimental or 

observational, but can also be synthetic data. There are three approaches for developing ML-based 

solutions, namely, supervised, unsupervised, and reinforcement learning. In supervised learning, 

the ML model is trained with examples to perform a given task. In this case, the training data used 

must contain `the ground truth’ or labels. Supervised learning is therefore possible only when 

there is a labelled subset of the data. Once trained, the learned model can be deployed for real-

time usage, such as pattern classification or estimation --- which is often referred to as `inference’. 

Because of the difficulty in generating labelled data for supervised learning, particularly for 

experimental datasets, it is often difficult to apply supervised learning directly. To circumvent this 

limitation, training is often performed on simulated data, which provides an opportunity to have 

relevant labels. However, the simulated data may not be representative of the real data and the 

model may therefore not perform satisfactorily when used for inferencing. The unsupervised 
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learning technique, in contrast, does not rely on labels. A simple example of this technique is 

clustering, where the aim is to identify several groups of data points that have common features. 

Another example is identification of anomalies in data.  Example algorithms include k-Means 

Clustering8, Support Vector Machines (SVM)9, or neural network-based autoencoders10. Finally, 

reinforcement learning relies on a trial-and-error approach to learn a given task with the learning 

system being positively rewarded whenever it behaves correctly, and penalised whenever it 

behaves incorrectly11. Each of these learning paradigms have a large number of algorithms, and 

modern developmental approaches are often hybrid and use one of more of these techniques 

together. This leaves many choices of ML algorithms for any given problem.  

 
In practice, the selection of a ML algorithm for a given scientific problem is more complex than just 

selecting one of the ML technologies and any particular algorithm. The selection of the most 

effective ML algorithm is based on many factors, including the type, quantity, and quality of the 

training data, the availability of labelled data, the type of problem being addressed (prediction, 

classification, and so on), the overall accuracy and performance required, and the hardware 

systems available for training and inferencing. With such a multi-dimensional problem consisting 

of a choice of ML algorithms, hardware architectures, and a range of scientific problems, selecting 

an optimal ML algorithm for a given task is not trivial. This constitutes a significant barrier for many 

scientists wishing to use modern ML methods in their scientific research. 

 
In this Perspective we discuss what are suitable scientific ML benchmarks and how to develop 

guidelines and best practices to assist the scientific community in successfully exploiting these 

methods. Developing such guidelines and best practices at the community level will not only 

benefit the science community, but also highlight where further research into ML algorithms, 

computer architectures, and software solutions for using ML in scientific applications is needed.  

 
We refer to the development of guidelines and best practices as benchmarking. The applications 

used to demonstrate the guideline and best practices are referred to as benchmarks. The notion 

of benchmarking computer systems and applications has been a fundamental cornerstone of 

computer science, particularly for compiler, architectural and system development, with a key 
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focus on using benchmarks for ranking systems, such as the Top500 or Green50012–16.  However, 

our notion of scientific ML benchmarking has a different focus and, in this Perspective, we restrict 

the term benchmarking to ML techniques applied to scientific datasets. Firstly, these ML 

benchmarks can be considered as blueprints for use on a range of scientific problems, and hence 

are aimed at fostering the use of ML in science more generally. Secondly, by using these ML 

benchmarks, a number of aspects in an ML ecosystem can be compared and contrasted. For 

example, it is possible to rank different computer architectures for their performance, or to rank 

different ML algorithms for their effectiveness. Thirdly, these ML benchmarks are accompanied by 

relevant scientific datasets on which the training and/or inference will be based. This is different 

to conventional benchmarks for high-performance computing (HPC) where there is little 

dependency on datasets. The establishment of a set of open, curated scientific datasets with 

associated ML benchmarks is therefore an important step for scientists to be able to effectively 

use ML methods in their research and also to identify further directions for ML research.  

 

2 ML benchmarks for science  

In this section, we discuss the elements of a scientific benchmark and the focus of scientific 

benchmarking along with relevant examples.  

 

2.1 Elements of a benchmark for science  

As discussed above, a scientific ML benchmark is underpinned by a scientific problem and should 

have two elements: first, the dataset on which this benchmark is trained or inferenced upon, and 

second, a reference implementation, which can be in any programming language (such as Python 

or C++). The scientific problem can be from any scientific domain. A collection of such benchmarks 

can make up a benchmark suite as illustrated in Figure 1. 

 
2.2 Focus of benchmarking 

There are three separate aspects of scientific benchmarking that apply in the context of ML 

benchmarks for science, namely: scientific ML benchmarking, application benchmarking and 

system benchmarking. These are explained below: 
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• Scientific ML benchmarking. This is concerned with algorithmic improvements that 

help reach the scientific targets specified for a given dataset. In this situation one 

wishes to test algorithms and their performance on fixed data assets, typically with the 

same underlying hardware and software environment. This type of benchmark is 

characterized by the dataset together with some specific scientific objectives. The data 

is obtained from a scientific experiment and should be rich enough to allow different 

methods of analysis and exploration. Examples of metrics could include the F1 score 

for training accuracy, time-to-solution and any domain-specific metric(s). A more 

detailed discussion on metrics can be found in the next section.  

• Application benchmarking. This aspect of ML benchmarks is concerned with exploring 

the performance of the complete ML application (covering loading of inputs from files, 

pre-processing, application of ML, post-processing and writing outputs to files) on 

different hardware and software environments. This can also be referred to as an end-

to-end ML application benchmark. A typical performance target for these types of 

benchmarks may include training time or even complete time-to-solution. Such 

application benchmarks can also be used to evaluate the performance of the overall 

system, as well as that of particular sub-systems (hardware, software libraries, runtime 

environments, file systems, and so on). For example, in the case of image classification, 

the relevant performance metric could be a throughput measure (for example, images 

per second) for training or inference, or time-to-solution of the classification problem 

(including I/O, ML, and pre- and post-processing), or of the scaling properties of the 

application. 

• System benchmarking.  This is concerned with investigating performance effects of 

the system hardware architecture on improving the scientific outcomes/targets. These 

benchmarks have similarities with application benchmarks, but they are characterized 

by primarily focusing on a specific operation that exercises a particular part of the 

system, independent of the broader system environment. Suitable metrics could be 

time-to-solution, the number of floating-point operations per second (FLOP/s) 

achieved, or aspects of network and data movement performance. 
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2.2  Examples of scientific ML benchmarks 

Scientific ML benchmarks are ML applications that solve a particular scientific problem from a 

specific scientific domain. For example, this can be as simple as an application that classifies the 

experimental data in some way, or as complex as inferring the properties of a material from 

neutron scattering data. Some examples are given below:  

 

• Inferring the structure of multi-phase materials from X-ray diffuse multiple scattering 

data. Here, ML is used to automatically identify the phases of materials using 

classification2.  

• Estimating the photometric redshifts of galaxies from survey data17. Here, ML is used 

for estimation.  

• Clustering of micro-cracks in a material using X-ray scattering data18. Here, ML uses an 

unsupervised learning technique. 

• Removing noise from microscope data to improve the quality of images. ML is used for 

its capability to perform high-quality regression of pixel values.19  

More detailed examples are provided in later sections.  

 

3 The benchmarking process 

Although it is possible to provide a collection of ML-specific scientific applications (with relevant 

datasets) as benchmarks for any of the purposes mentioned above, the exact process of 

benchmarking requires the following elements:  

• Metrics of choice. First, depending on the focus, the exact metric by which different 

benchmarks are compared may vary. For example, if science is the focus, then this metric 

may vary from benchmark to benchmark. However, if the focus is system-level 

benchmarking, it is possible to agree on a common set of metrics that can span across a 

range of applications.  However, in the context of ML, owing to the uncertainty around the 

underlying machine learning model(s), dataset(s) and system hardware (for example 

mixed-precision systems), it may be more meaningful to ensure that uncertainties of the 

benchmark outputs are quantified and compared wherever necessary. Likewise, the level 
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of explainability of methods (and hence outputs) can be a differentiator between different 

ML methods, and hence, of benchmarks. In this way, the explainability of different ML 

implementations for a given benchmark problem could be considered as a metric as well, 

provided this can be well quantified. Another axis could be around energy-efficiency, such 

as the ability of an ML implementation to perform training or inference with minimum 

power or energy requirements. It is clearly essential to agree upon the appropriate figures 

of merit and metrics to be used for comparing different implementations of benchmarks.  

• Framework. Providing just a collection of disparate applications without a coherent 

mechanism for evaluation requires users perform a set of fairly complex benchmarking 

operations that are relevant to their specific goals. Ideally, the benchmark suite should 

therefore offer a framework that not only helps users to achieve their specific goals, but 

also unifies aspects that are common to all applications in the suite, such as benchmark 

portability, flexibility, and logging. 

• Reporting and compliance. Finally, how these results are reported is important. In many 

cases, a benchmark framework as discussed above addresses this concern. However, there 

are often some specific compliance aspects that must be followed to ensure that the 

benchmarking process is carried out fairly across different hardware platforms.  

There are also a number of challenges which need to be addressed when dealing with the 

development of ML benchmarks. These are:  

• Data. In the previous section, we highlighted the significance of data when using ML for 

scientific problems. The availability of curated, large-scale, scientific datasets - which can 

be either experimental or simulated data – is the key to developing useful ML benchmarks 

for science. Although a lot of scientific data is openly available, the curation, maintenance, 

and distribution of large-scale datasets for public consumption is a challenging process.  A 

good benchmarking suite needs to provide a wide range of curated scientific datasets 

coupled with the relevant applications.  Reliance on external datasets has the danger of 

not having full control or even access to those datasets. 

• Distribution. A scientific ML benchmark comprises a reference ML implementation 

together with a relevant dataset, and both these must be available to the users. Since 
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realistic dataset sizes can be in the terabytes range, the access and downloading of these 

datasets is not always straightforward. 

• Coverage. Benchmarking is a very broad topic and providing benchmarks to cover the 

different focus areas highlighted above, across a range of scientific disciplines, is not a 

trivial task. A good benchmark suite should provide a good coverage of methods and goals 

and should be extensible.  

• Extensibility. Although developing scientific ML benchmarks can be valuable for scientists, 

it can be time-consuming to develop benchmarking-specific codes. If the original scientific 

application needs substantial refactoring to be converted into a benchmark, this will not 

be an attractive option for scientists. Any benchmarking framework should therefore try to 

minimise the amount of code refactoring required for conversion into a benchmark.  

In addition to these challenges, ML benchmarks need to address a number of other issues, such 

as problems with overtraining and overfitting. In most cases, such issues can be covered by 

requiring compliance with some general rules for the benchmarks - such as specifying the set 

of hyperparameters that are open to tuning. Although one may consider these as aspects of 

scientific ML benchmarking, they are best handled through explicit specification of the rules of 

the benchmarking process. For example, the training and validation data, and cross-validation 

procedures should aim to mitigate the dangers of overfitting. 

4 Benchmarking initiatives 
 
Comparing different ML techniques is not a new requirement and is increasingly becoming 

common in ML research. In fact, this approach has been fundamental for the development of 

various ML techniques. For example, the ImageNet20,21 dataset spurred a competition to improve 

computer image analysis and understanding and been widely recognized for driving innovation in 

DL. A recent example of an application and system benchmark is the High-Performance LINPACK 

for Architecture Introspection (HPL-AI) benchmark22 which aims to drive AI innovation by focusing 

on the performance benefits of reduced (and mixed) precision computing.  However, providing a 

blueprint of applications, guidelines, and best practices in the context of scientific ML is a relatively 

new and unaddressed requirement. There have been a number of efforts on this aspect that 
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address some of the challenges we highlighted above.  In this brief overview of these 

benchmarking initiatives, we explicitly exclude conventional benchmarking activities in other areas 

of computer science, such as benchmarks for HPC systems, compilers, and sub-systems such as 

memory, storage, and networking12,23.   

Instead of giving an exhaustive technical review covering very fine-grained aspects, we give a high-

level review of the various ML benchmark initiatives, focussing on the requirements discussed in 

the previous sections.  We shall therefore cover the following aspects:  

• Benchmark focus: science, application (End-to-End), and system. 

• Benchmark process: metrics, framework, reporting and compliance. 

• Benchmark challenges: data, distribution, coverage, and extensibility. 

In the context of ML benchmarking, there are a several initiatives such as Deep50024, RLBench25, 

CORAL-226, DAWNBench27, AI Bench28, MLCommons29, SciML-Bench30, as well as specific 

community initiatives (such as the well-known community competitions organized by Kaggle31).  

We overview these initiatives below and note that a specific benchmarking initiative may or may 

not support all the aspects listed above or, in some cases, may only offer partial support.  

4.1 Deep 500 

The Deep50024 initiative proposes a customizable and modular software infrastructure to aid in 

comparing the wide range of DL frameworks, algorithms, libraries, and techniques. The key idea 

behind Deep500 is its modular design, where DL is factorized into four distinct levels: operators, 

network processing, training, and distributed training. Although this approach aims to be neutral 

and overarching, and also able to accommodate a wide variety of techniques and methods, the 

process of mapping a code to a new framework has impeded its adoption for new benchmark 

development. Furthermore, despite its key focus on DL, neural networks, and a very customisable 

framework, benchmarks or applications are not included by default and are left for the end user 

to provide, as is support for reporting. The main limitation is the lack of a suite of representative 

benchmarks.   

4.2 RLBench 
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RLBench25 is a benchmark and learning environment featuring hundreds of unique, hand-crafted 

tasks. The focus is on a set of tasks to evaluate new algorithmic developments around 

reinforcement learning, imitation learning, multi-task learning, geometric computer vision, and in 

particular, few-shot learning.  The tasks are very specific and can be considered as building blocks 

of large-scale applications. However, the environment currently lacks support for the classes of 

benchmarking discussed above.  

4.3 CORAL-2  

The CORAL-226 benchmarks are computational problems relevant to a scientific domain or to data 

science, and are typically backed by a community code. Vendors are then expected to evaluate 

and optimize these codes to demonstrate the value of their proposed hardware in accelerating 

computational science. This allows a vendor to rigorously demonstrate the performance 

capabilities and characteristics of a proposed machine on a benchmark suite that should be 

relevant for computational scientists. The ML and data science tools in CORAL-2 include a number 

of ML techniques across two suites, namely, the big data analytics (BDAS) and DL suites (DLS). 

Whereas the BDAS suite covers conventional ML techniques, such as principal components 

analysis (PCA), k-means clustering, and support vector machines (SVM), the DLS suite relies on the 

ImageNet20,21 and CANDLE32 benchmarks which are primarily used for testing scalability aspects 

rather than purely focussing on the science. Similarly, the BDAS suite aims to exercise the memory 

constraints (PCA), computing capabilities (SVM), and/or both these aspects (k-means) and is also 

concerned with communication characteristics. Although these benchmarks are oriented at ML, 

the constraints and benchmark targets are narrowly specified and emphasize scalability 

capabilities. The overall coverage of science in the CORAL-2 benchmark suite is quite broad, but 

the footprint of the ML techniques is limited to the BDAS and DLS suites and there is little focus on 

scientific data distribution for algorithm improvement.   

4.4 AI Bench 

The AI Bench initiative is supported by the International Open Benchmark Council (Bench 

Council)28. The Council is a non-profit international organization that aims to promote 
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standardizing, benchmarking, evaluating, and incubating Big Data, AI, and other emerging 

technologies. The scope of AI Bench is very comprehensive and includes a broad range of internet 

services, including search engines, social networks, and e-commerce. The underlying ML-specific 

tasks in these areas include image classification, image generation, translation (image-to-text, 

image-to-image, text-to-image, text-to text), object detection, text summarisation, advertising, 

and natural language processing. The relevant datasets are open, and the primary metric is system 

performance for a fixed target. One of the important components of the AI bench initiative is HPC 

AI50033, a stand-alone benchmark suite for evaluating HPC systems running deep learning 

workloads. The suite covers a number of representative scientific problems from various domains, 

with each workload being a real-world scientific DL application such as Extreme Weather 

Analysis33.  The suite includes reference implementations, datasets and other relevant software 

along with relevant metrics. This HPC ML suite compares best to the SciMLBench work discussed 

below. The AI Bench environment also enforces some level of compliance for reporting ranking 

information of hardware systems.  

4.5 DawnBench 

DawnBench27 is a benchmark suite for end-to-end DL training and inference. The end-to-end 

aspect is ideal for application and system level benchmarking. Instead of focussing on model 

accuracy, DawnBench provides common DL workloads for quantifying training time, training cost, 

inference latency, and inference cost across different optimization strategies, model architectures, 

software frameworks, clouds, and hardware. There are two key benchmarks in the suite – image 

classification (using the ImageNet and CIFAR1034 datasets) and Natural Language Processing-based 

Question Answering35 (based on the Stanford Question Answering Dataset or SQuAD35) that covers 

both training and inference.  DawnBench does not offer the notion of a framework and does not 

have a focus on science. With key metrics around time and cost (for training and inference), 

DawnBench is predominantly targeted towards end-to-end system and application performance.  

Although the datasets are public and open, no distribution mechanisms have been adopted by 

DawnBench. 
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4.6 Benchmarks from the MLCommons working groups 

MLCommons is an international initiative aimed at improving all aspects of the ML landscape and 

covers benchmarking, datasets, and best practices. The consortium has several working groups on 

different focii for ML applications. Among these working groups, two are of interest here: HPC and 

Science.  The MLCommons HPC benchmark29 suite focuses on scientific applications that use ML, 

and especially deep learning (DL) at HPC scale. The codes and data are specified in such a way that 

execution of the benchmarks on supercomputers will help understand detailed aspects of system 

performance. The focus is on performance characteristics particularly relevant to HPC applications 

such as model-system interactions, optimization of the workload execution, and reducing 

execution and throughput bottlenecks. The HPC orientation also drives this effort towards 

exploration of benchmark scalability.  

By contrast, the MLCommons Science benchmark36 suite focuses specifically on the application of 

ML methods to scientific applications and includes application examples from several scientific 

domains. The recently announced information on the science benchmarks at Supercomputing 

2021 will spur improvements in defining data sets for advancing ML for science. The suite currently 

lacks a supportive framework for running the benchmarks but, as with the rest of the MLCommons, 

does enforce compliance for reporting of the results. The benchmarks cover the three areas of 

benchmarking - science, application, and system. 

4.7 SciMLBench 

The Scientific Machine Learning Benchmark suite - or SciMLBench30 – is specifically focussed on 

scientific ML and covers nearly every aspect of the cases discussed in the previous sections. A 

detailed description of the SciMLBench initiative is described in the next section.  

 

4.8 Other community initiatives 

In addition to various efforts mentioned above, there are other efforts towards AI benchmarking 

by specific research communities. Two examples are WeatherBench37 and MAELSTROM38 from the 

weather and climate communities both of which have specific goals and include relevant data and 
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baseline techniques.  However, these efforts are not full benchmark suites, and instead, are 

engineered as individual benchmarks, ideally to be integrated as part of a suite.  

Although community-based competitions, such as Kaggle31, can be seen as a benchmarking 

activity, these competitions are do not have a coherent methodology or a controlled approach for 

developing benchmarks. In particular, the competitions do not provide a framework for running 

the benchmarks nor do they consider data distribution methods. Each competition is individually 

constructed and relies on its own dataset, set of rules, and compliance metrics. The competitions 

address concerns such as dataset curation, choice of metric, presentation of results and robustness 

against overfitting, for example. Although such challenge competitions can provide a blueprint for 

using ML technologies for specific research communities, the competitions are generally short-

lived and are therefore unlikely to deliver best practices or guidelines for the long-term.  

5 The SciMLBench approach 
 
The SciMLBench approach has been developed by the authors of this article, members of the 

Scientific Machine Learning Group at the Rutherford Appleton Laboratory, in collaboration with 

researchers at Oak Ridge National Laboratory and at the University of Virginia. Among all the 

approaches reviewed above, only the SciMLBench benchmark suite attempts to address all of the 

concerns discussed before.  To the best of our knowledge, the SciMLBench approach is unique in 

its versatility compared to the other approaches and its key focus is on scientific ML.  

 

5.1 Core components 

The SciMLBench has three components, namely: 

 

• Benchmarks. The benchmarks are ML applications written in Python that perform a specific 

scientific task. These applications are included by default and users are not required to find 

or write their own applications. On the scale of micro-apps, mini-apps, and apps, these 

codes are full-fledged applications. Each benchmark aims to solve a specific scientific 

problem (such as those discussed earlier). The set of benchmarks are organised into specific 
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themes including DL focussed benchmarks, training or inference intensive benchmarks, 

benchmarks emphasising uncertainty quantification, benchmarks focussing on specific 

scientific problems (such as denoising19, non-linear dynamical systems5, physics-informed 

neural networks5), and benchmarks focussing on surrogate modelling39. Although the 

current set of benchmarks and their relevant datasets are all image based, the design of 

SciMLBench does allow for datasets that are multimodal or include mixed types of data.  

• Datasets. Each benchmark relies on one or more datasets which can be used, for example, 

for training and/or inferencing. These datasets are open, task or domain specific, and 

compliant with respect to the FAIR guidelines ( Findable, Accessible, Interoperable and Re-

usable40). Since most of these datasets are large, they are hosted separately on one of the 

laboratory servers (or mirrors) and are automatically or explicitly downloaded on demand.  

• Framework. The framework serves two purposes. Firstly, at the user level, it facilitates an 

easier approach to the actual benchmarking, logging, and reporting of the results. 

Secondly, at the developer level, it provides a coherent application programming interfaces 

(API) for unifying and simplifying the development of ML benchmarks. 

The SciML framework is the basic fabric upon which the benchmarks are built. It is both extensible 

and customizable and offers a set of APIs. These APIs enable easier development of benchmarks 

based on this framework and are defined with layers of abstractions. Example APIs (and their 

abstractions) are: 

• The entry point for the framework to run the benchmark in training mode, abstracted to 

all benchmark developers (scientists), requires API to follow a specific signature. If defined, 

the benchmark can then be called to run in training mode. If this is undefined and the 

benchmark is invoked in training mode, it will fail.   

• The entry point for the framework to run the benchmark in inference mode, abstracted to 

all benchmark developers (scientists), requires the API to follow a specific signature. If 

defined, the benchmark can be called to run in inference mode. If this is undefined and the 

benchmark is invoked in inference mode, it will fail.   
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• Control of Logging. APIs for logging of details are available at different granularities. At the 

highest (abstraction) level, this can be simply the starting and stopping of logging. At the 

fine-grained level, it can be controlling what is specifically being logged.  

• Controlling the execution of benchmarks. These APIs are designed for advanced benchmark 

developers to control aspects around the actual execution of benchmarks and would be 

expected to be seldom used by scientists.  

 

These APIs, in contrast to APIs from other frameworks, such as Deep500, are layered and are not 

fine grained. In other words, APIs from the SciMLBench are abstracted enough for the 

benchmarking process to be automated as much as possible instead of providing APIs for obtaining 

fine-grained measurements, such as runtime or I/O or communication times. In fact, SciMLBench 

retains these measurements and makes them available for detailed analysis, but the focus is on 

science rather than on performance. In addition, these APIs are totally independent of the 

application, whereas APIs in frameworks like Deep500 are intended to reflect the operational 

semantics of the layers or operations of the neural networks.  

 

The SciMLBench framework is architecture-independent, and the minimum system requirement 

is determined by the specific benchmark.  There is a built-in logging mechanism that captures all 

potential system-level and benchmark-level outputs during execution, leaving end-users or 

benchmark designers to decide the content and format of the report from these detailed logs. The 

central component that links benchmarks, datasets, and the framework is the framework 

configuration tool.  The most attractive part of the framework is the possibility of simply using 

existing codes as benchmarks with only a few API calls necessary to register the benchmarks.  

Finally, the framework is designed with scalability in mind, so that benchmarks can be run on any 

computer ranging from a single system to a large-scale supercomputer. This level of support is 

essential even if the included benchmarks, in their own, are scalable. 
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5.2 Benchmarks and datasets 

The currently released version of SciMLBench has three benchmarks with their associated 

datasets. The benchmarks from this release represent scientific problems drawn from material 

sciences and environmental sciences, namely: 

• Diffuse Multiple Scattering (DMS_Structure). This benchmark uses ML for classifying the 

structure of multi-phase materials from X-ray scattering patterns. More specifically, the ML 

based approach enables automatic identification of phases. This application is particularly 

useful for the material science community as diffuse multiple scattering allows investigation 

of multi-phase materials from a single measurement – something not possible with standard 

X-ray experiments. However, manual analysis of the data can be extremely laborious, 

involving searching for patterns to identify important motifs (triple intersections) that allow 

for inference of information. This is a multi-label classification problem (as opposed to a binary 

classification problem as in the Cloud masking example discussed below). The benchmark 

relies on a simulated dataset of size 8.6GB with three-channel images of resolution 487x195 

pixels. 

• Cloud Masking (SLSTR_Cloud). Given a set of satellite images, the challenge for this benchmark 

to classify each pixel of each satellite image as either cloud or non-cloud (clear sky). This 

problem is known as ‘cloud masking’ and is crucial for several important applications in earth 

observation. In a conventional, non-ML setting, this task is typically performed using either 

thresholding or Bayesian methods. The benchmark exercises DL and includes two datasets, 

DS1-Cloud and DS2-Cloud, with sizes of 180GB and 1.2TB, respectively. The datasets contain 

multi-spectral images with resolution of 2400 x 3000 pixels and 1200 x 1500 pixels. 

• Electron Microscopy Image Denoising (EM_Denoise). This benchmark uses ML for removing 

noise from electron microscopy images. This improves the signal to noise ratio of the image 

and is often used as a precursor to more complex techniques such as surface reconstruction 

or tomographic projections.  Effective denoising can facilitate low-dose experiments in 

producing images with a quality comparable that obtained in high-dose experiments. 

Likewise, greater time resolution can also be achieved with the aid of effective image 

denoising procedures. This benchmark exercises complex DL techniques on a simulated 
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dataset of size 5GB, consisting of 256x256 images covering noised and denoised (ground truth) 

datasets.  

The next release of the suite will include several more examples from various domains with large 

datasets, such as a scanning electron tomography benchmark from material sciences, a benchmark 

for quantifying damage to optical lenses in laser physics, and another denoising benchmark for 

cryogenic electron microscopic images from the life sciences domain.  

 

5.3 Benchmark focus  

With the full-fledged capability of the framework to log all activities, and with a detailed set of 

metrics, it is possible for the framework to collect a wide range of performance details that can 

later be used for deciding the focus. For example, SciMLBench can be used for science 

benchmarking (to improve scientific results through different ML approaches), application-level 

benchmarking, and system-level benchmarking (gathering end-to-end performance including IO 

and network performance). This is made possible thanks to the detailed logging mechanisms 

within the framework. These logging mechanisms rely on various low-level details for gathering 

system-specific aspects, such as memory, GPU or CPU usages. Furthermore, there are APIs are 

available for logging all the way from very simple request of starting and stopping the logging 

process to controlling what is specifically being logged, such as science-specific outputs or domain-

specific metrics.  Since the logging process includes all relevant details (including the runtime or 

the power and energy usage where permitted), the benchmark designer or developer is 

responsible for deciding on the appropriate metric, depending on the context. For example, it is 

possible for the developer to rely on a purely scientific metric or to specify a metric to quantify the 

energy efficiency of the benchmark. 

 

5.4 Benchmarking process 

With the framework handling most of the complexity of collecting performance data, there is the 

opportunity to cover a wide range of metrics (even retrospectively after the benchmarks have 

been run) and have the ability to control the reporting and compliance through controlled runs.  

However, it is worth noting that although the framework can support and collect a wide range of 
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runtime and science performance aspects, the choice is left to the user to decide the ultimate 

metrics to be reported. For example, the performance data collected by the framework can be 

used to generate a final figure of merit to compare different ML models or hardware systems for 

the same problem. The benchmarks can be executed purely using the framework or using 

containerised environments, such as Docker or Singularity. Although running benchmarks natively 

using the framework is possible, native code execution on production systems is often challenging 

and ends up demanding various dependencies. For these reasons, executing these benchmarks on 

containerised environments is recommended on production, multi-node clusters.  We have found 

that the resulting container execution overheads are minimal. 

 

5.5 Data curation and distribution  

SciMLBench uses a carefully designed curation and distribution mechanism (a process illustrated 

in Figure 2):  

• Each benchmark has one or more associated datasets. These benchmark-dataset 

associations are specified through a configuration tool which is not only framework 

friendly, but also interpretable by scientists.  

• As the scientific datasets are usually large, they are not maintained along with the code. 

Instead, they are maintained in a separate object storage, whose exact locations are visible 

to the benchmarking framework and to users. 

• Users downloading benchmarks will only download the reference implementations (code) 

and not the data.  This enables fast downloading of the benchmarks and the framework. 

Since not all datasets will be of interest to everyone, this approach prevents unnecessary 

downloading of large datasets.  

• The framework takes the responsibility for downloading datasets on demand or when the 

user launches the benchmarking process.  

In addition to these basic operational aspects, the benchmark datasets are stored in an object 

storage to enable better resiliency and repair mechanisms compared to simple file storage.  The 

datasets are also mirrored in several locations to enable the framework to choose the data 
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source closest to the location of the user. The datasets are also regularly backed-up as they 

constitute valuable digital assets.  

 
5.6 Extensibility and coverage 
 
The overall design of the SciMLBench supports several user scenarios: the ability to add new 

benchmarks with little knowledge of the framework, ease-of-use, platform interoperability, and 

ease of customization. The design relies on two API calls which are illustrated in the documentation 

with a number of toy examples as well as some practical examples.  

6 Conclusion 
 
In this Perspective, we have highlighted the need for scientific ML benchmarks and explained how 

they differ from conventional benchmarking initiatives. We have outlined the challenges in 

developing a suite of useful scientific ML benchmarks. These challenges span a number of issues 

ranging from the intended focus of the benchmarks and the benchmarking processes, to 

challenges around actually developing a useful ML benchmark suite. A useful scientific ML suite 

must therefore go beyond just providing a disparate collection of ML-based scientific applications. 

The critical aspect here is to provide support for end users not only to be able to effectively use 

the ML benchmarks, but also to enable them to develop new benchmarks and extend the suite for 

their own purposes.  

 

We overviewed a number of contemporary efforts for developing ML benchmarks of which only a 

subset has a focus of ML for scientific applications. Almost none of these initiatives considers the 

problem of the efficient distribution of large datasets. The majority of the approaches rely on 

externally sourced datasets with the implicit assumption that users will take care of the data issues. 

We discussed in more detail the SciMLBench initiative which includes a benchmark framework that 

not only addresses the majority of these concerns but is also designed for easy extensibility.  

 

The characteristics of these ML benchmark initiatives are summarised in Table 1 which shows 

that the benchmarking community has several issues to address to ensure that the scientific 
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community is equipped with right set of tools to become more efficient in leveraging the use of 

ML technologies in science. 

 
Code availability: The relevant code for the benchmark suite can be found from GitHub at 
https://github.com/stfc-sciml/sciml-bench  
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Table 1: Overall assessment of various scientific machine learning benchmarking approaches. In 
qualitatively assessing how far each approach addresses the concerns, we have indicated whether they 
offer no support (none), or partial or questionable support (partial) or fully support the concern (full).  
 

Benchmark Focus Process Challenges 
Scientific Application System Metrics Framework Reporting Data Distribution Coverage Extensibility 

Deep 500 None None Partial Full Full Partial None None None Partial 
RL-Bench None Partial Partial Full None Partial Partial Partial Partial Partial 
CORAL-2 (DLS/BDS) Partial Full Full Full Partial Partial None None Full None 
AI-Bench + HPC AI500 Full Full Full Full None Full Partial Partial Partial Partial 
DawnBench None Full Full Full None Partial None None None None 
MLCommons-Science Full Full Partial Full None Partial Partial Partial Full Partial 
SciML-Bench Full Full Full Full Full Partial Full Full Full Full 
Community 
competitions 

Partial None None Partial None Partial Partial None Partial None 

 

 
 

 

 

 

 
  

 
Figure 1: The notion of an machine learning (ML) benchmark and a benchmark suite. (a) 
Elements of a scientific ML benchmark. (b) Building a scientific ML benchmark suite which 
integrates different scientific ML benchmarks from various scientific disciplines. 
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Figure 2: Moving the benchmark datasets to the evaluation point. A benchmark has two 
components: A code and the associated datasets.  Whenever a user wants to use a benchmark, 
the code component can easily be directly downloaded from the server. The data component, 
however, requires careful delivery. The associated datasets are often too large for it to be possible 
to download them from the server through direct download. Instead, they are pushed to the 
object storage, where they are carefully curated and backed-up. This curated dataset is then pulled 
on demand by the user when a benchmark that requires this dataset is to be used.  Because exact 
location of the dataset can lead to delays, these datasets are often mirrored and can also be made 
available as part of Cloud environments. This way, the download location can be opted for by the 
user (or automatically selected by the downloading component). The dotted lines imply that the 
data can come from any of the locations and can be specified. The “pull” aspect means that the 
data is downloaded on demand  (i.e. pulled by the user). The push component means that the 
dataset distribution is managed by a server or the framework.  
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