
This is the author’s final, peer-reviewed manuscript as accepted for publication (AAM). The version

presented here may differ from the published version, or version of record, available through the

publisher’s website. This version does not track changes, errata, or withdrawals on the publisher’s site.

Published version information

Citation: J Thiyagalingam et al. ‘Scientific machine learning benchmarks.’ Nature
Reviews Physics (2022).

DOI: 10.1038/s42254-022-00441-7

This version is made available in accordance with publisher policies. Please cite only
the published version using the reference above. This is the citation assigned by the
publisher at the time of issuing the AAM. Please check the publisher’s website for
any updates.

This item was retrieved from ePubs, the Open Access archive of the Science and Technology

Facilities Council, UK. Please contact epublications@stfc.ac.uk or go to http://epubs.stfc.ac.uk/ for

further information and policies.

 Scientific machine learning benchmarks

Jeyan Thiyagalingam, Mallikarjun Shankar, Geoffrey Fox

and Tony Hey

https://doi.org/10.1038/s42254-022-00441-7
mailto:epublications@stfc.ac.uk
http://epubs.stfc.ac.uk/

1

Scientific Machine learning benchmarks
Jeyan Thiyagalingam*, Mallikarjun Shankar†, Geoffrey Fox‡, and Tony Hey*

Abstract

Deep learning has transformed the use of machine learning technologies for the analysis of large

experimental datasets. In science, such datasets are typically generated by large-scale

experimental facilities and machine learning focuses on the identification of patterns, trends, and

anomalies to extract meaningful scientific insights from the data. In upcoming experimental

facilities, such as the Extreme Photonics Application Centre (EPAC) in the UK or the international

Square Kilometre Array (SKA), the rate of data generation and the scale of data volumes will

increasingly require the use of more automated data analysis. However, at present, identifying the

most appropriate machine learning algorithm for the analysis of any given scientific dataset is a

challenge. This is due to the potential applicability of many different machine learning frameworks,

computer architectures, and machine learning models. Historically, for modelling and simulation

on high performance computing systems these issues have been addressed through benchmarking

computer applications, algorithms, and architectures. Extending such a benchmarking approach

and identifying metrics for the application of machine learning methods to scientific datasets is a

new challenge for both scientists and computer scientists. Here, we introduce the concept of

machine learning benchmarks for science and review existing approaches. As an example, we

describe the SciML-Bench suite of scientific machine learning benchmarks.

1 Introduction

In the past decade, a sub-field of artificial intelligence (AI), namely Deep Learning (DL) neural

networks (or deep neural networks, DNNs), has enabled significant breakthroughs in many

* Rutherford Appleton Laboratory, Science and Technology Facilities Council, Harwell Campus, United Kingdom.
t.jeyan@stfc.ac.uk; tony.hey@stfc.ac.uk
† Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA. shankarm@ornl.gov
‡ University of Virginia, Computer Science and Biocomplexity Institute, 994 Research Park Blvd, Charlottesville,
Virginia, 22911, USA. vxj6mb@virginia.edu

2

scientifically and commercially important applications1. Such neural networks are themselves a

subset of a wide range of machine learning (ML) methods.

ML methods have been widely used for many years in several domains of science, but DNNs have

been transformational and are gaining a lot of traction in many scientific communities2,3. Most of

the national, international, and big laboratories that host large-scale experimental facilities, and

commercial entities capable of large-scale data processing (big tech) are now relying on DNN-

based data analytic methods to extract insights from their increasingly large datasets. A recent

success from industry is the use of DL to find solutions to the protein folding problem4. Other areas

of science are exploring the options for using machine learning techniques for interpreting the

scientific aspects of systems under study in light of the fact that neural network solutions are data-

driven. Current developments point towards specialising these ML approaches to be more domain-

specific and domain-aware5–7, and aiming to connect the apparent ‘black box’ successes of DNNs

with the well-understood approaches from science.

The overarching scope of ML in science is broad. A non-exhaustive list includes the identification

of patterns, anomalies, and trends from relevant scientific datasets; the classification and

prediction of such patterns, and the clustering of data. The data is not always experimental or

observational, but can also be synthetic data. There are three approaches for developing ML-based

solutions, namely, supervised, unsupervised, and reinforcement learning. In supervised learning,

the ML model is trained with examples to perform a given task. In this case, the training data used

must contain `the ground truth’ or labels. Supervised learning is therefore possible only when

there is a labelled subset of the data. Once trained, the learned model can be deployed for real-

time usage, such as pattern classification or estimation --- which is often referred to as `inference’.

Because of the difficulty in generating labelled data for supervised learning, particularly for

experimental datasets, it is often difficult to apply supervised learning directly. To circumvent this

limitation, training is often performed on simulated data, which provides an opportunity to have

relevant labels. However, the simulated data may not be representative of the real data and the

model may therefore not perform satisfactorily when used for inferencing. The unsupervised

3

learning technique, in contrast, does not rely on labels. A simple example of this technique is

clustering, where the aim is to identify several groups of data points that have common features.

Another example is identification of anomalies in data. Example algorithms include k-Means

Clustering8, Support Vector Machines (SVM)9, or neural network-based autoencoders10. Finally,

reinforcement learning relies on a trial-and-error approach to learn a given task with the learning

system being positively rewarded whenever it behaves correctly, and penalised whenever it

behaves incorrectly11. Each of these learning paradigms have a large number of algorithms, and

modern developmental approaches are often hybrid and use one of more of these techniques

together. This leaves many choices of ML algorithms for any given problem.

In practice, the selection of a ML algorithm for a given scientific problem is more complex than just

selecting one of the ML technologies and any particular algorithm. The selection of the most

effective ML algorithm is based on many factors, including the type, quantity, and quality of the

training data, the availability of labelled data, the type of problem being addressed (prediction,

classification, and so on), the overall accuracy and performance required, and the hardware

systems available for training and inferencing. With such a multi-dimensional problem consisting

of a choice of ML algorithms, hardware architectures, and a range of scientific problems, selecting

an optimal ML algorithm for a given task is not trivial. This constitutes a significant barrier for many

scientists wishing to use modern ML methods in their scientific research.

In this Perspective we discuss what are suitable scientific ML benchmarks and how to develop

guidelines and best practices to assist the scientific community in successfully exploiting these

methods. Developing such guidelines and best practices at the community level will not only

benefit the science community, but also highlight where further research into ML algorithms,

computer architectures, and software solutions for using ML in scientific applications is needed.

We refer to the development of guidelines and best practices as benchmarking. The applications

used to demonstrate the guideline and best practices are referred to as benchmarks. The notion

of benchmarking computer systems and applications has been a fundamental cornerstone of

computer science, particularly for compiler, architectural and system development, with a key

4

focus on using benchmarks for ranking systems, such as the Top500 or Green50012–16. However,

our notion of scientific ML benchmarking has a different focus and, in this Perspective, we restrict

the term benchmarking to ML techniques applied to scientific datasets. Firstly, these ML

benchmarks can be considered as blueprints for use on a range of scientific problems, and hence

are aimed at fostering the use of ML in science more generally. Secondly, by using these ML

benchmarks, a number of aspects in an ML ecosystem can be compared and contrasted. For

example, it is possible to rank different computer architectures for their performance, or to rank

different ML algorithms for their effectiveness. Thirdly, these ML benchmarks are accompanied by

relevant scientific datasets on which the training and/or inference will be based. This is different

to conventional benchmarks for high-performance computing (HPC) where there is little

dependency on datasets. The establishment of a set of open, curated scientific datasets with

associated ML benchmarks is therefore an important step for scientists to be able to effectively

use ML methods in their research and also to identify further directions for ML research.

2 ML benchmarks for science

In this section, we discuss the elements of a scientific benchmark and the focus of scientific

benchmarking along with relevant examples.

2.1 Elements of a benchmark for science

As discussed above, a scientific ML benchmark is underpinned by a scientific problem and should

have two elements: first, the dataset on which this benchmark is trained or inferenced upon, and

second, a reference implementation, which can be in any programming language (such as Python

or C++). The scientific problem can be from any scientific domain. A collection of such benchmarks

can make up a benchmark suite as illustrated in Figure 1.

2.2 Focus of benchmarking

There are three separate aspects of scientific benchmarking that apply in the context of ML

benchmarks for science, namely: scientific ML benchmarking, application benchmarking and

system benchmarking. These are explained below:

5

• Scientific ML benchmarking. This is concerned with algorithmic improvements that

help reach the scientific targets specified for a given dataset. In this situation one

wishes to test algorithms and their performance on fixed data assets, typically with the

same underlying hardware and software environment. This type of benchmark is

characterized by the dataset together with some specific scientific objectives. The data

is obtained from a scientific experiment and should be rich enough to allow different

methods of analysis and exploration. Examples of metrics could include the F1 score

for training accuracy, time-to-solution and any domain-specific metric(s). A more

detailed discussion on metrics can be found in the next section.

• Application benchmarking. This aspect of ML benchmarks is concerned with exploring

the performance of the complete ML application (covering loading of inputs from files,

pre-processing, application of ML, post-processing and writing outputs to files) on

different hardware and software environments. This can also be referred to as an end-

to-end ML application benchmark. A typical performance target for these types of

benchmarks may include training time or even complete time-to-solution. Such

application benchmarks can also be used to evaluate the performance of the overall

system, as well as that of particular sub-systems (hardware, software libraries, runtime

environments, file systems, and so on). For example, in the case of image classification,

the relevant performance metric could be a throughput measure (for example, images

per second) for training or inference, or time-to-solution of the classification problem

(including I/O, ML, and pre- and post-processing), or of the scaling properties of the

application.

• System benchmarking. This is concerned with investigating performance effects of

the system hardware architecture on improving the scientific outcomes/targets. These

benchmarks have similarities with application benchmarks, but they are characterized

by primarily focusing on a specific operation that exercises a particular part of the

system, independent of the broader system environment. Suitable metrics could be

time-to-solution, the number of floating-point operations per second (FLOP/s)

achieved, or aspects of network and data movement performance.

6

2.2 Examples of scientific ML benchmarks

Scientific ML benchmarks are ML applications that solve a particular scientific problem from a

specific scientific domain. For example, this can be as simple as an application that classifies the

experimental data in some way, or as complex as inferring the properties of a material from

neutron scattering data. Some examples are given below:

• Inferring the structure of multi-phase materials from X-ray diffuse multiple scattering

data. Here, ML is used to automatically identify the phases of materials using

classification2.

• Estimating the photometric redshifts of galaxies from survey data17. Here, ML is used

for estimation.

• Clustering of micro-cracks in a material using X-ray scattering data18. Here, ML uses an

unsupervised learning technique.

• Removing noise from microscope data to improve the quality of images. ML is used for

its capability to perform high-quality regression of pixel values.19

More detailed examples are provided in later sections.

3 The benchmarking process

Although it is possible to provide a collection of ML-specific scientific applications (with relevant

datasets) as benchmarks for any of the purposes mentioned above, the exact process of

benchmarking requires the following elements:

• Metrics of choice. First, depending on the focus, the exact metric by which different

benchmarks are compared may vary. For example, if science is the focus, then this metric

may vary from benchmark to benchmark. However, if the focus is system-level

benchmarking, it is possible to agree on a common set of metrics that can span across a

range of applications. However, in the context of ML, owing to the uncertainty around the

underlying machine learning model(s), dataset(s) and system hardware (for example

mixed-precision systems), it may be more meaningful to ensure that uncertainties of the

benchmark outputs are quantified and compared wherever necessary. Likewise, the level

7

of explainability of methods (and hence outputs) can be a differentiator between different

ML methods, and hence, of benchmarks. In this way, the explainability of different ML

implementations for a given benchmark problem could be considered as a metric as well,

provided this can be well quantified. Another axis could be around energy-efficiency, such

as the ability of an ML implementation to perform training or inference with minimum

power or energy requirements. It is clearly essential to agree upon the appropriate figures

of merit and metrics to be used for comparing different implementations of benchmarks.

• Framework. Providing just a collection of disparate applications without a coherent

mechanism for evaluation requires users perform a set of fairly complex benchmarking

operations that are relevant to their specific goals. Ideally, the benchmark suite should

therefore offer a framework that not only helps users to achieve their specific goals, but

also unifies aspects that are common to all applications in the suite, such as benchmark

portability, flexibility, and logging.

• Reporting and compliance. Finally, how these results are reported is important. In many

cases, a benchmark framework as discussed above addresses this concern. However, there

are often some specific compliance aspects that must be followed to ensure that the

benchmarking process is carried out fairly across different hardware platforms.

There are also a number of challenges which need to be addressed when dealing with the

development of ML benchmarks. These are:

• Data. In the previous section, we highlighted the significance of data when using ML for

scientific problems. The availability of curated, large-scale, scientific datasets - which can

be either experimental or simulated data – is the key to developing useful ML benchmarks

for science. Although a lot of scientific data is openly available, the curation, maintenance,

and distribution of large-scale datasets for public consumption is a challenging process. A

good benchmarking suite needs to provide a wide range of curated scientific datasets

coupled with the relevant applications. Reliance on external datasets has the danger of

not having full control or even access to those datasets.

• Distribution. A scientific ML benchmark comprises a reference ML implementation

together with a relevant dataset, and both these must be available to the users. Since

8

realistic dataset sizes can be in the terabytes range, the access and downloading of these

datasets is not always straightforward.

• Coverage. Benchmarking is a very broad topic and providing benchmarks to cover the

different focus areas highlighted above, across a range of scientific disciplines, is not a

trivial task. A good benchmark suite should provide a good coverage of methods and goals

and should be extensible.

• Extensibility. Although developing scientific ML benchmarks can be valuable for scientists,

it can be time-consuming to develop benchmarking-specific codes. If the original scientific

application needs substantial refactoring to be converted into a benchmark, this will not

be an attractive option for scientists. Any benchmarking framework should therefore try to

minimise the amount of code refactoring required for conversion into a benchmark.

In addition to these challenges, ML benchmarks need to address a number of other issues, such

as problems with overtraining and overfitting. In most cases, such issues can be covered by

requiring compliance with some general rules for the benchmarks - such as specifying the set

of hyperparameters that are open to tuning. Although one may consider these as aspects of

scientific ML benchmarking, they are best handled through explicit specification of the rules of

the benchmarking process. For example, the training and validation data, and cross-validation

procedures should aim to mitigate the dangers of overfitting.

4 Benchmarking initiatives

Comparing different ML techniques is not a new requirement and is increasingly becoming

common in ML research. In fact, this approach has been fundamental for the development of

various ML techniques. For example, the ImageNet20,21 dataset spurred a competition to improve

computer image analysis and understanding and been widely recognized for driving innovation in

DL. A recent example of an application and system benchmark is the High-Performance LINPACK

for Architecture Introspection (HPL-AI) benchmark22 which aims to drive AI innovation by focusing

on the performance benefits of reduced (and mixed) precision computing. However, providing a

blueprint of applications, guidelines, and best practices in the context of scientific ML is a relatively

new and unaddressed requirement. There have been a number of efforts on this aspect that

9

address some of the challenges we highlighted above. In this brief overview of these

benchmarking initiatives, we explicitly exclude conventional benchmarking activities in other areas

of computer science, such as benchmarks for HPC systems, compilers, and sub-systems such as

memory, storage, and networking12,23.

Instead of giving an exhaustive technical review covering very fine-grained aspects, we give a high-

level review of the various ML benchmark initiatives, focussing on the requirements discussed in

the previous sections. We shall therefore cover the following aspects:

• Benchmark focus: science, application (End-to-End), and system.

• Benchmark process: metrics, framework, reporting and compliance.

• Benchmark challenges: data, distribution, coverage, and extensibility.

In the context of ML benchmarking, there are a several initiatives such as Deep50024, RLBench25,

CORAL-226, DAWNBench27, AI Bench28, MLCommons29, SciML-Bench30, as well as specific

community initiatives (such as the well-known community competitions organized by Kaggle31).

We overview these initiatives below and note that a specific benchmarking initiative may or may

not support all the aspects listed above or, in some cases, may only offer partial support.

4.1 Deep 500

The Deep50024 initiative proposes a customizable and modular software infrastructure to aid in

comparing the wide range of DL frameworks, algorithms, libraries, and techniques. The key idea

behind Deep500 is its modular design, where DL is factorized into four distinct levels: operators,

network processing, training, and distributed training. Although this approach aims to be neutral

and overarching, and also able to accommodate a wide variety of techniques and methods, the

process of mapping a code to a new framework has impeded its adoption for new benchmark

development. Furthermore, despite its key focus on DL, neural networks, and a very customisable

framework, benchmarks or applications are not included by default and are left for the end user

to provide, as is support for reporting. The main limitation is the lack of a suite of representative

benchmarks.

4.2 RLBench

10

RLBench25 is a benchmark and learning environment featuring hundreds of unique, hand-crafted

tasks. The focus is on a set of tasks to evaluate new algorithmic developments around

reinforcement learning, imitation learning, multi-task learning, geometric computer vision, and in

particular, few-shot learning. The tasks are very specific and can be considered as building blocks

of large-scale applications. However, the environment currently lacks support for the classes of

benchmarking discussed above.

4.3 CORAL-2

The CORAL-226 benchmarks are computational problems relevant to a scientific domain or to data

science, and are typically backed by a community code. Vendors are then expected to evaluate

and optimize these codes to demonstrate the value of their proposed hardware in accelerating

computational science. This allows a vendor to rigorously demonstrate the performance

capabilities and characteristics of a proposed machine on a benchmark suite that should be

relevant for computational scientists. The ML and data science tools in CORAL-2 include a number

of ML techniques across two suites, namely, the big data analytics (BDAS) and DL suites (DLS).

Whereas the BDAS suite covers conventional ML techniques, such as principal components

analysis (PCA), k-means clustering, and support vector machines (SVM), the DLS suite relies on the

ImageNet20,21 and CANDLE32 benchmarks which are primarily used for testing scalability aspects

rather than purely focussing on the science. Similarly, the BDAS suite aims to exercise the memory

constraints (PCA), computing capabilities (SVM), and/or both these aspects (k-means) and is also

concerned with communication characteristics. Although these benchmarks are oriented at ML,

the constraints and benchmark targets are narrowly specified and emphasize scalability

capabilities. The overall coverage of science in the CORAL-2 benchmark suite is quite broad, but

the footprint of the ML techniques is limited to the BDAS and DLS suites and there is little focus on

scientific data distribution for algorithm improvement.

4.4 AI Bench

The AI Bench initiative is supported by the International Open Benchmark Council (Bench

Council)28. The Council is a non-profit international organization that aims to promote

11

standardizing, benchmarking, evaluating, and incubating Big Data, AI, and other emerging

technologies. The scope of AI Bench is very comprehensive and includes a broad range of internet

services, including search engines, social networks, and e-commerce. The underlying ML-specific

tasks in these areas include image classification, image generation, translation (image-to-text,

image-to-image, text-to-image, text-to text), object detection, text summarisation, advertising,

and natural language processing. The relevant datasets are open, and the primary metric is system

performance for a fixed target. One of the important components of the AI bench initiative is HPC

AI50033, a stand-alone benchmark suite for evaluating HPC systems running deep learning

workloads. The suite covers a number of representative scientific problems from various domains,

with each workload being a real-world scientific DL application such as Extreme Weather

Analysis33. The suite includes reference implementations, datasets and other relevant software

along with relevant metrics. This HPC ML suite compares best to the SciMLBench work discussed

below. The AI Bench environment also enforces some level of compliance for reporting ranking

information of hardware systems.

4.5 DawnBench

DawnBench27 is a benchmark suite for end-to-end DL training and inference. The end-to-end

aspect is ideal for application and system level benchmarking. Instead of focussing on model

accuracy, DawnBench provides common DL workloads for quantifying training time, training cost,

inference latency, and inference cost across different optimization strategies, model architectures,

software frameworks, clouds, and hardware. There are two key benchmarks in the suite – image

classification (using the ImageNet and CIFAR1034 datasets) and Natural Language Processing-based

Question Answering35 (based on the Stanford Question Answering Dataset or SQuAD35) that covers

both training and inference. DawnBench does not offer the notion of a framework and does not

have a focus on science. With key metrics around time and cost (for training and inference),

DawnBench is predominantly targeted towards end-to-end system and application performance.

Although the datasets are public and open, no distribution mechanisms have been adopted by

DawnBench.

12

4.6 Benchmarks from the MLCommons working groups

MLCommons is an international initiative aimed at improving all aspects of the ML landscape and

covers benchmarking, datasets, and best practices. The consortium has several working groups on

different focii for ML applications. Among these working groups, two are of interest here: HPC and

Science. The MLCommons HPC benchmark29 suite focuses on scientific applications that use ML,

and especially deep learning (DL) at HPC scale. The codes and data are specified in such a way that

execution of the benchmarks on supercomputers will help understand detailed aspects of system

performance. The focus is on performance characteristics particularly relevant to HPC applications

such as model-system interactions, optimization of the workload execution, and reducing

execution and throughput bottlenecks. The HPC orientation also drives this effort towards

exploration of benchmark scalability.

By contrast, the MLCommons Science benchmark36 suite focuses specifically on the application of

ML methods to scientific applications and includes application examples from several scientific

domains. The recently announced information on the science benchmarks at Supercomputing

2021 will spur improvements in defining data sets for advancing ML for science. The suite currently

lacks a supportive framework for running the benchmarks but, as with the rest of the MLCommons,

does enforce compliance for reporting of the results. The benchmarks cover the three areas of

benchmarking - science, application, and system.

4.7 SciMLBench

The Scientific Machine Learning Benchmark suite - or SciMLBench30 – is specifically focussed on

scientific ML and covers nearly every aspect of the cases discussed in the previous sections. A

detailed description of the SciMLBench initiative is described in the next section.

4.8 Other community initiatives

In addition to various efforts mentioned above, there are other efforts towards AI benchmarking

by specific research communities. Two examples are WeatherBench37 and MAELSTROM38 from the

weather and climate communities both of which have specific goals and include relevant data and

13

baseline techniques. However, these efforts are not full benchmark suites, and instead, are

engineered as individual benchmarks, ideally to be integrated as part of a suite.

Although community-based competitions, such as Kaggle31, can be seen as a benchmarking

activity, these competitions are do not have a coherent methodology or a controlled approach for

developing benchmarks. In particular, the competitions do not provide a framework for running

the benchmarks nor do they consider data distribution methods. Each competition is individually

constructed and relies on its own dataset, set of rules, and compliance metrics. The competitions

address concerns such as dataset curation, choice of metric, presentation of results and robustness

against overfitting, for example. Although such challenge competitions can provide a blueprint for

using ML technologies for specific research communities, the competitions are generally short-

lived and are therefore unlikely to deliver best practices or guidelines for the long-term.

5 The SciMLBench approach

The SciMLBench approach has been developed by the authors of this article, members of the

Scientific Machine Learning Group at the Rutherford Appleton Laboratory, in collaboration with

researchers at Oak Ridge National Laboratory and at the University of Virginia. Among all the

approaches reviewed above, only the SciMLBench benchmark suite attempts to address all of the

concerns discussed before. To the best of our knowledge, the SciMLBench approach is unique in

its versatility compared to the other approaches and its key focus is on scientific ML.

5.1 Core components

The SciMLBench has three components, namely:

• Benchmarks. The benchmarks are ML applications written in Python that perform a specific

scientific task. These applications are included by default and users are not required to find

or write their own applications. On the scale of micro-apps, mini-apps, and apps, these

codes are full-fledged applications. Each benchmark aims to solve a specific scientific

problem (such as those discussed earlier). The set of benchmarks are organised into specific

14

themes including DL focussed benchmarks, training or inference intensive benchmarks,

benchmarks emphasising uncertainty quantification, benchmarks focussing on specific

scientific problems (such as denoising19, non-linear dynamical systems5, physics-informed

neural networks5), and benchmarks focussing on surrogate modelling39. Although the

current set of benchmarks and their relevant datasets are all image based, the design of

SciMLBench does allow for datasets that are multimodal or include mixed types of data.

• Datasets. Each benchmark relies on one or more datasets which can be used, for example,

for training and/or inferencing. These datasets are open, task or domain specific, and

compliant with respect to the FAIR guidelines (Findable, Accessible, Interoperable and Re-

usable40). Since most of these datasets are large, they are hosted separately on one of the

laboratory servers (or mirrors) and are automatically or explicitly downloaded on demand.

• Framework. The framework serves two purposes. Firstly, at the user level, it facilitates an

easier approach to the actual benchmarking, logging, and reporting of the results.

Secondly, at the developer level, it provides a coherent application programming interfaces

(API) for unifying and simplifying the development of ML benchmarks.

The SciML framework is the basic fabric upon which the benchmarks are built. It is both extensible

and customizable and offers a set of APIs. These APIs enable easier development of benchmarks

based on this framework and are defined with layers of abstractions. Example APIs (and their

abstractions) are:

• The entry point for the framework to run the benchmark in training mode, abstracted to

all benchmark developers (scientists), requires API to follow a specific signature. If defined,

the benchmark can then be called to run in training mode. If this is undefined and the

benchmark is invoked in training mode, it will fail.

• The entry point for the framework to run the benchmark in inference mode, abstracted to

all benchmark developers (scientists), requires the API to follow a specific signature. If

defined, the benchmark can be called to run in inference mode. If this is undefined and the

benchmark is invoked in inference mode, it will fail.

15

• Control of Logging. APIs for logging of details are available at different granularities. At the

highest (abstraction) level, this can be simply the starting and stopping of logging. At the

fine-grained level, it can be controlling what is specifically being logged.

• Controlling the execution of benchmarks. These APIs are designed for advanced benchmark

developers to control aspects around the actual execution of benchmarks and would be

expected to be seldom used by scientists.

These APIs, in contrast to APIs from other frameworks, such as Deep500, are layered and are not

fine grained. In other words, APIs from the SciMLBench are abstracted enough for the

benchmarking process to be automated as much as possible instead of providing APIs for obtaining

fine-grained measurements, such as runtime or I/O or communication times. In fact, SciMLBench

retains these measurements and makes them available for detailed analysis, but the focus is on

science rather than on performance. In addition, these APIs are totally independent of the

application, whereas APIs in frameworks like Deep500 are intended to reflect the operational

semantics of the layers or operations of the neural networks.

The SciMLBench framework is architecture-independent, and the minimum system requirement

is determined by the specific benchmark. There is a built-in logging mechanism that captures all

potential system-level and benchmark-level outputs during execution, leaving end-users or

benchmark designers to decide the content and format of the report from these detailed logs. The

central component that links benchmarks, datasets, and the framework is the framework

configuration tool. The most attractive part of the framework is the possibility of simply using

existing codes as benchmarks with only a few API calls necessary to register the benchmarks.

Finally, the framework is designed with scalability in mind, so that benchmarks can be run on any

computer ranging from a single system to a large-scale supercomputer. This level of support is

essential even if the included benchmarks, in their own, are scalable.

16

5.2 Benchmarks and datasets

The currently released version of SciMLBench has three benchmarks with their associated

datasets. The benchmarks from this release represent scientific problems drawn from material

sciences and environmental sciences, namely:

• Diffuse Multiple Scattering (DMS_Structure). This benchmark uses ML for classifying the

structure of multi-phase materials from X-ray scattering patterns. More specifically, the ML

based approach enables automatic identification of phases. This application is particularly

useful for the material science community as diffuse multiple scattering allows investigation

of multi-phase materials from a single measurement – something not possible with standard

X-ray experiments. However, manual analysis of the data can be extremely laborious,

involving searching for patterns to identify important motifs (triple intersections) that allow

for inference of information. This is a multi-label classification problem (as opposed to a binary

classification problem as in the Cloud masking example discussed below). The benchmark

relies on a simulated dataset of size 8.6GB with three-channel images of resolution 487x195

pixels.

• Cloud Masking (SLSTR_Cloud). Given a set of satellite images, the challenge for this benchmark

to classify each pixel of each satellite image as either cloud or non-cloud (clear sky). This

problem is known as ‘cloud masking’ and is crucial for several important applications in earth

observation. In a conventional, non-ML setting, this task is typically performed using either

thresholding or Bayesian methods. The benchmark exercises DL and includes two datasets,

DS1-Cloud and DS2-Cloud, with sizes of 180GB and 1.2TB, respectively. The datasets contain

multi-spectral images with resolution of 2400 x 3000 pixels and 1200 x 1500 pixels.

• Electron Microscopy Image Denoising (EM_Denoise). This benchmark uses ML for removing

noise from electron microscopy images. This improves the signal to noise ratio of the image

and is often used as a precursor to more complex techniques such as surface reconstruction

or tomographic projections. Effective denoising can facilitate low-dose experiments in

producing images with a quality comparable that obtained in high-dose experiments.

Likewise, greater time resolution can also be achieved with the aid of effective image

denoising procedures. This benchmark exercises complex DL techniques on a simulated

17

dataset of size 5GB, consisting of 256x256 images covering noised and denoised (ground truth)

datasets.

The next release of the suite will include several more examples from various domains with large

datasets, such as a scanning electron tomography benchmark from material sciences, a benchmark

for quantifying damage to optical lenses in laser physics, and another denoising benchmark for

cryogenic electron microscopic images from the life sciences domain.

5.3 Benchmark focus

With the full-fledged capability of the framework to log all activities, and with a detailed set of

metrics, it is possible for the framework to collect a wide range of performance details that can

later be used for deciding the focus. For example, SciMLBench can be used for science

benchmarking (to improve scientific results through different ML approaches), application-level

benchmarking, and system-level benchmarking (gathering end-to-end performance including IO

and network performance). This is made possible thanks to the detailed logging mechanisms

within the framework. These logging mechanisms rely on various low-level details for gathering

system-specific aspects, such as memory, GPU or CPU usages. Furthermore, there are APIs are

available for logging all the way from very simple request of starting and stopping the logging

process to controlling what is specifically being logged, such as science-specific outputs or domain-

specific metrics. Since the logging process includes all relevant details (including the runtime or

the power and energy usage where permitted), the benchmark designer or developer is

responsible for deciding on the appropriate metric, depending on the context. For example, it is

possible for the developer to rely on a purely scientific metric or to specify a metric to quantify the

energy efficiency of the benchmark.

5.4 Benchmarking process

With the framework handling most of the complexity of collecting performance data, there is the

opportunity to cover a wide range of metrics (even retrospectively after the benchmarks have

been run) and have the ability to control the reporting and compliance through controlled runs.

However, it is worth noting that although the framework can support and collect a wide range of

18

runtime and science performance aspects, the choice is left to the user to decide the ultimate

metrics to be reported. For example, the performance data collected by the framework can be

used to generate a final figure of merit to compare different ML models or hardware systems for

the same problem. The benchmarks can be executed purely using the framework or using

containerised environments, such as Docker or Singularity. Although running benchmarks natively

using the framework is possible, native code execution on production systems is often challenging

and ends up demanding various dependencies. For these reasons, executing these benchmarks on

containerised environments is recommended on production, multi-node clusters. We have found

that the resulting container execution overheads are minimal.

5.5 Data curation and distribution

SciMLBench uses a carefully designed curation and distribution mechanism (a process illustrated

in Figure 2):

• Each benchmark has one or more associated datasets. These benchmark-dataset

associations are specified through a configuration tool which is not only framework

friendly, but also interpretable by scientists.

• As the scientific datasets are usually large, they are not maintained along with the code.

Instead, they are maintained in a separate object storage, whose exact locations are visible

to the benchmarking framework and to users.

• Users downloading benchmarks will only download the reference implementations (code)

and not the data. This enables fast downloading of the benchmarks and the framework.

Since not all datasets will be of interest to everyone, this approach prevents unnecessary

downloading of large datasets.

• The framework takes the responsibility for downloading datasets on demand or when the

user launches the benchmarking process.

In addition to these basic operational aspects, the benchmark datasets are stored in an object

storage to enable better resiliency and repair mechanisms compared to simple file storage. The

datasets are also mirrored in several locations to enable the framework to choose the data

19

source closest to the location of the user. The datasets are also regularly backed-up as they

constitute valuable digital assets.

5.6 Extensibility and coverage

The overall design of the SciMLBench supports several user scenarios: the ability to add new

benchmarks with little knowledge of the framework, ease-of-use, platform interoperability, and

ease of customization. The design relies on two API calls which are illustrated in the documentation

with a number of toy examples as well as some practical examples.

6 Conclusion

In this Perspective, we have highlighted the need for scientific ML benchmarks and explained how

they differ from conventional benchmarking initiatives. We have outlined the challenges in

developing a suite of useful scientific ML benchmarks. These challenges span a number of issues

ranging from the intended focus of the benchmarks and the benchmarking processes, to

challenges around actually developing a useful ML benchmark suite. A useful scientific ML suite

must therefore go beyond just providing a disparate collection of ML-based scientific applications.

The critical aspect here is to provide support for end users not only to be able to effectively use

the ML benchmarks, but also to enable them to develop new benchmarks and extend the suite for

their own purposes.

We overviewed a number of contemporary efforts for developing ML benchmarks of which only a

subset has a focus of ML for scientific applications. Almost none of these initiatives considers the

problem of the efficient distribution of large datasets. The majority of the approaches rely on

externally sourced datasets with the implicit assumption that users will take care of the data issues.

We discussed in more detail the SciMLBench initiative which includes a benchmark framework that

not only addresses the majority of these concerns but is also designed for easy extensibility.

The characteristics of these ML benchmark initiatives are summarised in Table 1 which shows

that the benchmarking community has several issues to address to ensure that the scientific

20

community is equipped with right set of tools to become more efficient in leveraging the use of

ML technologies in science.

Code availability: The relevant code for the benchmark suite can be found from GitHub at
https://github.com/stfc-sciml/sciml-bench

21

References
1. Sejnowski, T. J. The Deep Learning Revolution. (The MIT Press, 2018).
2. Hey, T., Butler, K., Jackson, S. & Thiyagalingam, J. Machine learning and big scientific data.

Philos. Transact. A Math. Phys. Eng. Sci. 378, 20190054 (2020).
3. Callaway, E. ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein

structures. Nature 588, 203—204 (2020).
4. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–

589 (2021).
5. Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: A deep

learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. J. Comput. Phys. 378, 686–707 (2019).

6. Greydanus, S., Dzamba, M. & Yosinski, J. Hamiltonian Neural Networks. in Advances in Neural
Information Processing Systems (eds. Wallach, H. et al.) vol. 32 (Curran Associates, Inc., 2019).

7. Butler, K., Le, M., Thiyagalingam, J. & Perring, T. Interpretable, calibrated neural networks for
analysis and understanding of inelastic neutron scattering data. J. Phys. Condens. Matter 33,
(2021).

8. Hartigan, J. A. & Wong, M. A. A k-means clustering algorithm. JSTOR Appl. Stat. 28, 100–108
(1979).

9. Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).
10. Baldi, P. Autoencoders, Unsupervised Learning, and Deep Architectures. in Proceedings of

ICML Workshop on Unsupervised and Transfer Learning (eds. Guyon, I., Dror, G., Lemaire, V.,
Taylor, G. & Silver, D.) vol. 27 37–49 (PMLR, 2012).

11. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction. (The MIT Press,
2018).

12. Dongarra, J. & Luszczek, P. HPC Challenge Benchmark. in Encyclopedia of Parallel
Computing (ed. Padua, D.) 844–850 (Springer US, 2011). doi:10.1007/978-0-387-09766-4_156.

13. Sakalis, C., Leonardsson, C., Kaxiras, S. & Ros, A. Splash-3: A properly synchronized
benchmark suite for contemporary research. in 2016 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS) 101–111 (2016).
doi:10.1109/ISPASS.2016.7482078.

14. Bailey, D. H. NAS Parallel Benchmarks. in Encyclopedia of Parallel Computing (ed. Padua,
D.) 1254–1259 (Springer US, 2011). doi:10.1007/978-0-387-09766-4_133.

15. Petitet, A., Whaley, R., Dongarra, J. & Cleary, A. HPL – a Portable Implementation of the
High-Performance Linpack Benchmark for Distributed-Memory Computers. (2008).

16. Dongarra, J. & Luszczek, P. TOP500. in Encyclopedia of Parallel Computing (ed. Padua, D.)
2055–2057 (Springer US, 2011). doi:10.1007/978-0-387-09766-4_157.

17. Henghes, B., Pettitt, C., Thiyagalingam, J., Hey, T. & Lahav, O. Benchmarking and
scalability of machine-learning methods for photometric redshift estimation. Mon. Not. R.
Astron. Soc. 505, 4847–4856 (2021).

18. Müller, A., Karathanasopoulos, N., Roth, C. C. & Mohr, D. Machine Learning Classifiers for
Surface Crack Detection in Fracture Experiments. Int. J. Mech. Sci. 209, 106698 (2021).

19. Ede, J. M. & Beanland, R. Improving electron micrograph signal-to-noise with an atrous
convolutional encoder-decoder. Ultramicroscopy 202, 18–25 (2019).

22

20. Deng, J. et al. ImageNet: A large-scale hierarchical image database. in 2009 IEEE
Conference on Computer Vision and Pattern Recognition 248–255 (2009).
doi:10.1109/CVPR.2009.5206848.

21. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet Classification with Deep
Convolutional Neural Networks. Commun ACM 60, 84–90 (2017).

22. HPL-AI Benchmark. https://hpl-ai.org/.
23. Müller, M., Whitney, B., Henschel, R. & Kumaran, K. SPEC Benchmarks. in Encyclopedia of

Parallel Computing (ed. Padua, D.) 1886–1893 (Springer US, 2011). doi:10.1007/978-0-387-
09766-4_370.

24. Ben-Nun, T. et al. A Modular Benchmarking Infrastructure for High-Performance and
Reproducible Deep Learning. in 2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS) 66–77 (2019). doi:10.1109/IPDPS.2019.00018.

25. James, S., Ma, Z., Rovick Arrojo, D. & Davison, A. J. RLBench: The Robot Learning
Benchmark & Learning Environment. IEEE Robot. Autom. Lett. (2020).

26. CORAL-2 Benchmarks. https://asc.llnl.gov/coral-2-benchmarks.
27. Coleman, C. A. et al. DAWNBench : An End-to-End Deep Learning Benchmark and

Competition. in (2017).
28. BenchCouncil AI Bench. https://www.benchcouncil.org/aibench/index.html.
29. MLCommons HPC Benchmark. https://mlcommons.org/en/groups/training-hpc/.
30. Thiyagalingam, J. et al. SciMLBench: A Benchmarking Suite for AI for Science,

https://github.com/stfc-sciml/sciml-bench, (2021).
31. Kaggle Competitions. https://www.kaggle.com/.
32. Wu, X. et al. Performance, Energy, and Scalability Analysis and Improvement of Parallel

Cancer Deep Learning CANDLE Benchmarks. in Proceedings of the 48th International
Conference on Parallel Processing (Association for Computing Machinery, 2019).
doi:10.1145/3337821.3337905.

33. Jiang, Z. et al. HPC AI500 V2.0: The Methodology, Tools, and Metrics for Benchmarking
HPC AI Systems. in 2021 IEEE International Conference on Cluster Computing (CLUSTER) 47–58
(2021). doi:10.1109/Cluster48925.2021.00022.

34. Krizhevsky, A., Nair, V. & Hinton, G. CIFAR-10 (Canadian Institute for Advanced Research).
35. Rajpurkar, P., Zhang, J., Lopyrev, K. & Liang, P. SQuAD: 100,000+ Questions for Machine

Comprehension of Text. in Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing 2383–2392 (Association for Computational Linguistics, 2016).
doi:10.18653/v1/D16-1264.

36. MLCommons Science. https://mlcommons.org/en/groups/research-science/.
37. Rasp, S. et al. WeatherBench: A Benchmark Data Set for Data-Driven Weather

Forecasting. J. Adv. Model. Earth Syst. 12, e2020MS002203 (2020).
38. The MAELSTROM Project. https://www.maelstrom-eurohpc.eu/.
39. Cai, L. et al. Surrogate models based on machine learning methods for parameter

estimation of left ventricular myocardium. R. Soc. Open Sci. 8, 201121 (2021).
40. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and

stewardship. Sci. Data 3, (2016).

23

Acknowledgements: We would like to thank Samuel Jackson, Kuangdai Leng, Keith Butler and Juri
Papay from the Scientific Machine Learning Research Group at the Rutherford Appleton
Laboratory, Junqi Yin and Aristeidis Tsaris from Oak Ridge National Laboratories, and the
MLCommons Science Working Group for valuable discussions. This work was supported by Wave
1 of The UKRI Strategic Priorities Fund under the EPSRC Grant EP/T001569/1, particularly the “AI
for Science” theme within that grant, by the Alan Turing Institute, and by the Benchmarking for AI
for Science at Exascale (BASE) project under the EPSRC Grant EP/V001310/1. This research also
used resources from the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science
User Facility supported under Contract DE-AC05-00OR22725 and from the Science and Technology
Facilities Council, particularly that of the PEARL AI Resource.

Author contributions: JT, MS, GF and TH conceptualised the idea of Scientific Benchmarking. JT
designed the SciMLBench framework, data architecture and conceptualised the overarching set of
features. TH has overseen the overall developmental efforts along with JT, MS and GF. All have
contributed towards the writing of the manuscript.

Competing interests
The authors declare no competing interests. Please edit as necessary. Note that the information
must be the same as in our manuscript tracking system.

Peer review information
Nature Reviews Physics thanks Tal Ben-Nun, Prasanna Balaprakash and the anonymous reviewer
for their contribution to the peer review of this work.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

24

Table 1: Overall assessment of various scientific machine learning benchmarking approaches. In
qualitatively assessing how far each approach addresses the concerns, we have indicated whether they
offer no support (none), or partial or questionable support (partial) or fully support the concern (full).

Benchmark Focus Process Challenges
Scientific Application System Metrics Framework Reporting Data Distribution Coverage Extensibility

Deep 500 None None Partial Full Full Partial None None None Partial
RL-Bench None Partial Partial Full None Partial Partial Partial Partial Partial
CORAL-2 (DLS/BDS) Partial Full Full Full Partial Partial None None Full None
AI-Bench + HPC AI500 Full Full Full Full None Full Partial Partial Partial Partial
DawnBench None Full Full Full None Partial None None None None
MLCommons-Science Full Full Partial Full None Partial Partial Partial Full Partial
SciML-Bench Full Full Full Full Full Partial Full Full Full Full
Community
competitions

Partial None None Partial None Partial Partial None Partial None

Figure 1: The notion of an machine learning (ML) benchmark and a benchmark suite. (a)
Elements of a scientific ML benchmark. (b) Building a scientific ML benchmark suite which
integrates different scientific ML benchmarks from various scientific disciplines.

25

Figure 2: Moving the benchmark datasets to the evaluation point. A benchmark has two
components: A code and the associated datasets. Whenever a user wants to use a benchmark,
the code component can easily be directly downloaded from the server. The data component,
however, requires careful delivery. The associated datasets are often too large for it to be possible
to download them from the server through direct download. Instead, they are pushed to the
object storage, where they are carefully curated and backed-up. This curated dataset is then pulled
on demand by the user when a benchmark that requires this dataset is to be used. Because exact
location of the dataset can lead to delays, these datasets are often mirrored and can also be made
available as part of Cloud environments. This way, the download location can be opted for by the
user (or automatically selected by the downloading component). The dotted lines imply that the
data can come from any of the locations and can be specified. The “pull” aspect means that the
data is downloaded on demand (i.e. pulled by the user). The push component means that the
dataset distribution is managed by a server or the framework.

	2.pdf
	Nature_Reviews_Physics_SciMLBenchmarks.pdf

