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Abstract

While traditional crystallographic representations of structure play an important

role in materials science, they are unsuitable for efficient machine learning. A range of

effective numerical descriptors have been developed for molecular and crystal structures.

We are interested in a special case, where distortions emerge relative to an ideal high-

symmetry parent structure. We demonstrate that irreducible representations form an

efficient basis for the featurisation of polyhedral deformations with respect to such an

aristotype. Applied to a dataset of 552 octahedra in ABO3 perovskite-type materials,

we use unsupervised machine learning with irreducible representation descriptors to

identify four distinct classes of behaviour, associated with predominately corner, edge,

face, and mixed connectivity between neighbouring octahedral units. Through this
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analysis, we identify SrCrO3 as a material with tuneable multiferroic behaviour. We

further show, through supervised machine learning, that thermally activated structural

distortions of CsPbI3 are well described by this approach.
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Introduction

Materials informatics has grown into a substantial field, supported by the surge in the de-

velopment of machine learning (ML) techniques.1–4 Although classical ML and deep neural

networks have shown success in fields such as image and natural language processing, their

efficiency for material structure inputs are still limited. The problem originates from the dif-

ficulty in encoding domain knowledge of material science onto ML training. In other words,

the crystallographic information stored in materials datasets is not fully used. To improve

this, intense efforts have been made to design efficient material representations to featurise

the high structural degrees of freedom into a compact size.2,5–7

Unless specially tailored ML models are used,8–10 a number of criteria exist for crystal

features. Firstly, a feature must not depend on the permutation of symmetry equivalent

atoms, because atomic indices are only defined for convenience and they have little physical

meaning.10 Secondly, it should not depend on the choice of the unit cell orientation, that is

it should not depend on translation or rotation of the axes. Lastly, it must have a suitable

size, with the optimal size depending on the problem of interest. If the target properties

are complicated, it will require more dimensions to describe it, whereas if the feature is

unnecessarily large, more data will be required to train the ML model due to the “curse

of dimensionality”.11 Additionally, physical transparency is favourable since it is becoming

possible to relate model predictions with the feature(s) responsible.12

Material structures would have been easier to represent if we were able to apply a filter to

smear atomistic properties in a mean-field manner. Although such coarse-graining has been

studied,13,14 it is often the case that the local structural properties of a material could induce

a non-negligible effect on macroscopic properties. For example, in the perovskite structure

type, slight displacement of B-site cation could induce both a local electric dipole, as well as

macroscopically observable ferroelectric behaviour.15,16 Another example in a recent study

revealed that for the spin-orbit coupling induced Dresselhaus effect, local inversion symmetry,

rather than the global crystal symmetry, is responsible.17 Other interesting phenomena such
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as Jahn-Teller distortions, orbital orderings, and magnetic disorders are known, and their

coexistence has been reported.18–20 Given this importance in local structure, many analysis

methods have been developed.

There are numerous ways of obtaining a structural feature including Voronoi decomposi-

tion, radial distribution functions, nearest neighbours, and electrostatic Ewald summation.21

Some efforts have been put into the development of calculating coordination numbers. Al-

though coordination number is an intuitive concept, several different approaches have been

suggested for a quantitative definition.22–25 One advanced method is to analyse the connec-

tivity of atoms and use the polygon created by the bonds to categorise the environment.26,27

Other methods such as Smooth Overlap of Atomic Positions (SOAP), Coulomb matrix,

Many-Body Tensor Representations (MBTR), or minimum bounding ellipsoid (MBE) has

been suggested, which are based on atomic positions and do not rely on knowledge of the

bonding network.28–31

Group theory serves as an important tool to interpret the underlying symmetry relations

of crystal structures.32–37 For example, Howard and Stokes exhausted the space groups ac-

cessible from cubic perovskites through rigid octahedral tilting.38 More recently, Wagner et

al. analysed density functional theory (DFT) results using a combination of group theory

and statistical correlation analysis and showed the efficacy of combining these techniques.39

Not only in theoretical analyses, but also in experiments, group theoretical techniques are

used to determine crystal structures, which is a challenging task in some cases, and therefore

being an actively developing research field.40

In this paper, we take advantage of established techniques in group theory and use them to

encode polyhedron shapes. In particular, we projected the distortions onto the basis vectors

of the irreducible representations (irreps) to obtain a physically intuitive decomposition of

the distortions. The obtained expression is atomic permutation invariant, axis invariant,

minimum length, and physically transparent, meeting all criteria for a suitable material

representation for training statistical models. Although our method is applicable to any
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type of polyhedron, we chose octahedra inside oxide perovskite-type materials as a model

system, as it is well studied.41–47 We show that our approach when applied to these classes

of materials, not only rediscovers intuitively understandable behaviour, but is also capable

of capturing trends that originate from subtle differences in an octahedral geometry.

Methodology

Feature vectors

Average inside the irreps

Project the distortions onto the
basis distortions

Distortions

Structure match and calculate
the difference

Create reference ideal
polyhedronScale target polyhedron

Basis
distortions

Calculate basis distortions

Calculate number of irreps

Calculate reducible
representations

Step 1. Basis distortion calculation Step 2. Projection to the basis distortions

Figure 1: Flowchart of featurisation process. The coordinates of the polyhedron are taken
as an input and the feature vectors are returned.

The overview of the featurisation process is schematically presented in Figure 1. The

process is largely split into two parts: the basis distortion calculation and the projection

of the distortions onto the basis. In the first step, basis distortions corresponding to the

irreps are computed using group theoretical techniques. Next, the distortions of the target

polyhedra are calculated with respect to the ideal aristotype polyhedron and the distortions

are projected onto the basis distortions calculated in the previous step. The explicit isolation
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of the first step allows it to be pre-computed, thus minimising the overall computational cost

when applied to large datasets.

Basis distortion calculation

x

z
y

T2g T1u T2uEg

A1gRotation (T1g) Translation (T1u)

Figure 2: Basis set distortions for the irreducible representations of a six atom octahedron
as found in a cubic perovskite. For multi-dimensional irreducible representations, only one
distortion is shown. For the actual projection, we have used the four distortions presented
in the bottom row. The full list is presented in Figure S1 and S2.

The first goal is to calculate complete and orthogonal basis distortions (basis vectors) of

the irreps. The irreps fulfill the “great orthogonality theorem”,48

∑
R

Γ(i)(R)µνΓ
(j)(R)αβ =

h

li
δijδµαδνβ. (1)

Here, Γ(i)(R)µν is a µ, ν matrix element of operator R in the irrep i, h is number of group

elements, and li is the dimensionality of Γ(i). We cannot directly use this, however, because

the specific elements of Γ are unknown a priori. Therefore, throughout the section, we make
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Figure 3: Illustration of how amplitudes are averaged within a multi-dimensional irreducible
representation. (a) a two-dimensional irreducible representation (Eg), (b) three-dimensional
irreducible representations (T2g, T1u and T2u).

use of their trace or their character, which are readily available from standard character

tables. We will use the six-atom octahedron geometry as an example, but our method is

applicable to all symmetric coordination environments. The notation follows Ref 48.

Firstly, we need to calculate 18-dimensional reducible representations, which is a direct

product between a six-dimensional atomic site and three-dimensional vector representations.

The three-dimensional representations Γ̃(3)(R) (tilde indicating a reducible representation)

are readily available from previous studies, in which we have adopted them from the phonopy

package.49 On the other hand, six-dimensional representations Γ̃(6)(R) depend on specific

problems, therefore we have calculated them by applying three-dimensional representation

Γ̃(3)(R) to atomic coordinates and keeping track which atoms transformed to which atomic

sites. The final 18-dimensional representations Γ̃(18)(R) were constructed by taking a tensor

product between three and six-dimensional representation Γ̃(3)(R)⊗ Γ̃(6)(R).

Secondly, we calculate the number of irreps hidden within the 18-dimensional reducible
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representation Γ̃(18)(R). To do this, we use the following equation,

∑
R

χ(i)(R)χ(j)(R) =
h

li
δij (2)

Here χ(i) is a character of irrep Γ(i), which is calculated by taking a trace. Although this

relation is simply derived by taking the trace of Eqn. 1, it is useful in our case, since it

does not require knowledge of specific elements of irreps, while the characters are known

(Table S1). Since, χ̃(18)(R) =
∑

i aiχ
(i)(R) where ai is the number of irrep i in 18-dimensional

representation, equation 2 could extract ai. The calculated result for an octahedron is shown

in Table 1. We can see that there are one A (one-dimensional), one E (two-dimensional),

and four T’s (three-dimensional), which add up to the 18 total degrees of freedom in the

system.

Table 1: Number of irreducible representations in 18-dimensional reducible representation
in Oh symmetry.

A1g A2g Eg T1g T2g A1u A2u Eu T1u T2u

1 0 1 1 1 0 0 0 2 1

Finally, we calculated the basis vectors. To do so, we have used the “basis-function

generating machine”,48 which is defined as

P(i)
λκ :=

li
h

∑
R

Γ(i)(R)λκPR, (3)

where PR is the projection operator of symmetry operator R. The useful property of P is

that when it is operated on an arbitrary function

F :=
∑
i

li∑
κ

f (i)
κ , (4)
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it could take out f (i)
κ , the κ-th element within irrep i of the function F

P(i)
κκF = f (i)

κ . (5)

Again, a problem arises due to a lack of knowledge on Γ(i)(R). Analogously to the relation

between equation 1 and 2, there is a slightly restricted version,50 which is

P(i) :=
li
h

∑
R

χ(i)(R)PR (6)

P(i)F =
∑
κ

f (i)
κ . (7)

The difference is that we could only resolve up to an irrep and components inside an irrep κ

remains degenerate. Our approach for deciding the basis set inside multi-dimensional irreps

was to generate arbitrary vectors within an irrep and use Gram-Schmidt orthogonalisation

to decompose them into orthogonal basis vectors.

Specifically, for each irrep within Table 1, we arbitrarily chose a vector residing on an

atom and subsequently applied all the symmetry operators and multiplied the character

corresponding to the irrep. The projected results were then added, which resulted in a

basis set, as in equation 6. This step was repeated three times with unit vectors in x, y,

and z directions. Although the number of trial initial vectors is arbitrary, this choice is the

minimum number required to generate all irreps. We then removed duplicates, zero vectors,

and further applied Gram-Schmidt orthogonalisation,

ψ(i)
κ = ψ′(i) −

li∑
λ 6=κ

(ψ′(i) · ψ(i)
λ )ψ

(i)
λ , (8)

where ψ′(i) is an unorthogonalised vector residing in irrep i, and λ runs over other basis set

within irrep i that is not κ. Lastly, we have normalised the vectors such that their inner

product with themselves equal unity.
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Although this method is systematic, one arbitrary choice is the initial vectors for equa-

tion 6. In principle, we could use three unit vectors in different directions and still obtain

irrep. We will later show that we decided to average over dimensions, and such averaging

is necessary even if we have used the full basis set generating machine in Eqn. 3. Following

this procedure produces a complete and orthogonal basis set for the irreps which describe

all the possible displacement of atoms in an octahedron. The representative distortions are

presented in Figure 2 (full list in Figure S1 and S2).

Projection to the basis distortions

The projection of an arbitrary structure on this basis set was performed in three steps:

normalisation, structure matching, and distortion amplitude averaging.

If we simply project two distorted octahedra with the same shape but different sizes, we

will obtain different distortion amplitudes. This is not favourable in the context of analysing

the shape of the octahedra. Therefore, some kind of normalisation of the input octahedron

is necessary. Our approach was to scale the distorted octahedron such that the average bond

length is 1.0 Å and obtain the distortion vector by comparing it against the ideal octahedron

with a bonding length of 1.0 Å. By applying this scaling, the resulting distortion amplitudes

for octahedra of the same shape, but different sizes became identical.

Although our method is permutation invariant, practically, we have to label atoms within

the code. Therefore, to calculate the distortions the atomic indices of the distorted and the

ideal octahedron must be matched. This structure matching requires O(N !) computational

cost, if calculated rigorously by brute-force algorithm, but we found that this is too slow for

high-throughput applications. To make the computational cost feasible, we employed the

Hungarian algorithm, as implemented in the pymatgen package.51,52 We confirmed that this

algorithm works well in perovskites and perovskite-related materials, which typically have

well-defined octahedra, however, for geometry with large variation in bonding length, brute

force algorithms are likely to be favoured. After matching the structure, the distortion vectors
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were calculated and were projected onto basis vectors presented in Figure 2. Furthermore,

we have validated the quality of this basis by reconstructing the original distortion from the

projection and confirmed that the error is negligible (Figure S3).

It is tempting to use the amplitudes we have obtained above directly, however, the raw val-

ues encompass the aforementioned arbitrariness within the multi-dimensional irreps, which

originates from the usage of equation 6 rather than equation 3. Taking a closer look, the

choice of basis vectors within a single irrep follows a rotational group or special orthogonal

group. Since, the actual configuration of an input octahedron inside a crystal may be rotated

in any possible direction, even if we have used the full basis set generating machine (Eqn. 3),

the resulting amplitudes of the basis vectors would have had a dependence on the choice

of the axis. For example, if the T1u distortion in Figure 2 is rotated 90◦ about the x axis,

the amplitude obtained by projection onto the original T1u distortion and the transformed

T1u will be different. This situation is encountered in all the distortions except for A1g,

which has no multiplicity and is thus rotational invariant. Therefore, the arbitrariness due

to a dependence of rotation is a problem that exists regardless of whether or not we use

equation 6. Since one of the purposes of this analysis is to obtain ML-friendly features,

rotational variance is not favourable, especially because for a typical ML model, learning a

permutation is a challenging task.53

Our approach was to use the total length spanned by vectors within the irreps. As shown

in Figure 3, we have calculated the length of the vectors in two- or three-dimensional space

using the Euclidean norm,

Φ(i) =

√∑
κ

ψ
(i)
κ · ψ(i)

κ . (9)

Here the summation is over the dimension inside irrep (i). Just like the Euclidean distance

of a given point from the origin remains the same under rotations about the origin, this

expression is invariant under any orthogonal transform. Another interpretation of this ap-

proach is that we are rotating the axis in Figure 3, so that one of the axes is aligned with
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the amplitude vector and then reading the value off that axis.

Through the above procedures, we were able to obtain a scalar value for each irrep for

any distorted octahedron. Lastly, translation, rotation, and scaling distortions (A1g) were

discarded, since they do not have information regarding the shape of the octahedron. We

note that it is possible to encode information such as rigid shifting, rigid tilting or octahedron

size into these irreps, but it will require modification to the structure matching procedure

and are likely to introduce additional complexity in the algorithms. Therefore, we report

four scalar values each corresponding to Eg, T2g, T1u, and T2u for rest of the work.

Lastly, it is worth mentioning about extension to other polyhedra. One of the simpler, but

yet often encountered geometry in materials science is the tetrahedron. Since a tetrahedron

has four vertices, the total degrees of freedom will be 12, of which seven belong to translation,

rotation, and scaling distortions. The remaining five are E and T2 distortions, which are

averaged within the irrep and used as a feature. In this case, the feature may be too small to

be used to train an ML model solely, but at the same time, this indicates that the variation in

the shape of a tetrahedron is residing in much smaller dimensions compared to the case of an

octahedron. Another abundant geometry is cuboctahedron, which is seen for example in the

A-site of perovskites. The total degree of freedom is 36 and removing translation, rotation,

and scaling distortions will retain: A2g, two Eg, T1g, two T2g, A2u, Eu, two T1u, and two T1u

distortions. Depending on the application, this dimensionality may be directly used to train

ML models, but in practice, if the analysis is restricted to certain classes of materials, we

speculate that some of the distortions would not be present and could be removed by using

feature selection techniques, such as k highest score.54

Dataset processing

To apply the projection, we have obtained 46,048 materials from the Materials Project

database (accessed on 27/06/2020) through the API in the pymatgen package.52,55,56 We

then applied the CrystalNN algorithm to obtain coordination number and environment for
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all the atomic sites. We have selected ABO3 stoichiometry materials containing six-fold

coordinated cations. In theory, there may be six-fold coordinated atomic sites without

an octahedron geometry, but we did not observe such a case within our curated dataset.

For materials containing multiple symmetry inequivalent octahedra, we have detected them

according to their Wyckoff positions with the spglib library.57 The inequivalent sites were

treated as independent data, which resulted in 552 distinct octahedra in total. For a given

composition, there are multiple structures and we have not explicitly taken into account their

thermodynamic stability. Therefore, our analysis contains structures that may not have been

synthesised to date, but represent local minima on DFT potential energy landscapes.

Density functional theory calculations

Although we have largely applied the method to openly available from the Materials Project

database,52,55,56 for validation we performed some calculations with stricter conditions. The

plane-wave DFT calculations within projector-augmented wave scheme were performed using

the VASP.58–60 The input file was automatically generated via VISE package,61 resulting in

cut-off energy of 520 eV and the reciprocal space sampling of at least 2π×0.05 Å−1. Using the

structures in theMaterials Project as an initial input, the cell size and the atomic coordinates

were fully relaxed using HSE06 exchange-correlation functional.62,63 The visualisation of

structures was done using VESTA.64

Predicting potential energy

To demonstrate applicability of our featurisation procedure towards supervised machine

learning of materials, we trained an ML model to predict potential energy generated by Born-

Oppenheimer molecular dynamics (BOMD) of CsPbI3. The unit cell was expanded into a 2×

2×2 pseudo-cubic supercell following previous studies.65,66 Using VASP, 300K NVT ensemble

calculation was computed with cut-off energy of 400 eV, the reciprocal space sampling of

3× 3× 3, the time step of 0.4 fs and with PBEsol exchange-correlation functional.62,67 The
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system was equilibrated for 15,000 steps and a production run was performed for 39,000

steps with sampling taken every 50 steps, which resulted in 780 data points.

For each snapshot, octahedral distortions were featurised, normalised with robust scaler,

and shuffled randomly. The preprocessed features were fed into support vector regression

(SVR), as implemented in the scikit-learn library, and trained to predict the potential en-

ergy.54 For the kernel, the radial basis function (RBF) kernel was employed. Five-fold

cross-validation was used to optimise hyperparameters resulting in kernel coefficient γ of 0.1

and regularization parameter (variable C in scikit-learn) of 1.0.

Results and discussion

Projection onto normal distortions

Uncommmon space groups
Common space groups

Eg T2g T1u T2u
Distortions
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Figure 4: Distortion amplitudes for 552 ABO3 octahedra from 492 materials. The blue and
red shading refers to materials that belong or do not belong to the common space groups
for distorted corner-sharing perovskites, respectively.

The distribution of distortion amplitudes for all 552 materials is presented in Figure 4.

The materials are categorised by whether or not they belong to the common corner-shared

perovskite space group (cubic Pm3m, tetragonal P4mm, tetragonal P4/mmm, tetrago-
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nal P4/mbm, tetragonal I4/mcm, orthorhombic Pnma, orthorhombic Amm2, orthorhom-

bic Cmcm, monoclinic P21/m, rhombohedral R3m, rhombohedral R3c, and rhombohedral

R3c).38 The number of materials in common and uncommon space groups were 443 and 109,

respectively. From Figure 4, differences in the distributions are clearly noticeable for the

two classes of materials. For the common space groups, the vast majority had little or no

distortion and the number of materials decay monotonically with increasing amplitudes. In

contrast, for less common space groups, the distribution exhibited a wider spread and the

larger portion of materials had larger amplitudes. Additional peaks are clearly seen for T2g

and T1u around 0.075 and 0.100, respectively. Accounting for the fact that there were no

clear chemical trends (Figure S4∼S7), this result suggests a strong relationship between the

crystal structure and the local distortions of the octahedra.

Connectivity analysis
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Figure 5: Relation between T1u distortion against the T2g distortion. Each point represents
an octahedron site and is coloured according to its connectivity with other octahedra. Blue
points are connected with via six corner-sharing (6 C-sharing), orange points are connected
with via three edge-sharing (3 E-sharing), red points are connected with via three corner-
sharing and one face-sharing (3 C-sharing and 1 F-sharing), and green points are connected
with via two face-sharing (2 F-sharing).
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Figure 6: Structures of (a) cubic SrTiO3, (b) rhombohedral GeTiO3, and (c) hexagonal
BaVO3. Octahedra are composed of TiO6, TiO6, and VO6, respectively. Distinct Wyckoff
positions are labelled by A to E.

To analyse the underlying material trends in more detail, we have plotted the T1u dis-

tortion against the T2g distortion and categorised each site according to their connectivity

with neighbouring octahedra (Figure 5). The connectivity was obtained by counting how

many oxygen atoms are shared with neighbouring octahedra, accounting for periodic bound-

ary conditions. The four connectivities in Figure 5 are: six corner-sharing (6 C-sharing,

A and C in Figure 6), three edge-sharing (3 E-sharing, B in Figure 6), two face-sharing (2

F-sharing, E in Figure 6), and three corner-sharing and one face-sharing (3 C-sharing and 1

F-sharing, D in Figure 6).

A cluster of distortion amplitudes are distinguishable about (T2g,T1u) = (0.075,0.100).

Two interesting observations could be made from this clustering. The first is that T1u dis-

tortion amplitude of over 0.05 is only present in this cluster. This suggests that the large

amplitude of T1u distortions could only exist when T2g distortions coexist. The behaviour is

analogous to improper ferroelectrics where the coexistence of two distortions creates a ferro-

electric distortion.68–70 Secondly, this cluster is composed mostly of three corner-sharing and

one face-sharing connectivity. This type of octahedral connectivity is realised in hexagonal

perovskite polytypes where a 1D chain of face-sharing octahedra terminates as in Figure 6(c).
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Accounting for the fact that three corner-sharing and one face-sharing octahedron were not

seen outside of this cluster, this result indicates that hexagonal phases could support distor-

tions much larger than that seen in corner-shared perovskites. The one fully-point-shared

outlier in the cluster was BiFeO3, which exhibited an unusually large distortion. The

possible origin of the large distortion is the steroechemical activity of the Bi lone pair, as

suggested by previous studies.71–73

Outside of this cluster, the T1u distortion was generally small. Most of the fully corner-

shared octahedra and fully edge-sharing octahedra possess an ideal structure, which made

the data points to be scattered around the zero amplitude point. Two face-sharing octahedra

interestingly, had a very large T2g distortion but lacked T1u. Since this connectivity occurs

in the middle of a 1D chain in hexagonal phases as in site E in Figure 6, the uniaxial strain

due to being sandwiched by neighbouring octahedra is likely to have caused the compression

of the octahedron.

Clustering analysis
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Figure 7: The clustering of different octahedron connectivity plotted on the dimensionally
reduced axis was obtained through t-distributed stochastic neighbour embedding (t-SNE).
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Up to here, we have made discussions based on the trends in Figure 5, however, such a

discussion may be overlooking trends in higher dimensions. Therefore, we performed dimen-

sionality reduction analysis to understand the clustering of different octahedral connectivities

in higher dimensions. We employed t-distributed stochastic neighbor embedding (t-SNE) to

perform nonlinear reduction from four to two dimensions.74,75 The result is shown in Fig-

ure 7. Different octahedral connectivities are clearly separated. This result is fortuitous

since it indicates that the shape of octahedra is largely determined by their connectivities

with neighbouring octahedra. In other words, a geometrical network of bonds dominantly

determines the shape of the octahedra rather than the chemical property of individual bonds.

The two fully corner sharing (6 C-sharing) outliers near the face sharing (2 F-sharing) cluster

were TeCoO3 and TeMnO3 (filed as CoTeO3 and MnTeO3 in the Materials Project, respec-

tively). The large distortions in these materials are realised by covalent interaction between

tellurium and oxygen and due to strong tellurium lone pairs.76 BiFeO3 seen in Figure 5 also

appears again as an outlier within 3 C-sharing and 1 F-sharing cluster.

We next perform a clustering analysis in the full four-dimensional space to see if there

is additional information to be obtained. The multi-dimensional clustering was analysed

by a Gaussian mixture model (GMM).75 GMM requires a number of clusters to be set

a priori, therefore, we calculated the minimum number of clusters needed to account for

the data using the information criteria analysis and selected nine clusters to be adequate

(Figure S12). The obtained nine clusters are presented in Figure 8 (plot against all axes

are shown in Figure S13). It should be noted that in GMM, a data point could only belong

to a single cluster. In Figure 8(a), a clear ellipsoid of cluster 0 can be distinguished. This

cluster corresponds to the three corner-sharing and one face-sharing in Figure 5 at (T2g,T1u)

= (0.075,0.100). A closer look reveals that there is a subset of materials within the ellipsoid

that belong to cluster 5. Their difference is not distinguishable from Figure 8(a), but plotting

against the T2u distortion axis in Figure 8(b) reveals that cluster 5 is displaced from cluster

0 in the T2u distortion axis. Cluster 0 had no T2u distortions, whereas cluster 5 had about
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Figure 8: Clusters obtained by a Gaussian mixture model shown in the axis of (a) T2g and
T1u, and (b) T2g and T2u. The dots are coloured differently depending on which of the seven
different clusters the point belongs to. The shading shows the extent of the multivariate
Gaussian distribution defined for each cluster.
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0.02 T2u distortion. This separation is not trivial from Figure 5 and highlights the value

of clustering analysis in the high dimensional space. We will discuss specific constituent

materials of cluster 5 next.

Analysis of specific materials

c

ab

(a) (b) (c)

Figure 9: Structure of BaTiO3 in (a) C2221 and (b) P63/mmc phase. (c) The atomic
displacement to transform from C2221 to P63/mmc. The blue, green, and red spheres are
Ba, Ti, and O atoms respectively. The blue shading represents the TiO6 octahedron.

Cluster 5 in Figure 8 is mainly composed of BaTiO3 and different polymorphs of SrCrO3.

We find that the distortions in BaTiO3 were typical for hexagonal phases. Within our

dataset, there were two polymorphs of hexagonal BaTiO3, the C2221 phase and the P63/mmc

(Figure 9 (a) and (b), respectively). Experimentally, the C2221 is stable in the range of about

70∼220 K, where it transforms into the P63/mmc phase at 220K.77,78 The low temperature

C2221 phase has the T2u distortions, but they are averaged out and are absent in the high

temperature P63/mmc phase. The structural difference between the C2222 and the P63/mmc

phase is presented in Figure 9(c).

To confirm whether the absence of the T2u distortions in other ABO3 is due to the lack
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Figure 10: Structures of different SrCrO3 polymorphs. The details are summarised in Table
S2.
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Table 2: Calculated relative stability (DFT/HSE06) of the low temperature C2221 phase
compared to the high temperature P63/mmc (see illustration in Fig. 9).

Compound EP63/mmc − EC2221 (meV/atom)
CaTiO3 18.61
CaCrO3 61.56
CaMnO3 30.08
SrTiO3 3.88
SrCrO3 -16.11
SrMnO3 5.18
BaTiO3 0.72
BaVO3 37.31
BaCrO3 -6.29
BaMnO3 10.34
BaRuO3 -1.11
BaRhO3 4.68

of data or due to different phase stability, we have compared the energies of P63/mmc and

the C2221 phases in 11 additional compounds (Table 2). We found that in most compounds

C2221 phase was stable suggesting it to be the lower temperature phase, thus showing that

the BaTiO3 with finite T2u is not exceptional, but rather a property of hexagonal phase

materials. The exceptions were SrCrO3, BaCrO3, and BaRuO3. The energy difference in

BaCrO3, and BaRuO3 were subtle, but SrCrO3 had clearly higher stability of the P63/mmc

phase.

SrCrO3 is an interesting case that has an interplay of metallicity, ferroelectricity and

magnetic order. In cubic SrCrO3, there have been reports on multiferroicity, which are

induced by orbital ordering.20,79,80 Since this material has been suggested to be internally

strained,81 we believe this is the reason for the distinct distortion behaviour of this mate-

rial. For hexagonal polytypes of SrCrO3 (Figure 10), which have not been reported to the

best of our knowledge, we note that the formation energy predicted by DFT is smaller than

the known cubic phase (Table S2) which suggests that they should be accessible. Inter-

estingly, within the hexagonal phases, the Ama2 phases (Figure 10(a), (b), and (c)) were

calculated to be metallic, whereas P63/mmc phases (Figure 10(e) and (f)) were insulators

(Table S2). For polymorphs without a band gap, we have confirmed their metallicity with

22



our DFT/HSE06 calculations. Since, the ratio of corner-shared and face-shared connectiv-

ities could be controlled by the stacking sequence, we speculate that through the tuning

of the polytype order, metallicity/insulating, ferroelectricity/paraelectricity, and ferromag-

netic/paramagnetic behaviour could be accessed. Furthermore, like orbital ordering observed

for the cubic phase, coupling of different behaviours are also expected here.

Application to supervised learning

Figure 11: (a) Pseudo-cubic CsPbI3 2 × 2 × 2 supercell used for the molecular dynamics
simulation. The grey octahedra with purple vertices are PbI6 and the teal spheres are Cs.
(b) Comparison between the dataset and the support vector regression prediction of the
potential energy test data.

In addition to the material discovery problem demonstrated above, our featurisation

method could also be applied to thermodynamic problems. We generated a dataset of

potential energy for snapshots obtained from the BOMD calculation of CsPbI3, and used
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it to train an SVR model. We have chosen potential energy as it only depends on atomic

coordinate and serves as a good benchmark to assess the capability of capturing thermally

induced lattice distortions. The featurisation procedure was the same as above, except we

also make the use of A1g distortions relative to the 0 K geometry optimised structure. Since

there were eight octahedra in the calculation cell as shown in Figure 11(a), the dimensionality

of the feature was 40. This is a good example of a case where the scaling distortion could

be used to incorporate the domain knowledge of the problem. Figure 11(b) shows the SVR

prediction of the test data with the zero of the energy set to be the average potential energy

during the BOMD simulation (raw values shown in Figure S15). The r2 and mean absolute

error for the test (training) data was 0.956 (0.989) and 31.2 meV (18.2 meV), respectively.

The high accuracy is notable considering the model contains no explicit information regarding

the atomic positions of Cs and Pb. We believe that since Pb and Cs are heavier, the

displacement is smaller and thus the change in the inter-atomic distances could dominantly

be taken into account by considering I. Since this is finite temperature calculation, given

a configuration of I, there are numerous possible positions of Cs and Pb, so such a degree

of freedom is likely to be a reason for some outliers seen in Figure 11(b). We therefore

expect increasing error with temperature. This result shows the efficiency of the featurisation

method towards supervised learning.

Discussion on other applications

Comparing our method to other types of local structural featurisation, conventional methods

that incorporate basis set expansion of the local environment will capture a wider variety

of environments and may be better suited for training general purpose machine-learned

force-fields that could describe solid-liquid transitions for example. In contrast to their

generality, these types of expansions typically have orders of magnitude larger feature size,

∼1000 for SOAP,82 which require significant data and training time. Furthermore, in such

high dimensional methods, the features are not guaranteed to correspond directly with the
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displacement of atoms and thus may obstruct analyses based on conventional symmetry

arguments.82 Our approach will have an advantage in encoding polyhedral distortions in

cases where the dataset size is not large enough to train general featurisation techniques. A

similar discussion holds when compared with graph neural networks, where our method has

an advantage in smaller datasets.83

Like other approaches, our method is best suited for encoding local properties, but there

are often cases where one wants to treat global properties. If the number of polyhedron sites

is fixed throughout the dataset, the features could be used directly, like in the BOMD analysis

above. A problem occurs when a dataset includes a variable number of polyhedron sites,

and in cases where the analysis method only accepts fixed-size input. The simplest solution

is to use sum or average pooling. The choice between these two could be made by whether

or not the property of the interest is intensive or extensive nature.8 The use of recurrent

neural network based methods such as set2set could further improve the performance.10

Conclusion

We have shown that using a group theoric approach, distortions in polyhedra can be encoded

into a small vector. As a case study, we have shown their efficacy towards representing

the structures of ABO3 stoichiometry oxides. In addition to recovering intuitively under-

standable trends, we presented the close relations between octahedra connectivity and their

distortions, which are likely to be smeared out by some of the conventional analyses. As a

co-product, we were able to find SrCrO3, which contained a rich variety of ferroic behaviours.

We further showed that it is capable of predicting the potential energy of CsPbI3 accurately

with supervised machine learning. All of these analyses were performed solely on the in-

formation of the structures and additional information such as thermodynamic stability and

electronic structure will likely elucidate additional trends. We emphasise that this method

is not exclusive and synergistic effects are expected when combined with other featurisation

25



techniques. Finally, the results of this study are based on simple dimensional analysis with

the potential for further improvements using more sophisticated non-linear approaches such

as deep neural networks. We expect that these developments will open a path to more

accurate ML models and support further materials discoveries.

Acknowledgement

We thank funding support from Yoshida Scholarship Foundation, Japan Student Services Or-

ganization, and Centre for Doctoral Training on Theory and Simulation of Materials at Impe-

rial College London funded by the EPSRC (EP/L015579/1). Via our membership of the UK’s

HEC Materials Chemistry Consortium, which is funded by EPSRC (EP/R029431), this work

used the ARCHER2 UK National Supercomputing Service (http://www.archer2.ac.uk).

Supporting Information Available

Supporting Information Available: Detailed results on distortion analyses and density func-

tional theory calculations omitted in the main text. This material is available free of charge

via the Internet at http://pubs.acs.org.

The code to perform the polyhedron analysis proposed in this study is freely available

from https://github.com/KazMorita/polyhedron_distortion (latest version) or https:

//doi.org/10.5281/zenodo.5255356 (archived version).

References

(1) Alom, M. Z.; Taha, T. M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M. S.; Es-

esn, B. C. V.; Awwal, A. A. S.; Asari, V. K. The History Began from Alexnet: A Com-

prehensive Survey on Deep Learning Approaches. 2018, arXiv:1803.01164. arXiv.org

e-Print archive. https://arxiv.org/abs/1803.01164, (accessed December 14, 2021).

26



(2) Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine Learning

for Molecular and Materials Science. Nature 2018, 559, 547–555.

(3) de Pablo, J. J. et al. New Frontiers for the Materials Genome Initiative. npj Comput.

Mater. 2019, 5, 41.

(4) Horton, M. K.; Dwaraknath, S.; Persson, K. A. Promises and Perils of Computational

Materials Databases. Nat. Comp. Sci. 2021, 1, 3–5.

(5) Saal, J. E.; Oliynyk, A. O.; Meredig, B. Machine Learning in Materials Discovery: Con-

firmed Predictions and Their Underlying Approaches. Annu. Rev. Mater. Res. 2020,

50, 49–69.

(6) Musil, F.; Grisafi, A.; Bartók, A. P.; Ortner, C.; Csányi, G.; Ceriotti, M. Physics-

Inspired Structural Representations for Molecules and Materials. Chem. Rev. 2021,

121, 9759–9815.

(7) George, J.; Hautier, G. Chemist versus Machine: Traditional Knowledge Versus Ma-

chine Learning Techniques. Trends Chem. 2021, 3, 86–95.

(8) Xie, T.; Grossman, J. C. Crystal Graph Convolutional Neural Networks for an Accurate

and Interpretable Prediction of Material Properties. Phys. Rev. Lett. 2018, 120, 145301.

(9) Schütt, K. T.; Sauceda, H. E.; Kindermans, P.-J.; Tkatchenko, A.; Müller, K.-R. Schnet

– A Deep Learning Architecture for Molecules and Materials. J. Chem. Phys. 2018,

148, 241722.

(10) Chen, C.; Ye, W.; Zuo, Y.; Zheng, C.; Ong, S. P. Graph Networks as a Universal

Machine Learning Framework for Molecules and Crystals. Chem. Mater. 2019, 31,

3564–3572.

(11) Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning ; MIT press, 2016.

27



(12) Morita, K.; Davies, D. W.; Butler, K. T.; Walsh, A. Modeling the Dielectric Constants

of Crystals Using Machine Learning. J. Chem. Phys. 2020, 153, 024503.

(13) Davies, D.; Butler, K.; Jackson, A.; Skelton, J.; Morita, K.; Walsh, A. Smact: Semi-

conducting Materials by Analogy and Chemical Theory. JOSS 2019, 4, 1361.

(14) Goodall, R. E. A.; Parackal, A. S.; Faber, F. A.; Armiento, R.; Lee, A. A. Rapid Dis-

covery of Novel Materials by Coordinate-free Coarse Graining. 2021, arXiv:2106.11132.

arXiv.org e-Print archive. https://arxiv.org/abs/2106.11132, (accessed December

14, 2021).

(15) Martin, L. W.; Rappe, A. M. Thin-Film Ferroelectric Materials and Their Applications.

Nat. Rev. Mater. 2016, 2, 16087.

(16) Smith, M. B.; Page, K.; Siegrist, T.; Redmond, P. L.; Walter, E. C.; Seshadri, R.;

Brus, L. E.; Steigerwald, M. L. Crystal Structure and the Paraelectric-to-Ferroelectric

Phase Transition of Nanoscale BaTiO3. J. Amer. Chem. Soc. 2008, 130, 6955–6963.

(17) Zhang, X.; Liu, Q.; Luo, J.-W.; Freeman, A. J.; Zunger, A. Hidden Spin Polarization

in Inversion-Symmetric Bulk Crystals. Nat. Phys. 2014, 10, 387–393.

(18) Nguyen, L. T.; Cava, R. J. Hexagonal Perovskites as Quantum Materials. Chem. Rev.

2020, 121, 2935–2965.

(19) Eerenstein, W.; Mathur, N. D.; Scott, J. F. Multiferroic and Magnetoelectric Materials.

Nature 2006, 442, 759–765.

(20) Khomskii, D. I.; Streltsov, S. V. Orbital Effects in Solids: Basics, Recent Progress, and

Opportunities. Chem. Rev. 2020, 121, 2992–3030.

(21) Batra, R.; Song, L.; Ramprasad, R. Emerging Materials Intelligence Ecosystems Pro-

pelled by Machine Learning. Nat. Rev. Mater. 2020, 1–24.

28



(22) Hoppe, R. Effective Coordination Numbers (ECoN) and Mean Fictive Ionic Radii

(MEFIR). Z. Kristallogr. - Cryst. Mater. 1979, 150, 23–52.

(23) Brunner, G. O. A Definition of Coordination and its Relevance in the Structure Types

AlB2 and NiAs. Acta Crystallogr., Sect. A 1977, 33, 226–227.

(24) O’Keefe, M.; Brese, N. Atom Sizes and Bond Lengths in Molecules and Crystals. J.

Am. Chem. Soc. 1991, 113, 3226–3229.

(25) Zimmermann, N. E. R.; Jain, A. Local Structure Order Parameters and Site Finger-

prints for Quantification of Coordination Environment and Crystal Structure Similarity.

RSC Adv. 2020, 10, 6063–6081.

(26) Isayev, O.; Oses, C.; Toher, C.; Gossett, E.; Curtarolo, S.; Tropsha, A. Universal

Fragment Descriptors for Predicting Properties of Inorganic Crystals. Nat. Commun.

2017, 8, 15679.

(27) Waroquiers, D.; Gonze, X.; Rignanese, G.-M.; Welker-Nieuwoudt, C.; Rosowski, F.;

Göbel, M.; Schenk, S.; Degelmann, P.; André, R.; Glaum, R.; Hautier, G. Statistical

Analysis of Coordination Environments in Oxides. Chem. Mater. 2017, 29, 8346–8360.

(28) Bartók, A. P.; Kondor, R.; Csányi, G. On Representing Chemical Environments. Phys.

Rev. B 2013, 87, 184115.

(29) Rupp, M.; Tkatchenko, A.; Müller, K.-R.; von Lilienfeld, O. A. Fast and Accurate

Modeling of Molecular Atomization Energies with Machine Learning. Phys. Rev. Lett.

2012, 108, 058301.

(30) Huo, H.; Rupp, M. Unified Representation of Molecules and Crystals for Machine

Learning. 2018, arXiv:1704.06439. arXiv.org e-Print archive. https://arxiv.org/abs/

1704.06439, (accessed December 14, 2021).

29



(31) Cumby, J.; Attfield, J. P. Ellipsoidal Analysis of Coordination Polyhedra. Nat. Com-

mun. 2017, 8, 14235.

(32) Perez-Mato, J. M.; Orobengoa, D.; Aroyo, M. I. Mode Crystallography of Distorted

Structures. Acta Crystallogr., Sect. A: Found. Adv. 2010, 66, 558–590.

(33) Kerman, S.; Campbell, B. J.; Satyavarapu, K. K.; Stokes, H. T.; Perselli, F.; Evans, J.

S. O. The superstructure determination of displacive distortionsviasymmetry-mode

analysis. Acta Crystallogr., Sect. A: Found. Crystallogr. 2012, 68, 222–234.

(34) Islam, M. A.; Rondinelli, J. M.; Spanier, J. E. Normal Mode Determination of Per-

ovskite Crystal Structures with Octahedral Rotations: Theory and Applications. J.

Phys.: Condens. Matter 2013, 25, 175902.

(35) Schranz, W.; Rychetsky, I.; Hlinka, J. Polarity of Domain Boundaries in Nonpolar

Materials Derived from Order Parameter and Layer Group Symmetry. Phys. Rev. B

2019, 100, 184105.

(36) Mochizuki, Y.; Sung, H.-J.; Takahashi, A.; Kumagai, Y.; Oba, F. Theoretical Ex-

ploration of Mixed-Anion Antiperovskite Semiconductors M3XN(M=Mg,Ca,Sr,Ba;

X=P,As,Sb,Bi). Phys. Rev. Mater. 2020, 4, 044601.

(37) Yang, R. X.; Skelton, J. M.; da Silva, E. L.; Frost, J. M.; Walsh, A. Assessment of Dy-

namic Structural Instabilities Across 24 Cubic Inorganic Halide Perovskites. J. Chem.

Phys. 2020, 152, 024703.

(38) Howard, C. J.; Stokes, H. T. Group-Theoretical Analysis of Octahedral Tilting in Per-

ovskites. Acta Crystallogr., Sect. B: Struct. Sci 1998, 54, 782–789.

(39) Wagner, N.; Puggioni, D.; Rondinelli, J. M. Learning from Correlations Based on Local

Structure: Rare-Earth Nickelates Revisited. J. Chem. Inf. Model. 2018, 58, 2491–2501.

30



(40) Lewis, J. W.; Payne, J. L.; Evans, I. R.; Stokes, H. T.; Campbell, B. J.; Evans, J. S. O.

An Exhaustive Symmetry Approach to Structure Determination: Phase Transitions in

Bi2Sn2O7. J. Amer. Chem. Soc. 2016, 138, 8031–8042.

(41) Castelli, I. E.; Olsen, T.; Datta, S.; Landis, D. D.; Dahl, S.; Thygesen, K. S.; Jacob-

sen, K. W. Computational Screening of Perovskite Metal Oxides for Optimal Solar

Light Capture. Energy Environ. Sci. 2012, 5, 5814–5819.

(42) Fabini, D. H.; Laurita, G.; Bechtel, J. S.; Stoumpos, C. C.; Evans, H. A.; Kontos, A. G.;

Raptis, Y. S.; Falaras, P.; Van der Ven, A.; Kanatzidis, M. G.; et al., Dynamic Stereo-

chemical Activity of the Sn2+ Lone Pair in Perovskite CsSnBr3. J. Amer. Chem. Soc.

2016, 138, 11820–11832.

(43) Correa-Baena, J.-P.; Nienhaus, L.; Kurchin, R. C.; Shin, S. S.; Wieghold, S.; Pu-

tri Hartono, N. T.; Layurova, M.; Klein, N. D.; Poindexter, J. R.; Polizzotti, A.; Sun, S.;

Bawendi, M. G.; Buonassisi, T. A-Site Cation in Inorganic A3Sb2I9 Perovskite Influ-

ences Structural Dimensionality, Exciton Binding Energy, and Solar Cell Performance.

Chem. Mater. 2018, 30, 3734–3742.

(44) Filip, M. R.; Giustino, F. The Geometric Blueprint of Perovskites. Proc. Natl. Acad.

Sci. 2018, 115, 5397–5402.

(45) Maughan, A. E.; Ganose, A. M.; Scanlon, D. O.; Neilson, J. R. Perspectives and De-

sign Principles of Vacancy-Ordered Double Perovskite Halide Semiconductors. Chem.

Mater. 2019, 31, 1184–1195.

(46) Tao, Q.; Xu, P.; Li, M.; Lu, W. Machine Learning for Perovskite Materials Design and

Discovery. npj Comput. Mater. 2021, 7, 23.

(47) Talapatra, A.; Uberuaga, B. P.; Stanek, C. R.; Pilania, G. A Machine Learning Ap-

proach for the Prediction of Formability and Thermodynamic Stability of Single and

Double Perovskite Oxides. Chem. Mater. 2021, 33, 845–858.

31



(48) Tinkham, M. Group Theory and Quantum Mechanics ; Dover publications, Inc, 2003.

(49) Togo, A.; Tanaka, I. First Principles Phonon Calculations in Materials Science. Scr.

Mater. 2015, 108, 1–5.

(50) Dresselhaus, M. S.; Dresselhaus, G.; Jorio, A. Group Theory: Application to the Physics

of Condensed Matter ; Springer Science & Business Media, 2007.

(51) Kuhn, H. W. The Hungarian Method for the Assignment Problem. Naval research

logistics quarterly 1955, 2, 83–97.

(52) Ong, S. P.; Richards, W. D.; Jain, A.; Hautier, G.; Kocher, M.; Cholia, S.; Gunter, D.;

Chevrier, V. L.; Persson, K. A.; Ceder, G. Python Materials Genomics (Pymatgen):

A Robust, Open-Source Python Library for Materials Analysis. Comput. Mater. Sci.

2013, 68, 314–319.

(53) Goodall, R. E. A.; Lee, A. A. Order Matters: Sequence to Sequence for Sets. 2016,

arXiv:1511.06391. arXiv.org e-Print archive. https://arxiv.org/abs/1511.06391,

(accessed December 14, 2021).

(54) Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn Res.

2011, 12, 2825–2830.

(55) Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.;

Gunter, D.; Skinner, D.; Ceder, G.; Persson, K. A. Commentary: The Materials Project:

A Materials Genome Approach to Accelerating Materials Innovation. APL Mater. 2013,

1, 011002.

(56) Ong, S. P.; Cholia, S.; Jain, A.; Brafman, M.; Gunter, D.; Ceder, G.; Persson, K. A. The

Materials Application Programming Interface (API): A Simple, Flexible and Efficient

API for Materials Data Based On Representational State Transfer (Rest) Principles.

Comput. Mater. Sci. 2015, 97, 209–215.

32



(57) Togo, A.; Tanaka, I. Spglib: A Software Library for Crystal Symmetry Search. 2018,

arXiv:1808.01590. arXiv.org e-Print archive. https://arxiv.org/abs/1808.01590,

(accessed December 14, 2021).

(58) Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953.

(59) Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals

and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15–

50.

(60) Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Cal-

culations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169.

(61) VISE, v0.1.13; GitHub repository: https://github.com/kumagai-group/vise, (ac-

cessed December 14, 2021).

(62) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made

simple. Phys. Rev. Lett. 1996, 77, 3865.

(63) Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid Functionals Based on a Screened

Coulomb Potential. J. Chem. Phys. 2003, 118, 8207–8215.

(64) Momma, K.; Izumi, F. Vesta 3 for Three-Dimensional Visualization of Crystal, Volu-

metric and Morphology Data. J. Appl. Crystallogr. 2011, 44, 1272–1276.

(65) Frost, J. M.; Butler, K. T.; Walsh, A. Molecular ferroelectric contributions to anomalous

hysteresis in hybrid perovskite solar cells. APL Mater. 2014, 2, 081506.

(66) Mattoni, A.; Filippetti, A.; Caddeo, C. Modeling hybrid perovskites by molecular dy-

namics. J. Phys.: Condens. Matter 2016, 29, 043001.

(67) Csonka, G. I.; Perdew, J. P.; Ruzsinszky, A.; Philipsen, P. H. T.; Lebègue, S.; Paier, J.;

Vydrov, O. A.; Ángyán, J. G. Assessing the performance of recent density functionals

for bulk solids. Phys. Rev. B 2009, 79, 155107.

33



(68) Indenbom, V. Phase Transitions Without Change of the Atom Number in the Crystal

Unit Cell. Kristallografiya 1960, 5, 115–125.

(69) Levanyuk, A. P.; Sannikov, D. G. Improper Ferroelectrics. Phys.-Usp. 1974, 17,

199–214.

(70) Benedek, N. A.; Fennie, C. J. Why Are There So Few Perovskite Ferroelectrics? J.

Phys. Chem. C 2013, 117, 13339–13349.

(71) Wang, J.; Neaton, J. B.; Zheng, H.; Nagarajan, V.; Ogale, S. B.; Liu, B.; Viehland, D.;

Vaithyanathan, V.; Schlom, D. G.; Waghmare, U. V.; ; Spaldin, N. A.; Rabe, K.;

Wuttig, M.; Ramesh, R. Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures.

Science 2003, 299, 1719–1722.

(72) Neaton, J. B.; Ederer, C.; Waghmare, U. V.; Spaldin, N. A.; Rabe, K. First-principles

study of spontaneous polarization in multiferroic BiFeO3. Phys. Rev. B 2005, 71,

014113.

(73) Walsh, A.; Payne, D. J.; Egdell, R. G.; Watson, G. W. Stereochemistry of Post-

Transition Metal Oxides: Revision of the Classical Lone Pair Model. Chem. Soc. Rev.

2011, 40, 4455–4463.

(74) Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn Res.

2008, 9, 2579–2605.

(75) Pedregosa, F. et al. Scikit-Learn: Machine Learning in PYthon. J. Mach. Learn Res.

2011, 12, 2825–2830.

(76) Iasir, A. R. M.; Lombardi, T.; Lu, Q.; Mofrad, A. M.; Vaninger, M.; Zhang, X.;

Singh, D. J. Electronic and magnetic properties of perovskite selenite and tellurite

compounds: CoSeO3, NiSeO3, CoTeO3, and NiTeO3. Phys. Rev. B 2020, 101, 045107.

34



(77) Sawaguchi, E.; Akishige, Y.; Yamamoto, T.; Nakahara, J. Phase Transition in Hexag-

onal Type BaTiO3. Ferroelectrics 1989, 95, 29–36.

(78) Hashemizadeh, S.; Biancoli, A.; Damjanovic, D. Symmetry Breaking in Hexagonal and

Cubic Polymorphs of BaTiO3. J. Appl. Phys. 2016, 119, 094105.

(79) Ogawa, N.; Ogimoto, Y.; Ida, Y.; Nomura, Y.; Arita, R.; Miyano, K. Polar Antiferro-

magnets Produced with Orbital Order. Phys. Rev. Lett. 2012, 108, 157603.

(80) Gupta, K.; Mahadevan, P.; Mavropoulos, P.; Ležaić, M. Orbital-Ordering-Induced Fer-

roelectricity in SrCrO3. Phys. Rev. Lett. 2013, 111, 077601.

(81) Ding, Y.; Cao, L.; Wang, W.; Jing, B.; Shen, X.; Yao, Y.; Xu, L.; Li, J.; Jin, C.; Yu, R.

Bond Length Fluctuation in Perovskite Chromate SrCrO3. J. Appl. Phys. 2020, 127,

075106.

(82) Parsaeifard, B.; De, D. S.; Christensen, A. S.; Faber, F. A.; Kocer, E.; De, S.; Behler, J.;

von Lilienfeld, O. A.; Goedecker, S. An assessment of the structural resolution of various

fingerprints commonly used in machine learning. Mach. Learn.: Sci. Technol. 2021, 2,

015018.

(83) Fung, V.; Zhang, J.; Juarez, E.; Sumpter, B. G. Benchmarking graph neural networks

for materials chemistry. npj Comp. Mater. 2021, 7, 84.

35


	Butler aam
	2021_perovskite_distortion

