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Polar magnetism is compulsory when magnetic ions occupy sites that are not centers of inversion sym-
metry. Such magnetism is known to be visible in neutron diffraction, the technique of choice for magnetic
structure determinations. Experiments in which the diffracted neutron polarization is analyzed are not a nov-
elty. Symmetry-informed simulations of polarized neutron diffraction (PND) amplitudes for room-temperature
hematite (α-Fe2O3) illustrate the wealth of information on offer in future experiments. Two magnetic motifs,
distinguished by the orientation of their bulk ferromagnetism and delineated by magnetic space groups C2/c and
C2′/c′, are current front-runners for room-temperature hematite. Both motifs are endowed with polar magnetism
and iron Dirac (magnetoelectric) multipoles. The technique of resonant x-ray Bragg diffraction has previously
been used to expose Dirac multipoles in room-temperature hematite. For unspecified reasons, the authors of
a recent PND study of hamatite do not mention the compulsory polar magnetism, the published observation
of Dirac multipoles, or the direct confirmation of neutron scattering by Dirac multipoles [H. Thoma et al.,
Phys. Rev. X 11, 011060 (2021).]. The authors omission of polar magnetism in fits to their extensive neutron
diffraction patterns calls for a reassessment of the claim to have determined the absolute direction of the
Dzyaloshinskii-Moriya interaction.

DOI: 10.1103/PhysRevB.106.064415

I. INTRODUCTION

The well-established technique of polarized neutron
diffraction (PND) is a very sensitive probe of magnetic order
applicable to a class of antiferromagnets, e.g., MnF2 and NiF2

with Mn and Ni ions using centrosymmetric sites in a rutile-
type crystal structure [1,2]. Indeed, for the technique to be
useful, magnetic order must not break translation symmetry
in a centrosymmetric crystal with anti-inversion absent in the
magnetic crystal class. Specifically, PND is not suitable for
studies of magnetic order in magnetoelectric materials.

The room-temperature magnetic structure of hematite (α-
Fe2O3), so-called phase II [3,4], meets the three material
requirements for a PND investigation. The Greek philoso-
pher Theophrastus is said to mention ichorlike hematite at
around 315 B.C., with later work by the father of magnetism,
William Gilbert of Colchester, in the 16th century. Its mag-
netic behavior was studied in the early 20th century by Honda
and Soné (1914). Notably, Dzyaloshinskii in 1958 defined
hematite as a canted antiferromagnet possessed of the proto-
type Dzyaloshinskii-Moriya (DM) interaction [5,6]. Iron ions
in hematite are believed to occupy sites devoid of symmetry.
In which case spatial inversion is absent in site symmetry, and
by dint of the “totalitarian principle” of symmetry, attributed
to Murray Gell-Mann [7], polar magnetism is compulsory.
Whereupon, magnetic polar multipoles, called Dirac multi-
poles, exist alongside magnetic axial electronic multipoles
associated with conventional magnetism. The Dirac dipole
is also known as an anapole or toroidal dipole, depicted in
Fig. 1. Resonant x-ray Bragg diffraction has exposed Dirac

multipoles in several materials, including hematite phase II
[8,9], and a direct observation of anapoles by neutron diffrac-
tion exploited polarization analysis [10].

We have calculated PND signals for hematite phase II
including Dirac multipoles, and a spin-flip ratio that measures
the magnetic content of a Bragg spot. The magnetic structure
of α-Fe2O3 remains unsettled, and our calculations are made
with two favored candidates. Bulk ferromagnetism is con-
fined to the basal plane in one candidate (space group C2/c
[11,12]), while it is confined to a plane normal to it in a second
candidate (space group C2′/c′ BNS [11]).

II. CRYSTAL AND MAGNETIC STRUCTURES

The chemical structure of hematite is hexagonal R3̄c (No.
167), with ferric (Fe3+, 3d5) ions in sites 12c with coordinates
(0, 0, 0.1447), and symmetry 3. Oxygen ions (O2−) occupy
sites 18e.

Magnetic structures use monoclinic C2/c (No. 15.85,
magnetic crystal class 2/m or C2h) or C2′/c′ (No. 15.89,
2′/m′) with Fe ions in sites 8 f devoid of symmetry. The
C2/c structure was proposed by Przeniosło et al. [12], but
no consensus has been reached. Both structures possess a
center of inversion symmetry, and permitted terms in the
thermodynamic potential include H and HEE , where H
and E are magnetic and electric fields. They have different
piezomagnetic properties, however, with eight (C2/c) and
ten (C2′/c′) elements in the corresponding tensor. Local
monoclinic axes and the parent structure are related by
a basis = {(−2,−1, 0), (0,−1, 0), (2/3, 1/3, 1/3)} with
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origin (1/6,−1/3, 1/6). Motifs of magnetic dipole moments
are (mx, my, mz ), (−mx, my,−mz ), (mx, my, mz ), (−mx, my,

−mz ) in C2/c, and (mx, my, mz ), (mx,−my, mz ), (mx, my, mz ),
(mx,−my, mz ) in C2′/c′.

Monoclinic Miller indices are h = −(2Ho + Ko), k = −Ko

and l = (1/3)(2Ho + Ko + Lo) where (Ho, Ko, Lo) are in-
teger Miller indices for R3̄c. Diffraction by Fe nuclei is
forbidden with Lo odd. Axes for the hexagonal struc-
ture are ah = a(1, 0, 0), bh = (a/2)(−1,

√
3, 0), and ch =

c(0, 0, 1) (lattice parameters a ≈ 5.035 Å, c ≈ 13.758 Å
[13]). Iron multipoles are referred to as orthogonal axes
(ξ, η, ζ) based on (a∗

m, bm, cm), e.g., η = bm/|bm|. Here, am =
−√

3(a/2)(
√

3, 1, 0), bm = −bh, and cm = (1/3)(−am +
ch) = (c/2)(t, t/

√
3, 2/3), with t = (a/c) and an obtuse an-

gle βo ≈ 122.39o between am and cm. The monoclinic cell
volume = a2c/

√
3, which is 2/3 of the hexagonal cell volume.

Note that am and bh = −bm are orthogonal vectors in the
plane normal to ch. A monoclinic reciprocal-lattice vector
a∗

m ∝ (
√

3, 1,−t2
√

3) is orthogonal to bm and cm. In C2′/c′
the antiferromagnetic motif of axial dipole moments uses bh

while the ferrocomponent is in the plane spanned by am and
cm.

Electronic properties of iron ions are encapsulated in spher-
ical multipoles present in the ground state. To begin with,
the time-average, or expectation value, denoted by angular
brackets 〈· · · 〉, of spin S and orbital angular momentum L
form the conventional magnetic dipole moment 〈2S + L〉 of
an Fe ion. Cartesian (x, y, z) and spherical components nq of
a dipole n are related by x = (n−1 − n+1)/

√
2, y = i(n−1 +

n+1)/
√

2, and z = n0. More generally, Fe spherical multipoles
〈U K

Q 〉 of integer rank K possess projections Q in the interval
−K � Q � K , with K = 1 for a dipole [14,15]. While all
required multipoles are magnetic, i.e., time-odd, we need axial
(parity-even) and polar (parity-odd) varieties.

III. BRAGG DIFFRACTION

We adopt a unit-cell structure factor for Bragg diffraction,

�K
Q = [

exp(iκ · r)
〈
U K

Q

〉
r

]
, (1)

where the reflection vector κ is defined by (h, k, l ), and the
implied sum in �K

Q is over all Fe sites r in a unit cell. Envi-
ronments at the four Fe sites in the monoclinic cell are related
by the operations of inversion and twofold rotation about the
unique axis η. The reflection condition h + k even holds for a
C-face centered cell. One finds [11]

�K
Q (C2/c and C2′/c′) = [1 + (−1)h+k]

×[
α
〈
U K

Q

〉 + (−1)Qβ
〈
U K

−Q

〉]
,

α = {exp(iϕ) + σπexp(−iϕ)},
β = 
(−1)K+l{exp(iϕ′)+ σπexp(−iϕ′)}. (2)

Here, 
 = +1(−1) for C2/c (C2′/c′) and σπ = +1 (−1)
for parity-even (parity-odd, Dirac) multipoles. Angles in α

and β are ϕ = 2π (xh + yk + zl ) and ϕ′ = 2π (−xh + yk −
zl ), with fractional coordinates y = 1/4, x ≈ 0.395, and
z ≈ 0.934. Influential selection rules stem from identities
[sin(ϕ) − sin(ϕ′)] = [cos(ϕ) + cos(ϕ′)] = 0 for k odd. For
[sin(ϕ) − sin(ϕ′)] and [cos(ϕ) + cos(ϕ′)] are proportional to

FIG. 1. Depiction of an orbital anapole (toroidal dipole); author
V. Scagnoli.

cos(πk/2), while [sin(ϕ) + sin(ϕ′)] and [cos(ϕ) − cos(ϕ′)]
are proportional to sin(πk/2).

It is convenient in calculations of a neutron scattering am-
plitude 〈Q〉 to express it in terms of quantities that are even
and odd functions of projections [15]. From Eq. (2) we find

AK
Q, BK

Q = (1/2) [1+ (−1)h+k] [α ± (−1)Qβ]
[〈

U K
Q

〉± 〈
U K

−Q

〉]
.

(3)

The upper (lower) sign belongs to AK
Q(BK

Q ). Notably, β de-
pends on parity σπ , multipole rank K , Miller index l , and
motif signature 
 = ±1, together with the angle ϕ′, while
α depends on σπ and the angle ϕ alone. In particular,
Cartesian components of a dipole are derived from A1

0 ∝
[α + β]〈U 1

ζ 〉, A1
1 ∝ i[α − β]〈U 1

η 〉, and B1
1 ∝ [α + β]〈U 1

ξ 〉.
To examine bulk properties, set h = k = l = 0 that re-

sults in ϕ = ϕ′ = 0. For these conditions, Dirac multipoles
obey �K

Q (C2/c and C2′/c′) = 0. Axial multipoles 〈TK 〉, with
σπ = +1, in the two monoclinic structures are different. Set-
ting K = 1 in Eq. (2) it follows that �1

0 (C2/c) = 0 together
with �1

+1(C2/c) ∝ 〈T 1
η 〉, meaning the bulk ferromagnetic

moment lies along bh. Turning to �1
Q(C2′/c′), one finds

�1
0 (C2′/c′) ∝ 〈T 1

ζ 〉 and �1
+1(C2′/c′) ∝ 〈T 1

ξ 〉, so the ferro-
magnetic moment lies in the plane defined by am and cm that
is normal to bh.

Most importantly, magnetic multipoles in neutron diffrac-
tion depend on the magnitude of the reflection vector, κ .
Figure 2 shows radial integrals, also known as atomic form
factors, which occur in dipoles. Dipoles 〈T1〉 depend on stan-
dard radial integrals 〈 j0(κ )〉 and 〈 j2(κ )〉 displayed in Fig. 2,
with 〈 j0(0)〉 = 1 and 〈 j2(0)〉 = 0. A useful result is [15]

〈
T1

〉 ≈ (1/3) [2〈S〉〈 j0(κ )〉 + 〈L〉 (〈 j0(κ )〉 + 〈 j2(κ )〉)]. (4)

The coefficient of 〈L〉 is approximate, while 〈T1〉 =
(1/3)〈2S + L〉 for κ → 0 is an exact result.

The magnetic polar dipole 〈d〉 depends on three radial
integrals displayed in Fig. 2. We use [15]

〈d〉 = (1/2) [i(g1)〈n〉 + 3(h1)〈S × n〉 − ( j0)〈�〉]. (5)

Radial integrals (g1) and ( j0) diverge in the forward direction
of scattering (κ → 0), and (h1) is also the κ dependence
of the polar spin quadrupole observed in neutron diffraction
from high-Tc compounds Hg1201 and YBCO [17,18]. Dipoles
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FIG. 2. Radial integrals for the ferric ion Fe3+(3d5) displayed as
a function of the magnitude of the reflection vector κ = 4πs with
s = sin(θ )/λ(Å–1), Bragg angle θ , and neutron wavelength λ. Also,
w = 3aoκ where ao is the Bohr radius. Blue and purple lines depict
standard radial integrals 〈 j0(κ )〉 and 〈 j2(κ )〉 that occur in the axial
dipole Eq. (4). Red, green, and blue curves are the radial integrals
in the polar dipole Eq. (5). Two integrals (g1) and ( j0) diverge in the
forward direction of scattering and w(g1) and w( j0 ) are displayed.
Calculations using Cowan’s atomic code [16] and figure by G. van
der Laan.

〈S × n〉 and 〈�〉 = [〈L × n〉−〈n × L〉] are spin and orbital
anapoles, and the latter (toroidal dipole) is depicted in Fig. 1.
A minimal model of 3d−4p hybridization in Ref. [8] yields a
guide to Dirac multipoles in resonant x-ray and neutron Bragg
diffraction. The axial dipole is suitably small and spin-only in
the model. Corresponding Dirac multipoles that contribute to
resonant x-ray and neutron diffraction are found to be similar.
This finding bolsters the relevance of the reported observation
of Dirac multipoles in hematite by x rays [9] in a proper analy-
sis of neutron diffraction by hematite. An important difference
between amplitudes for resonant x-ray and neutron diffraction
is the absence of radial integrals in the former. Notably, all
radial integrals in the polar dipole displayed in Fig. 2 are of a
similar size at the Bragg spot (−7, 1, 2)m where the reflection
vector κ ≈ 5.22 Å–1.

IV. POLARIZED NEUTRON DIFFRACTION

A PND signal � = {P · [e × (〈Q〉 × e)]}, where P is polar-
ization of the primary neutrons and e is a unit reflection vector
e = κ/κ . In the case of hematite phase II, the signal is in phase
with nuclear diffraction by ligand ions. This is not the case
for eskolaite [chromium sesquioxide (Cr2O3)], for example, a
paradigm for the linear magnetoelectric effect (magnetic crys-
tal class 3̄′m′). Intensity of a Bragg spot = |〈Q〉 − e(〈Q〉 · e)|2.

Thoma et al. chose P parallel to ah + 2bh = a(0,
√

3, 0)
[13]. For whatever reasons, the authors do not mention the
compulsory polar magnetism, or the published observation
of Dirac multipoles in hematite, or the direct confirma-
tion of neutron scattering by Dirac multipoles. Notwith-
standing, Thoma et al. claim that the absolute direction

of the DM interaction is deduced from their interpreta-
tion of neutron diffraction data on the reflection indexed
(4,−1,−1)h ≡ (−7, 1, 2)m. It is a strong out-of-plane Bragg
spot for which the Fe nuclear structure factor is 0. Re-
ferring to radial integrals displayed in Fig. 2, the result
κ = (2π/a

√
3)[3H2

o + (Ho + 2Ko)2 + 3(tLo)2]
1/2

yields κ ≈
5.22 Å–1 for (4,−1,−1)h.

The correct PND signal to be confronted with a Bragg
diffraction pattern � = (�(+) + �(−) ) with axial and Dirac
contributions labeled by our parity signature σπ (±1). For
axial multipoles,

�(+) = (Z2/6) {sin(βo)〈Qξ 〉(+)[k(h − k)

+ 3t2(k − l ) (h + 3l )]

− 〈Qη〉(+)(1/
√

3)[h(h − k) + 3t2(h + 3l )2]

− cos(βo)〈Qζ 〉(+)(t/
√

3)[(1/3)h2 + k2 + l (h + 3k)

+ t2(h + 3l )2]}. (6)

The diffraction amplitude 〈Q〉 = (〈Qξ 〉ξ, 〈Qη〉η, 〈Qζ 〉ζ).
Equation (6) is a quadratic function of Miller indices and,
thus, identical for (h, k, l ) and (−h,−k,−l ). Likewise, �(−)

derived from Dirac multipoles to be considered. In Eq. (6),

R = [1 + 3t2]
1/2

, Z2[(1/3)h2 + k2 + t2(h + 3l )2] = 3,

(7)
with the obtuse angle cos(βo) = −t

√
3/R and sin(βo) =

(1/R). By way of an interesting example, the reflection vector
(2,−1, 3)h ≡ (−3, 1, 2)m is parallel to ah and normal to P. In
this case, Z−2 = [(4/3) + 3t2] and

�(+) = −(1/2) {sin(βo)〈Qξ 〉(+) + √
3〈Qη〉(+)

+ cos(βo) 〈Qζ 〉(+)}, (−3, 1, 2)m. (8)

Evaluated at the level of dipoles,

〈Qξ 〉(+) ≈ (3/2)[α + β]〈T 1
ξ 〉,

〈Qη〉(+) ≈ (3/2)[α − β]〈T 1
η 〉,

〈Qζ 〉(+) ≈ (3/2)[α + β]〈T 1
ζ 〉. (9)

Higher order axial multipoles in 〈Q〉(+) include a quadrupole
proportional to 〈 j2(κ )〉 that is allowed by an admixture of
manifolds in the Fe electronic ground state [15,19].

A general expression for the PND signal derived from
Dirac multipoles is cumbersome, unlike the axial case Eq. (6)
that is correct for all allowed multipoles. The absence of selec-
tion rules on projections in multipoles is largely responsible
for cumbersome expressions. At a first level that uses anapoles
(K = 1),

�(−) ≈ iZ/(2
√

3) {cos(βo)〈Qξ 〉(−)(k + 3l )

+ 〈Qη〉(−)t (h + 3l )

+ sin(βo) 〈Qζ 〉(−)[h − k + 3t2(h + 3l )]}. (10)

In this result,

〈Qξ 〉(−) = (1/2)[α + β] 〈dξ 〉,
〈Qη〉(−) = (1/2)[α − β] 〈dη〉,
〈Qζ 〉(−) = [α + β] 〈dζ 〉, (11)
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with 〈d〉 defined in Eq. (5). Using σπ = −1, the func-
tions α and β in Eq. (2) are proportional to i sin(ϕ) and
i sin(ϕ′), respectively, that have opposite signs for (h, k, l )
and (−h,−k,−l ). Beyond the approximate result Eq. (10),
we have mentioned the important role of the polar spin
quadrupole in an analysis of diffraction patterns for Hg1201
and YBCO, for example, and it is proportional to the radial
integral (h1) contained in Fig. 2. The result Eq. (10) for
(−3, 1, 2)m does not undergo a great simplification unlike
Eq. (8).

Applications of identities [sin(ϕ) − sin(ϕ′)] =
[cos(ϕ) + cos(ϕ′)] = 0 for Miller index k odd, l even,
and K = 1 in Eqs. (9) and (11) are captured by
〈Q(C2/c)〉 = (〈Qξ 〉(+), 〈Qη〉(−), 〈Qζ 〉(+) ) and 〈Q(C2′/c′)〉 =
(〈Qξ 〉(−), 〈Qη〉(+), 〈Qζ 〉(−) ). These relations are particular
examples of general identities valid for Miller index
k odd, namely, [α ± β](+) =[α − (±)β](−) = 0 with

(−1)K+l = ±1.

A so-called spin-flip intensity is the fraction of neutrons
that participate in events that change (flip) the neutron spin
orientation [17,18]. For a collinear magnetic motif and com-
plete polarization, P2 = 1, the fraction,

SF = {|〈Q⊥〉|2 − |P · 〈Q⊥〉|2}, (12)

with 〈Q⊥〉 = [e × (〈Q〉 × e)] is a measure of the magnetic
content of a Bragg spot. For the special case P · e = 0,
Eq. (12) reduces to SF = {|〈Q〉|2 − |e · 〈Q〉|2 − |P · 〈Q〉|2}.
Applied to orthogonal e ∝ ah and P ∝ b∗

h, the polarization
used in Ref. [13], the spin-flip intensity measures the compo-
nent of 〈Q〉 = (〈Q〉(+) + 〈Q〉(−) ) parallel to the crystal c axis,
i.e., SF = | cos(βo)〈Qξ 〉 − sin(βo)〈Qζ 〉|2. In consequence, SF
at the Bragg spot (−3, 1, 2)m measures diffraction by axial
dipoles in C2/c and anapoles in C2′/c′, respectively.

V. DISCUSSION

In summary, our calculations of neutron diffraction am-
plitudes for room-temperature hematite (α-Fe2O3, phase II)
demonstrate a wealth of information in a Bragg diffrac-
tion pattern. Calculations encompass two candidate magnetic
structures and axial and polar (Dirac) multipoles. The latter
exist in phase II according to published resonant x-ray diffrac-
tion data [9], and anapoles are known to deflect neutrons [10].
The open question posed by the magnetic structure is not

adequately addressed, and Dirac multipoles find no place in
a recent account of a polarized neutron diffraction study of
hematite [13].

In more detail, axial magnetic signatures to be confronted
with a measurement of the Bragg spot (−7, 1, 2)m in Ref. [13]
are shown by us to be �(+) ∝ [−〈Qξ 〉(+) + 0.74〈Qζ 〉(+)] or
�(+) ∝ 〈Qη〉(+) for candidate magnetic space groups C2/c
and C2′/c′, respectively. Here, 〈Q〉(+) is the axial neutron
scattering amplitude and (ξ, η, ζ) Cartesian vectors in the
monoclinic magnetic structure with unique axis η. The men-
tioned expressions are correct at the level of dipoles (K = 1),
results in Eq. (9) apply, and 〈Q〉(+) is proportional to the
axial magnetic moment 〈2S + L〉 in the forward direction
of scattering. With regard to higher order axial multipoles,
quadrupoles might be influential for two reasons. First, such
quadrupoles are proportional to the radial integral 〈 j2(κ )〉.
Reference to results for radial integrals in Fig. 2 shows that
〈 j0(κ )〉 and 〈 j2(κ )〉 that together make up 〈Q〉(+) are almost
equal in magnitude at the Bragg spot (−7, 1, 2)m where the
reflection vector κ ≈ 5.22 Å–1. Secondly, the absence of sym-
metry of Fe sites allows for significant mixing of atomic
manifolds and an axial quadrupole, or an inextricable knot of
spin and space using the spin anapole represented by the oper-
ator equivalent n(S × n) [15,19]. Equations (10) and (11) for
anapoles reveal PND signals �(−) ∝ [〈Qξ 〉(−) + 1.89〈Qζ 〉(−)]
and �(−) ∝ 〈Qη〉(−) for space groups C2′/c′ and C2/c, respec-
tively, for the Bragg spot (−7, 1, 2)m.

With future neutron diffraction experiments on room-
temperature hematite in mind, we report the spin-flip intensity
for the convenient Bragg spot (−3, 1, 2)m, κ ≈ 2.85 Å–1. The
ratio measures the magnetic content of a Bragg spot, and
the technique has been used extensively to study ceramic
superconductors, e.g., Hg1201 and YBCO [20]. Axial dipoles
in C2/c and anapoles in C2′/c′ are detected, respectively, for
the chosen conditions of orthogonal neutron polarization and
reflection vector.
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