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The Bragg diffraction of neutrons and x rays are well suited to the task of determining the distribution
of magnetization in crystals. Applications of the two techniques proceed by contrasting observed intensities
with intensities calculated with a specific model, and changing the model as need be to achieve satisfactory
agreement. An all-in–all-out (AIAO) magnetic configuration of magnetic dipoles on a cubic face-centered lattice
with networks of corner-sharing tetrahedra is often mentioned in the context of pyrochlore oxides, for example,
but the corresponding neutron and x-ray-diffraction patterns appear to not have been calculated. Our results for
patterns of Bragg spots from an AIAO magnetic configuration defined by a magnetic space group are symmetry
informed and yield exact reflection conditions. Specifically, a long-range order of magnetic dipoles is forbidden
in our model. Bulk properties arise from higher-order multipoles that include quadrupoles and octupoles. Bragg
spots that exclude all magnetic multipoles other than an octupole have been discovered, and they can be observed
by both neutron diffraction and resonant x-ray diffraction. All magnetic multipoles allowed in diffraction by
cerium ions (4 f 1) are presented in terms of coefficients in a well-documented and unusual magnetic ground
state. Symmetry of the cerium site in the cubic structure constrains the coefficients. Our scattering amplitudes
have an application in both neutron- and x-ray diffraction experiments on Ce2Zr2O7, for example, and searches
for the sought-after cerium octupole. Also presented for future use is a result for the total, energy-integrated
magnetic neutron-scattering intensity by a powder sample.

DOI: 10.1103/PhysRevB.106.224408

I. INTRODUCTION

A motivation to study Bragg diffraction by configurations
of magnetic multipoles on a cubic face-centered lattice is the
likely use of findings in quests to better understand pyrochlore
oxides. Applications of diffraction techniques proceed by con-
trasting observed diffraction patterns with patterns calculated
with a specific model, and refining or discarding the model
according to the outcome. Symmetry-informed calculations
of scattering amplitudes for beams of neutrons and x rays
tuned in energy to the atomic resonance of magnetic ions
are reported in our submission. In the model, magnetic ions
decorate a lattice (space group O7

h or Fd 3̄m) that hosts a
noncollinear all-in–all-out (AIAO) motif of magnetic dipoles
depicted in Fig. 1, where dipoles point toward or away from
the center of each tetrahedron.

Magnetic cubic pyrochlore oxides of the type A2
3+B2

4+O7

have been extensively studied in recent times. Properties of
the “green fire” compounds are reviewed in several places,
including Refs. [1,2]. The structural property that A and B
sites form networks of corner-sharing tetrahedra is thought
to be key to many of their intriguing magnetic features. The
distortion of the 8-coordinated A-site geometry from an ideal
cube is very large, unlike the near-perfect cubic 6-coordinated
B-site geometry. Configurations of magnetic dipoles on A or
B sites include the AIAO motif.

Our diffraction pattern for AIAO is applied to Kramers ions
in A sites. Specifically, Ce3+ (4 f 1) in Ce2Zr2O7 for which the
ground state has been established [3]. Theoretical modeling of
the Ce magnetic ion includes a dipole-octupole state [4], along
with the possibility that the material supports a quantum spin
liquid state with U (1) gauge invariance [5–7]. Our diffraction
amplitudes include all Ce multipoles necessary for a mean-
ingful characterization of long-range magnetic order, namely,
a dipole (rank K = 1), an octupole (K = 3), and a triakon-
tadipole (K = 5). The results enable us to calculate intensities
of Bragg spots in terms of coefficients in the ground state.
Bragg spots in the AIAO diffraction pattern that exclude all
multipoles other than the cerium octupole receive particular
attention with a view to future experiments.

The AIAO motif of magnetic dipoles is defined in the fol-
lowing section. The corresponding electronic structure factor
from which we derive neutron- and x-ray-diffraction ampli-
tudes appears in Eq. (7). It is the product of a magnetic
multipole and a factor that couples Miller indices and angular
anisotropy in the multipole. The latter are listed in Ap-
pendix A. Specific values for a Kramers Ce ion in Ce2Zr2O7

follow from results shown in Sec. III [3]. Neutron- and x-ray
diffraction are the subjects of Secs. IV–VI. A result for the
total, energy-integrated neutron intensity for a powder sam-
ple appears in Sec. V [7]. Multipoles in neutron-scattering
amplitudes depend on the magnitude of the reflection vector,
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FIG. 1. Depiction of an AIAO configuration of magnetic dipoles
compatible with sites 16(d ) in the cubic space group Fd 3̄m′ (No.
227.131, BNS [13]) and an irreducible representation GM+

2 [11].

unlike resonant x-ray scattering amplitudes treated in Sec. VI.
So-called neutron form factors suitable for Ce3+ are depicted
in Fig 2. The dipole form factor is strong in the forward
direction [8], where octupole and triakontadipole form factors
vanish [9,10]. The stark difference in form factors can be used
to advantage in distinguishing multipole contributions. Simi-
larly, unit-cell structure factors for resonant x-ray diffraction

FIG. 2. Black, red, and green curves are radial
integrals 〈 j0(κ )〉, h(κ ) = {〈 j2(κ )〉 + (10/3)〈 j4(κ )〉} and
g(κ ) = {〈 j4(κ )〉 + 12〈 j6(κ )〉}, respectively, for a cerium ion
4 f 1. The dimensionless parameter w and wave vector κ are related
by the Bohr radius, namely, w = 3aoκ . Radial wave functions are
obtained from Cowan’s atomic code [23]. Radial integrals and their
calculation are reviewed in Ref. [10].

in Sec. VI depend on the azimuthal angle (rotation of the
crystal around the reflection vector).

II. MAGNETIC STRUCTURE

The parent structure is taken to be cubic Fd 3̄m (No.
227, origin choice 2). Magnetic ions occupy centrosymmet-
ric sites 16(d ) with site symmetry D3d (3̄m) [1]. Principal
axes (ξ, η, ζ ) are taken to be ξ = [−1, −1, 2]/

√
6, η =

[1, −1, 0]/
√

2, and ζ = [1, 1, 1]/
√

3. On rotation to cubic
crystal axes (x, y, z) principal axes η and ζ align with y and z,
respectively.

An AIAO motif in Fig. 1, compatible with the irreducible
representation GM2

+ [11,12], is hosted by the cubic face-
centered magnetic space group Fd 3̄m′ (No. 227.131, BNS
[13]). The centrosymmetric crystal class m3̄m′ (Th) allows a
piezomagnetic effect, while ferromagnetism is forbidden and
the only magnetoelectric effect is nonlinear HEE (H and
E are magnetic and electric fields, respectively). Magnetic
ions occupy sites 16(d ) with symmetry 3̄m′ that preserves the
center of inversion symmetry.

III. MULTIPOLES

Axial magnetic multipoles that appear in diffraction am-
plitudes are denoted by 〈tK

Q〉 or 〈T K
Q〉 for principal axes

(ξ, η, ζ ) and cubic axes (x, y, z), respectively. The multipole
rank K is odd for magnetic neutron- (Sec. IV) and resonant x-
ray (Sec. VI) diffraction by ions in centrosymmetric sites, and
the (2K + 1) projections are limited to a range − K � Q � K
[14,15]. In the neutron case, there is an additional caveat that
the ground state is a J manifold, otherwise even K are allowed,
about which we say more in Sec. IV [10,15]. Angular brackets
〈. . .〉 denote the time average, or expectation value, of the
enclosed spherical tensor. A triad axis of rotation symmetry 3ζ

in 3̄m′ demands Q = 3n in 〈tK
Q〉, where n is an integer. Values

of Q are thus Q = 0, ±3 given that K = 5 is the maximum
rank for the f 1 configuration [15]. For odd K , an antidyad
2′

η in 3̄m′ demands (−1)Q 〈tK
−Q〉 = 〈tK

Q〉∗ = 〈tK
Q〉, where the

second equality follows from our definition of the complex
conjugate denoted by *.

A measurement of the crystal-field potential of Ce in
Ce2Zr2O7 shows that a Kramers doublet is formed from [3]

|u〉 = a|J, M〉 + b|J,−M〉 (1)

Atomic states from the configuration 2F in Eq. (1) have a
total angular momentum J = 5/2 and a projection M = 3/2.
A ground state

|g〉 = |u〉 + f |ū〉, (2)

where |ū〉 is the time-reversed version of |u〉. Normalization of
|g〉 requires {(|a|2 + |b|2) (1 + | f |2)} = 1. Additional restric-
tions on parameters a, b, and f arise from site symmetry, as
we shall see.

Values of 〈tK
Q〉 = 〈g|tK

Q|g〉 are provided in Appendix A.
The diagonal component 〈tK

0 〉 = 〈tK
ζ 〉 is purely real for all a, b,

and f , in accord with our definition of the complex conjugate
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[14,15]. And, 〈tK
±3〉 are likewise when

Z = a∗ b(1 − | f |2) + b2 f ∗ − (a∗)2 f (3)

is purely real.
Multipoles 〈tK

Q〉 in neutron diffraction are strong
functions of the magnitude of the reflection vector κ ,
and representative values of radial integrals 〈 jc(κ )〉 for
Ce3+ are depicted in Fig. 2. Integer c is even, with
〈 jc(0)〉 = 0 for c = 2, 4, 6, and 〈 j0(0)〉 = 1. Figure 2 fea-
tures 〈 j0(k)〉, h(κ ) = {〈 j2(κ )〉 + (10/3) 〈 j4(κ )〉} and g(κ ) =
{〈 j4(κ )〉 + 12〈 j6(κ )〉} [10]. The octupole form factor h(κ ) is
a maximum for κ ≈ 7.95 Å−1, where h(κ ) is seen to be much
larger than 〈 j0(κ )〉. Most simple models of magnetic neutron
scattering use 〈 j0(κ )〉 as an atomic form factor [7,8].

The magnetic dipole 〈t1
ζ 〉 aligned with the triad axis of

rotation symmetry merits comments. For neutron diffraction,

〈
t1
ζ

〉 = (1/3)[μ〈 j0(κ )〉 + (6/5)〈Lζ 〉〈 j2(κ )〉], (4)

where the magnetic moment μ = 〈Lζ + 2Sζ 〉 and orbital an-
gular momentum 〈Lζ 〉 = (4/3)μ [15–17]. Specifically,

μ = (|a|2 − |b|2)(1 − | f |2) + 4(ab f ∗)′, (5)

and the prime denotes the real part of the quantity (ab f ∗).
Observe that μ = 0 for real a, b, and f = i, but Z is not purely
real for this choice of parameters. The necessary condition
on Z is met by real a, b = a and f = 0, for example, which
also results in μ = 0. The null value for the magnetic moment
means 〈tK

ζ 〉 = 0 for all K , in which case 〈tK
+3〉 with K = 3 and

5 alone are responsible for magnetic scattering of neutrons
and x rays. Returning to Eq. (4), a standard approximation to
〈t1

ζ 〉 for neutron diffraction, referred to as the dipole approx-
imation, is recovered from the exact result by replacing the
coefficient of 〈Lζ 〉 by unity [15,17].

IV. NEUTRON-DIFFRACTION AMPLITUDES

An electronic structure factor,

�K
Q = [

exp(iκ · d)
〈
T K

Q
〉
d

]
, (6)

determines diffraction amplitudes. In Eq. (6), the reflection
vector κ is defined by integer Miller indices (h, k, l ), and the
implied sum is over magnetic ions in sites d in a unit cell.
Environments in the unit cell of Fd 3̄m′ are related by pure ro-
tations through 180◦ around axes x, y, and z. In consequence,
�K

Q (16d ) is the same for the parent structure and the mag-
netic structure, except, that is, for properties of the multipoles
〈T K

Q〉, which are time even (even K) in one case and time
odd (magnetic, odd K) in the other case. With face-centering
reflection conditions even h + k, h + l , and l + k satisfied

�K
Q (16d ) = 4(−1)l

〈
T K

Q
〉
[{1 + αβ(−1)Q}

− βχ exp(iπQ/2){1 + αβ∗(−1)Q}], (7)

where phase factors α = exp(iπh/2), β = exp(iπk/2), χ =
exp(iπ l/2). Reflection conditions depend on projections Q,

and Miller indices. Notably, the conditions do not depend on
K , or any specific property of an atomic multipole other than
its angular anisotropy, namely, the projection Q; magnetic
multipoles are relegated to fixing the size of the structure fac-
tor through parameters in the ground state and the magnitude
of the reflection vector = (2π/a)

√{h2 + k2 + l2} (Ce2Zr2O7

unit-cell dimension a ≈ 10.74 Å [7]).
Bulk magnetic properties are related to the structure factor

evaluated for the forward direction of scattering, i.e., h = k =
l = 0. Under these conditions on Miller indices �K

z (16d ) =
0, and �K

Q (16d ) = 0 for odd Q. Thus, dipolar ferromagnetism
(K = 1, Q = 0, ±1) is forbidden, in accord with the magnetic
crystal class m3̄m′. Note, however, that the bulk structure fac-
tor can be different from zero for Q = ±2, ±4. A quadrupole
is a striking example [10,15,18]. Multipoles with an even
rank appear in magnetic neutron-scattering amplitudes when
the ground state is a mixture of J manifolds, as predicted
for Ce2Sn2O7 [19]. A quadrupole is proportional to 〈 j2(κ )〉.
We strive to illuminate the nature of the long-range magnetic
order of octupoles and triakontadipoles through discussions of
various reflection conditions derived from Eq. (7).

The electronic structure factor excludes odd Q at reflec-
tions of the type (2n, 2n, 0) and (0, 0, 2n). The reflection
condition is odd (m + n) with projections Q = 2m. Space-
group forbidden reflections possess odd n, and diffraction is
created by 〈T K

z〉 and 〈T 5+4〉. On the other hand, one mul-
tipole is observed with even n, and it is central to current
discussions about the magnetic properties of cubic pyrochlore
oxides [2,4,6]. With 〈T 5+2〉 = 0 in the list of multipoles in
Appendix A, diffraction is created by the octupole 〈T 3

+2〉.
Symmetry alone is responsible for this finding. The corre-
sponding expectation value of the neutron-electron interaction
operator is zero for reflections (0, 0, 2n), however. The op-
erator is usually written Q⊥ = {e × (Q × e)}, with e a unit
vector parallel to the reflection vector [15,17]. Using universal
expressions for the expectation value of the intermediate op-
erator 〈Q〉 reported in Ref. [15], we find 〈Q⊥〉 = (0, 0, 〈Qz〉)
with 〈Qz〉 = −i2

√
210〈T 3

+2〉 for reflections (2n, 2n, 0) with
even n. Optimum intensity occurs for κ ≈ 7.95 Å−1, which is
nearly achieved for n = 4.

Intensity of a magnetic Bragg spot = |〈Q⊥〉|2 when the
neutron beam is unpolarized. A polarization dependence of
scattering is usually described by a departure from unity of
the ratio of the reflected intensities for primary neutron beams
of opposite polarization [20–22]. Such a departure in the ra-
tio of intensities is allowed for (2n, 2n, 0) with even n, for
nuclear and magnetic neutron amplitudes possess a like phase
and interfere in diffraction, given that 〈Qz〉 ∝ i〈T 3

+2〉 is purely
real. By contrast, there is no neutron polarization dependence
in diffraction by eskolaite (chromium sesquioxide, Cr2O3),
because nuclear and magnetic amplitudes are 90◦ out of
phase. In general, a polarized neutron-diffraction signal � =
{P·〈Q⊥〉}, where P is polarization of the primary neutrons.
A spin-flip intensity (SF) is frequently used to measure the
magnetic content of a Bragg spot, with SF = {|〈Q⊥〉|2 − �2}
when (〈Q⊥〉∗ × 〈Q⊥〉) = 0 [24].

The reflection condition even n + Q applies to Bragg spots
(2n, 0, l ). Setting l = 2n′ together with odd n and odd Q,
one finds 〈Q〉 = (0, 〈Qy〉, 0) and 〈Q〉 = (〈Qx〉, 0, 〈Qz〉) for
odd and even n′, respectively. We consider odd n′ for which
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e·〈Q〉 = 0 and

〈Qy〉 = − 48
[
(1/

√
2)

〈
T 1

+1

〉′′ + (1/8)
√

35

× {√
(1/15)

(
6e2

z + e2
x − 2

)〈
T 3

+1

〉′′ + e2
x

〈
T 3

+3

〉′′}
. . .

]
(8)

Note that 〈T 1
+1〉′′ = −√

2〈T 1
y 〉 and the dipole form factor peaks

in the forward direction. Using κ ≈ 1.17
√{n2 + n′2}Å−1 we

observe n = n′ = 5 yields a near-optimum contribution from
the octupole form factor h(κ ) in Fig. 2. For brevity of the ex-
pression, we omit triakontadipoles in the purely real amplitude
〈Qy〉.

V. TOTAL SCATTERING

Total intensity of neutron scattering is 〈Q⊥·Q⊥〉, which we
evaluate for a powder sample of a simple material. A matrix
element in the expectation value of a J manifold is

〈J, M|(Q⊥ · Q⊥)av|J, M ′〉
= δ(M, M ′) {3/(2J + 1)}

∑
K

[1/(K + 1)] (J‖T K‖J )
2
.

(9)

A subscript “av” denotes the average over directions of the
reflection vector. Reduced matrix elements (J ‖ T K ‖ J ) in
Eq. (9) are listed in Ref. [10]. Form factors therein are
{〈 j0(κ )〉 + (8/5)〈 j2(κ )〉}, h(κ ), and g(κ ) for K = 1, 3, and 5,
respectively. Equation (9) is a special case of the general result
found in Appendix B.

VI. RESONANT X-RAY DIFFRACTION

Magnetic multipoles can be studied by resonant x-ray
diffraction, and the experimental technique has genuine ad-
vantages over neutron diffraction for the case in hand. Let us
consider reflections (2n, 2n, 0) and (0, 0, 2n) with even n
that directly reveal the octupole in the AIAO magnetic config-
uration. For a rare-earth ion, L2 or L3 absorption events access
4 f orbitals in an electric quadrupole–electric quadrupole (E2–
E2) process, with K = 0−4 [14,25]. X-ray multipoles do not
depend on the magnitude of the reflection vector, and both
Bragg spots of interest can be studied. Magnetic multipoles in
an E2–E2 absorption event have an odd rank, and the octupole
denoted 〈τ 3

+2〉 contributes intensity to the chosen Bragg spots.
Specifically, the x-ray scattering process in which photon po-
larization is rotated from perpendicular to parallel to the plane
of scattering, denoted π ′σ in a standard notation, does not
contain strong charge scattering by spherical distributions of
electrons [14]. An azimuthal angle ψ measures rotation of the
crystal sample around the reflection vector. Unit-cell structure
factors for even n are [26]

Fπ ′σ (2n, 2n, 0) = isin(ψ ) cos(θ )[cos2(θ )

+ (3 cos2(θ ) − 2) cos(2ψ )]
〈
τ 3
+2

〉
,

Fπ ′σ (0, 0, 2n) = sin(2ψ ) [sin(θ ) + sin(3θ )]
〈
τ 3
+2

〉
. (10)

The x-ray multipole 〈τ 3+2〉 is identical in form to 〈T 3+2〉 in
Eq. (A2). Dependence of Fπ ′σ on ψ and the Bragg angle θ in

Eq. (10) is exact, while radial integrals and numerical factors
are omitted [14,27,28]. For ψ = 0 and (2n, 2n, 0) the crystal
c axis is normal to the plane of scattering, and the a axis is
normal to it at the origin of the azimuthal angle scan using
(0, 0, 2n).

The Ce L3-edge energy ≈ 5.723 keV corresponds to an
x-ray wavelength ≈ 2.17 Å. Bragg angles in Eq. (10) at the
L3 edge are determined by sin(θ ) ≈ n 0.285 and sin(θ ) ≈
n 0.202 for (2n, 2n, 0) and (0, 0, 2n), respectively, meaning
allowed n = 2 or n = 2, 4 depending on which reflection is
observed. X-ray multipoles 〈t3

ζ 〉 and 〈t3
+3〉 in 〈τ 3

+2〉 are pro-
portional to μ and Z , respectively. The coefficients depend
on the Ce electronic configuration 4 f 1, and the total angular
momentum of the 2p core state γ = 1/2 (L2) or γ = 3/2 (L3).
Let [14]

�(γ ) = + 2(−4) (1/7)
√

(1/210) [−1 (+1) 7W (0,3)3

− 3(+3/2) {−√
2W (1,2)3 + 2

√
11W (1,4)3}]. (11)

Here, coefficients in brackets are correct for γ = 3/2, and
replace their prefactor, which is correct for γ = 1/2, e.g.,
the coefficient of the unit tensor W (0,3)3 is −2 (L2) or
−4 (L3) apart from the common factor

√
(1/210). Operator

equivalents for W (a, b)3 and sum rules for E2–E2 magnetic
dichroism—linear combinations of �(1/2) and �(3/2)—
have long been established [25]. The cerium electronic con-
figuration 4 f 1 determines the three unit tensors W (a, b)K in
Eq. (11) and they are derived from

W (a,b)K = (2J + 1)
√

(2K + 1)

⎧⎨
⎩

σ σ a
l l b
J J K

⎫⎬
⎭. (12)

Symmetry of the 9 j symbol in Eq. (12) demands even
(a + b + K ) [16]. Remaining quantities are spin σ = 1/2, or-
bital angular momentum l = 3, and total angular momentum
J = 5/2. In conclusion, structure factors in Eq. (10) for reso-
nant x-ray diffraction are determined by cerium multipoles,〈

t3
ζ

〉 = −(1/6)
√

(7/5)μ�(γ ),
〈
t3
+3

〉 = −(2/3)
√

7 Z�(γ ).

(13)

Coefficients in Eq. (13) are correct for M = 3/2 and J = 5/2
that appear in the ground state Eq. (2), and the value of 〈τ 3

+2〉
in Fπ ′σ (2n, 2n, 0) and Fπ ′σ (0, 0, 2n) is read off from the
appropriate result in the Appendix A.

VII. CONCLUSIONS

A symmetry-informed analysis of Bragg diffraction by
a magnetic all-in–all-out (AIAO) configuration of dipoles,
depicted in Fig. 1, has produced exact reflection conditions
and magnetic multipoles. Reflection conditions flow from
the significant result Eq. (7) for the electronic structure fac-
tor appropriate for ions in centrosymmetric sites 16(d ) in
the face-centered cubic space group Fd 3̄m′ (No. 227.131,
BNS setting [13]). The AIAO configuration in question is
compatible with the irreducible representation GM+

2 [11,12].
A long-range order of magnetic dipoles is forbidden. Off-
diagonal components of higher-order multipoles contribute
to bulk properties, including quadrupoles and octupoles vis-
ible in dichroic signals [14,25,31]. In diffraction experiments,
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reflection conditions depend on Miller indices and angular
anisotropy of the magnetic multipoles. The type of conditions
we find are a magnetic analog of those derived by Temple-
ton and Templeton in their analysis of x-ray scattering by
aspherical distributions of electron charge [29,30]. Angular
anisotropy is set by site symmetry, which includes the oper-
ation of time reversal in the case of a magnetic crystal. Site
symmetry and simple rotational relations between the four
sites in a unit cell conspire to provide very stringent conditions
on two classes of reflections that we examine detail for the
diffraction of neutrons and x rays. All multipoles are excluded
from diffraction amplitudes for these reflections apart from
octupoles.

A natural setting for magnetic multipoles in a cubic crystal
includes the triad axis of rotation symmetry, and compliance
severely restricts the number of multipoles active in diffrac-
tion. On the other hand, multipoles in the electronic structure
factor for diffraction Eq. (7) are set in cubic axes, and relations
between the two types of multipoles are listed in an appendix.

The AIAO configuration is frequently mentioned in dis-
cussions of magnetic cubic pyrochlore oxides. We applied our
results to Ce3+ and its magnetic ground state established for
Ce2Zr2O7 [3]. The two aforementioned stringent reflection
conditions isolate the much-discussed cerium octupole (third-
rank tensor) [4,6]. We report an analytic expression for it in
terms of coefficients in the ground state of Ce2Zr2O7, for both
neutron- and resonant x-ray diffraction. The presence of nu-
clear scattering complicates the experimental confirmation in
the case of neutron diffraction. Fortunately, a temperature de-
pendence and critical behavior of intensities can help separate
magnetic and nuclear contributions. Likewise, polarization
analysis is treated in Sec. IV. The x-ray structure factors
in Eq. (10) show a demarcation between the two classes of
reflections with respect to different behaviors on rotation of
the magnetic crystal about the reflection vector (an azimuthal
angle scan).
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APPENDIX A

An expression for the magnetic dipole 〈t1
ζ 〉 appears in

Eq. (4). Higher-order multipoles allowed by 3̄m′ are〈
t3

ζ

〉 = −(2/5)
√

(1/7)μh(κ ),〈
t3
+3

〉 = −(8/7)
√

(1/35) Z h(κ ),〈
t5
ζ

〉 = −(5/77)
√

(5/33)μg(κ ),〈
t5
+3

〉 = (10/11)
√

(1/231) Z g(κ ). (A1)

The quantity Z and magnetic moment μ are defined in Eqs. (3)
and (5), respectively, and Z is purely real. Multipoles with
an even rank are absent because Eq. (1) contains one J state

[3]. Such multipoles represent entanglement of anapole and
spatial degrees of freedom [10,15,18].

Turning to multipoles that appear in the electronic structure
factor Eq. (7), Cartesian dipoles are obtained from 〈Tx

1〉 =
(1/

√
2) (〈T 1−1〉−〈T 1+1〉), 〈T 1

y〉 = (i/
√

2) (〈T 1
−1〉 + 〈T 1

+1〉),
〈T 1

z 〉 = 〈T 1
0 〉 and they have the value 〈t1

ζ 〉/√3, as expected.
The identity 〈T K

−Q〉 = exp(iπQ/2) 〈T K
Q〉 for odd K is pro-

vided by a required invariance of multipoles with respect
to the antidyad 2′

−xy. Evidently, 〈T K
+2〉 is purely imaginary

〈T K
+2〉 = i〈T K

+2〉′′, or zero, while 〈T K
+4〉 is purely real 〈T K

+4〉 =
〈T K

+4〉′. For Q odd, 〈T K
+1〉 = i〈T K

+1〉∗ and 〈T K
+3〉 = −i〈T K

+3〉∗.
Specific expressions are

〈
T 3

z

〉 = −1/(3
√

3)
[
2
〈
t3
ζ

〉 + √
10

〈
t3
+3

〉]
,〈

T 3
+1

〉 = −exp(iπ/4) (1/6)
[√

2
〈
t3
ζ

〉 + √
5
〈
t3
+3

〉]
,〈

T 3
+2

〉 = (i/3)
[√

(5/2)
〈
t3
ζ

〉 − 2
〈
t3
+3

〉]
,〈

T 3
+3

〉 = exp(−iπ/4) 1/(6
√

3)
[√

(10)
〈
t3
ζ

〉 + 5
〈
t3
+3

〉]
,〈

T 5
z

〉 = −1/(6
√

3)
[〈

t5
ζ

〉 + √
70

〈
t5
+3

〉]
,〈

T 5
+1

〉 = exp(iπ/4) 1/(6
√

2)
[√

10
〈
t5
ζ

〉 + √
7
〈
t5
+3

〉]
,〈

T 5
+2

〉 = 0,〈
T 5

+3

〉 = exp(−iπ/4) 1/(12
√

3)
[√

(70)
〈
t5
ζ

〉 − 11
〈
t5
+3

〉]
,〈

T 5
+4

〉 = −1/(12
√

3)
[√

(70)
〈
t5
ζ

〉 − 2
〈
t5
+3

〉]
,〈

T 5
+5

〉 = exp(iπ/4) 1/(12
√

3)
[√

14
〈
t5
ζ

〉 + 5
√

5
〈
t5
+3

〉]
. (A2)

Form factors for octupoles 〈T 3
Q 〉 and triakontadipoles 〈T 5

Q 〉 are
h(κ ) and g(κ ), respectively, and they are depicted in Fig. 2.

APPENDIX B

We provide a more general matrix element for total scatter-
ing 〈J, M|Q⊥·Q⊥|J′, M′〉 than Eq. (9), in so far that Eq. (B2)
includes a unit-cell structure factor. For example,

ϕQ(K )

= 4[(2K + 1)/(K + 1)][3(2K − 1)]1/2(−1)l

× [{1+αβ(−1)Q}−βχ exp(iπQ/2){1+αβ∗(−1)Q}].
(B1)

The dependence of ϕQ(K ) on the projection Q and Miller
indices h, k, l is specific to the electronic structure factor
Eq. (7) appropriate for Fd 3̄m′. In the present discussion, it
is by way of an illustration. However, factors in Eq. (B1)
involving the rank K are common to all magnetic structures.

The neutron-electron interaction operator Q⊥ possesses a
nontrivial dependence on the reflection vector κ = κ e, with
e·e = 1. Its magnitude κ appears in reduced matrix elements
of magnetic multipole operators TK [10,15]. Spherical har-
monics CK

Q (e) describe the orientation of κ, chosen with
normalization C1(e) = e and a complex conjugate CK

Q (e)∗ =
(−1)QCK

−Q(e) [32]. Using the Einstein convention for a sum
on repeated indices, e.g., projections α, β [not to be confused

224408-5
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with phase factors in Eqs. (7) and (B1)] and rank K [15],

〈J, M|Q⊥ · Q⊥|J ′, M ′〉 = 〈J, M|T K
β T K ′

β ′ |J ′, M ′〉ϕβ (K )ϕβ ′ (K ′)

×
[

(−1)qCK−1
α CK ′−1

α′

(
K − 1 K 1

α β q

)(
K ′ − 1 K ′ 1

α′ β ′ −q

)
− R(K )R(K ′)

(
CK

β CK ′
β ′

)∗
]
. (B2)

3-j symbols in Eq. (B2) are defined by Judd and Edmonds
[16,32], and

R(K ) = (−1)K{K/[(2K − 1)(2K + 1)]}1/2. (B3)

Insert a partition of unity as a sum over atomic states
(| j, m〉 〈 j, m|) in the matrix element to obtain

〈J, M|T K
β T K ′

β ′ |J ′, M ′〉

= 〈J, M|Ox
μ|J ′, M ′〉(2x + 1)(−1)μ

(
K ′ K x
β ′ β −μ

)
,

(B4)

with a reduced matrix element [15,16,32],

(J||Ox||J ′) = (−1)J+J ′
(J||T K || j) ( j||T K ′ ||J ′)

{
J ′ J x
K K ′ j

}
.

(B5)

The identity (J‖T K‖ j) = (−1) j−J (−1)K+1 ( j‖T K‖J ) is valid
for a parity-even multipole [33].

The spatial average of total scattering is derived from

〈J, M|(Q⊥ · Q⊥)av|J ′, M ′〉
= {(K + 1)/[(2K − 1) (2K + 1)2]}(−1)βϕβ (K )ϕ−β (K )

× 〈J, M|T K
β T K

−β |J ′, M ′〉. (B6)

If ϕβ (K ) is independent of the projection β, the sum on β in
Eq. (B6) forces x = 0. And,

(−1)β〈J, M|T K
β T K

−β |J ′, M ′〉
= δ(J, J ′)(−1) j−J (J‖T K‖ j)( j‖T K‖J )/(2 J + 1). (B7)

Equation (9) is obtained from Eqs. (B6) and (B7) on setting
j = J , and ϕβ (K ) = {[(2K + 1)/(K + 1)][3(2K−1)]1/2}.
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