
Functional Programming 6

jens.jensen@stfc.ac.uk
0000-0003-4714-184X

CC-BY 4.0

March 5, 2023

Outline of Talks

▶ Previous talks (talks 1-3):
▶ Introibo
▶ Pure Functional Programming Principles
▶ Mapping
▶ Labels and naming
▶ Lists

▶ This talk (Talk 6):
▶ Advanced(ish) Topics (continued)

▶ Impure Functional? Side E�ects

▶ Category Theory

▶ Categories and Functions

▶ Categories and Computation

Still written in the author's spare time!

Very much a personal perspective, and not following any particular
textbook. Using meditations and exercises � solutions to all
exercises given during the talks.

Common/Advanced(ish) Features of Functional Languages

1. Lambda (anonymous (unnamed) functions) and currying

2. List comprehension

3. Functions � mutually recursive, higher order

4. Symbols

5. Tail recursion

6. Closures: scope and extent

7. Types and type inference

8. Branch-on-pattern-matching and guards

9. Memoisation

10. Lazy evaluation types

11. Pipes (not the lazy kind) style composition
▶ h(g(f (x))) ≡ (h (g (f x))) ≡ x |f |g |h

12. Monads: theoretical framework for types and computation

13. Applied monads: Maybe, Arrays

14. Bonus section for survivors of MonadLand: Lisp Hacking

Back to basics: what is a closure?

(let ((a 1) (b 0))

(defun fib ()

(psetq a b b (+ b a))

b))

fib

(fib)

1

(fib)

1

(fib)

2

(fib)

3

(fib)

5

(fib)

8

Back to basics: what is a closure?

(let ((a 1) (b 0))

▶ a and b are declared locally, initialised to a pre-step of
Fibonacci (OEIS A000045)

(defun fib ()

▶ The function fib is declared inside the let (not at the
top-level)

(psetq a b b (+ b a))

b))

▶ A single step is performed in Fibonacci with value in b

▶ The function remembers its place in the sequence

▶ Though a and b are no longer accessible (only through fib),
they persist (as long as fib exists)

Fibonacci generator, OOP version

; SLIME 2.27

CL-USER> (defclass fib-gen ()

((a :initform 1 :type unsigned-byte)

(b :initform 0 :type unsigned-byte))

(:documentation "Fibonacci generator class"))

#<STANDARD-CLASS COMMON-LISP-USER::FIB-GEN>

CL-USER> (defgeneric next (obj)

(:method ((obj fib-gen))

(with-slots (a b) obj

(shiftf a b (+ a b))

b)))

#<STANDARD-GENERIC-FUNCTION COMMON-LISP-USER::NEXT (1)>

CL-USER> (let ((o (make-instance 'fib-gen)))

(list (next o) (next o) (next o) (next o)))

(1 1 2 3)

CL-USER>

Disclaimer

(The rest of) this talk is about scope and extent, and will be quite
technical. It will (hopefully) tie up some loose ends from previous
talks and lay a foundation for topics in future talks.

Suggested answers to exercises at the end

Scope and Extent

Quick reminder about the di�erences between bindings and
assignment.

Assignments (modifying a value) are usually made with setq or
setf (and avoided as a matter of principle in Functional
Programming); it overwrites the value held by the variable.
makunbound removes the value, though the symbol still exists.

(let ((a 4))

(let ((a 3) (b a) c)

(makunbound 'a)

(unless (boundp 'b) (list a b c))))

(3 4 nil)

There is something Interesting� going on: all variables are in fact
bound (c to nil), but only within the let construct, not globally
(which is where boundp looks): we shall investigate in this section.

Scope and Extent

As preparation, let us zoom in on the RE parts of the REPL of a
simple expression:

(func foo)

In fact, we shall zoom in on the variable part (the function part
being similar).

▶ We assume foo names a variable

▶ We assume func names a function

Scope and Extent

Step 0: The Reader reads the parentheses and two symbols, func
and foo and constructs a list containing these two symbols.

(list (intern "func") (intern "foo"))

▶ The happens at read-time; if running interactively, it will be
read after we hit return

▶ Note that the Reader is not allowed to use make-symbol
(here), why not?

▶ The Reader creates the symbols func and foo (CL: in the
current Package) if they do not already exist
▶ Initially, the symbols are unbound

Scope and Extent

Step 1: (Evaluate) The symbol foo is looked up as a reference to
a variable

foo

▶ For Lisp2s, foo is looked up in the variable namespace (in the
current package)
▶ func is looked up in the function namespace
▶ There may be type restrictions on foo (Section 7)

▶ The name is looked up in the appropriate context:
▶ The variable may be unbound
▶ The variable may be bound locally (with let)
▶ There may be a �global� value (to be de�ned shortly)

Scope and Extent

Step 2: The bindings of foo are looked up in the appropriate
context (local/global), the innermost binding is found

(let ((foo 7))

(let ((foo 'a))

(func foo)))

▶ The variable may be unbound (have no binding) � which
would be an error

▶ The innermost binding is often the most recently established

Scope and Extent
Step 3: If the binding has a value � an object � it is returned and
passed to func as an argument

(func 'a)

▶ A (lexical) binding will always have a value:
▶ It is not possible to create a (lexical) binding that does not

have a value
▶ It is not possible to remove the value from a (lexical) binding:
▶ makunbound has no e�ect whatsoever
▶ setq must assign it a value

▶ However, there are dynamic bindings, too (which can be
unbound): we shall examine these shortly

▶ And constants, of course, always have values
▶ System constants (like pi or nil or

long-float-negative-epsilon) may not be changed
(assigned to, or bound)

▶ User-de�ned constants may grudgingly be rede�ned

▶ Inside the function, the value is bound to the parameter in the
function's lambda list

Scope and Extent

Step 4: Bind the function's arguments

(defun func (x) (list x x))

When the Evaluator calls the function, it creates a lexical binding of
the function's parameter(s) to its argument(s).
Once the binding(s) are created, the function's body is evaluated as
if it were

(let ((x 'a))

(list x x))

Obviously, if there is an outer (prior) binding of x, it is shadowed.
Notice the same e�ect is achieved by

((lambda (x) (list x x)) 'a)

Scope and Extent

Suppose we are writing a program to solve problems in integer
arithmetic (we assume we have egcd, given a, b it �nds x , y s.t.
ax + by = gcd(a, b)):

(defun mod-inv (m k)

"Invert k mod m (if m k coprime)"

(let ((a (first (egcd x m))))

(if (minusp a) (+ a m) a)))

(defun mod-* (m a b)

"Multiply a and b mod m"

(mod (* a b) m))

(defun mod-/ (m a b)

"Divide a by b mod m"

(mod-* m a (mod-inv m b)))

(defun coprimep (x y)

"Determine whether two integers are co-prime"

(= 1 (gcd x y)))

Scope and Extent

If the modulus is constant (known at compile time), it would make
sense to curry all the arithmetic functions:

(defconst +mod+ 17 "common modulus")

(defun mod-inv (k)

"Invert k mod +mod+ (if +mod+ k coprime)"

(let ((a (first (egcd x +mod+))))

(if (minusp a) (+ a +mod+) a)))

(defun mod-* (a b)

"Multiply a and b mod +mod+"

(mod (* a b) +mod+))

(defun mod-/ (a b)

"Divide a by b mod +mod+"

(mod-* +mod+ a (mod-inv b)))

In CL, constants would be de�ned by defconstant

Note π is called pi, not +pi+; similarly for other built-in constants
like most-negative-fixnum

Scope and Extent
CL distinguishes between
▶ Constants � should not be changed by user or program
▶ Parameters given to the program (but unchanged by the

program) (defparameter)
▶ �Local� variables (and functions)
▶ �Global� functions (and variables)

It is considered bad practice to just setq a variable into existence
(though EL permits it); instead, defvar should be used:

(defvar *dims* '(2 3 3) "Dimensions of data array")

This is analogous to defun for creating (global) functions (more or
less), where flet is the function analogue to let for creating local
(lexical) functions/variables.
Apart from encouraging a documentation string, variables
introduced with defvar have special magic...

(special-variable-p 'auto-mode-alist)

t

Scope and Extent

If the modulus is constant-ish � it can be changed by the user or
the program but is the same across calls to all of the modulus
functions (it would usually not make sense mathematically if it
weren't) � it can be declared globally:

(defvar *mod* nil "Modulus for all mod- functions, initially unset")

mod

(special-variable-p '*mod*)

t

(defun mod-+ (a b)

"Add numbers modulo *mod*"

(mod (+ a b) *mod*))

The CL convention is to use asterisks in the name (e.g.
random-state, *print-circle*), though Emacs does not
follow this convention.

Scope and Extent

Once de�ned, the variable can be assigned to (as indeed it must in
our example), prior to the �rst call:

(setq *mod* 17)

(mod-+ 12 14)

9

However, it can also be bound (in this example, it is still 17 from
above):

(let ((*mod* 11))

(mod-+ 12 14))

4

(mod-+ 12 14)

9

Notice that *mod* is not used anywhere in the lexical scope of the
let binding...

Scope and Extent

▶ Scope is about the region of visibility of a variable binding
▶ In lexical scope, binding is visible within the code block
▶ In inde�nite scope, a binding is visible anywhere

▶ Extent is about the duration of a variable binding
▶ In inde�nite extent, a binding is held inde�nitely

▶ Until the compiler (or GC) can prove it is no longer reachable

▶ In dynamic extent, a binding is valid only while execution is
within the range of the binding

Scope and extent a�ect not just variable bindings, but everything
that can be �looked up� with a symbol: functions, non-local exits,
blocks, tags, etc.

Scope and Extent

A let binding has lexical scope and inde�nite extent:

(let ((m 3))

(lambda (x) (+ x m)))

The value of m is accessible only inside the let. The resulting
lambda expression will �remember� the m= 3 binding even though m

is not accessible to anyone once the let is exited. In other words,
closures work with lexical scopes � and inde�nite extent.

In contrast, *mod* has inde�nite scope (can be accessed by any of
the mod- functions) but dynamic extent (as witnessed by the
temporary *mod*=11 binding). Such variables are also called (and
declared as) special variables. In EL, the let binding shadows the
outer value, but the binding remains special.

The combination of inde�nite scope and dynamic extent is
sometimes called �dynamic scope� (even in the ELisp
documentation).

Scope and Extent
We can now return to our Emacs alist example from Talk 3:

(let ((auto-mode-alist

(acons "\\.R$" 'text-mode auto-mode-alist)))

(find-file "/home/jens/projects/stats/line.R"))

This example temporarily binds the (already) special variable
auto-mode-alist, to a new value shadowing the existing value of
R-mode. Note it does not need declare special in the binding �
why not?
▶ The �le, if it exists, is loaded in text mode.
▶ During the load, the mapping to text mode is visible to any

part of Emacs.
▶ The local auto-mode-alist shadows the global one
▶ Inside the new alist, the new cons cell shadows the existing one
▶ After the let is exited (even in error), auto-mode-alist

retains its normal value (via the original binding)
▶ Any �les whose names end with .R will subsequently load in R

mode.

Scope and Extent
▶ Global (Lisp) functions are (essentially) constant � with

inde�nite extent
▶ User-de�ned functions:

(defun foo (x) "add two" (+ x 2))

foo

(defun bar (y) "call foo" (foo y))

bar

(flet ((foo (x) (* x 3)))

(bar 6))

What is happening here � what does the flet return?
▶ foo is de�ned to add two to a number
▶ bar is de�ned to call foo
▶ The flet normally creates a lexically bound function
▶ However, there is already a global binding of foo to a function

de�nition
▶ So the question is: does bar call the global foo (returns 8) or

the one de�ned by flet (returns 18)?

Scope and Extent

In CL we can also have �local� variables with inde�nite scope and
dynamic (non-inde�nite) extent:

(let ((a 4)) ; CL code

(declare (special a))

(foo))

Now, while foo executes, a is bound to 4, despite foo being de�ned
outside of the lexical scope of the let. The binding ceases to exist
after the let is exited. While let would normally declare variables
with lexical scope and inde�nite extent, the declaration changes
both so the scope of a is inde�nite and the extent is dynamic.

By convention, special variables � whether declared as above, or
globally with defvar (or by other means beyond this talk) � have
names that begin and end with '*', .e.g. *a*

Scope and Extent
What happens here (this is CL code):

(let ((*special* "foo"))

(declare (special *special*))

(let ((*special* 'bar))

(makunbound '*special*)

(ignore-errors (list 1 *special* 2))))

Contrast with this:

(let ((*special* "foo"))

(declare (special *special*))

(let ((*special* 'bar))

(declare (special *special*))

(makunbound '*special*)

(ignore-errors (list 1 *special* 2))))

The declare special does what defvar does (in terms of setting
the extent) but there are two important di�erences...

Scope and Extent

; SLIME 2.26.1

CL-USER> (defvar *zut* 'baz)

ZUT

CL-USER> (defun foo () (list *zut*))

FOO

CL-USER> (foo)

(BAZ)

CL-USER> (let ((*zut* 'bzzt)) (foo))

(BZZT)

CL-USER>

defvar is stronger than a local special declaration: *zut* is special
even in the local binding, despite not being declared special. In EL,
defvar is currently the only option, and bindings behave similarly
(like we saw with auto-mode-alist)

Scope and Extent
So far we have met
▶ Lexical scope and inde�nite extent � bindings created with

let, flet
▶ Except if they shadow a global/dynamic scope

▶ E�ectively �global� objects de�ned with defvar and defun
have inde�nite scope and inde�nite extent
▶ Though formally they have dynamic scope � the extent being

the entire runtime
▶ Constants � and built-in functions � also have inde�nite scope

and inde�nite extent
▶ Catches have dynamic scope � catches are valid only within

the extent of the (implicit) progn they enclose
▶ And variables declared special (in CL only)

(let ((a 3)) ; EL code

(declare (special a))

(special-variable-p 'a))

nil

So the remaining question is: does anything have lexical scope and
dynamic extent?

Scope and Extent
Blocks have lexical scope and dynamic extent:

(block sknomz (list 1 2 3)

(return-from sknomz (list 8 9))

(list 4 5 6))

(8 9)

The implication is that this is an error:

(defun fact ()

(lambda (n)

(labels ((fact-1 (k)

(when (zerop k) (return-from fact 1))

(* k (fact-1 (1- k)))))

(fact-1 n))))

(funcall (fact) 12)

If we write (return-from fact-1 1) then it works � in CL. In
EL, it still doesn't work though.

Scope and Extent�Closures

Let's look a bit more closely at bindings. What does this
construction return?

(eq (lambda (foo) (+ foo 2))

(lambda (foo) (+ foo 2)))

In fact it returns nil when evaluated in Emacs, but a compiler
would be free to optimise and make the lambdas eq.

Would this be optimisable?

(let ((foo (list 1 2)))

(eq (lambda (x) (cons x foo))

(lambda (x) (cons x foo)))

(answer on the next slide)

Scope and Extent�Closures

The compiler would be allowed to optimise the two lambdas and
make them the same object (e.g. if the lambdas were returned in a
list, they could be eq).

In contrast, these lambdas must be di�erent objects:

(list (lambda (x)

(let ((foo (list 1 2))) (cons x foo)))

(lambda (x)

(let ((foo (list 1 2))) (cons x foo))))

Meditation: why?

Scope and Extent
This is really an advanced-squared topic so don't worry too much
about it: but it is possible to have variables which, like blocks, have
both lexical scope and dynamic extent?

To do that, we declare a lexical variable but tell the compiler to
give it dynamic extent (CL only):

(let ((a (list 1 2 3)))

(declare (dynamic-extent a))

(length a))

What this tells the compiler is that the binding will not be
referenced beyond the duration of the let: which is true, here the
binding is used only as long as the list is created.

This allows the compiler to (optionally, possibly) optimise the code
and allocate a on the stack instead of the heap. Thus, this would
be particularly useful in a function de�nition when performance is
important and the compiler cannot deduce that the binding does
not need inde�nite extent.

Scope and Extent � A Simpli�ed Summary
▶ Scope is about the region where a binding is accessible;

▶ Extent is about the time during execution where a binding is
accessible;

▶ defvar creates �global� variables
▶ These are special: inde�nite scope and dynamic extent (aka

�dynamic scope�)
▶ Though the �dynamic� is (usually) the duration of the entire

program (when created with defvar)
▶ (Unless the binding is removed with makunbound)

▶ defun does the same with functions
▶ fmakunbound removes the function de�nition

▶ let/let*/flet/labels create lexical bindings
▶ Unless the variable is already special or (CL) is declared special
▶ These have lexical scope and inde�nite extent (�lexical

binding�)
▶ Closures rely on these: the inde�nite extent is needed to

continue to access the binding
▶ A lexical binding can never be unbound

Answers to exercises

A collection of hacks showing possible answers to the exercises...
and another summary

Answers � Variables

This is CL code (also not good code, as we shall see shortly, it just
illustrates the e�ect of shadowing a special variable)

(let ((a 4))

(declare (special a))

(let ((y (lambda (x) (cons x a))))

(let ((a 'foo)) ; inner not special

(funcall y 'gloop))))

(GLOOP . 4)

The innermost binding of a is not declared special and has no e�ect
on the outer special binding, and thus no e�ect on its use in y

Answers � Variables

Contrast with this version where the inner binding is special:

(let ((a 4))

(declare (special a))

(let ((y (lambda (x) (cons x a))))

(let ((a 'foo))

(declare (special a))

(funcall y 'gloop))))

(GLOOP . FOO)

In EL, the latter returns (gloop . 4) � both bindings are lexical
as special declarations are ignored and have no e�ect (EL 13.14)

Answers � Variables

The worse problem with the example is that the lambda contains a
reference to a special variable.

; SLIME 2.27

CL-USER> (defun dodgy-ref ()

(let ((a 3))

(declare (special a))

(lambda (x) (+ x a))))

DODGY-REF

CL-USER> (let ((y (dodgy-ref)))

(funcall y 1))

; Evaluation aborted on #<UNBOUND-VARIABLE A {100420B0C3}>.

We do the same as before but the lambda doesn't work outside of
the let � we do not have a closure. The reason is the dynamic

extent (duration) of the special binding: once the let is exited, the
binding no longer exists. This is why lexical bindings must have
inde�nite extent.

Answers � Variables

Contrast this with de�ning a �global� variable with defvar:

CL-USER> (defvar *a* 3)

A

CL-USER> (let ((*a* 4)) ; not explicitly special

(+ 1 *a*))

5

CL-USER> (flet ((y (x) (+ x *a*)))

(let ((*a* 4))

(y 1)))

5

CL-USER> *a*

3

Note the inner binding does not declare *a* special but the e�ect is
as if it were declared, as it a�ects the outer binding of y's use of
a. A (toplevel) defvar cannot be shadowed lexically!

Answers � Variables
▶ In CL, defparameter also de�nes �global� variables (dynamic

extent and inde�nite scope)
▶ We assume defvar and defparameter are executed at

toplevel
▶ In EL, the only way to declare a special variable is with

defvar
▶ (The reason specialness is pervasive with toplevel defvar is

defvar proclaims the symbol special (a proclamation is
kind-of a pervasive declaration))

▶ While the extent is dynamic, a toplevel defvar binding
e�ectively remains until Emacs is exited (some people close
Emacs...), or the binding is explicitly changed

▶ Note that if the variable is already bound, defvar has no e�ect

(defvar znork 'grulp)

znork

(defvar znork 'blazp)

znork

znork

grulp

Answers � Functions

Repeating the exercise with functions is now straightforward(ish):

CL-USER> (labels ((foo (x) (+ x 1))

(bar (k) (* 2 (foo k))))

(flet ((foo (y) (ash y 4)))

(bar 3)))

8

(This code doesn't work in EL, though it will if you replace the
inner flet with labels; the outer binding is made with labels so
bar can reference foo)

The calculation done here is (* 2 (+ 3 1)), ignoring the inner
binding of foo, i.e. the binding is lexical (to be precise, the scope is
lexical; the extent inde�nite)

Answers � Functions

Compare with this EL (CL is the same):

(defun foo (x) (+ x 1))

foo

(labels ((bar (k) (* 2 (foo k)))

(foo (y) (ash y 4)))

(bar 3))

96

The calculation done now is (* 2 (ash 3 4)).

Like defvar, (toplevel) defun proclaims specialness of the binding
assigned to its symbol, and the inner foo shadows the outer one
and the shadowing is visible to bar even though bar does not �see�
the inner de�nition of foo directly

Summa Summarum
▶ Lexical scope, inde�nite extent (�lexical scope�)

▶ Variables de�ned with let
▶ Functions de�ned with flet, labels

▶ Inde�nite scope, dynamic extent (�dynamic scope�)
▶ Variables de�ned with let and declared special (CL only)
▶ Variables de�ned at toplevel with defvar (and CL,

defparameter)
▶ Functions de�ned at toplevel (or in a toplevel let) with defun
▶ catches

▶ Lexical scope, dynamic extent
▶ Blocks (including implicit blocks) and tags
▶ Variables declared dynamic-extent (stack allocated, CL only)

▶ Inde�nite scope, inde�nite extent
▶ Though formally special, constant variables

(most-negative-fixnum) have inde�nite extent and can
neither be shadowed nor be unbound

▶ pi is not special in EL but is constant
▶ Symbols naming variables which reference themselves (nil,

keywords)

	Introibo
	Advanced(ish) Functional Programming

