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In the search for high-performance thermoelectrics, materials such as clathrates have drawn attention due to
having both glasslike low phonon thermal conductivity and crystal-like high electrical conductivity. BagGasGeso
(BGG) has a loosely bound guest Ba atom trapped inside rigid Ga-Ge cage structures. Avoided crossings between
acoustic phonons and the flat guest atom branches have been proposed to be the source of the low lattice thermal
conductivity of BGG. Ga-Ge site disorder with Ga and Ge exchanging places in different unit cells has also been
reported. We used time-of-flight neutron scattering to measure the complete phonon spectrum in a large single
crystal of BGG and compared these results with predictions of density functional theory to elucidate the effect of
the disorder on heat-carrying phonons. Experimental results agreed much better with the calculation assuming
the disorder than with the calculation assuming the ordered configuration. Although the atomic masses of Ga
and Ge are nearly identical, we found that disorder strongly reduces phonon group velocities, which significantly
reduces thermal conductivity. Our work points to a path towards optimizing thermoelectrics.

DOI: 10.1103/PhysRevB.107.L.020301

Thermoelectric materials enable environmentally friendly
waste-heat-to-electricity conversion [1,2]. The efficiency of
a thermoelectric is determined by a dimensionless quantity
called the figure of merit: ZT = O’SZT/K, in which o is the
electrical conductivity, S is the Seebeck coefficient, T is the
temperature, and « is the thermal conductivity [3]. The ther-
mal conductivity k = k; + k. is the sum of the lattice thermal
conductivity «;, and the electronic thermal conductivity «,. It
is classically known that the lattice component is the relevant
one for thermoelectric performance [4]. According to the ki-
netic theory of gases, k is proportional to the lattice heat
capacity C, the average phonon velocity v, and the average
relaxation time t of phonons. In most cases, low, glasslike «;,
is attributed to reduced v and/or 7.

Glasslike low lattice thermal conductivity and crystal-like
high electrical conductivity coexist in so-called phonon-glass
electron-crystal (PGEC) materials [5]. One way to realize this
concept is by designing materials such that loosely bound
“guest” atoms sit inside empty spaces of a rigid atomic lattice
with good electronic conductivity [6-9]. In this case, inter-
actions between the low-energy rattling motion of the guest
atoms and acoustic phonons reduce v and/or T depending on
specific materials. In particular, the reduction of v is achieved
through avoided crossings (anticrossings) between low-lying
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optic branches with acoustic branches that result from cou-
pling between the phonons in branches that would cross in
the absence of such a coupling. In this case the dispersion
curves never cross, instead “avoiding” each other. As a result
the branches become more flat, and v decreases.

The XgGasGeszy (X = Ba, Eu, Sr) clathrates have low
lattice thermal conductivity (~1 W/mK at room tempera-
ture), which makes them promising candidates for efficient
thermoelectrics [6,10,11]. Their structure is characterized
by tetrakaidecahedral (Ga, Ge),s4 and dodecahedral cages
(Ga, Ge),o with loosely bonded Ba, Eu, or Sr guest atoms
inside, which makes them a classic type of PGEC material
[12,13]. Evidence of strong occupational disorder of the Ga
and Ge sites has also emerged recently, i.e., Ga and Ge are
distributed nearly randomly on the cage vertices [Fig. 1(a)]
[14-18]. Since Ga and Ge have similar atomic masses, the
effect of their occupational disorder on phonon dispersions
was implicitly assumed to be minimal. Here we combined
comprehensive time-of-flight (TOF) inelastic neutron scatter-
ing measurements of BagGa;¢Geso with calculations based on
density functional theory (DFT) assuming both the ordered
and the disordered structures and found that the disorder
splits the degenerate rattler branches into multiple nearly flat
branches. The new branches produce many more avoided
crossings with the acoustic modes, which significantly low-
ers their average group velocities and, as a consequence,
reduces thermal conductivity. Our result demonstrates that

©2023 American Physical Society
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FIG. 1. Summary of the lattice dynamical phenomena considered in this Research Letter. (a) Ba-6d containing (Ga, Ge),4 cage portion

of the three-dimensional unit cells of perfectly ordered BagGa,sGeso (top) and disordered BagGa,;sGesy with scrambled Ge and Ga atom
occupations (bottom). (b) and (c) Black curves show neutron-weighted densities of states (DOSs) [inelastic neutron scattering (INS) intensities
integrated over the 3 < H < 6,3 < K < 7,4.5 < L < 6.5 reciprocal lattice units (r.l.u.) region of reciprocal space] measured with incident
energy E; =22 meV (b) and E; =52 meV (c). The green (purple) lines are the same quantity calculated from DFT using the ordered
(disordered) unit cells and broadened with an approximate resolution function fit to the experimental intensity (see Supplemental Material
[19]). The disordered calculation and the experimental curves for E; = 22 meV are offset vertically by 350 and 400 counts, respectively. The
experimental curve has an additional large (~250 counts) background that is not present in the calculations. For E; = 52 meV, the disordered
and experimental curves are offset by 500 and 700 counts, respectively. Here, the experimental background is ~600 counts. (d) and (e) The
ordered (d) and disordered (e) phonon dispersions and phonon densities of states (PDOSs). The dash-dotted red curve is the projection onto
the Ba atoms; the black curve is the total DOS (Tot.). (f) The average group velocities squared, (vé), calculated from the dispersions in (d) and
(e) by averaging over all modes and ¢ points. (g) Colored curves represent the spectral thermal conductivities x (@), and black curves represent
the cumulative thermal conductivities k., (@) at 300 K calculated from the group velocities and densities of states in (f) and in (d) and (e).
Only umklapp processes are considered; 7(w) = Tow ™2, with 7y being the same for the ordered (ord.) and disordered (dis.) calculations. The

data in (g) are in units of the total thermal conductivity of the ordered crystal.

occupational disorder control represents an alternative di-
rection in the design of thermoelectric materials based on
clathrates.

Neutron scattering measurements were performed on the
Merlin direct geometry chopper spectrometer at the ISIS Neu-
tron and Muon Source at the Rutherford Appleton Laboratory
in Didcot, United Kingdom [20]. The BagGa;sGeso crystal
used for the inelastic neutron scattering experiment is the
same sample that was used in Ref. [21]. Merlin has high
flux and a large detector area, collecting the four-dimensional
inelastic neutron scattering data set S(Q, @) across many Bril-
louin zones (BZs). For data analysis, we used the PHONON
EXPLORER software [22,23], which enables an efficient search
for wave vectors where a particular effect is observed most
clearly and performs multizone fitting to efficiently separate
phonon branches that are much more closely spaced than the
experimental resolution [24]. We used PHONOPY to solve the
lattice dynamical equations based on the force constants from

Ref. [25]. The inelastic neutron scattering structure factors,
S(Q, w), were simulated using the Simulating Neutron and
X-ray Scans (SNAXS) [26] and EUPHONIC [27] software. To
represent the finite linewidths and experimental resolution
broadening, the structure factors in Figs. 2 and 3 were con-
voluted with a Gaussian function assuming that the full width
at half maximum (FWHM) is 0.75 meV. The intensity scales
in arbitrary units for all S(Q, w) calculations are the same.
The ordered phase of BagGa;sGes typically used in DFT
calculations [Fig. 1(a), top] has cubic symmetry, and intensi-
ties along reciprocal lattice directions with permuted axes are
identical. On the other hand, the real structure of BagGa6Gesg
is disordered with Ga and Ge atoms randomly distributed on
the cage vertices [Fig. 1(a), bottom] [14-18,25]. The disorder
breaks the cubic symmetry (Pm-3n — P1), and intensities
along directions that are equivalent in the ordered crystal are
no longer identical. Still, the experimental S(Q, w) is aver-
aged over the large number (~10?%) of different disordered
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FIG. 2. Ordered (left column) and disordered (middle column)
neutron spectra compared with experiment (right column). (a) Bragg
peaks (—1 < E < 1 meV) in the (H, K, L = 6) plane. In the ordered
cell, coherent scattering from the ordered arrangement of atoms re-
sults in certain Bragg peaks [e.g., Q = (4, 4, 6)] having no intensity.
On the other hand, scattering from the disordered arrangement of
atoms results in some remaining intensity at these Bragg peaks, in ex-
cellent agreement with the experimental Bragg pattern. (b)—(d) The
remaining rows show inelastic scattering spectra S(Q, w) along the
Q= (H,6,6)(b),Q=(H,2,8)(c),and Q = (H, 5, 3) (d) recipro-
cal lattice directions. The disordered calculation is averaged over all
otherwise equivalent directions as explained in the text. Red ovals
in the ordered calculation indicate intensity from excitations that is
not visible in the disordered calculation and experiment as discussed
below.

unit cell configurations of the macroscopic crystal, which
results in an apparent cubic symmetry.

In DFT the force constants of BagGa;sGesy were calcu-
lated from a single unit cell in both the ordered and disordered
phases [25] because BagGasGesp has a large enough unit cell
that force constants fall off sufficiently at the cell boundary.
Still, disorder breaks translational symmetry, so the compu-
tational unit cell should be sufficiently large that atoms on
opposite sides of the cell are uncorrelated. Moreover, one
should calculate phonons using an ensemble of disordered
configurations and average over all ensembles. However, this
is too computationally expensive in our case.
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FIG. 3. (a) LA and (b) TA phonon scattering intensities (color
maps) at Q = (5.5+ 4,0,0) (a) and Q = (6, h,0) (b) and exper-
imental phonon energies (circles) obtained from the multizone fit
of experimental inelastic neutron scattering intensity S(Q, w) (see
Fig. S5 of the Supplemental Material). The white-filled circles indi-
cate acoustic phonons, and the open circles are optic modes. We do
not include the small intensity near 2.5 meV in our phonon fits as it
does not appear in any other zones and may be an artifact.

We calculated S(Q, w) from a single configuration (from
Ref. [25]) chosen using the “special quasirandom structure”
(SQS) method [28]. The goal of the SQS method is to pick
a small computational supercell that best matches the dis-
order in a very large (ideally infinite) supercell. This was
achieved by fitting correlation functions calculated from a
single unit cell with scrambled Ge-Ga occupations to true
“random” correlation functions; e.g., from experiment or cal-
culated from a very large supercell. The “disorder” (in the
case of BagGa6Ges, the Ga-Ge site occupancies) is varied
to minimize the difference between the correlation function(s)
of the computational cell and the true random correlation
function(s). The structure with the best match was chosen
for the calculations. To approximate the implicit directional
averaging, the theoretical S(Q, w) calculated from this disor-
dered cell were averaged over all directions that are equivalent
assuming cubic symmetry.

Calculation based on the ordered structure gives the optic
flat branches bunched into several narrow energy intervals.
Projecting the phonon densities of states onto the individual
atoms shows primarily Ba-6d character; thus these are the
rattler modes of Ba at the 6d site. Disorder spreads these
branches out in energy [Figs. 1(d) and 1(e)]. In particular, the
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ordered calculation gives avoided crossings between acoustic
branches and the nearly flat rattler branches near ~4 meV,
which tend to reduce the phonon group velocity and, as a
consequence, the thermal conductivity. Due to disorder, these
avoided crossings become distributed throughout a broad en-
ergy interval between 2 and 5 meV, which further suppresses
thermal conductivity by a large amount. The main effect of
the splitting of the rattler modes is to create additional avoided
crossings with the acoustic phonons (see Supplemental Mate-
rial for a more detailed discussion [19]).

Figures 1(b) and 1(c) show that the calculated phonon
density of states (DOS) corrected for the neutron cross sec-
tion agrees much better with experiment when the disordered
structure is used. In both calculations the energy of the low-
est DOS peak is about 3 meV compared with 4.5 meV in
experiment, consistent with the known tendency of DFT to un-
derestimate the force constants overall. However, the width of
this peak, which comes from the gaps at the avoided crossings
of acoustic phonons and rattler modes, is increased in the dis-
ordered calculation to closely match experiment. Moreover,
the calculated Bragg peak intensities agree much better with
experiment if disorder is included in the calculation (Fig. 2).
The same applies to select phonon spectra [Figs. 2(b)-2(d)].
Color maps of the simulated and background-subtracted ex-
perimental spectra of acoustic phonons shown in Fig. 3 are
similar, highlighting the accuracy of the calculation. Peak
positions obtained from the multizone fit (see Sec. V of the
Supplemental Material for details) agree very well with the
color maps of both the simulation and the experiment. In
particular, signatures of avoided crossings of the longitudinal
acoustic (LA) branch with optic modes are clearly visible in
the simulation and the data.

Our calculation of thermal conductivity [Figs. 1(f) and
1(g)] considered umklapp scattering only. A more accurate
calculation just for the disordered case is reported in Ref. [25].
Figures 1(f) and 1(g) illustrate a profound effect of the dis-
order, which suppresses phonon thermal conductivity mostly
around 3-5 meV, where the effect of the rattler branches is the
strongest.

Comparison of our calculations with the Raman results of
Ref. [29] shows that broadening of the Raman phonon peaks
far beyond the experimental resolution is a natural conse-
quence of disorder-induced splitting of the modes [19].

In BagGa;Gesp and similar semiconducting clathrates,
most DFT calculations investigating the avoided crossing
regions assume that the Ga-Ge site occupancies are fully or-
dered with Ga only in the 16i site and Ge in the remaining cage
vertex positions [30-35]. However, there is extremely strong
evidence that the Ga-Ge occupancies on the cage vertices are
disordered [14—18,25]. Unfortunately, modeling disordered
materials from first principles greatly increases the compu-
tational workload, which has limited the number of studies of
the lattice dynamics in clathrates [36,37].

Ikeda et al. [25] investigated the temperature dependence
of the thermal conductivity and specific heat of BagGa;Gesq
with and without disorder. Only when accounting for corre-
lation in a Kondo-like phonon effect could the experimental
temperature dependence be explained [25]. They noted that
whereas the temperature dependence is robust against disor-
der, the absolute value of the thermal conductivity is lowered

in the disordered calculation. The decrease was attributed to
shorter lifetimes due to increased anharmonicity [25], similar
to BagGay; Aus, where disorder increases the available phase
space for three-phonon scattering [38]. Here we showed that
another important effect of disorder is to lower the phonon
group velocities.

Disorder-induced dispersion flattening was theoretically
predicted in Kg AlgSisg, with Al-Si occupational disorder [36].
Another study found that isotope disorder in the guest atom
sites in Si, and BagSi, (x € {46, 230, 644}) played a major
role in reducing thermal conductivity [37] due to both lifetime
and group velocity reduction. However, these effects have
not been confirmed in experiment, which we did here for
BagGa16Ge30.

Our ordered cell calculations show that the flat branches
in Figs. 2 and 3 near ~4 and ~6 meV come mainly from
pure Ba guest atom modes (see Fig. 1 and the atom-projected
INS intensities in the Supplemental Material [19]). These
multiply degenerate branches all contribute some intensity to
the spectrum. Their intensities appear as a weak but visible flat
branch across the BZ (red ovals in Fig. 2). It also shows up as a
narrow, pronounced peak in the ordered cell neutron-weighted
DOS in Fig. 1. However, the absence of this intensity in the
experiment above the background and the significantly im-
proved agreement of the Bragg patterns of the disordered cell
over the ordered cell necessitate the disordered calculation.

In the disordered cell calculations, broken symmetry splits
the Ba rattler atom branches. Since the wave vectors Q with
permuted axes are no longer equivalent, S(Q, w) is averaged
over all equivalent cubic directions in the simulation suppress-
ing and broadening the simulated intensity of the flat modes.
As a result, the only substantial intensity is near the acoustic
branches, consistent with experiment. The sharp, pronounced
peaks near ~4 and ~6 meV in the neutron-weighted DOS
(Fig. 1) become broad and flat when calculated from the
disordered cell. Notably, the neutron-weighted DOS curve
calculated from the disordered cell agrees with the experimen-
tal data much better than the simulation without disorder.

In BagGa;cGesp, an avoided crossing between an acous-
tic phonon mode and the flat guest modes was theoretically
predicted, and it was claimed that the Ba guest atoms be-
have as local resonating scattering centers for the acoustic
phonon modes in the region of the avoided crossing [39].
Subsequent triple-axis neutron scattering measurements along
the [#h0] direction [21] found that the Ba rattler atoms flatten
the phonon dispersions, reducing the group velocity v, rather
than acting as a local resonant scattering center and reduc-
ing 7. In our data focusing on the [k00] direction, large-gap
avoided crossings with different well-separated rattler atom
branches are apparent in the LA phonon dispersion [Fig. 3(a)].
Meanwhile, the intensity in Fig. 3(b) depicts a transverse
acoustic (TA) mode that is linear and continuously dispersing
in both the experiment and in the simulation based on the
disordered calculation. However, our DFT calculations predict
many “small-gap” avoided crossings near ~4 and ~6 meV
that are washed out by the instrument resolution both in the
experiment and in the simulation for both the TA branch and,
away from the large-gap avoided crossings, the LA branch.

Ga and Ge differ in nuclear charge and mass by only
~3.5%, so the perturbation to the force constants induced
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by mass or nuclear-charge disorder is insignificant. However,
the bonds formed with Ga and Ge have different valence
configurations. The electronic structure, which affects the
Born-Oppenheimer electronic-energy part of the interatomic
force constants, is thus qualitatively different between the
ordered and disordered configurations. The impact of disor-
der can be seen in the substantially lowered average group
velocities due to small-gap avoided crossings, between ~2
and ~4 meV in Fig. 1. (See also the Supplemental Material
for a heuristic explanation of this concept [19].) Regardless of
any reductions in t (which are probably also present [25]),
the velocity v in the kinetic theory model is substantially
reduced, which might explain the anomalously low thermal
conductivity in BagGa;sGesp.

To conclude, our calculations using the disordered unit
cell validated by experiments show that Ga-Ge occupational

disorder has a large effect on phonon dispersions through
a strong influence on the electronic structure that underlies
interatomic force constants. The disorder introduces many
closely spaced optic branches with many more avoided cross-
ings with acoustic modes. These small gaps are essential
for understanding the observed low thermal conductivity of
BagGa6Gesp and other similar materials.
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