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ABSTRACT

The Geometrical Reconstruction Program of the Rutherford
Laboratory bubble chamber anzlysis sysiem is described in detail.
The program uses & two-stage process to reconstruct the tracks in
spaoe. In the first stage & circle is fitted to the space points
on the track found by the method of corresponding points. The
results of this fit are used to fit a helix to the rays of all
three views of the track. The helix is given a mass-depsendent
correction to allow for the slowing down of the particle in the

chamber liquid.
The program is built into a library and book-keeping system,

\

which ie also described,

Theoretical Physics Group,
Rutherford High Energy Laboratory,
Chilton, Didcot, Berkshire.

February 1963.

£;£(¢‘114”*\1



O G~y oN\nHwn -

g

CONTENTS

Introduction

Input Format

Fiducials

Track-end labels and vertex identification
Stereo-Sorting

Conversion of points to rays

Vertex Co-ordinates

Reconstruction of space points

First space fit :
9a§ Circle fit \
9b) Parabola fit , \
9c) Z-fit

9d) Straight tracks

10; Beam identification and track directions
11 Fitting a helix to the measurements of tracks
' 1la) Calculation of d
llbg Least squares calculation
11lc) Calculation of momentum and errors
11d) Calculation of 8, for each ray
1le) Calculation of helix corrections Cy and C
12 Coulomb errors J
13 Charge balance
14 Beam tracks, stopping tracks and elastic scatters
14a) Beam tracks
14bg Stopping tracks
, 14c) Elastic scatters
15; Operation of the Library tape and book-keeping arrangements
16 Summary
Acknowledgenents
References
Appendices
Least squares fitting
Ll Card format for input
ITI List of constants
v List of faults
V' Library format
VI Suggested symbols for measuring machine

Page

37
40
42
47

48 .

53

AT o T s g et

R

4

~

~!



| —

f —

AT b e i TR e M SR oz 24

A D i A e i i a2 MARAG cudin wonietd i oA W L bt ) b AL Ly S A L B I A e B 0

1. INTRODUCTION

The analysis of the measurements of bubble chamber photographs is convenient-
ly divided into three stages. In the first stage the spatial position and
momentum, with errors, are determined for individual tracks by geometrical recon-
struction. The second stege consists of testing a whole event against a given
hypothesis of particle mass assignment. In the final stage statistics of
interesting physical quantities are formed from identified events. A complete
system of snalysis programs to cover these three stages has been written at the
Rir*herford Laboratory. These programs have been written in the Fortran computer
language and an outline of the system is given in reference 1. This present
report contains a detailed description of the calculations involved in the first
stage of the system, which we call the Geometry nprogram.

The principal task of the geometry program is to calculate the momentum P
at the middle of each track and an error matrix <6p;0p;> on this momentum. In
addition the program calculates the spatial co-ordinates of all vertices together
with errors and also works out the topology of the event.

In order to isolate the program from changes in the form of the data
produced by the measuring machines, the measurements of an event must be present-
ed to the program in a standard form, called the INPUT Format.. A small
interpretive program must be written for each system of measurement to transform
data to the Input format. The data, additional to co-ordinates, required by
the Input format has been kept to a minimum, so that the number of control
symbols that must be punched with the measurements is small.

At an early stage in the program, film co-ordinates are transformed into
ray co-ordinates, where a ray is defined by a co-ordinate pair EXG, Yg) of the
point at which the ray cuts the front glass of the chamber and (Ug, VG) the
direction ratios of the ray. ‘Most of the calculation is carried out in terms
of these rays and the final fit to obtain the momentum is made by fitting a
helix to the rays of the three visws. The fit is made to a projection onto
a nominal film plane. In cases where the curvature of the track is significant-
1y changed by slowing down in the chamber liquid a mass-dependent correction is
made to the helix. This correction is made assuming for the track the masses
of the pion, the kaon and the proton. In this way feed-back from the hypothesis
testing program to the geometry program is eliminated at the expense of some
extra computation. '

The output of the Geometry program is in the library format (Tape B) and-
can be read by both the hypothesis testing and statistics programs.

2. INPUT FORMAT

The measurements of én event must be presented to the geometry program in
a standard format. This format consists of five lists.
Ll. Book-keeping List

Frame number
Event number on a given frame
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Number of any completely missing view.

Measurement number (for indicating re-measurements) .
Measurer.

Measuring machine.

Date of measurement.

L2. Fiducial List

Total number of fiducial points measured.
Total number for each view.
Index of first co-ordinate palr of each view.
Fiducial co—ordinates. 3
\
Lid. Vertex List
Total number of vertices measured (This must be the same for all views).
Index for finding co-ordinates of each vertex in the point list.
Type of vertex (Elastic scatter, stopping etc).

L4, ‘Track List

Total numher of tracks measured (This must be the same for all views).

Then for each view and sach track:

Total number of points measured.

Index of the first point on the track in the Point List.

Label at the begiming of the track. This is to equal 1 if the track
has a vertex at the bheginning, or otherwise to equal zero.

Label at the end of the track.

- Direction of track. The program will in general find this from the
topology of the event, in some circumstances however, this cannot be
done and. if the directieon is known, say from a delta-ray, this can be
indicated. :

Type of track. Mass if known, ionization etc.

L5. Point List

Total number of pecints.
Co-ordinates.'

Y
\

A detailed description of the card format used by the IBM 7090 version of
the program is given in Appendix JI.° '

In addition to the above information, two measurement conventions are assumed
by the program., Firstly, the program assumes that a given fiducial ‘is measured
first for each view. And secondly that the first or last point measured on a
track are sufficient by near to any vertex on the track that this vertex can be
unambiguously identified. Points on tracks must be measured in order along the
track and only charged tracks are to be measured. :

3. FIDUCIALS
For each view we define a standard frame of reference as having the point
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where the optic axis cuts the film plane as origin and x and y axes parallel to
the x and y axes of the co-ordinate system of the chamber volume. For each

"view a set of expected fiducial position (X., Yj) in the standard frame must be

supplied. A particular fiducial on each vgew must always be measured firvat

and a translation is made on the measured fiducials so that this first fiducial
is in its correct posgition. Then, assuming that the axes of the measurement
frame and the axes of the standard frame are only inclined at a small angle,

the measured fiducials can be identified with the standard fiducials. From

the two corresponding sets (x., y:) of measured fiducials and (X., Yi) the
standard fiducials, we calculate 3 the angle and x., y, the translations between
the measurement and standard axes and also fy and fp the x and y film shrinkages.

We have
Xy (f4xy - x )cos © + (foy; - yp)sin ©

]

Y.

i _ (f1xi - xr)sin o + (f2yi - yr)cos S

We write these equations as

Xy = ax; +by; +¢
Ty = dxg 4oy, ¢+ ¢ ] (1)
and solve for a, by, ¢, d, ¢ and f by minimizing 2: df? where
, =
e 2 2
dy” = (Xi—axi—byi—c) + (Yi—dxi—eyi-—f)
and n = total number of fiducials measured.

Equationg 1 are checked for each fiducial in turn using the values found
for the transformation coefficients a, b... f. Any badly measured fiducial
is rejected and the process repeated. A check is also made on the identity
ab + ed = o, '

In the case of only two fiducials measured we take fy = fp = f and then
solve the 4 equations for the 4 unknowns ©, Xy, y, and f.

The transformation coefficients are found for each view and these are then
used to translate all the. points of each view to the standard frame of each /
view. A further rotation common.to all points can be made at this stage to ’
change the standard orientation of the chamber axes.

4. TRACK END LABELS AND VERTEX TDENTIFICATION.

The vertices of each view must be measured as single points separate from
measurements of the tracks at the vertex and these vertices will be numbered
for each view according to the order of measurement. The track end labels are
then the numbers of the vertices at the beginning and end of each track. The
label O is used for non-vertex track-end, that is for tracks leaving the chamber.
Tracks can be measured in either direction and the:order of the two end-labels
ig defined by the direction of measurement. As a preliminary we ensure that

_3.. ;
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all tracks begin with a vertex, reversing the direction of tracks as necessary.

From the Input track list we have an indication of which track-ends have a
vertex and the next operation is to identify the number of the vertex at these
track-ends. To do this we find for each view the minimum distance between
vertices and then look for a vertex that is within half this distance from the
end point measured on the track. Thus the vertex point itself need not be
measured as part of the track, but a point must be measured which is sufficiently
cl ‘se to avoid ambiguity in the vertex identification.

5. STEREO SORTING - A

\

It is intended at a later stage to allow measurements of tracks and vertices
to be made which are uncorrelated between views, and to program any necessary
rearrangement of the order of the track and vertex lists. At present, tracks
and vertices must be measured in the same order on each view. If for some
reason a track cannot be measured on one view it must still appear in the track
list for that view but can have the total number of points measured equal to
ZeT0. Tracks can still be measured in different directions on different views
and the directions will be reversed to the direction on view 1. The track-end
labels, direction indicator and type description are merged for the three views
to just one set for the track and similarly for the type description of vertices.

6. CONVERSION OF POINTS TO RAYS

Assuming parallel glasses and film plane and no lens distortion for the
bubble chamber opiics, we derive the following relations for the transformation
from film points (x, y) to rays (X, Y, U, V) in the chamber liquid.

ol B me-1 N\ i
e — .
B o F Rt Gk B RS R
oi=1 i i
- 2 1 .
n a s 1 a1
Y= =X 2 s 22 Thay -] +o
%o | i1 Hi Far 1 ¥
L= By 8
- 2 7.1
0 & seelda _‘_I_E_:_? r2 =
HEdo | kg? ag2 i
- .
v o =L |, BE2-1 o|-F
v “_.Ha’O_ 1 uHQ 302 i
where 12 = x° + y2, ag, = lens to film distance
Ap = total distance from lens to liquid
n = number of glasses between lens and liquid
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‘] a; = thickness of ith glass
- py = refractive index of ith glass
» n
.] A = 3 aj, total glass thickness
i=1
My = refractive index of chamber liquid
] y ,
c are co-ordinates of the appropriate camera axis.
] - |
X, Y are co-ordinates of the point where the ray cuts the plane z = o, which is
taken as the liquid glass interface on the camera side of the chamber. The
] z-axis is taken positive into the chamber liquid giving a left-handed system of
axes.
] For small bubble chambers where the ray angle is small, that is tan © = gL
small, the square roots in the expressions for the ray co-ordinates may e
be expanded to speed the calculation.
]’ For each image of a track we have a set of co-ordinates (X1, Y1) to
(Xy, Yy) on the chamber window. Finding the mid-point of the line joining
the end points '
J X4 + Xy Y9 + Yy
X'M = o YM =
b Z
) we rotate and translate the co-ordinate as shown in Fig.l.
Y { |
) ooy ; |
- |
) \
] uks
Fig. 1
J by X' = (X, - X )cos © + (Y; - Y, )sin ©
i i~ Ky i Iy
'} Y;' = —(Xy - Xy)sin 6 + (Y3 - Yy)cos © :
N - V4
with tan © =
] ¥,

A parabola Y' = aX'24+bX' + ¢ is fitted to these co-ordinates, unless the

—
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- maximum Y' is less than a given constant in which case a straight line

Y' = aX' + b is fitted. A check is then made to find the point farthest from

. the fitted. curve and if this point is at a greater distance than a given check the

point is rejected as badly measured and the fit is redone on the remaining
points. If a further point is out of line the event is failed.

From the coefficients a, b, ¢ we calculate a radius and centre of a circle
through the points '

1

R . /2a

Xo =—bRcos® - (R + ¢ ~ & b2R)sin 6 + Xy
Y, =—bRsin® + (R + ¢ - ¥ b2R)cos 6 + Yy

A sign is given to R according to the rule

(X - X (¥, - Y9) - (¥y - Y1)(XQ ~ X4) 3 O then R positive
‘ < O then R negative
For the purpose of making checks later in program on whether the stereo-

scopic angle will allow the finding of corresponding rays, we calculate the
angles that the radius vectors to the end points make with the y-axis (see Fig.2).

Y§ e
) b
i
i
(Xe,Ye,)
- )
Fig. 2
By = X ' N -
Sine’b=1_R—"9' sinOe=lR—X—c-

Y, - Yy -Y

For tracks where a stréight line fit is made, R is set equal to a standard
large number and

in 6y _p X4 - Xy
sin = 8in 6 = 7
[(x1 ~Xy)2+ (Yy - YN)2]%
Y'1 - YN

cos Oy = cos Og = 1
- ° [(x1 - )2 + (Y4 —YN)]F

Y . T T, A TN O
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7. VERTEX CO-ORDINATES

For each vertex we have three rays ( or possible only two if one view is
missing) and we wish to find the point (x, ¥, %) in the chamber which is the
point of nearest intersection of these rays. To do this we consider the
projection of a point (x, ¥s z) onto the film and find the distance d from
this projected point to the roint where the ray cuts the film. We find that
(see Section 11) on fitting 2 helix)

=P [(x-%X-U)2+ (y-Y-V2)2]

a
where w = demagnification = LB
z + Zo
and Zo = optical distance from lens to top glass interface

=
S
tvjs
-
e
&
)

and the other symbols are defined as in Section 6.

To find the best values of (x, y, 2z) and errors on these co-ordinates, we
minimize £d;2 for the rays. The equations to solve are

Gx = Y
where G =1 N o —ZUi X =| x, = X
0 N -V, Xp y
LUy -IV; 10,2 4+ ZV,2 x5 2
\
and Y= IXi
LY,
-EUixi -):V.lYi
and N = total number of rays.
Then x = 0“11 andAerrorslare given by
GVZG{;
< XIIJ> = w2
T
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where o, is the error in measurement on the film. In general o, is given a
standarg value, but the internal error of the fit is also calculated

2 w? = 2
o = m 21[(x-—xi-—UiZ) +(Y"Yi—vj_z)2]

and if this value of ¢,.is larger than a given check, this calculated value is
v-ed for oy .

8. RECONSTRUCTION OF SPACE POINTS '\

We make the first fit to the measurements of a track by finding space
points on the track by {he usual corresponding points method and then fitting
a curve to these points(25. A 'Dbest' view is selected for each track and for
each ray on this view corresponding rays on each of the other views are found.
These are used to find a weighted mean for the space point.

In finding corresponding rays between two views the ray co-ordinates are
rotated into a system with x—axis along the direction between the two cameras.
This will be called the gtereo-axis. We shall call the best view the main view
and the view on which corresponding rays are to be found the sub-view. Letting
(X Yo Uys Vy) be the co-ordinates of the main view ray, then, ignoring optical
constraints we would find the corresponding ray (XS, Yo, Ug, Vs) on the sub-view
from the relation Yq = Yy. This would be done by finding the two rays on the
sub-view with Y co-ordinates nearest to the value Y, =Yy and then interpolating.
From these twe rays we can calculate the z-co-ordinate of the space point on
the main view ray
Xy - Xg
Ug - Uy

7 =

Assuming linear interpolation between the point co-ordinates on the sub-
view and an equal measurement error ¢ on all the co-ordinates, it is easy to
show that the mean square error on z is proportional to

2
2 528> o=t
sinQO

where © is the angle that the tangent to the track on the sub-view makes with
the stereo-axis. Thus if we calculate two z values from the corresponding rays
of the two sub-views, we can find a weighted mean value of the z-co-ordinate of
the space point

sin? szl + 8in? 8oz

7 =
sin2 91 + sin2 92

In practice, because of the optical distortions, it is necessary to iterate to

find corresponding rays and also to take account of the curvature of the track
by interpolation ‘

8-
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We take for the main view,the view for which

L sin? 04+ sin? @
+ W
Lnex mm(sh@01+sh@OQ

L is the lengtih of the image of the track and Ly,x is the
meximum value of L for the thres views. s8in<©4and sin292 are the average
values of 8in2@ for the two sub-views. These are taken as the mean of the
values of sin2@ at the ends of the image, calculated from the sin©p, sin 6
etc. (see Section 6). W is a specified weighting factor. We apply a cut-
off to sin? 0 and set sin28= C if its value is less than a given check.
However reconstruction of some points on the track is allowed even if points
at the end of the track fail this check.

is a maximum,

For each ray of the main view, we first find the two rays (X1, Y4y Uygy V1)
and (X2, Yo, Up, V2) of the sut-view with Y co-ordinates nearest in valus to
Yy and set Yy = Y. If Yg lies outside the range of Y co-ordinates of the
sub~view rays, we first make an extrapolation check

Yg - Yy .
Y, -1, B

If this check is not satisfied we set sin®©=0 and proceed with the next ray.
Otherwise we find the centre (KC, Yc) of a circle of radius R through the two
points (X4, Y4) and (X5, Y,). R is the radius found from a parabolic fit to
all the points of the sub~view (see Section 6). For (XC, Yc) we have

' 71
X, =% (X1+X2)1(Y2—Y1)F RZ -4 -

[(X1-%)2+ (¥4-1p)%

- = 1
Y, = & (1, +1,) t (Xp-X,) 2 s -|®

[(Xq=%3) + (Y4-Yp) d

\
where the sign is given by the sign of R.

We now interpolate on this circle
to find the X  corresponding to Y = Y. ¢

We find for XS

Xg = Xg T[R% - (Y4 - YO)Q]%

where the sign is positive if X,> X, or otherwise negative. We find Ug and Vg
by linear interpolation between the nearest rays

Yg - ¥y

B T T e o ——

Ug = Uy + (U1-U2)[
Vg = Vq + (v1-v2)[

-0

Ty-Yp |

YS—Y"H

Y, -5 ]
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The weighting factor sin® @ is given by

B (Xg = X,)2
FiNEQ 5 ==
R2
For some cases with wide angle optics and highly curved tracks 1inéar
interpolation for U and V would not be quite good enough for the most accurate
measurements. However as a helix fit to the rays is made to obtain the final
results for a track, the complication of better interpolation would not seem

worthwhile.

We now have a first approximation (Xs, Y, Uy, Vg) to the corresponding
TaY. In general, because of the optical dié%ortions due to the chamber windows

end liquid, these two rays will not meet. The condition that two rays meet is

XS—XM _ YS—YM

UM - US VM - Vg

VM—VS

Uy - Us

We can use equation (1) to iterate for Yg. Taking a starting value of YS, we
calculate X_, Uy and Vg as outlined above and then substitute these values inte
the right hand side of equation (1) to obtain an improved value Ys'.  We repeat
the process untillYS' - YS]is less than a specified value. In general one step
of iteration is sufficient for convergance to the accuracy of measurement.

After the first step of the iteration there is no need to recalculate the

centre of the circle. Finally the z-co-ordinate is given by

or Y = YM + (XS - XL{) : 00.0.0(1)

S

, S
Uy - Us.

The z-co-ordinates from reconstruction with the two sub-views are weighted
to give the z-co-ordinate of the space point on the main view ray

Z

8in? 0424  + sin? Opzo

Z =
sin261 + Sln? 62

The procedure is repeated for all the rays of the main view, any ray for which
. both sin29s are zero being marked. If less than two space points can be
found on the track, the program tries again with a second choice of main view.
If this also fails the event is rejected. The case of two vertex tracks with
only two measured points on each view is treated specially (see Section 9.d.)

9. FIRST SPACE FIT

From the space point reconstruction we have a set of n points (xi, Yi» Zi)
on each track where

~10-
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If n is greater than two, we calculate the magnetic field value for the track.

B, = B [WyB(x, /oy ¥y /00 2y 70) + Wa(B(x45 345 24) + Blagys 35 2,)) ]

B
where B, is the value of B, at the origin, B(x, y, z) is ﬁ% at point (x, y, 2)

and W4 and Wy are weighting factors. The points (xl, Yis 23 ) are rotated into
a frame with x-axis parallel to the line joining the end p01nts of the track

x' = x cos@p +y sin@R
y' = x sin®y + y cosby
g In = J1 Xn = X4
where sinfp = ——— and cos6bp =
: s S

with 8y the angle of rotation and g2 = (xh-x1)2 + (yn-y1)2.

The points are also translated to a frame (x", y") such that 3 x{': )
n i=1
and ) y{'== o

ot
xll s xl RPN .5

1" —
yoo= n
These measures are taken to avoid numerical difficulties with the fits.

We make the fit in the uswal two part manner, first fitting to the x, ¥y
projection of the track and then fitting the Z co-ordinates. For tracks
turning through a large angle we make a circle fit to the (x, y) co-ordinates
(from here on we leave off the primes from the co-ordinates). For tracks
turning through a small angle this circle fit can give trouble through
rounding errors and in this case we make a parabolic fit. Finally for tracks
which are straight to the accuracy of the points, we make a straight line fit.
To decide between a circle or parabolic fit we make a crude check,

£ s 8h

e = Ay = gy wm——
R R. 8
where © is the angle turned through, ¢ is the length track, 8 is the length of
the chord (qee above) and h is the sagitta and is taken as y g~ y . For a
circle fit to be tried both 8h and s must be greater than spec1f1ed checks.

s
9a. Circle fit
To fit the circle (x - a)? + (y - B)°= to the(x, y) co-ordinates of
the points, it is most convenient to mlnlmlze ) )
n
2 2y _ 2 _ 2)2
Fe(a, B, p ) = z: (di - p ) (1)
i=1
-11~-
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2
where di2 = (x; - a)? + (y; - 8)%.

n
The normal least squares process would be to minimize Z (di - 9)2.
i=1 2

Factorizing equation (1) we have

n
2
F2 2 (4 + )2 (a3 - p)
i=1 f
and the first term (d-l + p)2 is almost constant and equal to (2p)2. Thus the -
two processes are almost equivalent.
¥ -
Minimizing first with respect to p2 vg'i\e find f
2 1 #e y -
po o= o (2x2 + Ly2) + al + 2
(note we are in a frame of reference in which LXy = )]yi = 0) and then for o and B
we find o
1 . 9 y ' | 8
a = —Z—I—PI—[LyiQ (2xP + inyiz) - axy(z,yj?+ bxfyi)]
B = . dx? (z: 3 + 5x? ) - 4 (.'ax3 + &x3y 2) 3
= 5 | I‘l i yi i yl Xy i Ivg
where II‘I = ZXJ_Zny - (leiyi)z. 4

We also evaluate errors <6@2>, <83 2> and <6p2> . The Edi2 of
Appendix 1 is equal to 17‘2/4p2 and setting a4 = @, Op = 8 and a3 = p then

_a d2p2 _
o 8p2  Jaddap L

Hy

and <6c1.)\2> = d]?y H;\: |

\

where o is the R.M.S. error on the co-ordinates. Differentiating we find for

_ , 4(Ex2 + na?) 4(2x;y; + naB) -2 Na 3
B, - Z—’—é 4G xiys + naf) 4572 + np?) -2 WP
p -
-2 Na -2 NB N

The uncertainty in p is given by

2 -1
<6p2> <5G32> nyH33

o _ |
p 4p% 40t o

that is
' ] B -
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<bp? _ Tay [’ , o2ryP s pPrxl- 2aﬁbx-1y.i]
2 - 2 |a
p pc L7 T

The azimuthal angle ¢, that is the angle that the tangent to the x, y projection

of the tracks makes with the x-axis, at the point (x, y) on the track is given
by
1 x -a

¥-p

¢ = -—tan~

Differentiating we obtain

< 59’52> = "12"[ sin2¢<862> + cos2¢<6a2$ + 2 sing cos p <ba dB> ]

At the centre of the track we have

2 _ LYi
<6¢.> p2 -—lel-——-

9b. Parabola Fit

If the track turns through too small an angle or is too short for a
circle fit, we fit the parabola y = ax? + bx + ¢ to the points. In the usual

manner we find (note again ixy = Ly = o)

n_ r._2 ‘o
* TI-‘T["Xi yi ixf - Sxy; Bxp]
I | acFueP. A s oo 2\2
b = ir] [2x] oxgy, —-ix; I z.xiyi(z.xl) ]
cC = - 2 'ZI?
n i
where |I‘| - ani4 Exiz - n (in)z— (Ex12)3

and for H witha.1=a,a,2=bandc.3=c

N

= 1x3 2x2 0
i i

Hm-—

To obtain the parameters of the corresponding circle we expand the square-root
in
2 1
y - B=(p° -~ (x-a)?)2
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o = - B =_C+2a—Z£ and p=-2|—aT

Again we find the errors

it 2
2 2 nix
% 8‘; E - <6°2' 2 with<8a2,> - o2 i
P a xy ||
and ) . 2 o2
<5¢°> =<'®2L"—2- with <8a?> = p2 2BV = —BI-LII‘_IE— [nzlxi4 - (2 xi2)2]
P ' ) .

A test is made that the sagltta h = §— is greater than a given constant

(say 2 or 3 times o ) and if this is ngt satisfied a straight line fit is
made to the track (s2e Section 9d4).

9¢. 2Z-Fit

For each point on the track we calculate ©; where

o 4 Xy~ o
= - tan
i yL~ B

and using the co-ordinates found for the vertex, we find ©p the © at the
beginning of the track and GE the 6 at the end. If there is no vertex at
the end, we put €y = ©,. From the sign of ©g - O and the direction of the
magnetic field, we can flnd the charge of the .track. We also calculate the
azimuth ¢ at the centre of the track

4 =0y +% (05 + 6p)

OR is the angle of rotation of the co-ordinate frame (see above) and ¢ is kept
in the range o< ¢g27.

37

If we rotate about the z-axis by a further% or —é-, according to the charge
‘of the track, the track will be in a position as shown in Fig.3.

The dnectlon of the track along the curve is deterred by the charge. In this
frame the track can be represented by the helix .

X = Q +pcose
y = B +psin®
z = ¥ + p& tank -

-14~




Rl =g

e

|

—

| I—

el b by . =

= e R e = 9 LD

s S it

Fig.3.

where the © is the © calculated above for the points and a and B are in the
new frame.- To find ¥ and tanX we make a linear fit to the z and © co-ordinates
of the points. Least{ squares fitting z = a® + b to the points gives

zof ze;| [al=[z2;0;
891 n b Zzi
from which we find 5
891 Ezi - 291 2‘.2191
a —
|r|
b nizifi ~ 501524
|r|
with || = nze2 - (2e;)?
Finally we have
¥ = a
tanA = 2,
p
and for the error on tanA
2
no.
<dtan\2> = 22
pe|T|

where 0, is the root mean squars error in space on the z co-ordinates. We can

also calculate the momentum of the track

‘1. _ 103cos)

and by differentiation an associated error

.| ¥
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p is in Gev/c and we use d as a variable rather than p as this reciprocal is
linearly related to the curvature of the track which is directly related to the
mezgurements.

The length of the track is given by

L. ol - egl

cos A

For two vertex tracks we also calculate an error on the length

. 2 2 —
<8L%> = L2 [<-§—g—> (1 - 3-&%9-) + gin\ cos27t<6tan7\2>:| + 2 secé\ <6xv2>
P : : '

where @ = %(GB-jeE) and‘<6z?> is the average of the errors on the x and y
co-ordinates of the two vertices.

We now have first approximations to the kinematical variables associated
with each track, except for the case of tracks which are straight to the
accuracy of measurement. e now deal with this case.

9d. Straight Tracks

For tracks that are tco straight for a curvature to be found, we make
léast squares fits of y = ax and z = B + ¥x to the points (again in the rotated
system Ix = 3y = 0). We find

a_zxi)’i
inz
554
B = =
Lx474
P = s
Lxy

From these we calculate the angle variables for the track
¢ tan~ o

or in the unrotated system
¢ = OR + tan-1a

¥

and tan\ = ——————r
(1 + o,2)'§

i}
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The errors are given by

<5¢2> = cos4¢<6 a?s
, p 2
= cos
¢ Exiz
2 2 Q&x_z 2
and <d&tan\“> = tan‘) 5 +sm¢cos ¢<6a.>
Y
F o2 ] -
a tand) | —2—

The second term in <5tank2> and the correlation term<& ¢dtani> can be neglected
as in this frame the azimuthal angle ¢ is very nearly equal to zero.

F'inally we calculate the length L of the track, For tracks with only one
vertex, we use for L :

2 2 21%
L = [ (& - %)%+ (yy-vy) +(zn—zv) J®
where (xv, s Z ) are the co-ordinates of the vertex. TFor two vertex iracks

we find the glstance along the straight line fit between the points on the fit
nearest to the vertices. We find

, A [((":1*12) +a (yq - y2) +¥ (24 - 22))2 5
(1 +o,2 +x2)

where (x4, y4, zq) and (xp, yp, 2o) are the co-ordinates of the vertices rotated
into the co-ordinate frame of the fit. In this case we also calculate the
error on the length :

1 2
<81%> = i?{(x1 —x2)2 (<6x2>1 + <6x2>2) + (¥4 —y2)2 (<6y2>1 +<dy >2) +

4

(zq - z2)2(< 622>1 + <6z2>2) + 2[(x1- X5) (y‘| ) (<2‘>x&y>1 +<6x6y>2) +

(x4-%0)(24 = 25) (<Bxb2 >4+ <8xb2>5) + (¥4 - yo)(z4- z2) (<6yf>z>1 +

< 8y6z>2)]}

In the case of two vertex tracks with only two measured points on each view, we
use the vertex co-ordinates and errors to find the parameters of the track. We

have
JE — YB

XE—XB
ZE - ZB

tan ¢

and tan) where 42 = (xg - KB)Z + (yg - b’B)Q

.
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and B and E stand for the vertex at the beginning and end of the track. The

direction cosines are (cos¢ cos), sing cos), sin\) and

sing = X-E—-%—-Z}}- and cos¢ = —JCE+X]—3

The errors are given by

<5425 = 21—2- [cos2¢<6y2> + sin2¢ <8x% - 2 sing cos¢ <5x5y>)

<8 tank®> = 5—2— [<6z2>+ tan® (cosz¢<6x2>+ sin2¢<6y2>+ 2 sing cos¢<dxby>)

-2 tan\ v(cos¢ <dx6z> + sing <dysz>) ]
<d¢8tanh> = é%-[cos¢<6yﬁz>— sing <6x6z> — tanh | sing cos¢(<6y2>—<8x2>)
+ (cos2¢ - sin2¢) <dxby> | ]
where <5x°> = <€>x2>:B + '<6x2>E

2> etc.

<6y2> =<6y2>B + <dy B

The length of the track is
2 2 2%
L = [ (xE e B) * (yE == yB) + (ZE - ZB) ]

and the error <6L2> is given by the same formula as for normal straight tracks.

10. BEAM TRACK IDENTIFICATION AND TRACK DIRECTIONS

' At this stage in the analysis we have first appromations to the angles and
in most cases the momentum associated with each track. We can now proceed to
find the beam track and to determine where possible the directions of tracks.
Each track is checked for the following properties and these must all be satisfied
for the track to be identified as the beam track

1) Single vertex track
2) Correct charge

3) The co-ordinates of the non-vertex end of the track
must have values appropriate for the position where the beam enters the chamber.

4) The azimuthal and dip angles at the non-vertex end
should be within specified limits.

5) The momentum, if known, should be within specified
limits about the beam momentum. If this condition is not satisfied it is tried
again with plus or minus twice the error found from the first fit added to the
momentuin,

18-
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It would seem most unlikely that two tracks of the same event would both
gatisfy these conditions. For experiments with a neutral beam or in which no
beam track is measured a parazster must be set, which indidates to the program
that the first vertex measured is the beam vertex.

We can find the true directions of most tracks. We assume that all tracks,
other than the beam track, witk a zero end label are moving towards the non-
vertex end (1 e. to the end with the zero label). The directions of tracks
connected to the beam interaction vertex via charged tracks are also determined.
This only leaves ambiguous the directions of two vertex tracks which are only
connected to the beam vertex via a neutral track. This ambiguity arises
because we do not know which vertices are joined by a neutral track. This
ambiguity can be dealt with by the Hypotheses Testing program, but to save
calculation and to avoid possible misinterpretation of the event, the direction
of such tracks can, if known, be given with the measurements (see Section 2).

We are now in a position to make the main geometrical fit for each track,
that is to fit a helix to the rays of the three views.

11. FITTING A JIELIX TO THE LZASUREMENTS OF TRACKS.

There are several disadvantages to the method of reconstructing tracks by
corresponding points describsi above. In the first place there is no entirely
gatisfactory method of doing the interpolations involved in finding correspond-
ing points. Secondly, as the fits are made to space points, we must know the
errors on the co-ordinates of these points to be able to calculate the errors on
the fitted quantities., The zrace points are however related in a very com-
plicated way to the measurementis, thus the errors on space points are difficult
to calculate and are also correlated. Thus there is no really satisfactory
method of calculating errors. TIinally the measurements from the three views

cannot be treated symmetrically.

A method of overcoming these difficulties has been given by W.G. Moorhead(4)
(C.E.R.N. 60-33). In this method the parameters of the helix which lies closest
to the rays. corresponding to the image points on the three views are found by
iteration. This method overcomes nearly all the difficulties -described above.
However even with this procedure it is difficult to relate the error in measure-
ment on the film to errors cn the parameters. ? hall follow a method of
fitting a helix to the rays given by F.T. Solmitz 5 (Ecole Polytechnique, 1960)
in which the fitting is done on the film, thus making the calculation of errors

quite straightforward.

For each of the three views of the track we have a set of rays defined by
co-ordinates (X, Y, U, V) where X, Y are co-ordinates on the front glass of the
chamber and U, V are directicn ratios for the ray. We find a best fit helix to
these rays by projecting bot:z the rays and the helix back onto a nominal film
plane and thennunlmlxzngildld where di is the perpendicular distance from the
point where the itk ray cuts the film plane to the projected image of the helix.

1la., Calculation of d

The z = o plane is the hydrogen-~glass interface on which the (X, Y) are
e

A AR T 1 g L e T - O s R e B ————— =

e T [ S ISR, N VAT & b A o S BT 2 o o o s o e i S W i



A . et P

s i s i e

PRSP

S S e AR 8 5 S 3 4 i B AL i e it I L Ll s

defined and the z-axis points down into the hydrogen away from the camera lenses.
Using information from the first space fil, the co-~ordinates of the rays are
rotated and trawslated in the (X, Y) plane so that the origin is at the 'centre
of gravity' of the track and the track lies along the y-axis (see Fig. 4)

\4

N
J!

Fig. 4 Orientation of the helix

Note the central portion of the helix always has positive x and that opposite
charges travel in opposite directions along the curve.

We first find the prcjection of a point (x, y, z) onto film. We assume
that the camera lens is in the plane z = -Z_ and the film in the plane
z = “2,~A . The point (x, y, z) will be near some ray (X, Y, U, V) (we are
of course only interested in points on the helix near to a ray). As the ray
will go through the camera lens, we can write the lens co-ordinates as (X - UZ
Y - VZ,, -2 ) Points on the line joining (x, y, z) to the lens are given bj

(x', y'y 2') = (X=UZg, Y-VZ,, ~Z,) +8(x-X+UZy, y~T+ Vi, z+2 )

The point where this line cuts the film has z' = —(Zo-+AO) giving
ey
- z + Zo

Thus the co—-ordinates of the image of (x, y; z) on the film are

e ' A, Ag
(XF,YF)=(X—-UZO—E—~+——Z—(X X+UZy), Y-VZ, ZT—Z"(y*Y*VZ )

The ray cuts the film in the point
(Xps Yp) = (X = U(Z,+A.), Y - V(Z_+4))

The distance d between the two points is given by

%= [—-Ai’——-]?[(x-x-Uz)2+(y-Y-vZ')2] (1)

zZ + Zo

We note that when (x, y, z) lies on the ray d = o.

~20-
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AO
The factor ;:—-‘Z—O'
the minimizing process. Z, and A, could be made different for each ray to take
account of the optical distortions due to the chamber window and the liquid in
the chamber. We shall howevsr take them as constant and equal to their optic

axis values

can be regarded as a weightihg factor to be kept constant in

AO = HH ao
&G
2y . = “H[EJE; - EdG+ZT]

where By = refractive index of chamber liquid
a, = lens to film distance
ag = glass thickness
pg = Trefractive index of glass
Zp = total distance from lens to chamber liquid

For points (x, ¥, 2z) on a helix, we have

X = G+ pcos6+ Cyu(0)
y = B+ psin6+ cy(e) (2)
Z = ¥+ p 6 tanA

o, B specify the axis of the helix, p the radius and A the pitch. ¥ is the
height of the point on the helix with € =0. Cx and Cy are correcticn to the
helix to alliow for slowing dovm of the particle by the Xiquid and also possibly
for small changes in B, along the track. C, and C_ depend on p, the momentum
at the centre of the track and also the particle mal%s assumed for the track.

We shall give a calculation for C, and Cy in a later section.

We have next to find the value of © for the point at the foot of the normal

to the image of the helix frcm the point (XF, YF) where the ray cuts the film.
If we let the tangent to the helix at the foot of the normal make an angle ¢

with the x~axig, then

X» - Xp'  sing
YF - YF' N COS¢
that is cos¢ (x = X - Uzg) + sing (yg - Y - Vzg) = O. (3)

Equation 3 must be solved to find the © corresponding to a given ray. To

calculate the tangent angle we note that the tangent t to the helix is

; 1 dCx 4 dc 4
t = (—sm@+; 30 cos6+-p- —d—el, tanx)
and the ray r is
L, = (U, v, 1)
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Then the projection of r x t will give the normal to the image of the helix in
the neighbourhood of the ray. The x and y components of r x 1 are

ac
—cos 0+ V tanh - 1 X
p de

Uy =
(4)
Hy = ~ala@= T baik & 2 S8
o = —85Inbv -~ an ) a0
Thus we have -Uy Uo
sing = T cos¢ = 1
(U42 + Ux2)E (U42 + Ux2)2
and substituting into equation 3, the equation for © becomes
(5)

£(0) = Up(xy - X-Uzg) -Uy (yg~Y¥~Vgg) = 0

~ The distance d is given by equation (1) with the value of 6 found from
equation (5). As equation 5 is implicit we must approximate and this we do,
following the method of Solmitz, by regarding the helix as made up of small
in the neighbourhood of each ray. Thus if we have an approximate

line elements
value 90 as a solution of eguation (5), we take

0 = 60 + AS

£(0,)
where A8 = - °
£'(8,)
Writing
' Ax = (xg - X - Uzg) evaluated at @ = @,
and by = (yH - Y - Vzy) evaluated at @ = 6,
~ we find for A® '
: AS -U2Axo + U4 Ayo

p(U42 + U,2) - cos 6, Ax, - sin @, Ay,

.‘ » o —U2AX0 + U1 Ayo
p (U4° + U2)

M

where we keep only terms linear in Ax, and Ayo.

Substituting into equation (1), a2 becomes
Ao

a2 = w? [(Axo + pU2A9)2 + (Ay, - pU £6)2 ] where W, s 7

That is . 5
e [ (U12Ax

2 2 2 2
d + U4U,A + (U4UsAx,. + U,5A
ey 103t70)? + (UgUgtx, + U;28y,)?]

(o)

it

g 9
w
» [ (U4 + Uy2)(Uy28x,2 + 2U Uphx Ay +U,205,2) ]

2 2
(U, + U,9)
1 2 oo

U S —————————
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giving finally
d =

W
1
(U42 + UQQ)—2

[U,0x, + UQAVJ (6)

d is a function of the helix parameters @, B, ¥, p and tanX and of 6,. To
obtain best values for the helix parameters we shall minimize Ediz, where the
summation is over the rays of all three views. The equations for the minimum
are non-linear and we shall solve them by iterating linearized equations (see
Appendix I). We use as starting values the values of the helix parameters

fc md in the first space fit. Using these starting values we can calculate 90
for each ray. We give the calculation used in our program in a later section.

We note that, as we are solving the minimizing pioblem by iteration, we could

at each stage of the iteration recalculate 9, for\each ray and thus if necessary

eliminate the line segment approximation. In general, however, the curvature
of the helix is not very great and we shall have good starting values for the
helix parameters, so that this recalculation of the ©,'s is unnecessary.

11b. -Least squares calculation

To perform the least squares calculation we require the derivatives of d
with respect to the helix parameters. Writing

w

oL

w' =

we find
: od , o9d , dd
5a 98 o8 =" (Up Up Uy)
where U3 = —UU1 - VU2
and é—d— = w'(Uq cos@+ U, sin© + 6U, tan))

' Uqbdy, = UsA
'-5%@— = w'U p@ + 120 2o

The second term in the expression ?9%%5( depends on Ax and Ayo and will

be small. We include this term to ensure that the iteration converges. We
note that Uy does not depend on the helix parameters and is thus constant

throughout the ileration. Using the relation (see Section 1le).
sin® dCx ~ cos® dCy
P a P de

we can simplify %% to become

g—% = w' [ tan) (V cos®~ U sin®© + U3Q)—1]

w25
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Writing a,, 62, a 3 Qyy G =0, By ¥, py tan\ and given starting values "y
we can calculate 1mproved valugs ay given by (see Appendix I)

ay = “A? + day,
where 6“h = 'Hku Y“
1 i
with HNJ = R (Ba)\) (a. )
= K
. o o]
X (344 o
H j=1 % A

The summations are over all the rays and N is the total number of rays.
The new value of Zdi2 is

£d4° = 24420 + 434,

da

2
where AEdi z YX

In practice we find that 6a~J—6p and in order to keep accuracy in the
calculation of daj, it is nevessary to change variable to a + instead of @,

We use the values found by the first space fit for a,° and iterate until

A% d42

< €
Zdiz

We have taken € = 0.05 and find that at most two iterations are necessary for
convergance.

1lc. Calculation of momentim and errors

From the parameters of the fitted helix, we calculate the momentum variables
of the track used in the kinematic fits. These variables are all defined at the
centre of the track and are ¢, the aximuthal angle, tanA, where N is the dip
angle and 1 where p is the momentum of the track in Gev/c. Tan\ can be taken

D
directly from the helix fit. The momentum p is given from the radius of the
helix by ;

« Sadlp x 1073 Gev/c
CosA .

where H is the z-component of the magnetic field in kiiogauss. We take this

momentum to be the momentum of the track at the p01nt 0 = Os The corresponding

azimuth ¢ will then be

T e e map e ——
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where ©Op is the angle that the measurements have been rotated through and the
gsign is taken according to the sense in which the particle is moving round the
helix.

To calculate the length of the track, we first find the 6 - value for a
vertex on the track. From the first space fit we have an approximate value of
© for a vertex on the track. We use this value of © to calculate the corrections

Cy and Cy for the vertex, then

-1y yy =B -Cy
6, = tan X.V—G-Ci (8)

where , y.. are the vertex co-ordinates rotated Ento the helix fit frame. The
length of the track from its centre to this vertex is

cosA GV

For tracks with only one vertex, this is taken as the half length. If the track
has a vertex at each end, the ©, of the other vertex is found using formula (8)
and the half length of the track is taken as

= 0.5 == (e, (1)_ 9(2)|

cosS A\

The ¢ and of the track are altered so that they apply to the centre of the
track (by fength).

The error matrix for the parameters of the helix is

-1
< 6(1.)\ 6(1_“> = O'F? HNI : (9)

where o is the R.M.S. measurement error on the film. For errors on the track
variables we have

da
N L aR s
dtanh = 6@5
& (1) & - 1‘[‘ii4‘ + sin\ cosAba ] (10)
p pL P 5
where p = 0y and sin A cos A\ = (1 0;0.52) The expression for é¢‘apﬁlies to the

centre of the track and is derived in section 9 (1st space fit). It may be
necessary to include an additional term °S where 0s is the uncertainty in the

position of a vertex on the track projecégd onto the horizontal plane.

From equations (10) we can work out the elements of the error matrix for

the track variables
_ _25-
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<8a02> r
<6¢2> ) 9
P
-
<btan\?> = <6a52>
da g2 : :
<6(1)2>= bl + LRohouas <da, da.> + sinz)\cosz’)\<6a52> f
P p2 2 P 4775
P L
<daydag> . .
<6tan7\6(%5)> = —’1'[——-4——2—4» sin)\.cosk<ba52>] e
v b P A\
L \ ]
1 1 1<dagda2> ) o
Bgs(s)> = = + sinkcosi<banboc>
@ P) PP[ P 2R%s |
—<bap d
<8 g Stanh> = e e L : r
p
The value of X2 for the fit is
2 1 & g2 [
X = - 2 d. (O-)\ *) . o
op2 i1 * _
‘where a, = aj¥* are the values at the minimum. The expected value of X2 would be g
n-5 (n = no.of rays), if the effects of coulomb scattering, errors in the optical ‘
constants and turbulence could be neglected. We define Gp as —
” R
2 1
Op- = ne5 2 diz (@y*) B
‘ i=1

then by histogramming o 2 for a large number of tracks we can determine a suitable
standard value of o, for use in given circumstances. Fig.5 shows a histogram of
o 2 for tracks from the 30 cm hydrogen bubble chamber of the C.E.R.N. bubble )4
chamber group measured on the Oxford University measuring machine.. If o 2 ig

larger than a given constant the program assumes that the track has been Boorly e
measured and 0,2 is used in place of the standardo‘F2 in the calculation of . the
error matrix for the track.
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11d. Calculation of 85 for s=ch ray

The rays of the main view, for which space points have been found, will have
values of © calculated from the first space fit. For the remaining rays we

calculate an approximate ©

e BB (a + pcos©.) — (X + U(¥ + pO4 tan})) P g1<%
p (Utan\ + sin©y)
S (B +psin®q) = (Y + V(¥ + pO4 tand)) fo 90%

' p (VtanA - cos 91)‘

The helix parameters &, 8 etc. are those found from the first space fit.
For the first ray on any view © 1is taken equql to &y, the © value of the vertex
at the begimming of the track. These expressions are found by linearizing the
equation giving the point on the helix with x and z co-ordinates (or y and z
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co-ordinates) equal to those of a point on the ray. In this way approximate
©-values are found for all the rays. f

Each ©-value is further improved by iteration to satisfy

m

£(0) = Up(a +pcos@-X~U(¥ + p6tanN)-Uy(B + psin@-Y -V (¥ + p@ tan}))
=0
where Uq = -cos® + Vtanhand U, = ~sin6 - Utan)

L1 approximate solution © is improved to © + 08 with ‘

50 = fﬁgl X

£1(e) !
with £'(8) = p(u1? + Up?)

In general one step of the iteration is sufficient for convergance.

lle. Calculation of the helix corrections Cx and Cy )

We shall follew the method of calculating Cx and Cy given by Frank Solmitz(3)

(L.R.L., Alvarez group memo 220). The equation of motion of a particle in a
bubble chamber is ‘

() L 0 (12D | W

8 is distance along the track, p(s) is the momentum of the particle in Mev/c, t
is the unit tangent vector to the track, B the magnetic field in kilogauss and |
e = *.1 the charge of the particle. The - sign is necessary because we use )
left~handed axes. The momentum p decreases with s due to the slowing down effect 4
of the chamber liquid. We shall consider the case in which B is constant and

equal to (o, o, B).. We make a change of variable to © where ]
8po © : !
N\ ' . \ 8 = —C-;O%)\- (2)

[ S

where p, is the radius of curvature of the track at s = o, given by

PoCOSA

with P, = p(o
A% o = p(0)

Po =

dz . 4
Then e ™ constant = p, tank.

The azimuthal angle ¢, that is the angle that the projection of the tangent
of the track makes: with the x-axis, is given by

d &y | S
tang =L = 35/ax (3)
' a0

~28- &
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. AN d¢ coszg ax d% dy d°x
Differentiating 0 (Q§>2 e 555 ol
de

and substituting from equation (1)

- e (e (e @)

de
Giving finally

-2 (4)

We now approximate by expanding %? as a polynominal in ©

%’-= 1 + 2b0 + 306° . (5)

and then determine b and ¢ so that the formula is correct at 2 points * s on the
track (it is also correct at s = 0). The half-length L of the track is given by
the first fit and we take s = ol where a is a constant less than unity. Writing
p, = p(+s) and p_ = p(-s) and solving for b and ¢ we find

b =« —— (B2 _ Po
4Q(L P+ P

and 1 Po Po
c = s { — _— =2 6
66 2 (p+ T b ) (6)
where © = D:308 ale.
a el

We take for p, the value of momentum for the track given by the first fit and
then p, and p_ can be found using the range-momentum table. If the value of p,
is such that the range R is less than L, then we take for P, a value of momentum

that would give a range equal to L.
Integration of (4) and (5) gives
¢=¢O+G+b92+ce3 (7)

and from equations (2) and (3) we have
dx

B =P cos¢
. s (8)
g = Ppsin ¢

To integrate these equations for Cy and Cy we make the assumption that (b@2 + 093)

w20
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is a small angle and linearize sing and cos¢ in this

a frame such that it ie¢ moving along the y~direction at the point 8 = © = 0, then

$o = %and

Bing o cos® - sin 6 (b62 + ¢03)
Then

J eingd0 = sin0+ 5in0 (-3¢0 - 2b0 + 6c) + cps 6 (c03 + 162 ~ 600 ~ 2b)

and finally _ .
X

a +pcos@+ Cy

B +psind + Cy

y

where

J 008330 = cos 0+ 5in® (-c63 - 602 + 606~ + 2b)+ cos 6 (~3002 - 200 + o) . -

Cy =pl 8in® (~c03 - 162 + 606 + 2b) + cos 6 (-3¢6% - 2b6 + 6c) -60 ]

A it b AR T o 5

angle, If the track is in

cos ¢ ~ -sin 0 - cos 0 (b2 + co3) - . .

. ’

and Cy =pl 8in@ (-3c6% - 206 + 6c) + cos6 (c63 + 16 — 6c6 — 2b) + 2b ] |

We also require the derivative of C4 and Cy and these are

1 dCx
ae

dC
e
do

o=

12. COULOMB ERRORS

cos @ (~co> - be?)

sin 6 (~c03 — be?) 1

To the measurement errors calculated from the helix fit, we must add the ) |
wicertainties in the momentum variables caused by multiple Coulomb scattering.(6)
At present we use the formulae found by R. B8ck from a Monte Carlo calculation .

The mean angle of scattering is given by

K
2 2
< Bsc> = f L .
2 2 2 >
wheref2=—g—§=-1§-§1+n—l-§
p<B P P 4
with L = length of the track, X a constant determined by the progerties of the 4
chamber liquid and m equal to the particle mass. In terms of f“ we have
' 2 _ 2 |
<8¢ >Coul C2f L L
2 - 2 4 i
<dtank > coul C1f L sec™\ )

~30-
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2 2 [Cyp?
< 6(%) 2 = g—" [—QP— + 'ta.nz)\. C1L]
Coul P L

where Co, C4 and Cp are constants.
The current values of the constants used in the program are

~3Y2
R o (21.2x107)° Loy - 990 cms.

Lrad
\

- 0.45 x 1076 Gev®/em.

giving K?

and Co =y Lald, C1 = 0.405 and C, = 0.23.

13. CHARGE BALANCE

The charge asscciated with each track has been found from the curvature of
the track, except in cases where the track is straight to within the accuracy of
measurement. We can use charge balance at each vertex to check the assignment
of charges and where there is one straight track at a vertex, to find the charge
of this track. If N is the number of tracks at a given vertex, then

z 0O N even

e-i - -8 =

outgoing incoming 1 N odd.
tracks track

This relation is checked for each vertex (except in the case N = 1 where the
track may be a stopped proton recombining with an electron) or used to find a
missing charge. If a missing charge is found and if there is any track remain-
ing with undetermined charge after the charge balance, the process is repeated.
It is worth noting that charge balance gives no information about the direction
of tracks, but equally the charge balance can be carried out even if some track
directions are unknown.

\ \

-14. BEAM TRACKS, STOPPING TRACKS AND ELASTIC SCATTERS

In this section of the program we deal with what might be called special
cases. ) .

14a. Beam tracks

We allow for three different ways of treating beam tracks. Firstly nothing
special can be done, secondly the momentum and the error on the momentum can be
replaced by fixed standard values given by the engineering of the .beam. In this
case the correlation errors involving the momentum are set to zero. Finally the
results from the helix fit and the beam engineering values can be used together -

to give a weighted mean value of 1. For the weighted mean we have
p

-, .
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<6(=)"> — + <B(=) e
1 (%) e PHpIT 52 HFIT PENG
5 =
O R e -
ENG HFIT
In this case the errors <6(%)2> ; <6¢6(%)> and <6tanh6(%)> must be multiplied ;
by the factor "
<8(5) >EnG
12 : 12 p
<<6(p) >ang * <8(p) >HFTP)
14b. Stopping tracks _ ' ! x

There are two ways in which the program can take a vertex as a stopping
vertex. First if this is indicated with the measurements (see Section 2) and
secondly if the vertex has only one track associated with it and if this track
is also a two vertex track (note this rules out the beam interaction vertex).
Before accepting the vertex as a stopping vertex, the co-ordinates of the
vertex are checked to see that the vertex is in the liquid of the chamber and
not on one of the windows of the chamber.

For stopping tracks we calculate the momentum at the centre of the track
by taking the range equal to the half-length and finding the corresponding
momentum from the range-momentum table. The momentum error is given by

<5(%)2> = ;%.[(<6Lm2> + <6L52>) %g +p° %;?']

where <6LE2> ig the measurement error on the length, <6L32> is the uncertainty
in. the range for a given momentum capysed by the statistical nature of the energy
loss process. It is a function of e where T is the kirnetic energy and m the
mass is found in the program from a table. |

d is the density of the liquid . “1

<56d2>"' is the uncertainty in the density A

%E is the gradient of the range-momentum table at the momentum p. e
The momentum and error are calculated for the three masses X, K and proton, and
a check is made that the momentum from curvature and the momentum from range agree
within the errors. Disagreement cauges a print-out, but at present the momentum
from range is always taken. The correlation errors involving the momentum are

J
|
J

The present method of dealing with stopping tracks is somewhat arbitrary.
A better method would be to leave the decision whether to take momentum from range
or curvature, where these agree within errors,as a further ambiguity to be treated
by the hypothesis testing program.

w30
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] 14c. Elastic Scatters

All vertices where there are three charged tracks are tested for coplanarity.
If t4 is the tangent vector to the incoming track at the vertex and t% and t the

1 tangents to the outgoing tracks, then © the angle between the vector 14 and
- normal to the plane containing _‘92 and _j:_3 is given by '
- t % x %
cos@ = "1’(‘2 —3)
- |2 x 23]
or in terms of the azimuthal and dip angles of the tracks
. tanhysin{¢y - ¢o) + tandosin(gy - ¢3) + taniysin(¢o - ¢4)
- cos = 1
2 ) 418
M [(1+ tang?w)(tan“,\.g + tan2K3 - 2tan\ 1tan7\2003(¢3 - ¢2) + sin (¢3 - ¢2))] <
- The azimuthal angles at the vertex are found from the angles at the centre of the
track by :
Sl + 0.3BzL
=5 9Svertex B gscentre - P
E where L is the half length of the track and the sign is taken according to the
- charge and the direction of thes track.
' For tracks to be coplanar 6 must equal 5 , that is cos © equal to zero. To

test for coplanarity we test tzat cos O differs from zero by less than some given
multlple, say three, of the error on cos®©. To simplify to the calculation of
- <dcos 02> we assume that the errors on the dip angles dominate and as we are only
interested in cos© small we iznore errors in the denominator. With these
approximations we find
- <dtanA >Sll’"‘( $,) + <btanh,2>sin - +<dtan\ 2>s1n2 G-
<8 cos 02> = B 1 3z 2) 2 (¢1 ¢3) 3 ( A )
- : [(1+ tan 7\1)(tan5)\2 + tan 'h3 - 2tan7\2tan7»3cos(¢3 - ¢2) + s:.n2(¢3 —¢2)) ]

> Vertices with three coplanar tracks are taken to be elastic scatters and are marked
for special treatment by the hupothesis testing program. In addition we assume
that there are no neutrals at the vertex and if possible use,K this information to

- resolve a track direction ambiguity.

) This is the last calculation performed by the geometry program and the

- results are now written onto a Library tape. A sumary of the results is printed
out.

—  15. OPERATION OF THE IIBRARY TAPE AND BOOK-KEEPING ARRANGEMENTS

) All the programs'of the bubble chamber anaiysis system are built round a
Library system. The results of the main calculations performed on each event

-~
are kept on magnetic tape as a Library of events. . Events are stored in frame
— number order and the format of the Library is the same for all prograums.

o
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In general programs will be adding new resultsto a Library tape and to avoid
writing on tapes containing valuable information the programs all operate in the
following manner. First the results of previous calculations for an event are
read into the computer from an ‘old' Library tape. If no calculation is to be
done on the event, then the results are simply copied onto a new magnetic tape.
If calculations are performed, then the new results are either added to or used
to overwrite the old results and then written onto the new magnetic tape. Thus
no writing operations are made onto the old tape and these can be prevented from
happening by accident by 'file protecting' the old tape. Finally both tapes can
be kept until further computer runs have established that the new Library tape is
a good replacement for the old.

For this method of operation to be possible programs must be able to read
Library tapes that include events that have been processed any number of times
by any of the programs of the system. .This is poisible as the Library format
is the same for all programs. This Library format consists of five lists

%1) Book~keeping List
2) Vertex List

é}) Track List

4) Helix fit List

(5) Kinematic fit List.

The book-keeping list containg the frame number, the event number on the frame;
informatiocn about scanning and re-scanning, information about measurement and
any re-measurement and details of the calculations done on the event. The vertex
list contains the space co-ordinates with errors of each vertex, and the total
number of charged tracks at each vertex and the numbers of these tracks. The
track list contains all the information about each track other than the results
of the. various least sguares fits for the momenta and angles. It includes the

. end labels, the direction label, the charge, the magnetic field associated with
the track and an jindex for finding the helix fit results in the helix fit list.
The helix fit list contains the results of the various fits made to find the
momentum variables of each track.. For each fit it contains the azimuthal
angle $, the tangent of the dip angle tan)\, and the reciprocal of momentum )
(all defined at the centre of the track) together with the disgonal and
correlation errors on the quantities. It also includes the length of the track
and- the mass associated with the fit. The results of the first space fits and
the mass—-dependant helix fits are stored in this list together with the results
for successful kinematics fits. Finally the kinematic fit list gives details
of all the kinematic fits made on the event.

Full details of the Library format are given in Appendix V. The book-
keeping list must always be present, but any or all of the other lists can be
empty. All Library tapes start with a title record and this is checked by the
program before processing starts. '

Events to be processed by the Geometry program must always be presented in
frame number order.: There are two modes of operation of the program, operation
with and without a 'Master List' of events. In the 'master list' mode & book—
keeping program is first used to write book-keeping lists for a set of events
found at the scanning stage on a' new magnetic tape. This program also writes a

53
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title record at the front of the tape with the name of the tape and the total and
highest and lowest frame numbers of the events. Subsequently this tape is used
as the 'old Library tape of a run with the Geometry program. Used in this mode
the Geometry program only deals with measurements of events which have book-
keeping records and rejects any other events. When an event is successfully
processed by the Geometry program, vertex, track and helix fit lists are added to
the book-keeping and written on the new Library tape. In the cases of a re-
measurement the old results are overwritten. If the event fails in the Geometry
program only the book-keeping record is written on the new tape. In all cases
information about the measurement and the computer run are added into the book-

kee ing list.

In the non 'master list' mode events that go 'successfully through the
Geometry program are either written on a new tape Qr merged in with old results.

In the 'master list' mode additional book-keeping programs can be used to
read a Library tape and to find the progress of events through the system.

One of the main problems of keeping a library of events in frame number order
is that inserting information involves 'pushing down' all subsequent information.
The Geometry program is always used to process the whole of a tape so the only
problem is to avoid pushing information off the end of the tape. Using the
'master list' we shall try to limit the number of events put on a tape so that
this is unlikely to happen. In the case of accidental overflow, we shall use a
continuation tape and will not alter the other tapes of the experiment.

16, SUMMARY

The main purpose of the program is to calculate the momentum with errors for
each track of a bubble chamber event. We choose as variables to specify the
momentum the azimuthal angle ¢, the tangent of the dip angle tanl, and the
reciprocal of the absolute value of the momentum in Gev/c % + The values given

by the program are for the centre of each track. To find these quantities the
program makes a first fit to space co-ordinates found on the track by the method
of correspon?iﬁg points. This part of the program follows the methods of the
PANG program 2> with the differences that rays rather than film points are used
and also that all three views are used to find the space points. A second mass—
dependant fit of a helix to the rays of all three views is made next. This fit
is made essentially by projection onto the film plane and thus makes for an easy
calculation of errors in momentum due to errors in measurement. Tracks are
either fitted assuming. the K-mass or three fits are made with the masses K, ®
and proton. The fit is an iterative process and uses values of the helix
parameters found from the first fit as starting values for the iteration. The
procedure almost always converges in one or two iterations.

Further information about the event is worked out for use by the Hypothesis
Testing program. Where possible the connections between tracks, the directions
of tracks and the charge are found by the program. The feature here of special
interest is that the system has been designed so that there is no rigid connection
between the way in which an event is measured and the way in which the kimematic
analysis of the event is made. ' In addition an attempt has been made to keep the
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symbolic information that has to be supplied with the measurements to a minimum.
Further developments in this direction will be to improve vertex identification
and to introduce a stereo-matching routine to relax the restriction that the event
must be measured in the same order on each view.

The program is part of a complete bubble chamber analysis system that is
being written at the Rutherford Laboratory. It is built into a Library system
and includes book-keeping facilities. The program is written in the Fortran
language and has been used to process about a thousand events so far. It is
hoped that few program errors remain to be found.

ACKNOWLEDGEMENTS ' ;\_

The authors wish to thank Dr. F.T. Solmitz of\the Lawrence Radiation
Laboratory for many helpful discussions and suggestions. The authors would
also like to thank the staff of the Computer unit of the Central Electricity
Generating Board for use of their I.B.M. 7090.

REFERENCES

1) J.W. Burren, J. Sparrow and A.G. Wilson, An outline of the Rutherford
Laboratory bubble chamber analysis system. NIRL/R/25 (to be published)

2) W.E. Humphrey, A description of the PANG program, Alvarez Group Memo 111,
Sept. 959.

3) - P.T. Solmitz, Modification of the PANG fitting procedure, Alvarez Group
Memo 220, October 1960.

4) W.G. Moorhead, A program for geometrical reconstruction of curved tracks in

a bubble chamber,” C.E.R.N. 60-33 September 1960.
5) F.T. Solmitz, Helix fit to track images, Ecole Polytechnique, December 1960.

€) R. B8ck, Private commumication.

\

A A AT P TR A s 2 e v - 2 - e g v - it s e RS AT TR T



o e a5 L s SR e Tl B A i DERIE RN JATE ST S GRS DTN SR B e A e s AN s K i s ekl R K i PSSR

Appendix I Least Squares Methcod

We have a set of measurements x3 of a function f(ax, ©) at the points
9 = The a, are parameters defining the function and we write
£ (ax} —»f Oy s Qi). We wish to find the best values of the @y by minimizing
n

n
2
2 di N Z (Xi ~f]'_(c(")\.))z (1)
i=1 i=1
where n is the total number of measurements, that is by solving the equations

"3 2 df (ay) = (2)

30:7\ i=1

Starting from an approximate solution of equations (2), ay = axo, we can
improve this solution. Expandlnv Ld;)ln a Taylor series about @)%, we have

dsa;2) . 3%5d;2
MBay | T % TH M 30y

(0]

Zdig(ak) = Idy 2(a. oy ) + day,

Substituting into equations (2), we have

dudil ddi2 . B azz;di2

e et S = L] a et g e e

e N ) 3 Baxaap
= 0

The improved solution is @y = a° + Oay where 80y is given by
Oay = _HNLYQ ' (4)7

23.2 :
Z: S 5 and Y EE: d,° §Ei
L Pada,, i\ da,.

=

where H'N g =

o} & H/o

We can rewrite the second derivative

4 %% . 3 5 dd da\ [ aa 3%4
2 4 -

Baxaa“ day, aau da Bau * dbahéap

The second term can be neglected as it contains the factor d, which is small.
(Note. The derivatives of d do not involve x4 and are the same as the derivatives
of f.) Thus we have finally

L Bdl ddy
et Zlso) (s
(o} 0
- o
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Substituting back into equation (3) we have

; dd; r
2(y~ O - 2(a~ 0 of 941 - o
£d;<(a\0 +8ay) = 2d;2(ap0) + bay L2d, e bay Zdj S
o
o

EdiQ(a.)\o) +8ay Ty | |

Thus given close enough starting values, we can iterate to find the values f
ay = o) * at the minimum, g
Assuming that the true values are @) and that the expectation value of X =
is given by : .
<x3> = f5) A
[
we can calculate <ap¥*>.  Let ay =a3® + 8ay and ap* = a)® + Say*, then from
equation (4) .
3% dds dd; dd .
S, % o] (] - % alls 1
o - o . i o r
bdi .
= - Z:(xi—fi(a.xo)) 5‘(‘;{ E
i , ‘
c
Taking expectation values
-
dd;\ [day ddy
* 3 X 0 1 -
<ba,, > gy =) - - 2 (£1(ay) -~ fi(a)\ Ni—
B i C(.” A bah " i 60.)\ = -
however ' s N 1
' 0\ _ & i 1
fi(ax) - fi(a.)\ )—ba}\ 50,_): = - 6“1. g;‘}'\" -
o . 0 [
and on substitution we have =
¥*
< = da b
f)c:.‘1 > b
Thus the expectation value <0y %> equals a, and we have an unbiased estimate of Q
the axo ’ ‘
|

Taking the expectation value <d;2(ay)> = o2, and assuring that there is no =
correlation between measurements, we calculate the error matrix for the fit

<(°‘)»* = “h) (0-“* = au)> =-<(5°')\* - éa)\) (601_1* - 60,“)>. We have
“ -1 dd4 ‘ |
ban* = -Hyy le (x5 - £3(ay°)) Sy .
. o

-38-
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wnd 50. = = X)\ Z (fi(aq\) - £ (a')\ ))( x)

0

: -1 bd
Thus 60’}\_* = t)d,-}\' = "‘Hxx - (Cl.}\) X
1
o

and o bd dd;
<('o'a)\* - écx,}\)(éc,“* - 5011)) = HX?\ pr Z o 5-&;-
o o
. ] 2

Hyn Hop Hys® :
-1

2
o
o
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Form of data for each

APPENDIX TIT

event input into the Geometry program

Card Format Symbol Description
1 F 10.0 FRAME Frame number
F 3.0 EVENT Event number
1614 NOSORT +1 No track or vertex sorting required (Must be
+1 in present program)
0 otherwise \
MISVW. Number of any missing view, or zero if all 3
views present.
NRL Total number of co-ordinate pairs measured.
NCTL Total number of charged tracks in the event.
NCVL Total number of charged vertices in the event.
MEAS Measurer ;
MEASH Measuring machine )
NMEAS Measurement number ) These can be left blank
MDAY ) ; if information is not
') available
MMONTH) Date of measurement )
MYEAR ) ;
The remaining 5I4's are spare (left blank)
2 1814 NRT(I,J) .Starting location for measured points on the
NCTL Ith view of Jth track (List 3)
oards NTT(I,J) The total number of measured points on the
Ith view of Jth track
LLB(1,J) Beginning label of the track +1 if vertex
LLE(I,J) End label of the track 0 otherwise
LID(I,J) Direction of the track-+1 if measured in correct
direction
-1 if measured in wrong
direction
0 if unknown (left to
program to decide)
Mass of particle if known (will be used for

ImMASS(I,J)

ionization measure)
cont'd
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Ead
- . Card Format Symbol Description
= 2 1814 I=1,3 The 18 quentities for a given J appear on
NCTL J =1,NCTL 1 card, the six quantities for view I first,
b contd. followed by the six for view II etc.
L :
- 3 13F6.4 XG(1) X, Y co~ordinate pairs of all measured points.
2NRL/13 (no YG(I) The 3views of a vertex must be stored together
B cards decimal I=1,NRL in I, I+1, I+2.
1] points) :
- 4 1314 NTF(I) Number of fiducials measured on the Ith view
L NRF(I) Starting location for fiducial cc-ordinates in
I=1,3 List 5
3| NRV(J) Starting location in point list (List 3) for
L J=1,17 vertex co-ordinates
4 2111 DUMV(I,J) Vertex comments no comment = blank or zero
J=1,3 stopping =1
-~ L= 14" elastic scatter = 2
5 13F6.4 Xr(I) X, Y co-ordinates of all the fiducials measured.
o 2NFL/13| (no YF(I)
L cards | decimal I=1,NFL NFL =) NTF(I) is not read in.
points)
Rl
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Appendix IIT

List of constants for the Geometry precgram

Common Geometry Data

Card Format Symbol Meaning
&
1 T3, NGLASS No. of optical components (other than air)
3F10.4 including window o
DLENFM Lens to film distance. #
. ,\
DLENBC Lens to front glqss/iiquid interface distance. .
REFLIQ Refractive index of bubble chamber liguid. ~
2 . |8F10.4 W(I+3) & Thickness of optical component )
(may be W(I-+8) Refractive index of optical ) NGLASS pairs '
more thar- (=1, component ) - .
1 card) NGLASS)
02153 X co-ordinate of camera 1 ) [
c(16 Y co-ordinate of camera 1 ) y -
0217) X co-ordinate of camera 2 ) inl » ¥ co—ordinate
c(18) Y co-ordinate of camera 2 ) ‘system r
C(19g X co-ordinate of camers 3 ) L
c(20 Y co-ordinate of camera 3 )
3 8110.4 c(9) Minimum distance between vertices allowed for T
’ sorting. ~
C(lO) Sagitta check for fitting parabola to points
' ' projected onto front glass. -
C(11 Check for badly measured points.
c(12 Maximum radius of curvature allowed. (
\ C(14 Angle to rotate film measurement system to obtain -
' y
t—-’-x co-ordinate system on the film. {
SIGMAV Standard error on vertex measurements (on film). .
1
c(87)=z Standard error on x and y co-ordinates in space.
.L @ F o
c(88)= Standard error on z co-ordinate in space.
|
4 413, NC(1) + or -1 (+1 for R.H.S.) of x, ¥ co-ordinate (
' (-1 for L.H.S.) measurements on film. “
NCEZ) g Total No.of fiducals that could be measured viewl
NC(3) < 2
ve(z) ) (must be € 10) 3) .
c(13) Check for identifying fiducials. 3
C(2]) Check for fiducial condition ab+ed = o in L.S.F.
c(22) Check for individual fiducial accuracy. -
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Card Format Symbol Meaning
5 8F10.4 ¢(138) % Expected X, Y co-ordinate pairs of fiducials
(more on the film with respect to the optic axis in
than 1 ¢(197) ) the R.H.S. which agrees with a R.H. measurement
card) ) system. A1l X, Y pairs for view 1, then view 2,
) then view 3.
6 8F10.4 w(1) Stereo angle check in radians.
c(74) Extrapolation ratio limit.
c(75) Accuracy for Z iteration in finding corresponding
rays
w(2) ) Rotation angles (in radians) between cameras 1 &2?
w(3) ) 1&3
w(4) ) 2 &3)
such that the new X axis lies along the line join-
ing these cameras. '
7 I3, NC(6) Check on number of iterations for theta (©)
3F10.4 c(89) Sagitta check for straight line fit in space.
¢(90) Angle check for parabola fit in space.
C(91)x103 0.3 times the mean magnetic field in Kgauss.
8 8F10.4 (Infozmdtion about the beam track on entering the
bubble chamber, used to identify the beam track)
c(23) Tangent of dip angle. .
C(24) Error on tangent of dip angle.
C(25) Azimuthal angle + =« (in radians).
c(26) Error on azimuthal angle.
c(27) X co-ordinate.
c(28) Error on X co-ordinate.
c(29) Y co-ordinate.
C(30) Error on Y co-ordinate.
9 I3 (Further information about beam track)
b
6710.4 NC(5) Charge.
c(31) Z co-ordinate.
0(32) Error on Z co-ordinate.
c(33) 1/momentum (Gev/c)~l (-ve if beamtrack is missing)
c(34) Error on 1/momentum allowed in curvature
determination
= cont'd
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Card Format Symbol Meaning
i Ap
. 9 I3, c(36)® True error on l/beam momentum = 5
P
! ‘ contd. | 6F10.4 (Ap and p° are in Gev/c).
10 8Fr10.4 0(93) AS check for convergence in 6 iterations.
c(94) Parameter o between 0.5 and 1 used in slowing
i down correction.
5 ¢(95) Magnetic field weighting for middle of track.
‘ ' c(96) MagnetiéAgigld weighting for end of track.
‘ c(97) Test on “;2 for\pelix fit convergence.
c(98) . 1/RAON ﬁass.
c(99) 1/PION mass.
¢(100) 1/PROTON mass.
' 1
11 8Fr10.4 c(101)= Standard measurement error on film.
C(102)x106 Cog(parameter used in calculating coulomb errors).
2 " 1" " "
0(103) C]_ " "
0(104) 022 " " 1" " " "
0(105) 032 " " " " " ‘ "
¢(106) Check for calculated measurement error of
ordinary points on film.
c(107) Check for calculated vertex measurement error
on film.
¢(108) Weighting factor on stereo check for selecting
' mainview.
12 8F10.4 c(109) * 1.0000 (+ve if magnetic field is in +ve direction,
; —ve if magnetic field is in -ve direction)
A €(110) [ error in density of liquid/density]?
\ | , C(lll) Constant for testing scatters.
‘ c(112) Statistics constant.
c(113) Check on [ length of track]? for circle fit in
» space.
o1y 3
C(115 Unused.
c(116) )
13 1813 Ne(7) Number of iterations allowed in helix fitting for
® Kaon mass. )
NC(8) Number of iterations allowed in helix fitting for
pion or proton mass sanbta

-
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Card Format Symbol Meaning
13 1813 NCc(9) Number of entries in the range/ﬁomentum table.
contd. NC(10) +1 (+1 Carry on if helix fit fails,
-1 Reject event if helix fit fails).
NC(ll) fi1or o0 (-1 Use weighted average of momentum from
curvature given.
0 Use given beam momentum and error.
" +1 Use momentum and error found from
A\ curvature)
~ for beam track.
NCc(12) t1= sign of magnetic field
+ve in same direction as Z
-ve if in opposite direction).
NC(13) flor O (—1 for an old tape with master list
expected on channel 9.
O for an old tape with NO master list
expected on channel 9.
+1 No old tape exists)
NCc(14) Number of the constants used in the geometry run
(+ve integer).
NCc(15) Number of field values in table.
NC(16) +1 (+1 tries scatter test on beam vertex and any
. others.
-1 iries scatter test only on others)
NC§173 g
NC(18
Nc(19) Qnused.
NC(20) )
14 6F10.3 AMOM(T) Range /momentum table.
(many ARANGE(T)
cards) (I=1,NC(9))
a5 6E13.5 FIELD(I) Values of magnetic field to be used in BMAG
(can be (1=1, (tf NC(15) = O, no card is expected. )
many NC(15))
cards)
16 313 IDAY Day
" MONTH Month of geometry run
I YEAR Year (final 2 digits only )

~45-
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Card Format Symbol Meaning
17 F10.0 c(69) Maximum frame no. expected in a given set of
events to be run.
18 1046 w(1) Title associated with the events (up to 60
alphanumeric quantities).
w(10) '
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Appendix TV

List of Fault Numbers

4 BRI #4000 ¥ L s S S LA A, DN ARG R N

F%ﬁgt Routine Reason Print
1 RADANG Track goes through more than Track No. View No. Track List.
1800, Ray List for this track.
2 RADANG . Two points out of line. Track No. View No. Point.No.
Digtance off.Track List. Ray
List for this track.
3 VIDENT Vertices too close for stereo View No. Vertex co-
sorting. ordinates for all 3 views.
4 FIDUC Less than two fiducials View No.
measured.
5 FIDUC Less than two of fiducials View No.
identified. '
6 FIDUC Fiducial condition ab + ed=0 View No. a, b, ¢, 4, e, T,
not satisfied. for the view.
7 BEAMID More than one track found. Track List. Helix Fit List.
Vertex co-ordinates.
8 BEAMID No beam track found. Track List. Helix Fit List.
) Vertex co-ordinstes.
9 CHBAL No charge balance at vertex. Vertex No. Track List.
10 VIDENT Same end labels on track. Track No. View No. End Label.
bal SPACEZ Two views with no points Track No. Track List.
measured.
52 SPACEZ Insufficient points recon- Track No. Track List. Ray
structed on track. List for this track.
53 SPANG Too many iterations for theta. Track No. Track List. Ray
List for this track.
HE'IT Too many helix fit iterations Track No. Track List.

on track.

- Helix Fit List.
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APPENDIX V

Library Lists and Format

The Library tape entry consists of five records for each event.

1. Book-keeping List

Variable| Type Description Source
GEN(1) | FL.PT Frame number set up by MASTER LIST and
CEN(2) FL.PT Event number checked by GEOMETRY PROGRAM.
GEN (3) FL.PT No Sort (see CGeometry input) set up by GEOMETRY PROGRAM.
GEN(4) | FL.PT Missing view number set up by GEOMETRY PROGRAM.
CEN(5) | 12 bit 1) Experiment number
2) Type number set up by MASTER LIST.
3) File number
GEN(6) | 6 bit 1) Scamner )
2) Scan t§b1e
3) Day 4
4) Month);date of scanning S86 Wy by MaSlE LIST'
Zg Year ) g
GEN(T) | 6 bit As for GEN(6) for re-scan set up by MASTER LIST
GEN(9) 6 bit 1) Measurer )
tO( 6) 2) Measuring machine )
GEN(1 3) Day ) ) -
(one for 2 Mnth ) set_up by GECMETRY PROGRAM.
each 5)
measure~ 6) Year )
ment) :
GEN(17) | FL.PT. | Total number of GEOMETRY Set up by GEOMETRY PROGRAM.
' tries.
CEN(18 -
tg ) 6 bit é) gPass or Fault No. g
e (27) 3 e )
(one for 4) Yonth ) date of GEOMETRY s6% Ny by GEOMBIRT -FHOCHRE.
each 5
GEOMETRY 5 Year | )
try) ‘
GEN(28) | FL.PT. -1 if book-keeping record only

NC(14) if GEOMETRY run is
successful.

NC(14) = title number of
constants used.

set up by GEOMETRY PROGRAM.

- 48 -
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variable Type Description Source

GEN(29) | 12 bit | 1) Roll number g
2) — set up by MASTER LIST.
3) )

GEN(30) | FL.PT Total number of hypothesis set up by HYPOTHESIS TEST.

tried.
GEN(31) | 6 Vit 1) Success or failure
to 2) )

GEN(99) 3 :
4 Hypothesis name or \ set up by HYPOTHESIS TEST.
5 number !
6) | )

2. Vertex List

Variable Description Source Comments
I Number of words in record after GEOM. or

first five H.T.*
NCTL Number of charged tracks GEOM i.e. number of
: tracks measured.
NCV Number of vertices with charged GEOM

tracks.
NNTL Total number of tracks GEOM & H.T | i.e. including
NNVL Total number of vertices GEOM & H.T | neutral tracks.
For
I=1, NCVL or
NIVL as number of vertex.
appropriate ‘
SVERT(I) -1 if vertex is a possible elastic

scatter.
-2 if tried as a scatter but GEOM
failed coplanarity test

+1 if stopping vertex
NRV(I) Index giving position of vertex GEOM

co-ordinates. :
NCTV (1) Total number of charged tracks GEOM

at vertex.

TS s sy anpry e s
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Variable Description Source Comments
Ner(T,J) Track number of JtB track at the GEOM
J=|,NCTV(I)| Ith vertex.
UG(K) x )
UG(K+ 1) y ) space co-ordinates of vertex GEOM
UG(K+ 2) z
v (K) g diagonal squared errors on
Ve(K+1) ; GEOM K = NRV(I)
VG(K4-2) ) co-ordinates .
z5(K) )
7S(K+ 1) ) correlateg.eriors on vertex GEOM
7s(K+ 2) ) co-ordinates.

*  GEOM GEOMETRY PROGRAM

BT, HYPOTHESIS TESTING PROGRAM

3 Track L]%_'E
Storage
Location Quantities stores Source Comments

I Number of words in record GEOM

after itself,

For i=1,
NCTL
DELTAL(3) Square of error in length  GEOM
STOP(i) +1 if track stops
BZ(1) Magnetic field Kg(x0.3x1073)
DUMT( i) R.M.S. error from helix fit,
LB(1) Vertex label at beginning

f of track. Labels are zero
LE(i) Vertex label at end of if no vertex at

track. an end.

LD(1) +1 if direction of track

known
0 if unknown

~ 50 w
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S
T Storage
E Location Quantities stored Source Comments
- mass(i) Mass of track if known.
= NomAR(1) Charge
NHR (1) Number of first entry in i.e. position of
. helix 1list for this track. geometry results.
1 MATNVW (1) Main view used in recon-
- structing track.

F For i=NCTL +1,

NVTL
-
F LB(4 ) it is only necessary
LE(i As for charged track. L. H.T;
4 : to store these for
‘= NHF(i) -
neutrals.
.
) 4. Helix Fit List
- This contains the results of both geometry and hypothesis testing programs.
They are made available by means of indices in the track list and kinematical fit
lists.
Storage
Location Quantities stored Source Comments
NHL Number of entries in list. GEOM &
For i=1, NHL H.T. "
MASS(1i) The mass used for the track
when these results were
; obtained (Geom. or Kin).
XMEAS(1,]) j=1 gives ¢, azimuthal angle
j=2 gives tan\, A=dip angle
j=3gbws|/m P = momentum.
EMEAS(4,3,3) j=1, 3. Diagonal error
; elements.
EMEAS(1, j,k) =1, k=2
j=1, k=3 ) Correlation
j=2, k=3 ) terms
TLEN(1) Track length
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5. Kinematical Fit List

This contains enough information to characterise the fits carried out on

_ the event. One entry is made each time a fit is carried out.

Storage

Location Quantities stored Source Comments
NKF Number of entries. H.T,
NNKF Number of words in Kinfit

List [XFL(i), i=1, NNKF]

For i=1, NNKF

KFL(1) ‘ Vector of Kinfit list entries
Given in detail below¥*,

For i=1, NKE

NSTK(i) Starting point in KFL vector
for ith entry.

NKFEL(i) Number of words in the ith
entry. '

NKFR( 1) If> 0, starting position of

results in helix fit list.

If -1, indicates failure of
£i%.

CHI(i) X2 for successful fit.

*¥¥Kinfit List entry for one fit. KFL(3), j = NSTK(i), NSTK(i) + NKFEL(i)

JVERS (NFFS) Number of vertices being fitted.

For each vertex in numerical order

JAT(1) Vertex number.
MTV(i) —-MCTV(i) Number of neutrals.
KAT(i) Neutral track nos. at vertex in numerical order.
ents for each track at the vertex, in numerical

NTMASS (1) Mass assignm
order of itrack numbers.

Locations in helix fit list where data for fit has come from,

MINDEX(1)
in numerical order of track numbers.
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e Appendix VI
Suggestei symbols for measuring machine
| The following symbols (tuttons) are sufficient for interpreting measurements
L in order to produce the Input format for the GEOMETRY program.
i Teleprinter code
- 1. New Event. To separate events —
B 2. New view. To indicate change of view +
B ’
3. New track. To separate tracks (and vertices) A
4. Co-ordinate. For ordinary co-ordinates none
5. Vertex co-ordinate. For vertex co-ordinates
to give a symbol followed by /
co-ordinates.
6. Missing track. To indicate an unmeasured track. n
T. Erase co-ordinate. To delete last measured yis

co-ordinate pair.

8. Erase track. To delete measurements back to
' last new track symbol. -
9. Erase event. To delete measurements back to last
new event symbol. .
10. Tape terminating. End of paper tape.. | X
5 s
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