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Algebraic preconditioning in low precision works

Jennifer Scott∗ Miroslav Tůma†

May 1, 2023

Abstract

The emergence of low precision floating-point arithmetic in computer hardware has led to a

resurgence of interest in the use of mixed precision numerical linear algebra. For linear systems of

equations, there has been renewed enthusiasm for mixed precision variants of iterative refinement,

with the emphasis so far being mainly on dense systems. We consider the iterative solution of large

sparse systems using algebraic preconditioners. The focus is on the robust computation of incomplete

factorization preconditioners in half precision arithmetic and employing them to solve symmetric

positive definite systems to higher precision accuracy; however, the proposed ideas can be applied

more generally. Even for well-scaled problems, incomplete factorizations can break down because

of small entries on the diagonal. When using half precision arithmetic, overflows are an additional

potential source of breakdown. We examine how breakdowns can be avoided and we implement

our strategies within new half precision Fortran sparse incomplete Cholesky factorization software.

Results are reported for a range of problems from practical applications. These demonstrate that,

even for highly ill-conditioned problems, half precision preconditioners can replace double precision

preconditioners, although unsurprisingly this can be at the cost of additional iterations of a Krylov

solver.
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1 Introduction

We are interested in solving sparse linear systems Ax = b, where A ∈ Rn×n is nonsingular and x, b ∈ Rn.

The majority of algorithms for solving such systems fall into two main categories: direct methods and

iterative methods. Direct methods transform A using a finite sequence of elementary transformations

into a product of simpler sparse matrices in such a way that solving linear systems of equations with

the factor matrices is comparatively easy and inexpensive. For example, for a general nonsymmetric

matrix, A = PLUQ, where L is a lower triangular matrix, U is an upper triangular matrix, and P and

Q are permutation matrices chosen to preserve sparsity in the factors and ensure the factorization is

stable. Direct methods, when properly implemented, are robust and can be confidently used as block-box

solvers for computing solutions with predictable accuracy, which is typically double precision. However,

they require significant expertise to implement efficiently (particularly in parallel). They also need large

amounts of memory (which increases non linearly with the size and density of A) and the matrix factors

normally contain many more non zero entries than A; these extra entries are termed the fill-in and much

effort goes into trying to minimise the amount of fill-in.

By contrast, iterative methods compute a sequence of approximations x(0), x(1), x(2), . . . that (hopefully)

converge to the solution in an acceptable number of iterations. The number of iterations (and whether

or not convergence occurs at all) depends on x(0), A and b as well as the required accuracy in x. Basic

implementations of iterative solvers are relatively straightforward as they only use the sparse matrix A

indirectly, through matrix-vector products and, most importantly, their memory demands are limited to

a (small) number of vectors of length n, making them attractive for very large problems and problems

where A is not available explicitly. However, preconditioning is usually essential to enhance convergence

of the iterative method. Preconditioning seeks to transform the system into one that is more tractable

and from which the required solution of the original system can easily be recovered. Determining and

computing effective preconditioners is highly problem dependent and generally very challenging. Algebraic

preconditioners that are built using an incomplete factorization of A in which entries that would be part

of a complete factorization are dropped are frequently used, especially when the underlying physics of the

problem is difficult to exploit. Such preconditioners can be employed within more sophisticated methods;

for example, to precondition subdomain solves in domain decomposition schemes or as smoothers in

multigrid methods.

The performance differences for computing and communicating in different precision formats has led

to a long history of efforts to enhance numerical algorithms by combining precision formats. The goals

of mixed-precision algorithms are to accelerate the computational time by using lower-precision formats

while maintaining the high accuracy of the output, and by reducing the memory requirements, extend

the size of problems that can be solved. Numerical linear algebra software, and linear system solvers in

particular, typically use double precision (64-bit) arithmetic, although some packages (including the BLAS

and LAPACK routines and some sparse solvers, such as those in the HSL mathematical software library

[24]) have always offered single precision (32-bit) versions. In the late 2000s, single precision arithmetic

was more highly optimised (and hence faster) than double precision computation on what were then

state-of-the-art architectures, such as Intel chips with SSE instructions and Sony/Toshiba/IBM (STI) Cell

processors (see, for example, [9, 27]). This speed advantage, combined with the potential memory savings

and reduction in data movement resulting from working in single precision, led to a number of studies

into the feasibility of factorizing a matrix in single precision and then using the factors as a preconditioner

for a simple iterative method in high precision to regain higher precision accuracy [5, 10, 11]. Hogg

and Scott [23] extended this work by developing a Fortran mixed precision sparse solver for symmetric

(possibly indefinite) linear systems; this code is available as HSL MA79 within the HSL library. It uses a

single precision multifrontal method to compute the sparse factors and then either mixed precision iterative

refinement or FGMRES [5, 35] is employed to achieve double precision accuracy.

In the past few years, the emergence of lower precision arithmetic in hardware has led to further interest

in mixed precision algorithms. The key difference compared to earlier work is the use of half precision
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(16-bit) arithmetic, motivated by NVIDIA, Google, and AMD manufacturing hardware that is capable of

performing half precision arithmetic, driven primarily by gaming but becoming increasingly important for

machine learning. Half precision arithmetic is at least four times faster than double precision arithmetic,

and possibly much more than that on some hardware, notably on NVIDIA tensor cores. A comprehensive

state-of-the-art survey of work on mixed precision numerical linear algebra routines is given in [20] (see

also [1]). In particular, there have been important ideas and theory on mixed precision iterative refinement

methods that employ the matrix factors computed in low precision as a preconditioner to recover higher

precision accuracy [2, 12, 13]. Numerical experiments for these hybrid methods have largely focussed

on demonstrating the potential to accelerate the solution of dense systems; to date, much less work has

centred on the sparse case. For sparse systems, the benefits of employing single precision arithmetic in

solving double precision sparse linear systems using multiple cores are evaluated by Zounon et al [38].

Amestoy et al [3] investigate the potential of mixed precision iterative refinement to enhance methods for

sparse systems based on a particular class of approximate sparse factorizations. They employ the well-

known parallel sparse direct solver MUMPS [4], which is able to exploit block low-rank factorizations and

static pivoting to compute approximate factors. In common with all other currently available sparse direct

solvers, MUMPS does not support the use of half precision arithmetic and developing an efficient half

precision sparse solver would be a major undertaking, requiring 16-bit versions of the dense linear algebra

routines that provide the building blocks behind sparse direct solvers. Consequently, as in [38], the reported

results in [3] are restricted to combining single and double precision arithmetic. Higham and Pranesh [22]

focus on symmetric positive definite linear systems. They compute a Cholesky factorization using low

precision arithmetic and employ the factors as preconditioners in GMRES-based and CG-based iterative

refinement. While they are interested in the sparse case, their MATLAB experiments (which simulate

low precision using their chop function [21]) store the sparse test examples as dense matrices and their

Cholesky factorizations are computed using dense routines. The reported theoretical and numerical results

demonstrate the potential for low precision (complete) factors to be used to obtain high precision accuracy.

Most recently, Carsen and Khan [14] have considered using sparse approximate inverse preconditioners

(SPAI) that are based on Frobenius norm minimization [19]. They are interested in using low precision to

compute the preconditioners and then employ GMRES-based iterative refinement.

Our emphasis is on low precision incomplete factorization preconditioners. Although our ideas can

be used for general sparse linear systems, we focus on the sparse symmetric positive definite case. We

use half precision arithmetic to construct incomplete Cholesky factorizations that are then employed as

preconditioners to recover double precision accuracy. Our primary objective is to show that for a range of

problems (some of which are highly ill-conditioned) it is possible to successfully obtain and use low precision

incomplete factors. We consider the potential sources of overflow during the incomplete factorization and

look at how to prevent it. Our numerical experiments use sparse matrix software that we have developed

in Fortran. Half precision and double precision versions are tested on systems coming from practical

applications.

This paper offers the following novel contributions:

(a) it considers the practicalities of computing incomplete factorizations using low precision arithmetic;

(b) it looks at using local and global modifications combined with scaling to prevent breakdowns during

the factorization, particularly those that are a consequence of computing the factors in low precision;

(c) it develops level-based incomplete Cholesky factorization software in half precision;

(d) it demonstrates that the use of half precision incomplete factorization preconditioners is effective in

practice.

The rest of the paper is organised as follows. In Section 2, we briefly recall incomplete factorizations

of sparse matrices and consider the challenges that incomplete Cholesky factorizations can face when low

precision arithmetic is employed. In Section 3, we summarise basic mixed precision iterative refinement

algorithms. Breakdowns in incomplete factorizations in low precision and ways to avoid them are discussed
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in Section 4. In particular, the local and global modifications to avoid breakdowns are described. Numerical

results for a range of problems coming from practical applications are presented in Section 5 and concluding

remarks as well as future directions are given in Section 6.

Terminology. We use the term high precision to refer to precision formats that provide high accuracy at

the cost of a larger memory volume (in terms of bits) and low precision to refer to precision formats that

compose of fewer bits (smaller memory volume) and provide low(er) accuracy. Unless stated otherwise,

we mean IEEE double precision (64-bit) when using the term high precision (denoted by fp64) and the

1985 IEEE standard 754 half precision (16-bit) when using the term low precision (denoted by fp16, with

unit roundoff u`). bfloat16 is another form of half-precision arithmetic that was introduced by Google in

its tensor processing units and formalized by Intel; we do not use it in this paper. Table 1.1 summarises

the parameters for different precision arithmetic.

Table 1.1: Parameters for bfloat16, fp16, fp32, and fp64 arithmetic: the number of bits in the significand
and exponent, unit roundoff u, smallest positive (subnormal) number xsmin , smallest normalized positive
number xmin, and largest finite number xmax, all given to three significant figures. † In Intel’s bfloat16
specification, subnormal numbers are not supported.

Signif. Exp. u xsmin xmin xmax

bfloat16 8 8 3.91× 10−3 † 1.18× 10−38 3.39× 1038

fp16 11 5 4.88× 10−4 5.96× 10−8 6.10× 10−5 6.55× 104

fp32 24 8 5.96× 10−8 1.40× 10−45 1.18× 10−38 3.40× 1038

fp64 53 11 1.11× 10−16 4.94× 10−324 2.22× 10−308 1.80× 10308

2 Incomplete factorizations

In this section, we briefly recall incomplete factorizations of sparse matrices and then discuss how

breakdown can occur, particularly when using low precision.

2.1 A brief introduction to incomplete factorizations

The incomplete factorizations that we are interested in are of the form A ≈ LU , where L and U are

sparse lower and upper triangular matrices, respectively (for simplicity of notation, the permutations P

and Q are omitted). If A is a symmetric positive definite (SPD) matrix then U = LT . There are three

main classes of incomplete factorization preconditioners. Firstly, threshold-based ILU(τ) methods in

which the locations of permissible fill-in in the factors are determined in conjunction with the numerical

factorization of A; entries of the computed factors that are smaller than a prescribed threshold are dropped.

Secondly, memory-based ILU(m) methods in which the amount of memory available for the incomplete

factorization is prescribed and only the largest entries are retained at each stage of the factorization.

Thirdly, structure-based ILU(`) methods in which an initial symbolic phase determines the location of

permissible entries using only the sparsity pattern of A. The memory requirements for the incomplete

factors are then determined before the numerical factorization is performed. The simplest such approach

(for which the symbolic phase is trivial) is an ILU(0) factorization (or IC(0) in the SPD case) that

limits entries in the incomplete factors to positions corresponding to entries in A (no fill-in is permitted).

ILU(0) preconditioners are frequently used for comparison purposes when assessing the performance of

other approaches.

The different approaches have been developed, modified and refined over many years. Variants have

been proposed that combine the ideas and/or employ them in conjunction with discarding entries in A

(sparsification) before the factorization commences. For more details on possible variants we refer, for

example, to [15, 36].
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Algorithm 2.1 outlines a basic generic (right-looking) incomplete Cholesky (IC) factorization of a SPD

matrix. The output is the so-called square-root form (rather than the square-root free LDLT form). Later,

we will see that in low precision we need to use this form. The algorithm assumes a target sparsity pattern

S{L} for L is provided, where

S{L} = {(i, j) | lij 6= 0, 1 ≤ j ≤ i ≤ n}.

Modifications can be made to incorporate threshold dropping strategies and to determine S{L} as the

method proceeds. At each major step, a right-looking factorization algorithm applies the outer product

updates to the part of the matrix that has not yet been factored as they are generated (Steps 7–11). In

left-looking variants, the updates are not applied immediately; instead, all updates from previous columns

are applied together to the current column before it is factorized.

Algorithm 2.1. Basic right-looking IC factorization

Input: SPD matrix A and a target sparsity pattern S{L}
Output: Incomplete Cholesky factorization A ≈ LLT .

1: Initialize lij = aij for all (i, j) ∈ S{L}
2: for k = 1 : n do . Start of k-th major step

3: lkk ← (lkk)1/2 . Diagonal entry is the pivot

4: for i = k + 1 : n such that (i, j) ∈ S{L} do
5: lik ← lik/lkk . Scale pivot column k of the incomplete factor by the pivot

6: end for

7: for j = k + 1 : n such that (j, k) ∈ S{L} do
8: for i = j : n such that (i, j) ∈ S{L} do

9: lij ← lij − likljk . Update operation

10: end for

11: end for

12: end for . column k of L has been computed

2.2 Challenges for incomplete factorizations in low precision

For arbitrary choices of the sparsity pattern S{L}, the incomplete Cholesky factorization exists if A is an

M-matrix or a H-matrix with positive diagonal entries [32, 31]. But for a general SPD matrix, there is no

such guarantee and an incomplete factorization algorithm can (and frequently does) break down.

When using fp16 arithmetic, there are three places where breakdown can potentially occur. We refer

to these as problems B1, B2, and B3 as follows.

• B1: The computed diagonal entry lkk (which is termed the pivot at step k) may be unacceptably

small or negative.

• B2: The scaling lik ← lik/lkk may overflow.

• B3: The update lij ← lij − likljk may overflow.

B1 breakdown is not necessarily related to the use of low precision arithmetic but can occur when using

higher precision arithmetic. Prescaling A and factorizing S−11 AS−12 , where S1 and S2 are diagonal scaling

matrices, is typically built into single and double precision sparse direct solvers and is often applied by

default. In the symmetric case, symmetry is preserved by choosing S1 = S2 = S. Because no single

choice of scaling always results in the best performance of a sparse factorization algorithm (in terms of

the time, factor sizes, memory requirements and data movement), a number of different possibilities (with

different associated costs) are generally offered so that a user can experiment and select the best for their

application. For incomplete factorizations, scaling is also important and it can reduce the incidence of B1
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breakdowns. This is illustrated for SPD matrices in [37], where it was reported that the cheap scaling in

which the entries in column j of A are normalised by the 2-norm of column j is generally a good choice.

For nonsymmetric matrices, it may be beneficial to permute large entries on to the diagonal before the

factorization begins. However, scaling alone cannot guarantee to prevent B1 breakdowns. If breakdown

does happen then modifications need to be made to the scaled matrix that is being factorized, either before

or during the factorization; this is discussed in Section 4.

Observe that the occurrence of underflows when using fp16 arithmetic does not prevent the computation

of the incomplete factors, although underflows could potentially lead to a loss of information that affects the

quality of the preconditioner. However, provided the problem has been well scaled, the dropping strategy

used within the incomplete factorization has more influence on the computed factors than underflows do.

A subnormal floating-point number is a nonzero number with magnitude less than the absolute value

of the smallest normalized number. Floating-point operations on subnormals can be very slow, because

they often require extra clock cycles, which introduces a high overhead. If an off-diagonal factor entry is

subnormal, it can again be replaced by zero without significantly affecting the preconditioner quality.

2.3 Using the low precision factors

Each application of an incomplete LU factorization preconditioner is equivalent to solving a system LUv =

w. This involves a solve with the lower triangular L factor followed by a solve with the upper triangular

U factor; these are referred to as forward and back substitutions, respectively. Algorithm 2.2 outlines a

simple lower triangular solve; it can be modified for sparse w.

Algorithm 2.2. Forward substitution: lower triangular solve Ly = w

Input: Lower triangular matrix L with nonzero diagonal entries and right-hand side w.

Output: The dense solution vector y.

1: Initialise yj = wj, 1 ≤ j ≤ n
2: for j = 1 : n do

3: yj ← yj/ljj
4: for i = j + 1 : n do

5: if lij 6= 0 then

6: yi ← yi − lijyj
7: end if

8: end for

9: end for

If the factors are computed and stored in half precision arithmetic u` and the forward and back

substitutions applied in precision u = u` then overflows can occur at Steps 3 and 6. We can try and

avoid this using simple scaling of the right hand side so that we solve LUv = w/‖w‖∞ and then set

y = v × ‖w‖∞ (see [13]). Nevertheless, as in problems B2 and B3 above, overflows can still happen. The

safe computations that we introduce in Section 4 can reduce (but not eliminate) the incidence of such

overflows; alternatively, higher precision can be used for the triangular solves.

3 LU and Cholesky factorization based iterative refinement

Iterative refinement seeks to improve the accuracy of a computed solution x̃ by iteratively repeating the

following steps until either the required accuracy is achieved or a prescribed limit on the number of

iterations is reached.

1. Compute the residual r = b−Ax̃.

2. Solve the correction equation Ad = r.
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3. Update the computed solution x̃← x̃+ d.

A number of variants exist. The most common is LU-IR, which computes the LU factors of A in low

precision u`, and then solves the correction equation by forward and back substitution using the computed

LU factors in precision u` (traditionally, this was single precision but the interest now is also in half

precision). The computation of the residual is performed in precision ur and the update is performed in

the working precision u (ur ≤ u ≤ u`). This is outlined in Algorithm 3.1.

Algorithm 3.1. LU-based iterative refinement in three precisions (LU-IR)

Input: Non singular matrix A and vector b, three precisions satisfying ur ≤ u ≤ u`
Output: Computed solution x of the system Ax = b

1: Compute the factorization A = LU in precision u`

2: Initialize x1 (e.g., by solving LUx1 = b using substitution in precision u`)

3: for i = 1 : itmax or until converged do . itmax is the maximum iteration count

4: Compute ri = b−Axi in precision ur

5: Solve LUdi = ri by di = U−1L−1ri by substitution in precision u`

6: Compute xi+1 ← xi + di in precision u

7: end for

Algorithm 3.2. Krylov-based iterative refinement in five precisions (Krylov-IR)

Input: Non singular matrix A and vector b, a Krylov subspace method, and five precisions ur, ug, up, u

and u`
Output: Computed solution x of the system Ax = b

1: Compute the factorization A = LU in precision u`

2: Solve LUx1 = b by substitution in precision u`

3: for i = 1 : itmax or until converged do . itmax is the maximum iteration count

4: Compute ri = b−Axi in precision ur

5: Solve U−1L−1Adi = U−1L−1ri by the Krylov method in precision ug, with U−1L−1A performed in

precision up

6: Compute xi+1 ← xi + di in precision u

7: end for

Using fp16 arithmetic to accelerate the LU factorization restricts the ability of LU-IR to solve

moderately ill-conditioned problems. To extend the range of problems that can be tackled, Carson and

Higham [12] propose a variant that uses GMRES preconditioned by the LU factors to solve the correction

equation. This is outlined in Algorithm 3.2 with the Krylov subspace method set to GMRES. Carson and

Higham use two precisions u = u` and ur = ug = up = u2; this was later extended to allow up to five

precisions [2, 13]. If the LU factorization is performed in fp16 arithmetic, then LU-IR is only guaranteed

to reduce the solution error if the condition number κ(A) satisfies κ(A) � 2 × 103, whereas if ug and up
correspond to fp64 then it is reduced by GMRES-IR provided κ(A) � 3 × 107. Note that Algorithm 3.2

requires two convergence tests and stopping criteria; firstly, for the Krylov method on Step 5 and secondly,

for testing the updated solution.

If A is SPD then a Cholesky factorization replaces the LU factorization. A potential problem is that

definiteness can be lost when the matrix is rounded to fp16 precision and the Cholesky factorization can

suffer break down. To avoid this, Higham and Pranesh [22] prescale and shift the matrix and, for fp16

arithmetic, they additionally seek to minimize the chance of underflow and of subnormal numbers by

multiplying the matrix entries by a scalar to bring them close to the overflow level. The absolute values

of the entries of the scaled and shifted matrix A(`) are bounded by θxmax, where 0 < θ ≤ 1 is a chosen

parameter. If the factorization breaks down, the shift is doubled, A(`) is recomputed, and the factorization

restarted. This doubling of the shift is a standard remedy for the breakdown of incomplete Cholesky
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factorizations (in double precision arithmetic) [28, 37]. Note that because the growth factor for Cholesky

factorization is 1, overflows do not occur during the low precision factorization of A(`). This is in contrast

to the overflow that can happen in an incomplete factorization (problems B2 and B3).

In the SPD case, a natural choice is to choose the Krylov method in Algorithm 3.2 to be the conjugate

gradient (CG) method. The supporting rounding error analysis applies only to GMRES, because it relies

on the backward stability of GMRES and preconditioned CG is not guaranteed to be backward stable [18].

This is also the case for MINRES. However, the numerical results reported in [22] suggest that in practice

CG-IR generally works as well as GMRES-IR.

An obvious way to generalise GMRES-IR is to replace U−1L−1 with a preconditioner M−1. Some work

on this has recently been reported by Lindquist et al. [29, 30], but only for dense problems, combining

single and double precision arithmetic. In addition, Amestoy et al. [3] use the option within the MUMPS

solver to compute sparse factors in single precision using block low-rank factorizations and static pivoting

and then employ them within GMRES-IR to recover double precision accuracy.

4 Breakdown-free incomplete factorizations in low precision

In this section, we first look at how we can safely predict the possible occurrence of the breakdown

problems B1, B2 and B3 before overflow occurs. We then consider two possible approaches for overcoming

breakdown which, following [6], we refer to as local and global modifications. We say that an operation is

safe in the precision being used if it cannot overflow; otherwise it is unsafe. We look at IC factorizations

but the general ideas are also applicable to ILU factorizations.

4.1 Safe detection of overflow problems

To detect problem B1, we simply need to check at the start of major step k of the factorization algorithm

that the pivot satisfies lkk ≥ τ , where the chosen threshold parameter τ > 0 depends on the precision used.

Problem B2 can occur at Step 5 of Algorithm 2.1 in which all entries in the pivot column are scaled by the

square root of the pivot. Algorithm 4.1 can be used to safely check whether a safe scaling is possible. By

first finding the entry of largest absolute value in the column and setting it to a, the safe test only needs

to be applied once with d set to the current lkk. This limits the overhead of the safe check.

Algorithm 4.1. Safe test for a safe scaling of a scalar in low precision arithmetic

Input: Scalar a with |a| ≤ xmax to be scaled, scaling factor 0 < d ≤ xmax.

Output: Scaled v = a/d or a negative flag indicating unsafe to scale.

1: flag = 0

2: if d ≥ 1 then . Safe to scale

3: v = a/d

4: else

5: if d ≥ |a|/xmax then . Safe to scale

6: v = a/d

7: else . Unsafe to scale

8: flag = −1

9: end if

10: end if

Problem B3 can occur during the update operations at Step 9 of Algorithm 2.1. Algorithm 4.2 can

be used to safely check whether safe updates are possible. Again, the test does not have to be applied to

individual scalar entries. The maximum product corresponds to the square of the maximum scaled entry

computed in Step 5 of Algorithm 2.1. The work for safe checking is bounded by the number of numerical

operations.

8



Algorithm 4.2. Safe test for a safe update operation in low precision arithmetic

Input: Input scalars a, b, c such that |a|, |b|, |c| ≤ xmax.

Output: v = a− bc or negative flag indicating unsafe to perform update.

1: flag = 0

2: if |b| < 1 or |c| < 1 then . Safe to compute bc

3: w = bc

4: else

5: if |b| ≤ xmax/|c| then . Safe to compute division

6: w = bc . Safe to compute bc

7: else

8: flag = −1; exit . Unsafe to compute bc; terminate

9: end if

10: end if

11: if a = 0 or w = 0 then

12: v = a− w
13: else if a > 0 and w > 0 or a < 0 and w < 0 then

14: v = a− w
15: else if a > 0 and xmax − a ≥ −w then

16: v = a− w
17: else if a < 0 and xmax + a ≥ w then

18: v = a− w
19: else

20: flag = −1 . Unsafe to compute subtraction

21: end if

4.2 Local modifications

As already observed, the occurrence of small or negative pivots (problem B1) can occur within incomplete

factorizations, whatever precision is employed. Local diagonal modifications were first described in the

1970s by Kershaw [26]. The idea is to simply modify an individual diagonal entry of A during the

factorization if it is found to be too small (or negative) to use as a pivot, that is, at the Step 3 of

Algorithm 2.1 the computed pivot is perturbed by some positive quantity if it is not sufficiently large. A

simple rule that employs a given threshold τ > 0 is:

if lkk < τ then lkk ←
√
xmin. (4.1)

This strategy is motivated by the hope that if only a few of the pivots are unstable (very small

or nonpositive), the resulting incomplete factors may still yield a satisfactory preconditioner but,

unfortunately, this is frequently not the case. Consequently, many more sophisticated rules have been

proposed, usually for problems coming from specific applications: there is no generally accepted way to

perform effective local modifications. Further discussion is given in the classical monograph [17] (see

also [16]). For other classes of algebraic preconditioners, local modifications have also been found to be

generally ineffective (for example, for factorized approximate inverse preconditioners [7]). Observe that

local diagonal modifications are sometimes used by sparse direct solvers to prevent breakdown; this is

usually referred to as static pivoting. It is cheap to incorporate within a direct solver but while it can be

successful, it is also possible that by the time an unstable pivot is found, it is too late to save the stability

of the factorization and locally perturbing the pivot effectively just amplifies numerical noise.

9



Next, assume that problem B2 has been detected, that is, overflow when scaling the off-diagonal entries

in column k at Step 5 of Algorithm 2.1 has been detected using Algorithm 4.1. We want to show how B2

overflow can be avoided using the following result. Here and in the subsequent lemmas the scalars are all

reals.

Lemma 4.1. Assume the entries of a vector w = {wk} ∈ IRm and the scalar d > 0 satisfy |wk|, d < xmax

(1 ≤ k ≤ m). Define c ≤ xmax as follows.

(i) If d ≥ 1 then set c = d.

(ii) Otherwise, if d < 1 and
√
d× xmax ≥ max1≤k≤m |wk| then set c = d.

(iii) Otherwise, set c = d× β where β > 1 is such that c ≤ xmax and
√
c× xmax ≥ max1≤k≤m |wk|.

Then the entries of the scaled vector w/
√
c satisfy |wk|/

√
c ≤ xmax (1 ≤ k ≤ m) (that is, there is no

overflow in the entries of the scaled vector).

The proof is straightforward because, in (iii), d < 1 and an appropriate β > 1 clearly exists.

Setting d = lkk and w = (lk+1,k, . . . , lnk)T , Lemma 4.1 shows how to modify the diagonal entry so that

the column scaling operation in Algorithm 2.1 can be performed safely. For d < 1, β can be chosen so

that c = 1 but for the scaling of the pivot column we need to choose β to be small because the size of β

corresponds to the size of the modification to lkk. If β is found by successive increments, then in precision

u, the operations needed for selecting c = d× β are safe if the test in (ii) is used within this sequence of

guesses.

Finally, consider the most interesting problem B3, that is, avoiding overflow in the update operation

at Step 9 of Algorithm 2.1. The update operation has two parts. First, the product of two entries lik and

ljk in column k that have been scaled in Step 5 by the square root of the corresponding diagonal entry

must be computed. This product is then subtracted from entry lij of the current Schur complement (Steps

7-11). The next result relates to the product of the scaled entries.

Lemma 4.2. If scalars w1, w2 satisfy |w1|, |w2| ≤ xmax then there exists a scalar c such that 0 < c ≤ xmax

and |(w1/
√
c)(w2/

√
c)| ≤ xmax.

The proof is trivial because the result clearly holds if c = xmax.

Lemma 4.2 demonstrates that if the product of two scalars is unsafe, then c can be found such that,

when each is scaled by
√
c, the product of the scaled scalars is a safe operation. If we employ Lemma 4.2

in Algorithm 2.1 then choosing c corresponds to increasing the diagonal entry lkk. Again, we want to limit

the size of the modification so c should be chosen to be as small as possible, for example, using a simple

strategy of successively increasing the initial value of the diagonal entry. The safe test checks whether√
c× xmax ≥ max{|w1|, |w2|}. If not, then c is increased.

Note that it may be necessary to select c � 1 for the product of the off-diagonal entries within the

update operation to be safe. This is potentially much larger than the smallest value needed for avoiding

problem B2. Clearly, setting w1 and w2 in Lemma 4.2 to be any two components of w = (lk+1,k, . . . , lnk)T ,

B2 is automatically avoided.

To prevent problem B3, the subtraction lij ← lij − likljk must also be made safe. This can be achieved

using the following result.

Lemma 4.3. Assume the scalars e, f satisfy |e| ≤ xmax − 1, |f | ≤ xmax, Define g as follows.

(i) If sign(e) = sign(f) then set g = f .

(ii) Otherwise, find 0 < β ≤ xmax such that |f |/β ≤ xmax − |e| and set g = f × β.

Then |e− g| ≤ xmax.

Proof. If sign(e) = sign(f) then the result is immediate. Otherwise, it is sufficient to choose β = xmax.
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Setting f = liklkj and e = lij with |lij | ≤ xmax−1, an additional scaling that corresponds to increasing

the diagonal entry lkk to at most x2max at the start of the k-th major step may be needed. Although such

a large modification is not useful in practice, it can be implemented without overflow because only the

square root of the modified diagonal entry is used. Consequently, the update operation can be made safe

and overflow of the computed entries of the Schur complement prevented.

Lemma 4.3 indicates that the square-root IC factorization is the preferred implementation if there

is a danger of diagonal entries overflowing. We observed this when performing preliminary numerical

experiments on practical problems using fp16 arithmetic.

4.3 Global modifications in incomplete Cholesky factorizations

While local modifications are inexpensive to implement within a right-looking factorization algorithm,

it is frequently the case that even a handful of pivot modifications will result in a poor preconditioner.

Furthermore, local modifications cannot be efficiently incorporated into a left-looking approach because

such modifications would require previously computed columns to be modified, not just the current column.

Global strategies are generally more successful in terms of the quality of the resulting preconditioner (see,

for example, [6]) and they can be used within a right- or left-looking algorithm. They have been widely

used since the late 1970s; theoretical and numerical results may be found in [28, 31, 37]. When breakdown

happens the straightforward strategy is to select a shift α > 0, replace the scaled matrix S−1AS−1 by

S−1AS−1 + αI (I is the identity matrix) and restart the factorization. The factors of the shifted matrix

are used to precondition the original scaled matrix. If AD and AE are, respectively, the diagonal and

off-diagonal parts of S−1AS−1, then there is always some α for which (1 + α)AD + AE is diagonally

dominant. Provided the target sparsity pattern of the incomplete factors contains the positions of the

diagonal entries, then it can be shown that the incomplete factorization of this shifted matrix does not

break down [31]. Diagonal dominance is sufficient for avoiding breakdown but it is not a necessary condition

and an incomplete factorization may be breakdown free for much smaller values of α (particularly if A has

been well scaled). An appropriate α is not usually known a priori: too large a value may harm the quality

of the incomplete factors when used as a preconditioner for the original system and too small a value

will not prevent breakdown, necessitating more than one restart, with a successively larger α. Typically,

the shift is doubled after a breakdown, although more sophisticated strategies are sometimes used. For

instance, in their limited-memory incomplete Cholesky factorization package HSL MI28, Scott and Tůma

[37] seek to reduce the number of restarts (and hence the preconditioner computation time) by increasing α

more rapidly if successive breakdowns occur at essentially the same major step of the factorization. They

also allow the user to supply a nonzero value for the initial shift α0 (potentially useful when factorizing

a sequence of related problems since reusing an earlier nonzero shift might be beneficial). If using α0 is

breakdown free then HSL MI28 offers an option to save the computed factors, reduce the shift and if, that

is also breakdown free, to replace the computed factors with the new factors. This all happens without

any intervention from the user.

When using fp16 arithmetic, detecting problem B1 uses a simple threshold test and Algorithms 4.1 and

4.2 can be used to safely detect problems B2 and B3. If the threshold test fails or one of these algorithms

returns a negative flag, then α is increased and the factorization restarted. Our experiments on SPD

matrices confirm that, provided we prescale A, the number of times we must increase α and restart is

generally small (see the statistics nmod and nofl is the tables of results in Section 5).

5 Numerical experiments

In this section, we investigate the effectiveness and reliability of half precision IC preconditioners. Our

test examples are SPD matrices taken from the SuiteSparse Collection; they are listed in Table 5.1. In the

top part of the table are those we classify as being well-conditioned (those for which our estimate cond2 of

the 2-norm condition number is less than 107) and in the lower part are ill-conditioned examples. We have
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selected problems coming from a range of application areas and of different sizes and densities. Many of

the problems are initially poorly scaled and some (including the first three problems in Table 5.1) contain

entries that overflow in fp16 and thus prescaling of A is essential. The scaling used in all our experiments

is such that the l2 norm of each column of the scaled matrix is equal to 1. It is computed and applied to A

in double precision. We performed tests using equilibration scaling (implemented using the HSL routine

MC77 [33, 34]) and found that the resulting preconditioner is of a similar quality; this is consistent with

the findings reported in [37]. The right-hand side vector b is constructed by setting the solution x to be

the vector of 1’s.

Table 5.1: Statistics for our test examples. Those in the top half are considered to be well conditioned and
those in the lower half to be ill conditioned. nnz(A) denotes the number of entries in the lower triangular
part of A. normA and normb are the infinity norms of A and b. cond2 is a computed estimate of the
condition number of A.

Identifier n nnz(A) normA normb cond2

HB/bcsstk27 1224 2.87×104 2.96×107 9.74×105 2.41×104

Nasa/nasa2146 2146 3.72×104 2.79×108 9.05×106 1.72×103

Cylshell/s1rmq4m1 5489 1.43×105 8.14×106 1.73×105 1.81×106

MathWorks/Kuu 7102 1.74×105 4.73×102 5.01 1.58×104

Pothen/bodyy6 19366 7.71×104 1.09×105 9.81×104 9.91×104

GHS psdef/wathen120 36441 3.01×105 1.52×103 2.66×102 9.58×102

GHS psdef/jnlbrng1 40000 1.20×105 3.29×101 2.00×10−1 1.83×102

Williams/cant 62451 2.03×106 2.92×105 5.05×103 8.06×103

UTEP/Dubcova2 65025 5.48×105 6.67×101 1.18 3.33
Cunningham/qa8fm 66127 8.63×105 4.28×10−3 9.51×10−4 8.00
Mulvey/finan512 74752 3.36×105 3.91×102 3.78×101 2.51×101

GHS psdef/apache1 80800 3.11×105 8.10×105 6.76×10−1 4.18×102

Williams/consph 83334 3.05×106 6.61×105 7.20×103 1.25×105

AMD/G2 circuit 150102 4.38×105 2.27×104 2.17×104 2.02×104

Boeing/msc01050 1050 1.51×104 2.58×107 1.90×106 4.58×1015

HB/bcsstk11 1473 1.79×104 1.21×1010 7.05×108 2.21×108

HB/bcsstk26 1922 1.61×104 1.68×1011 8.99×1010 1.66×108

HB/bcsstk24 3562 8.17×104 5.28×1014 4.21×1013 1.95×1011

HB/bcsstk16 4884 1.48×105 4.12×1010 9.22×108 4.94×109

Cylshell/s2rmt3m1 5489 1.13×105 9.84×105 1.73×104 2.50×108

Cylshell/s3rmt3m1 5489 1.13×105 1.01×105 1.73×103 2.48×1010

Boeing/bcsstk38 8032 1.82×105 4.50×1011 4.04×1011 5.52×1016

Boeing/msc10848 10848 6.20×105 4.58×1013 6.19×1011 9.97×109

Oberwolfach/t2dah e 11445 9.38×104 2.20×10−5 1.40×10−5 7.23×108

Boeing/ct20stif 52329 1.38×106 8.99×1011 8.87×1011 1.18×1012

DNVS/shipsec8 114919 3.38×106 7.31×1012 4.15×1011 2.40×1013

Um/2cubes sphere 101492 8.74×105 3.43×1010 3.59×1010 2.59×108

GHS psdef/hood 220542 5.49×106 2.23×109 1.51×108 5.35×107

Um/offshore 259789 2.25×106 1.44×1015 1.16×1015 4.26×109

We use Algorithm 3.2 (with our incomplete Cholesky factors replacing the complete LU factors). Our

interest is in exploring whether we can recover (close to) double precision accuracy using preconditioners

computed in fp16 arithmetic, although we are aware that in practice much less accuracy in the computed

solution may be sufficient (indeed, in many practical situations, inaccuracies in the supplied data may

mean low precision accuracy in the solution is all that can be justified). We thus use two precisions: u`
for the factorization and ur = ug = up = u, where u is the fp64 unit roundoff. Iterative refinement is

terminated when the normwise backward error for the computed solution satisfies

res =
‖b−Ax‖∞

‖A‖∞‖x‖∞ + ‖b‖∞
≤ δ. (5.1)

In our experiments, we set δ = 103 × u. The implementations of CG and GMRES used are MI21 and

MI24, respectively, from the HSL software library [24]. Except for the results in Table 5.3, the CG and
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the GMRES convergence tolerance is δkrylov =
√
u and the limit on the number of iterations for each

application of CG and GMRES is 1000.

The reported experiments are performed on a Windows 11-Pro-based machine with an Intel(R)

Core(TM) i5-10505 CPU processor (3.20GHz). Our results are for a right-looking implementation of

the level-based incomplete Cholesky factorization IC(`), using a range of values of ` ≥ 0. The sparsity

pattern of L is computed using the approach of Hysom and Pothen [25]. This is able to compute the

patterns of the rows of L independently and thus in parallel. Our software is written in Fortran and

compiled using the NAG compiler (Version 7.1, Build 7118). This is currently the only Fortran compiler

that supports the use of fp16. The Nag-compiled code evaluates scalar fp16 operations in single precision,

and rounds to half precision when assigned to a variable or passed as an actual argument to a non-intrinsic

or non-mathematical procedure. Because of all the conversions needed, half precision is slower than single

precision and so no timings are reported in our experiments. We refer to the IC(`) factorizations computed

using half precision and double precision arithmetics as fp16-IC(`) and fp64-IC(`), respectively.

The key difference between the fp16 and fp64 versions of our IC(`) software is that for the former,

during the incomplete factorization, we incorporate the safe scaling and update operations (as discussed

in the previous section). In addition, the fp16 version allows the preconditioner to be applied in either half

or double precision arithmetic; the former is for LU-IR and the latter for Krylov-IR (recall Algorithms 3.1

and 3.2). In the Krylov-IR case, the solves with L and LT require the L factor to be in double precision.

There are two possible ways to handle this. The first is to make an explicit copy of L by casting the data

into double precision but this negates the important benefit that half precision offers of reducing memory

requirements. The alternative is to cast the entries on the fly. This is straightforward to incorporate into

a serial triangular solve routine, and only requires a temporary double precision array of length n.

In all the reported experiments we use global modifications. This is because local modifications proved

unreliable. Although the theory presented in Section 4.2 shows it is possible to make local modifications

to avoid the breakdown problems B1, B2 and B3, in practice we unfortunately have no robust method

of making the modifications that leads to reliably high-quality preconditioners. Consider, for example,

the extreme case that at the start of the major step k of Algorithm 2.1 the diagonal entry lkk is equal to

zero and the absolute values of all the remaining entries of column k are xmax. A local modification that

replaces lkk by some chosen value less than 1 prevents B1, but the corresponding column then does not

scale (entries overflow) so that B1 is transferred into a B2 problem.

In the results tables, nnz(L) is the number of entries in the incomplete factor L; iouter denotes

the number of iterative refinement steps (that is, the number of times the loop starting at Step 3 in

Algorithm 3.2 is executed) and totits ≤ itmax is the total number of CG (or GMRES) iterations performed;

resint is the initial scaled residual (that is, (5.1) with x = x1 = L−TL−1b) and resfinal is the scaled

residual for the computed solution; nmod and nofl are the numbers of times problems B1 and B3 occur

during the incomplete factorization, with the latter for fp16 only. This is because our right-looking

approach allows us to monitor the diagonal entries and increase the global shift as necessary and restart,

which then avoids problem B2. Problem B2 could then occur in column k if, for example, after the shift,

the diagonal entry lkk is close to the shift α and |lik| ≥ α × xmax for some i > k. In all the experiments

on well-conditioned problems, we found nofl = 0 and so this statistic is omitted from the corresponding

tables of results. As expected, nmod > 0 can occur for fp16 and fp64, and for both well-conditioned and

ill-conditioned examples.

5.1 Results for LU-IR

LU-IR is attractive because the application of the preconditioner is performed in half precision arithmetic.

Table 5.2 reports results for LU-IR for the well-conditioned test problems. The iteration count is limited

to 1000. We see that for three problems we failed to achieve the requested accuracy within this limit.

Additionally, for problem Williams/consph, the refinement procedure diverges and the process is stopped

when the norm of the residual approaches xmax in double precision. Results are given for the only two
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ill-conditioned problems that were successfully solved using LU-IR; for the other test examples, we failed

to achieve convergence.

Table 5.2: LU-IR results for well-conditioned problems. The preconditioner is fp16-IC(3). resint and
resfinal are the initial and final residuals; nnz(L) is the number of entries in the IC(3) factor; iters is
the number of refinement steps; and nmod denotes the number of times problem B1 occurs during the
factorization. > 1000 indicates the requested accuracy was not obtained within the iteration limit. †
indicates the refinement procedure breaks down.

Identifier resinit resfinal nnz(L) iters nmod

HB/bcsstk27 8.23×10−5 6.13×10−14 4.88×104 13 0
Nasa/nasa2146 9.43×10−5 1.89×10−13 7.89×104 15 0
Cylshell/s1rmq4m1 5.63×10−5 3.80×10−8 3.15×105 > 1000 0
MathWorks/Kuu 1.69×10−4 2.14×10−13 7.65×105 194 0
Pothen/bodyy6 7.50×10−3 2.20×10−13 1.76×105 817 2
GHS psdef/wathen120 4.44×10−4 1.70×10−14 8.30×105 5 0
GHS psdef/jnlbrng1 1.31×10−3 6.40×10−14 2.77×105 16 0
Williams/cant 3.26×10−4 4.61×10−8 9.95×106 > 1000 0
UTEP/Dubcova2 1.54×10−3 2.19×10−13 6.22×106 736 0
Cunningham/qa8fm 4.08×10−4 2.27×10−15 5.14×106 5 0
Mulvey/finan512 3.22×10−4 3.61×10−15 4.08×106 5 0
GHS psdef/apache1 8.52×10−5 1.03×10−7 1.54×106 > 1000 0
Williams/consph 1.05×10−4 † 2.02×107 † 0
AMD/G2 circuit 8.16×10−4 7.46×10−8 1.04×106 > 1000 0

Oberwolfach/t2dah e 6.95×10−4 9.12×10−15 3.29×105 5 0
Um/2cubes sphere 1.03×10−3 1.33×10−15 8.70×106 5 0

5.2 Dependence of the iteration counts on the CG tolerance

The results in Table 5.3 illustrate the dependence of the number of iterative refinement steps and the

total iteration count on the convergence tolerance δkrylov used by CG within CG-IR. The preconditioner

is IC(3) computed using fp16 arithmetic. For three examples, we test δkrylov ranging from 10−9 to 10−1.

The first problem is well-conditioned and the other two are ill-conditioned. As expected, the number of

outer iterations increases with δkrylov, but the variations in the total iteration count are relatively modest.

This confirms the choice of
√
u, which is used for all remaining experiments.

Table 5.3: The effects of changing the CG convergence tolerance δkrylov used in CG-IR. The preconditioner
is fp16-IC(3). iouter and totits denote the number of outer iterations and the total number of CG
iterations, respectively.

UTEP/Dubcova2

δkrylov 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

Outer iterations 2 2 2 2 2 2 4 6 10
Total iterations 73 64 58 49 68 55 57 58 70

HB/bcsstk26

δkrylov 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

Outer iterations 2 2 2 2 3 3 4 6 11
Total iterations 121 107 93 78 103 81 84 97 96

Cylshell/s2rmt3m1

δkrylov 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

Outer iterations 2 2 2 2 3 3 4 5 9
Total iterations 130 125 120 116 94 83 117 85 96
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5.3 Results for IC(0)

Table 5.4: Results for CG-IR using an IC(0) preconditioner: well-conditioned problems. resint and
resfinal are the initial and final residuals. nnz(L) is the number of entries in the IC(0) factor. iouter
and totits denote the number of outer iterations and the total number of CG iterations, respectively > 1000
indicates CG tolerance not reached on outer iteration iouter. nmod denotes the number of times problem
B1 occurs during the factorization. A count in bold indicates the fp16 result is within 10 per cent of (or
is better than) the corresponding fp64 result.

Preconditioner fp16-IC(0)
Identifier resinit resfinal nnz(L) iouter totits nmod

HB/bcsstk27 4.26×10−4 2.66×10−17 2.87×104 2 43 0
Nasa/nasa2146 3.27×10−4 2.91×10−17 3.72×104 2 28 0
Cylshell/s1rmq4m1 1.49×10−4 2.45×10−17 1.15×105 2 224 0
MathWorks/Kuu 3.25×10−3 4.09×10−17 1.43×105 2 312 4
Pothen/bodyy6 2.12×10−4 1.75×10−16 7.03×104 2 161 2
GHS psdef/wathen120 1.09×10−2 8.76×10−17 3.01×105 2 21 0
GHS psdef/jnlbrng1 9.97×10−3 1.21×10−16 1.20×105 2 50 0
Williams/cant 4.62×10−3 8.34×10−7 1.46×106 1 > 1000 9
UTEP/Dubcova2 5.55×10−3 3.93×10−17 4.19×105 2 268 0
Cunningham/qa8fm 3.58×10−3 1.04×10−16 8.63×105 2 14 0
Mulvey/finan512 2.88×10−3 4.97×10−17 3.36×105 2 17 0
GHS psdef/apache1 3.63×10−4 4.15×10−14 3.11×105 1 248 0
Williams/consph 8.58×10−5 4.63×10−17 3.05×106 2 593 7
AMD/G2 circuit 7.78×10−4 9.83×10−16 4.38×105 2 779 0

Preconditioner fp64-IC(0)
Identifier resinit resfinal nnz(L) iouter totits nmod

HB/bcsstk27 4.31×10−4 2.66×10−17 2.87×104 2 43 0
Nasa/nasa2146 3.06×10−4 2.91×10−17 3.72×104 2 28 0
Cylshell/s1rmq4m1 1.61×10−4 2.27×10−17 1.43×105 2 190 0
MathWorks/Kuu 9.47×10−4 4.09×10−17 1.74×105 2 148 0
Pothen/bodyy6 8.68×10−5 1.05×10−16 7.71×104 2 124 0
GHS psdef/wathen120 1.09×10−2 1.04×10−16 3.01×105 2 21 0
GHS psdef/jnlbrng1 9.96×10−3 1.34×10−16 1.20×105 2 50 0
Williams/cant 2.63×10−3 5.83×10−8 2.03×106 1 > 1000 8
UTEP/Dubcova2 5.36×10−3 3.93×10−17 5.48×105 2 270 0
Cunningham/qa8fm 3.57×10−3 1.09×10−16 8.63×105 2 14 0
Mulvey/finan512 2.92×10−3 4.15×10−17 3.36×105 2 17 0
GHS psdef/apache1 3.63×10−4 4.23×10−14 3.11×105 1 236 0
Williams/consph 8.26×10−5 4.90×10−17 3.05×106 2 594 7
AMD/G2 circuit 5.44×10−4 6.55×10−16 4.38×105 2 772 0

As already noted, IC(0) is a very simple preconditioner but one that is frequently reported on in

publications. Results for CG-IR using an IC(0) preconditioner computed in half and double precision

arithmetics are given in Tables 5.4 and 5.5 for well-conditioned and ill-conditioned problems, respectively.

If the total iteration count (totits) for fp16 is within 10 per cent of the count for fp64 (or is less than the

fp64 count) then it is highlighted in bold. We see that, for well-conditioned problems, using fp16 arithmetic

to compute the IC(0) factorization is often as good as using fp64 arithmetic. For problem Williams/cant,

the CG method on the first outer iteration fails to converge within the 1000 iteration count for the fp16

and the fp64 preconditioners. nofl is omitted from Tables 5.4 and 5.5 because it was equal to 0 for all

our test examples. However, for many problems (particularly the ill-conditioned ones), nmod > 0 for both

half precision and double precision and this can lead to a poor quality preconditioner, indicated by high

iteration counts, with the limit of 1000 iterations being exceeded on the second outer iteration for a number

of test examples (such as Boeing/bcsstk38 and Boeing/msc01050). Although the requested accuracy is

not achieved, there are still significant reductions in the initial residual so the preconditioners may be

acceptable if less accuracy is required. Nevertheless, the fp16 performance is often competitive with that

of fp64, and the fp16 factor can be sparser than for fp64 because entries of the scaled A can underflow
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Table 5.5: Results for CG-IR and GMRES-IR using an IC(0) preconditioner: ill-conditioned problems.
resint is the initial residual; resfinal is the final CG-IR scaled residual. nnz(L) is the number of entries
in the IC(0) factor. iouter and totits denote the number of outer iterations and the total number of
CG iterations with the GMRES statistics in parentheses. > 1000 indicates CG (or GMRES) tolerance
not reached on outer iteration iouter. nmod denotes the number of times problem B1 occurs during the
factorization. A count in bold indicates the fp16 result is within 10 per cent of (or is better than) the
corresponding fp64 result. ∗ denotes early termination of CG.

Preconditioner fp16-IC(0)
Identifier resinit resfinal nnz(L) iouter totits nmod

Boeing/msc01050 1.45×10−5 1.71×10−14 9.49×103 2 (2) > 1000 (1161) 7
HB/bcsstk11 5.38×10−4 4.65×10−17 1.52×104 2 (2) 1099 (753) 5
HB/bcsstk26 6.71×10−4 1.18×10−16 1.33×104 2 (2) 455 (393) 2
HB/bcsstk24 4.50×10−5 7.71×10−12 7.97×104 2 (2) > 1000 (1115) 3
HB/bcsstk16 3.36×10−3 4.82×10−17 1.27×105 2 (2) 102 (90) 4
Cylshell/s2rmt3m1 1.41×10−4 3.27×10−17 1.02×105 2 (2) 490 (482) 0
Cylshell/s3rmt3m1 1.13×10−5 2.66×10−17 1.02×105 2 (2) 1741 (1483) 3
Boeing/bcsstk38 3.25×10−2 3.16×10−10 1.63×105 2 (2) > 1000 (> 1000) 8
Boeing/msc10848 5.79×10−6 7.90×10−18 6.18×105 2 (2) 1325 (601) 2
Oberwolfach/t2dah e 4.88×10−2 4.81×10−9∗ 9.38×104 1 (2) 15 (33) 0
Boeing/ct20stif 3.83×10−3 1.29×10−9 1.30×106 2 (2) > 1000 (> 1000) 7
DNVS/shipsec8 2.31×10−3 1.98×10−9 1.53×106 2 (2) > 1000 (> 1000) 8
Um/2cubes sphere 1.88×10−2 1.63×10−16 8.74×105 2 (2) 16 (14) 0
GHS psdef/hood 1.91×10−3 4.38×10−17 5.06×106 2 (2) 583 (487) 2
Um/offshore 1.51×10−2 3.84×10−16 2.25×106 2 (2) 523 (284) 0

Preconditioner fp64-IC(0)
Identifier resinit resfinal nnz(L) iouter totits nmod

Boeing/msc01050 6.03×10−3 4.37×10−16 1.51×104 2 (2) 860 (1198) 8
HB/bcsstk11 7.49×10−4 7.44×10−17 1.79×104 2 (2) 1036 (593) 4
HB/bcsstk26 1.59×10−3 2.37×10−16 1.61×104 2 (2) 552 (456) 4
HB/bcsstk24 4.59×10−5 6.19×10−12 8.17×104 2 (2) > 1000 (906) 3
HB/bcsstk16 2.76×10−3 3.97×10−17 1.48×105 2 (2) 80 (79) 0
Cylshell/s2rmt3m1 1.45×10−4 2.91×10−17 1.13×105 2 (2) 472 (467) 0
Cylshell/s3rmt3m1 1.14×10−5 2.22×10−17 1.13×105 2 (2) 896 (1330) 0
Boeing/bcsstk38 1.21×10−2 5.94×10−10 1.82×105 2 (2) > 1000 (> 1000) 7
Boeing/msc10848 1.07×10−5 2.63×10−18 6.20×105 2 (2) 1188 (640) 3
Oberwolfach/t2dah e 4.86×10−2 4.84×10−9∗ 9.38×104 1 (2) 15 (33) 0
Boeing/ct20stif 3.65×10−3 7.52×10−10 1.38×106 2 (2) > 1000 (> 1000) 7
DNVS/shipsec8 2.75×10−4 6.14×10−10 3.38×106 2 (2) > 1000 (> 1000) 4
Um/2cubes sphere 1.89×10−2 2.17×10−16 8.74×105 2 (2) 16 (14) 0
GHS psdef/hood 9.82×10−4 5.01×10−17 5.49×106 2 (2) 752 (519) 2
Um/offshore 1.51×10−2 3.84×10−16 2.25×106 2 (2) 519 (284) 0
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in half precision arithmetic. For problem Oberwolfach/t2dah e, the CG algorithm terminates before the

requested accuracy has been achieved; this is because the curvature encountered within the CG algorithm

is found to be too small, triggering an error return.

We have also run GMRES-IR with the IC(0) preconditioners on all our test problems. For the well-

conditioned problems, the iterations counts using GMRES are broadly similar to those for CG. For the

ill-conditioned problems, the GMRES-IR iteration counts are given in parentheses in the iouter and totits

columns of Table 5.5. Our findings are consistent with those reported in [22], namely that GMRES-IR is

robust and it may require fewer iterations than CG-IR. However, it is important to remember that each

GMRES iteration is more expensive than a CG iteration so simply comparing the iteration count may be

misleading.

5.4 Results for IC(`)

Figure 5.1 illustrates the influence of the number of levels ` in the IC(`) preconditioner computed in half

precision and double precision. Typically, ` is chosen to small (large values lead to slow computation times

and loss of sparsity in L) although there are cases where larger ` may be employed [25]. In general, it is

hoped that as ` increases, the additional fill-in in L will result in a better preconditioner (but there is no

guarantee of this). We observe that for the well-conditioned problem UTEP/Dubcova2, the half precision

and double precision preconditioners behave similarly. For this example, as ` increases from 1 to 9 the

number of entries in the incomplete factor increases from 1.77× 106 to 3.65× 107. For the ill-conditioned

problem Cylshell/s2rmt3m1, the corresponding increase is from 1.43× 105 to 5.58× 105. In this case, the

iteration count for fp64+IC(`) steadily decreases as ` increases but for fp16+IC(`) the decrease is much

less and it stagnates for ` > 4. In the rest of this section, we perform experiments with ` = 3.
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Figure 5.1: CG-IR total iteration counts for the fp16+IC(`) preconditiioner (solid line) and fp64+IC(`)
preconditioner (dashed line) with k ranging from 1 to 9 for problems UTEP/Dubcova2 (left) and
Cylshell/s2rmt3m1 (right).

Tables 5.6 and 5.7 present results for CG-IR with the fp16-IC(3) and fp64-IC(3) preconditioners for

the well-conditioned and ill-conditioned test sets, respectively. The latter also reports total iteration counts

for GMRES-IR (the number of outer iterations iouter for GMRES-IR and CG-IR are the same for all the

test examples). In double precision arithmetic, B1 breakdowns do not happen for any of our test cases and

so the nmod statistic is omitted. B3 breakdowns occur for a small number of the ill-conditioned problems.

We see that fp16-IC(3) performs as well as fp64-IC(3) on most of the well-conditioned problems. The

same is not true for the ill-conditioned problems. While the fp16-IC(3) preconditioner combined with

CG-IR and GMRES-IR is able to return a computed solution with a small residual, for many examples

the iteration counts are significantly greater than for the fp64-IC(3) preconditioner. However, for a small

number of problems the computation of the fp64-IC(3) preconditioner fails in that the computed factor

has very large entries, which do not overflow in double precision but make it useless as a preconditioner.
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Table 5.6: Results for CG-IR using an IC(3) preconditioner: well-conditioned problems. resint and
resfinal are the initial and final residuals. nnz(L) is the number of entries in the IC(3) factor. iouter
and totits denote the number of outer iterations and the total number of CG iterations, respectively.
> 1000 indicates CG tolerance not reached on outer iteration iouter. nmod denotes the number of times
problem B1 occurs during the factorization (for fp64-IC(3) it is equal to 0 for all our test cases and
so omitted). A count in bold indicates the fp16 result is within 10 per cent of (or is better than) the
corresponding fp64 result.

Preconditioner fp16-IC(3)
Identifier resinit resfinal nnz(L) iouter totits nmod

HB/bcsstk27 8.23×10−5 3.42×10−17 4.88×104 2 13 0
Nasa/nasa2146 9.43×10−5 2.91×10−17 7.89×104 2 13 0
Cylshell/s1rmq4m1 5.63×10−5 2.10×10−17 3.15×105 2 54 0
MathWorks/Kuu 1.69×10−4 5.20×10−17 7.65×105 2 36 0
Pothen/bodyy6 7.50×10−3 2.10×10−16 1.76×105 2 96 2
GHS psdef/wathen120 4.44×10−4 6.37×10−17 8.30×105 2 7 0
GHS psdef/jnlbrng1 1.31×10−3 1.34×10−16 2.77×105 2 16 0
Williams/cant 3.26×10−4 1.54×10−16 9.95×106 2 1193 0
UTEP/Dubcova2 1.54×10−3 3.93×10−17 6.22×106 2 63 0
Cunningham/qa8fm 4.08×10−4 1.04×10−16 5.14×106 2 6 0
Mulvey/finan512 3.22×10−4 4.15×10−17 4.08×106 2 6 0
GHS psdef/apache1 8.52×10−5 6.82×10−14 1.54×106 1 114 0
Williams/consph 1.05×10−4 4.35×10−17 2.02×107 2 198 0
AMD/G2 circuit 8.16×10−4 4.10×10−16 1.04×106 2 246 0

Preconditioner fp64-IC(3)
Identifier resinit resfinal nnz(L) iouter totits

HB/bcsstk27 3.93×10−5 2.66×10−17 4.88×104 2 10
Nasa/nasa2146 4.32×10−5 2.58×10−17 7.89×104 2 13
Cylshell/s1rmq4m1 3.55×10−5 2.10×10−17 3.15×105 2 49
MathWorks/Kuu 2.50×10−4 4.09×10−17 7.65×105 2 32
Pothen/bodyy6 9.31×10−3 3.86×10−16 1.76×105 2 51
GHS psdef/wathen120 1.77×10−4 6.37×10−17 8.30×105 2 7
GHS psdef/jnlbrng1 9.40×10−4 1.07×10−16 2.77×105 2 14
Williams/cant 3.19×10−4 1.50×10−16 9.95×106 2 1132
UTEP/Dubcova2 1.65×10−3 4.58×10−17 6.22×106 2 65
Cunningham/qa8fm 3.29×10−5 1.04×10−16 5.14×106 2 5
Mulvey/finan512 3.72×10−5 4.97×10−17 4.08×106 2 6
GHS psdef/apache1 8.28×10−5 7.58×10−14 1.54×106 1 113
Williams/consph 3.39×10−4 6.07×10−3 2.02×107 1 > 1000
AMD/G2 circuit 8.42×10−5 4.10×10−16 1.04×106 2 237
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Table 5.7: Results for CG-IR and GMRES-IR using an IC(3) preconditioner: ill-conditioned problems.
resint is the initial residual; resfinal is the final CG-IR scaled residual. nnz(L) is the number of entries
in the IC(3) factor. iouter and totits denote the number of outer iterations and the total number of
CG iterations with the GMRES statistics in parentheses. > 1000 indicates CG (or GMRES) tolerance
not reached on outer iteration iouter. nmod and nofl denote the numbers of times problems B1 and B3
occur during the factorization (for fp64-IC(3) they are equal to 0 for all our test cases and so omitted). A
count in bold indicates the fp16 result is within 10 per cent (or better) of the corresponding fp64 result.
‡ indicates failure to compute the factorization because of enormous growth in its entries.

Preconditioner fp16-IC(3)
Identifier resinit resfinal nnz(L) iouter totits nmod nofl

Boeing/msc01050 1.60×10−3 3.70×10−16 3.74×104 2 277 (1029) 2 0
HB/bcsstk11 5.84×10−4 1.86×10−17 4.18×104 2 274 (202) 0 2
HB/bcsstk26 6.55×10−5 9.25×10−17 3.43×104 2 104 (92) 2 0
HB/bcsstk24 5.91×10−7 3.77×10−17 2.27×105 2 534 (294) 1 1
HB/bcsstk16 6.25×10−4 4.82×10−17 4.89×105 2 21 (21) 0 0
Cylshell/s2rmt3m1 8.43×10−6 3.27×10−17 2.60×105 2 123 (120) 0 0
Cylshell/s3rmt3m1 1.56×10−6 2.66×10−17 2.60×105 2 654 (1166) 1 1
Boeing/bcsstk38 4.79×10−5 9.29×10−16 5.64×105 2 821 (350) 2 0
Boeing/msc10848 7.72×10−7 2.63×10−18 2.51×106 2 159 (113) 0 0
Oberwolfach/t2dah e 6.95×10−4 1.41×10−16 3.29×105 2 7 (7) 0 0
Boeing/ct20stif 3.01×10−5 1.28×10−9 6.70×106 2 > 1000 (1041) 2 0
DNVS/shipsec8 5.64×10−6 2.70×10−13 1.22×107 2 1107 (1069) 2 0
Um/2cubes sphere 1.03×10−3 1.63×10−16 8.70×106 2 6 (6) 0 0
GHS psdef/hood 7.05×10−4 5.01×10−17 2.78×107 2 414 (366) 1 3
Um/offshore 6.27×10−4 1.92×10−16 2.08×107 2 165 (114) 0 4

Preconditioner fp64-IC(3)
Identifier resinit resfinal nnz(L) iouter totits

Boeing/msc01050 1.41×10−4 3.35×10−16 3.74×104 2 41 (1010)
HB/bcsstk11 1.48×10−5 2.79×10−17 4.18×104 2 38 (35)
HB/bcsstk26 9.24×10−5 1.18×10−16 3.43×104 2 82 (75)
HB/bcsstk24 4.01×10−7 2.05×10−17 2.27×105 2 85 (75)
HB/bcsstk16 7.01×10−4 3.40×10−17 4.89×105 2 18 (17)
Cylshell/s2rmt3m1 8.61×10−6 3.63×10−17 2.60×105 2 107 (105)
Cylshell/s3rmt3m1 2.00×10−6 6.12×10−5 2.60×105 1 > 1000 (> 1000)
Boeing/bcsstk38 4.67×10−9 8.57×10−16 5.64×105 2 167 (124)
Boeing/msc10848 8.73×10−10 5.27×10−18 2.51×106 2 49 (41)
Oberwolfach/t2dah e 5.49×10−6 1.41×10−16 3.29×105 2 6 (6)
Boeing/ct20stif 5.82×10−8 1.47×10−9 6.70×106 2 > 1000 (1006)
DNVS/shipsec8 7.50×10−7 1.26×10−16 1.22×107 2 266 (212)
Um/2cubes sphere 2.25×10−5 1.36×10−16 8.70×106 2 5 (5)
GHS psdef/hood ‡ ‡ ‡ ‡ ‡ ‡
Um/offshore ‡ ‡ ‡ ‡ ‡ ‡
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This indicates that it is not just in half precision arithmetic that it is necessary to monitor the possibility

of growth occurring in the factor entries, something that is not currently considered when computing

incomplete Cholesky factorizations in double (or single) precision arithmetic.

Note that, when using fp16 arithmetic, the initial residual resint is typically larger than for fp64

arithmetic. However, if the user does not require double precision accuracy in the computed solution, it

may be unnecessary to perform any refinement steps (or a small number of steps may be sufficient), even

when using half precision incomplete factors.

Finally, we observe that, in addition to symmetrically prescaling A, Higham and Pranesh [22] shift the

scaled matrix and multiply all the entries by a scalar µ to limit underflow. Our IC(`) implementation

incorporates scaling and shifting by default but not µ (thus our reported results correspond to µ = 1.0).

We have performed experiments with µ = 0.1xmax [22]. We found that there was no consistent advantage

in using µ 6= 1 (for some examples, the iteration count varied but the changes were modest and the count

was not always reduced). This is perhaps because the underflows are not such a concern when constructing

incomplete factorizations as they are for complete factorizations.

6 Concluding remarks and future directions

As far as we are aware, our work in the first to construct and employ incomplete factorizations using

half precision arithmetic to solve large-scale sparse linear systems. Our results demonstrate that, when

carefully implemented, the use of fp16 level-based incomplete factorization preconditioners may not impact

on the overall accuracy of the computed solution, even when a small tolerance is imposed on the requested

scaled residual. Unsurprisingly, the number of iterations of the Krylov subspace method that is used in

the refinement process can be greater for fp16 factors compared to fp64 factors but generally this increase

is only significant for highly ill conditioned systems. The numerical experiments support the view that, for

many real-world problems, it is sufficient to employ half precision arithmetic. Its use may be particularly

advantageous if the linear system does not need to be solved to high accuracy. Our study also encourages

us to conjecture that by building safe operations into sparse direct solvers it should be possible to build

efficient and robust half precision variants and, because this would lead to substantial memory savings, it

should allow direct solvers to be used (in combination with an appropriate refinement process) to solve

much larger problems than is currently possible.

It is of interest to explore other classes of algebraic preconditioners, to consider how they can be

safely computed using fp16 arithmetic and how effective they are compared to higher precision versions.

For sparse approximate inverse (SPAI) preconditioners, we anticipate that it may be possible to combine

the systematic dropping of subnormal quantities with avoiding overflows in local linear solves as we have

discussed without significantly affecting the preconditioner quality because such changes may only influence

a small number of the computed columns of the SPAI preconditioner (see also [14] for a recent analysis

of SPAI preconditioners in mixed precision). For other approximate inverses, such as AINV [8] and AIB

[36], the sizes of the diagonal entries follow from maintaining a generalized orthogonalization property and

avoiding overflows using local or global modifications may be possible but challenging. We also plan to

consider the construction of the HSL MI28 [37] IC preconditioner using low precision arithmetic. HSL MI28

uses an extended memory approach for the robust construction of the factors. Once the factors have been

computed, the extended memory can be freed, limiting the size of the factors and the work needed in the

substitution steps, generally without a significant reduction in the preconditioner quality. A challenge here

is safely allowing intermediate quantities of absolute value at least xmin to be retained in the factors or in

the extended memory.
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[34] D. Ruiz and B. Uçar. A symmetry preserving algorithm for matrix scaling. Technical Report INRIA RR-7552,

INRIA, Grenoble, France, 2011.

[35] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. on Scientific and Statistical

Computing, 14:461–469, 1994.

[36] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, PA, second edition, 2003.
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