
Functional Programming 7

jens.jensen@stfc.ac.uk
0000-0003-4714-184X

CC-BY 4.0

April 30, 2023

Outline of Talks

▶ Previous talks (talks 1-3):
▶ Introibo
▶ Pure Functional Programming Principles
▶ Mapping
▶ Labels and naming
▶ Lists

▶ This talk (Talk 7):
▶ Advanced(ish) Topics (continued)

▶ Impure Functional? Side E�ects

▶ Category Theory

▶ Categories and Functions

▶ Categories and Computation

Still written in the author's spare time!

Very much a personal perspective, and not following any particular
textbook. Using meditations and exercises � solutions to all
exercises given during the talks.

Common/Advanced(ish) Features of Functional Languages

1. Lambda (anonymous (unnamed) functions) and currying

2. List comprehension

3. Functions � mutually recursive, higher order

4. Symbols

5. Tail recursion

6. Scope and extent

7. Types and type inference

8. Branch-on-pattern-matching and guards

9. Memoisation

10. Lazy evaluation types

11. Pipes (not the lazy kind) style composition
▶ h(g(f (x))) ≡ (h (g (f x))) ≡ x |f |g |h

12. Monads: theoretical framework for types and computation

13. Applied monads: Maybe, Arrays

14. Bonus section for survivors of MonadLand: Lisp Hacking

Today's talk

is about building on the hard work in Talk 6:

▶ Lexical scope � speci�cally closures
▶ Inde�nite extent

▶ �Dynamic scope�
▶ Inde�nite scope
▶ Dynamic extent

Today we will be relying on closures (�lexical bindings�) to maintain
state of pure functions � and impure functions.
A future talk (probably 8) will look at maintaining state in
�dynamically scoped� variables.

Memoisation

The classic example of recursion is Fibonacci numbers (A000045):

(defun fib (k)

(let ((call-count 0))

(labels ((fib-1 (k1)

(incf call-count)

(if (<= k1 1) 1

(+ (fib-1 (1- k1)) (fib-1 (- k1 2))))))

(list (fib-1 k) call-count))))

(fib 0)

(1 1)

(fib 10)

(89 177)

(fib 19)

(6765 13529)

Exercise: write the inner function functionally-ly (without incf).
What is the cost? If you know CL, how can CL do better?

Memoisation

Let's make a quick timing macro (this is EL, CL already has one):

(defmacro time (&rest body)

"Time the execution of an expression, returning list

of value and time"

`(let* ((#1=#:start (current-time))

(#2=#:result (progn ,@body))

(#3=#:time (time-subtract (current-time) #1#)))

(list #2# (format-time-string "%M:%S.%6N" #3#))))

(time (fib 30))

((1346269 2692537) "00:07.348357")

▶ If you have forgotten about uninterned symbols, please refer to
Talk 4.

▶ The formatter above is designed for absolute time so won't
work for one hour or more

Memoisation
Pure functions (without side e�ects) return the same value every
time they are called with the same arguments.

Memoisation suggests that for functions that are expensive to
calculate, we cache the results. Typically caches are built with hash
tables or vectors.

(let ((cache (make-hash-table :test #'eql)))

(defun fib (k)

(let ((call-count 0))

(labels ((fib-1 (k1)

(incf call-count)

(if (<= k1 1) 1

(or (gethash k1 cache)

(let ((val (+ (fib-1 (1- k1))

(fib-1 (- k1 2)))))

(setf (gethash k1 cache) val))))))

(list (fib-1 k) call-count)))))

Memoisation

The cache keeps building:

(fib 1)

(1 1)

(fib 10)

(89 19)

(fib 20)

(10946 21)

(fib 30)

(1346269 21)

(fib 30)

(1346269 1)

Exercise: how would we cache with a vector? A vector would work
well with the non-negative integer argument to fib, but would
need to grow as needed.
(Norvig has a generic memoiser � we shall return to that later)

Fibonacci numbers � a functional digression
As a pure or mathematical function, fib � f : N0 → N � is de�ned
as

f (0) = 1,

f (1) = 1,

f (k) = f (k − 1) + f (k − 2), k ≥ 2

The function is de�ned recursively, and the cache remembers the
values (such as 20 7→ 10946) as they are built by calls to the
function. Hence the cache represents fib as a partial function
(because the cache is necessarily �nite).
While fib remains a pure function, calling it changes the function:
▶ In theoretical terms, the partial function is possibly expanded

to be de�ned on more of the domain;
▶ In practical terms, the function becomes faster, gradually

Hence evaluation has an e�ect of mapping (the value of) fib to
another value: fibh 7→fibh+1 (where h is the number of times fib
has been called). For every value k for which fibh is de�ned (has
cache), fibh(k) =fibh+1(k).

Memoisation � a mathematical digression

Digression. ai+1 = ai + ai−1 can be expressed(
1 1
1 0

)(
ai

ai−1

)
=

(
ai+1

ai

)
and in the next section (lazy evaluation) we shall use that. Thus
with a0 = a1 = 1,(

1 1
1 0

)n (
1
1

)
=

(
an+1

an

)
Taking α = 1+

√
5

2
and β = 1−

√
5

2
, we get(

α√
2+α
1√
2+α

)
and

(
β√
2+β
1√
2+β

)

are orthonormal eigenvectors of the matrix corresponding to
eigenvalues α and β, respectively,

Fibonacci numbers � a mathematical digression

... whence for all n,(
1 1
1 0

)n

=

(
α√
2+α

β√
2+β

1√
2+α

1√
2+β

)(
αn 0
0 βn

)(α√
2+α

1√
2+α

β√
2+β

1√
2+β

)

Since we are interested only in one of the values, we get(
∗
an

)
=

(
∗ ∗
1√
2+α

1√
2+β

)(
αn 0
0 βn

)(α√
2+α

1√
2+α

β√
2+β

1√
2+β

)(
1
1

)
(where ∗ means �don't care�) which reduces to

an = αn
1+ α

2+ α
+ βn

1+ β

2+ β

This is a closed form for the Fibonacci numbers.

Fibonacci numbers � a mathematical digression

(defconst alpha (/ (+ 1 (sqrt 5)) 2))

alpha

(defconst beta (/ (- 1 (sqrt 5)) 2))

beta

(defconst alpha-frac (/ (+ alpha 1) (+ alpha 2)))

alpha-frac

(defconst beta-frac (/ (+ beta 1) (+ beta 2)))

beta-frac

(defun fib (n)

(+ (* alpha-frac (expt alpha n))

(* beta-frac (expt beta n))))

fib

(fib 10)

89.00000000000003

(fib 100)

5.73147844013819e+20

(fib 0)

1.0

Fibonacci numbers � a mathematical digression

We can now compare this implementation to the previous:

(fib 1)

0.9999999999999999

(fib 19)

6765.000000000004

We can make two additional improvements to the code:

▶ Since a rounding error has been introduced, it would make
sense to use round on the result

▶ Noticing that |β| < 1, the contribution of the beta part
becomes negligible:

(defun fib (n)

(round (* alpha-frac (expt alpha n))))

(mapcar #'fib '(0 1 2 3 4 5 6 7 8 9 10 11))

(1 1 2 3 5 8 13 21 34 55 89 144)

Fibonacci numbers � a functional digression

Whether implemented as

(defun fib (k)

(round (* alpha-frac (expt alpha k))))

(with the constants de�ned as before) or

(defun fib (k)

(labels ((fib-1 (k1)

(if (<= k1 1) 1

(+ (fib-1 (1- k1)) (fib-1 (- k1 2))))))

(fib-1 (1+ k))))

these functions return the same value for every valid value of k
(k∈ {0, 1, ...}), so, being pure, they are the same function

(exercise: the statement is only �mostly true� � why?)
Though in practice they have hugely di�erent runtimes � does
theory care?

Lazy evaluation

Simple generators: generating an in�nite sequence

(defun simple-generator (init step)

(let ((w init))

(lambda () (prog1 w (setq w (funcall step w))))))

simple-generator

(setq m (simple-generator 1 (lambda (k) (ash k 1))))

(closure ...)

(funcall m)

1

(funcall m)

2

(funcall m)

4

(funcall m)

8

Lazy evaluation
Simple generators: generating an in�nite sequence

(defun list-generator (lst)

(let ((y (copy-seq lst)))

(rplacd (last y) y)

(lambda () (prog1 (car y) (setq y (cdr y))))))

list-generator

(setq n (list-generator '(1 2 3)))

(closure ...)

(funcall n)

1

(funcall n)

2

(funcall n)

3

(funcall n)

1

(funcall n)

2

Lazy evaluation

Back to FizzBuzz:

(defun make-fizzbuzz ()

(let ((fizz (list-generator '(nil nil fizz)))

(buzz (list-generator '(nil nil nil nil buzz)))

(num (simple-generator 1 #'1+)))

(lambda ()

(tidy-up (funcall fizz) (funcall buzz) (funcall num)))))

(defun tidy-up (f b n)

(if (and f b) 'fizzbuzz

(or f b n)))

(let ((u (make-fizzbuzz))

(v (make-vector 30 0)))

(map 'vector (lambda (x) (funcall u)) v))

[1 2 fizz 4 buzz fizz 7 8 fizz buzz 11 fizz ...]

Pipes and Series � Pipes

For a more sophisticated view of lazy evaluation, we turn to Pipes
next. This is necessarily a very simple invitation to the topic; for
more details see [Norvig].

The basic idea behind pipes is a pair of a value and a next step
which is not evaluated unless (and until) it is needed. Suppose we
want to represent the non-negative integers:

(cons 0 #'1+)

Things to note:

▶ Norvig's implementations are more sophisticated than the one
presented here

▶ Norvig's code was written for CL but (given that it works
approximately like the code presented here) should work for EL
with a few mods

Pipes and Series � Pipes

The pipe would be expanded as needed, one step at a time:

(defun pipe-step (p)

(let ((pp (last p)))

(rplacd pp (cons (funcall (cdr pp) (car pp)) (cdr pp))))

p)

and we can call it

(pipe-step (pipe-step (pipe-step (cons 0 #'1+))))

(0 1 2 3 . 1+)

Exercise: write our beloved factorial function using reduce on a
pipe (as described here)

Exercise: would it be better to have the step in front? What would
the factorial look like in this case? Alternatively, use the
list-as-FIFO hack to avoid the O(n) complexity of last.

Pipes and Series � yield

As a short digression, let's look at a generator using yield. We will
temporarily switch to another possibly recognisable scripting
language.

First another helper function:

def isprime(l, k):

""" check whether no number in l divides k """

for p in l:

if k % p == 0:

return False

return True

(This is trial division, a very ine�cient implementation but we get
to e�ciency later)

Pipes and Series � yield

The algorithm � (Incremental) Trial Division:

def prime():

yield 2

yield 3

primes = []

p = 5

while True:

if isprime(primes, p):

yield p

primes.insert(0, p)

p += 2

if isprime(primes, p):

yield p

primes.insert(0, p)

p += 4

Pipes and Series � yield

The point is the code is generating primes and remembering them;
the list of primes is used to test further candidates.

Generate the �rst 30,000 primes (and timing it):

gen = prime()

start = dt.datetime.now()

for _ in range(30000):

e = next(gen)

delta = dt.datetime.now() - start

print("{}.{}\n".format(delta.seconds, delta.microseconds))

Pipes and Series � yield

Let's do it in CL before we return to EL. CL doesn't have yield

because it doesn't really need one. Instead, we use a condition to
signal the next value:

(define-condition yield ()

((value :reader yield-value :initform nil :type t))

(:documentation "condition yielding a value from a generator"))

Conditions are very powerful and, like in python, can be extended
to pass information back to the generator, handle multiple
simultaneous generators, etc. (Errors and warnings are subclasses
of conditions)

Pipes and Series � yield

(defun make-prime-generator ()

(let ((primes nil)

(y (make-condition 'yield)))

(flet ((isprime (k)

(notany (lambda (divisor)

(zerop (mod k divisor))) primes))

(yield (k)

(setf (slot-value y 'value) k)

(signal y)))

(lambda ()

(yield 2)

(yield 3)

(let ((p 5))

(loop

(when (isprime p) (yield p))

(incf p 2)

(when (isprime p) (yield p))

(incf p 4)))))))

Pipes and Series � yield

Generating 30,000 primes:

(defun timing (&optional (count 30000))

(time

(let ((gen (make-prime-generator)))

(handler-bind

((yield #'(lambda (c)

(when (zerop (decf count))

(return-from timing

(yield-value c))))))

(funcall gen)))))

Note the subtly di�erent control �ow: there is no next in this case;
the generator keeps running till the gatherer stops it, as opposed to
the gatherer asking directly for the next value.

Pipes and Series � yield
Emacs, too, has a yield:

(require 'generator)

(iter-defun gen-primes ()

(iter-yield 2)

(iter-yield 3)

(let ((primes nil)

(p 5))

(flet ((primep (k)

(notany (lambda (x) (zerop (mod k x))) primes)))

(loop

(when (primep p) (iter-yield p)

(push p primes))

(setq p (+ p 2))

(when (primep p) (iter-yield p)

(push p primes))

(setq p (+ p 4))))))

gen-primes

Pipes and Series � yield

(let ((y (gen-primes)))

(loop repeat 20 collect (iter-next y)))

(2 3 5 7 11 13 17 19 23 29 31 37 ...)

Using the timing macro from earlier and the following wrapper

(defun mkprimes (k)

(let ((y (gen-primes)))

(decf k)

(loop repeat k do (iter-next y))

(iter-next y)))

which returns the last (the kth) prime, we can compare the
performance.

Pipes and Series � yield
Results of the timings on the author's famously slow laptop:
iterations Highest prime python yield CL yield EL yield

10,000 104,729 8.6s 4.2s 132s
30,000 350,377 86.3s 42.8s 1356s
50,000 611,953 251.5s 117.3s -
100,000 1,299,709 1075s 490.7s -

CL (SBCL) is faster than python which is a bit apples and oranges:
python is a scripting language; CL is not. The EL code is not
compiled; the EL compiler doesn't like gen-primes

Remember our algorithm can be improved a lot:

▶ Only test division up to
√
p

▶ We push larger primes to the front but smaller primes more
commonly divide candidates

▶ If we know the upper bound (which we don't, in general), a
vector of bools (Sieve of Eratosthenes) may be the quicker
option

Exercise: make it (either version) go faster

Pipes and Series � yield

Digressing again, this code is represented as a Haskell version of
Trial Division [O'Neill]:

primes = sieve [2..]

sieve (p : xs) = p : sieve [x | x <- xs, x 'mod' p > 0]

Oh no! It is much shorter than ours! A literal translation into Lisp
(using loop as list comprehension, see Talk 4) becomes

(defun sieve (pxs)

(cons (car pxs)

(sieve (loop for x in (cdr pxs)

when (> (mod x (car pxs)) 0)

collect x))))

except it has an in�nite loop and will run out of stack (it's not
TRO), and it needs an in�nite list of integers (2..) as input.

Pipes and Series � yield

Notice the distinction between yielding and normal closures as the
alternative:

(iter-defun gen-primes ()

...

(let ((primes nil))

(iter-yield something...)))

vs the closure (this is pseudocode)

(defun gen-primes ()

(let ((primes nil))

(lambda () (do-something-with primes)

(updatef primes))))

In a sense yield feels more �functional� as it does not have to
update its state explicitly. Though we shall cover functions with
state (impure functions?) in the next talk.

Pipes and Series � Series

Series are di�erent: they do not have memory of the past that
pipes have. They also won't work in EL without a lot of
modi�cation, so we cover them only brie�y

(defun fact (k)

(declare (type unsigned-byte k))

(series:collect-product

(series:scan-range :from 1 :upto k)))

collect-product is short-hand for reduce using *; it even works
for no elements (0! = 1) since 1 is the identity element for *

In general one needs to be very careful when handling (in�nite)
series: they are lazy, but any attempt to print them evaluates them
fully. This includes the REPL and the debugger!

Pipes and Series � Series

A more sophisticated series generates Fibonacci numbers:

(values

(series:scan-fn '(values integer integer) ; type

(lambda () (values 1 0)) ; init

(lambda (x y) (values (+ x y) x)))) ; step

This works exactly like the

(
1 1
1 0

)
we saw earlier, stepping two

sequences (corresponding to an+1 and an) in parallel. Note that

unlike pipes and (our example) generators, series have no (long
term) memory. Point-to-ponder: how could a series generate
primes?

Pipes and Series � Series

In�nite series must be handled like dynamite:

(series:cotruncate

(series:scan-fn '(values integer integer)

(lambda () (values 1 0))

(lambda (x y) (values (+ x y) x)))

(series:scan (make-array 20)))

#Z(1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765)

#Z(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

or they will explode... here, the second sequence is used to �take
20� and is ignored when the value is used.

Pipes and Series � Series

And �nally, FizzBuzz as a Series:

(defun make-fizzbuzz ()

"Return fizzbuzz as a series"

(let ((fizz (series:series nil nil 'fizz))

(buzz (series:series nil nil nil nil 'buzz))

(num (series:scan-range :from 1 :type 'integer)))

(series:mapping ((f fizz) (b buzz) (n num))

(if (and f b) 'fizzbuzz (or f b n)))))

CL-USER> (series:cotruncate (make-fizzbuzz)

(series:scan-range :upto 30))

#Z(1 2 FIZZ 4 BUZZ FIZZ 7 8 FIZZ BUZZ 11 FIZZ 13 14

FIZZBUZZ 16 17 FIZZ 19 BUZZ FIZZ 22 23 FIZZ BUZZ 26

FIZZ 28 29 FIZZBUZZ 31)

#Z(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30)

Summary

▶ Pure functions always return the same value given the same
argument
▶ Implementations can bene�t from caching, particularly if

de�ned recursively
▶ Closures useful to implement the cache
▶ The cache becomes the function (in some sense)

▶ Generators generate the next step in a sequence every time
they are called
▶ Lazy � values generated as needed even in in�nite series
▶ Coroutines (yield) are alternatives to holding state in closures
▶ Compare calling function ('next') directly with in-Lisp

evaluation
▶ Functionally, they become a sequence x0, f (x0), f (f (x0)), . . . or

xi := f (xi−1), i > 0

References

GLS Steele, Guy L: Common Lisp, the Language (2nd Ed)

Norvig , P: Paradigms of Arti�cial Intelligence Programming

O'Neill , M E: The Genuine Sieve of Eratosthenes,
DOI:10.1017/S0956796808007004

A000045 https://oeis.org/A000045

	Introibo
	Advanced(ish) Functional Programming

