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APPROXIMATING SPARSE HESSIAN MATRICES USING LARGE-SCALE LINEAR

LEAST SQUARES

JAROSLAV M. FOWKES∗, NICHOLAS I. M. GOULD∗, AND JENNIFER SCOTT∗†

Abstract. Large-scale optimization algorithms frequently require sparse Hessian matrices that are not readily available.

Existing methods for approximating large sparse Hessian matrices have limitations. To try and overcome these, we propose

a novel approach that reformulates the problem as the solution of a large linear least squares problem. The least squares

problem is sparse but can include a number of rows that contain significantly more entries than other rows and are regarded

as dense. We exploit recent work on solving such problems using either the normal equations or an augmented system to

derive a robust approach for computing approximate sparse Hessian matrices. Example sparse Hessians from the CUTEst

test problem collection for optimization illustrate the effectiveness and robustness of the new method.

Key words. Sparse nonlinear systems, sparse Hessian matrices, sparse linear least squares, sparse direct solvers.

1. Introduction. Consider the large sparse optimization problem

min
x
f(x),

where f(x) is a sufficiently smooth function of n variables. Whilst the gradient g(x) := ∇f(x) is often

readily available, the Hessian matrix H(x) := ∇2f(x) is frequently difficult to provide. For example, the

backward mode of automatic differentiation enables the gradient of a nonlinear function to be computed

at a cost that is a small multiple of the that of evaluating f(x), but the cost of evaluating H(x) using

differencing techniques is O(n) times that of f(x). This is unfortunate because there are important

theoretical and practical benefits in having access to the Hessian matrix. The explosion of interest in

machine learning and data science algorithms that involve optimizing a function has further emphasised

the need for good approximations to Hessian matrices.

Interest in methods for building approximations to H(x) dates back to the 1960s. The focus at that

time was on problems involving a small number of variables and consequently on small dense Hessian

matrices. Extensions to the sparse case were not successful because either the formulae used generated

dense matrices that were impractical for large problems, or imposing sparsity led to potential numerical

instability in the approximation algorithms [7, 28, 29, 30]. Attention subsequently turned to limited-

memory strategies [20, Chapter 7]. These did not seek to reproduce the Hessian matrix but to incorporate

the curvature observed at a number of previous iterates. No attempt was made to impose sparsity.

Our interest is in large-scale problems for which it is essential that sparsity is exploited. The proposed

new method formulates the problem as a large-scale linear least squares (LS) problem. In general, this

LS problem is sparse but, if the Hessian matrix contains one or more rows with a large number of entries,

then the LS matrix has some rows that are regarded as dense. These dense rows make the problem

more challenging. Methods for tackling sparse-dense LS problems have been considered, for example, in

[3, 5, 9, 23, 24, 26, 27]. Exploiting the work of Scott and Tůma [23, 26], we propose using sparse direct

linear equation solvers combined with an iterative method. Recent software from the HSL Mathematical

Software Library [16] is used to perform numerical experiments.

The paper is organised as follows. In Section 2, we introduce our proposed new LS formulation. Sparse

direct methods for solving this LS problem are considered in Section 3, with an emphasis on the sparse-

dense case. In Section 4, we report the results of numerical experiments that illustrate the potential of the

new method to be used for approximating large sparse Hessian matrices in practice. Finally, concluding

comments are given in Section 5.

2. Least squares formulation. Consider the twice differentiable function f(x) of n variables x,

whose gradient g(x) is known. The challenge is to build approximations B(k) = {b(k)ij } of the Hessian
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matrix H(x) at a sequence of given iterates x(k). H(x(k)) is an n × n symmetric matrix and we assume

that its sparsity pattern (the locations of the nonzero entries) is known. The approach we propose is based

on using the data from a sequence of m ≥ 1 previous steps to estimate B(k). The idea of using recent

difference pairs

s(l) := x(l) − x(l−1) and y(l) := g(x(l))− g(x(l−1)), l = k −m+ 1, . . . , k, (2.1)

was initially proposed by Fletcher, Grothey and Leyffer [8]. Their aim was to construct B(k) that best

satisfies the multiple secant conditions given by

B(k)s(l) = y(l), l = k −m+ 1, . . . , k. (2.2)

They did this by solving, for each k, the convex quadratic programming problem

min
B(k)

k∑
l=k−m+1

‖B(k)s(l) − y(l)‖2F such that B(k) = (B(k))T and S(B(k)) = S(H(x(k))). (2.3)

Here, if W is a matrix with entries = {wij} then ‖W‖2F denotes its squared Frobenius norm and S(W ) :=

{(i, j) : wij 6= 0} is its sparsity pattern. Solving the so-called Constrained Procrustes Problem (2.3) results

in an estimate of the Hessian matrix that is symmetric and whose sparsity is preserved, although positive-

definiteness is not guaranteed. Consequently, this technique is useful inside a trust region method where

positive-definiteness of the Hessian matrix is not a requirement. Problem (2.3) can be solved using existing

well-developed optimization techniques, but for large problems they are computationally prohibitively

expensive. Instead, we propose stacking the (unknown) nonzero entries in the upper triangular part of

B(k) row-by-row above each other in a vector z(k) of size equal to the number of nonzero entries in the

upper triangular part of B(k) (equivalently, the entries in the lower triangular part are stacked column-

by-column). In this way, if nz(B(k)) denotes the number of nonzero entries in the upper triangular part of

B(k), we redefine the problem as a large sparse linear system of equations of size mn× nz(B(k)) given by

A(k)z(k) = c(k). (2.4)

Here the matrix A(k) and the vector c(k) are known and depend on the secant conditions (2.2). To illustrate

this formulation, consider the following two simple examples.

Example 1 Let n = 3 and consider the approximate Hessian matrix with nz(B(k)) = 4

B(k) =

b
(k)
11 b

(k)
12 0

b
(k)
21 0 b

(k)
23

0 b
(k)
32 b

(k)
33

 , with b
(k)
12 = b

(k)
21 and b

(k)
23 = b

(k)
32 .

For m = 2, the 6× 4 linear system (2.4) is

s
(k)
1 s

(k)
2 0 0

s
(k−1)
1 s

(k−1)
2 0 0

0 s
(k)
1 s

(k)
3 0

0 s
(k−1)
1 s

(k−1)
3 0

0 0 s
(k)
2 s

(k)
3

0 0 s
(k−1)
2 s

(k−1)
3


︸ ︷︷ ︸

A(k)


b
(k)
11

b
(k)
12

b
(k)
23

b
(k)
33


︸ ︷︷ ︸

z(k)

=



y
(k)
1

y
(k−1)
1

y
(k)
2

y
(k−1)
2

y
(k)
3

y
(k−1)
3


︸ ︷︷ ︸

c(k)

.

Example 2 Let n = 4 and consider the approximate Hessian matrix with nz(B(k)) = 6

B(k) =


b
(k)
11 0 0 b

(k)
14

0 0 b
(k)
23 b

(k)
24

0 b
(k)
32 0 b

(k)
34

b
(k)
41 b

(k)
42 b

(k)
43 b

(k)
44

 , with b
(k)
14 = b

(k)
41 , b

(k)
23 = b

(k)
32 , b

(k)
24 = b

(k)
42 and b

(k)
34 = b

(k)
43 .
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For m = 2, the 8× 6 linear system (2.4) is

s
(k)
1 s

(k)
4 0 0 0 0

s
(k−1)
1 s

(k−1)
4 0 0 0 0

0 0 s
(k)
3 s

(k)
4 0 0

0 0 s
(k−1)
3 s

(k−1)
4 0 0

0 0 s
(k)
2 0 s

(k)
4 0

0 0 s
(k−1)
2 0 s

(k−1)
4 0

0 s
(k)
1 0 s

(k)
2 s

(k)
3 s

(k)
4

0 s
(k−1)
1 0 s

(k−1)
2 s

(k−1)
3 s

(k−1)
4


︸ ︷︷ ︸

A(k)



b
(k)
11

b
(k)
14

b
(k)
23

b
(k)
24

b
(k)
34

b
(k)
44


︸ ︷︷ ︸

z(k)

=



y
(k)
1

y
(k−1)
1

y
(k)
2

y
(k−1)
2

y
(k)
3

y
(k−1)
3

y
(k)
4

y
(k−1)
4


︸ ︷︷ ︸

c(k)

.

The matrix A(k) is rectangular with its row dimension dependent on m (the number of secant

directions) while the column dimension and the number of entries in each row depend on S(H(x(k)).

An important and attractive feature of this formulation is that it naturally imposes symmetry on B(k).

There may be null rows present in the system (2.4); these result from linear terms in the objective

and/or constraints of the optimization problem. All null rows are removed prior to solving the system.

Whether the resulting LS system is over- or under-determined depends on m and the density of S(H(x(k)).

If it is over-determined then the equations will be inconsistent in general. In this case, we compute the

least squares solution, that is, z(k) that minimizes

‖A(k)z(k) − c(k)‖22. (2.5)

If the system is under-determined then there are infinitely many solutions or no solutions because the

equations are inconsistent. In this case, the z(k) that minimizes the regularized problem

‖A(k)z(k) − c(k)‖22 + σ‖z(k)‖22 for some parameter σ > 0, (2.6)

is computed. In this study, we focus on choosing m so that the system is over-determined (strictly speaking

it is sufficient for the system to be well-determined).

Although most rows of A(k) are sparse, some can be significantly denser than the others. This occurs

if the Hessian matrix has one or more rows with many entries, which can be the case in some nonlinear

optimization problems where the objective and/or constraints involve all (or many) of the variables. In

particular, if B(k) has a row with n1 ≤ n entries then A(k) has m rows with n1 entries (see Example 2

with n1 = n = 4). If n1 is large (compared to the number of entries in the other rows of A(k)), we refer to

the problem as a sparse-dense LS problem.

For simplicity of exposition, in the remainder of this paper, we omit the superscript (k). When we

wish to emphasise the dependence on the secant parameter, we use the notation A(m). We also denote

the number of entries in the upper triangular part of B(k) by N and set mn = M .

3. Solving large-scale least squares problems. Solving large-scale linear least squares problems

is well-known to be significantly harder than solving large square linear systems of equations; sparse-dense

LS problems are particularly challenging. In 2017, a review by Gould and Scott [12] reported on the

performance of different software packages when employed to solve an extensive set of large LS problems

arising from a range of practical applications. Direct methods for solving such systems are characterized

by computing a matrix factorization in such a way that the problem is transformed into one that involves

solving systems of equations with factor matrices that are easy and inexpensive. Direct methods obtain

the solution in a finite and fixed number of steps that is independent of A and c. Due to rounding errors

the computed solution is generally not equal to the exact one, but if a direct method is well implemented,

the resulting software is extremely robust and can be used as a “black box solver”, with the user not

needing any detailed knowledge or understanding of what is going on within the box. By contrast, an

iterative method generally involves an unknown number of steps and its performance is highly problem
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dependent. A major advantage of iterative methods is that they require much less memory than direct

methods, for which the memory requirements generally increase rapidly with problem size. Thus for very

large problems, iterative methods are needed. For these to be effective, preconditioning is required. Gould

and Scott highlighted some of the weaknesses of existing preconditioners for LS problems and demonstrated

the specific need for new approaches together with software designed for solving sparse-dense LS problems.

This led us to look at developing new ideas for preconditioners [2] and to work on algorithms that can

handle sparse-dense problems [23, 24, 25, 26, 27]. These include direct solvers and LS preconditioners and,

importantly, combining direct and iterative techniques.

In this paper, the sizes of the systems we are interested in allows us to focus on sparse direct methods

and, for sparse-dense problems, we use them within an iterative method. We consider using both the

normal equations and the larger but sparser augmented system formulation.

3.1. Direct methods for sparse LS problems. Solving (2.5) is mathematically equivalent to

solving the N ×N normal equations

Cz = AT c, C = ATA, (3.1)

where, if A has full column rank, the normal matrix C is symmetric and positive definite. Thus, standard

methods for solving such systems can be employed. In particular, a Cholesky factorization C = LLT ,

where the factor L is a lower triangular matrix, can be computed. The 2-norm condition number of the

normal matrix is

κ(C) =
λ1(C)

λN (C)
,

where λ1(C) and λN (C) are its largest and smallest eigenvalues, respectively. As the condition number of

C is the square of that of A, an accurate solution may be difficult to compute if A is poorly conditioned.

If A is not full rank, the Cholesky factorization of C breaks down; near rank degeneracy can cause similar

numerical problems in finite precision arithmetic.

Observe that if P is any permutation matrix, then

C = ATA = (PA)TPA,

so that the normal matrix C is independent of the ordering of the rows of A. Hence for our Hessian

approximations, C does not depend on the ordering of the secant conditions. However, the ordering of the

rows and columns of C influences the sparsity of its factors. Many direct solvers offer an initial ordering

phase that chooses an appropriate permutation to limit fill-in of the factors; otherwise, an ordering package

such as METIS [17] (nested dissection ordering) or the HSL routine HSL MC69 (which offers minimum degree

and approximate minimum degree orderings) can be employed to preorder C [16].

An alternative approach is to use the much larger but sparser (M +N)× (M +N) augmented system(
I A

AT 0

)(
r

z

)
=

(
c

0

)
, (3.2)

where r = c−Az is the residual vector. This is a symmetric indefinite system (commonly called a saddle

point system) and therefore, if there is sufficient memory available, a sparse direct solver that incorporates

numerical pivoting for stability can be used. Well-known and widely-available codes that compute an

LDLT factorization in which L is unit lower triangular and D is block diagonal with blocks of size 1 and

2 include MA57 [6] and HSL MA97 [14, 15], MUMPS [18] and WSMP [32]. Again, preordering of the rows of

the augmented system is key to limiting the density of the L factor and hence the memory requirements

and the operation counts. Numerical results for direct solvers applied to both the normal equations and

augmented system approaches are given in [22]. The reported experiments indicated that neither approach

is consistently the best in terms of speed and/or the size of the computed factors.
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Prescaling A can also be important for the success of the solver. In general, in place of (3.1) we solve

C(S)ẑ = (AS)T c, C(S) = (AS)T (AS), z = Sẑ,

where S is a diagonal scaling matrix. For example, S could be chosen so that the 2-norm of each column

of the scaled matrix AS is equal to unity. Similarly, in place of (3.2), we solve(
I AS

(AS)T 0

)(
r

ẑ

)
=

(
c

0

)
, z = Sẑ.

To simplify notation, we omit S from the following discussion (but it is used in all numerical experiments).

Methods based on the QR factorization of A are also possible. These can be more stable for ill-

conditioned problems but they can also be prohibitively expensive for large-scale problems. A recent

computational study of QR methods for solving sparse least squares problems is given in [27].

3.2. Influence of m on the normal matrix. Assume that A(m) is sparse with full column rank.

The rows of A(m) can be permuted so that

PA(m) =


A1

A2

...

Am

 ,

where each Aj is of order n×N and S(Aj) = S(Aj+1), 1 ≤ j < m. In Example 1, A1 comprises rows 1, 3

and 5 and A2 rows 2, 4 and 6. It follows that the N ×N normal matrix is

C(m) = A(m)TA(m) =

m∑
j=1

AT
j Aj =

m∑
j=1

Cj ,

where the Cj are independent and each has the same sparsity pattern. The Cj can be computed in parallel

and then summed to obtain C(m). Thus increasing m has a limited effect on the work required to form

C(m).

Writing C(m + 1) = C(m) + AT
m+1Am+1, it follows from the Courant-Fisher theorem that if the

eigenvalues {λi(C(m))} and {λi(C(m + 1))} (1 ≤ i ≤ N) are in decreasing order then the extreme

eigenvalues satisfy

λ1(C(m)) ≤ λ1(C(m+ 1)), λN (C(m)) ≤ λN (C(m+ 1)).

That is, as m increases the eigenvalues of the corresponding normal matrix move away from zero. There

is, however, no guarantee that the conditioning of the normal matrix improves.

3.3. Solving sparse-dense LS problems. Observe that if one or more rows of A contain a

significant number of entries, then the normal matrix C is effectively dense and factorizing it is impractical

for large problems. Indeed, a direct solver will fail because of insufficient memory and if an incomplete

factorization of C is employed as a preconditioner for an iterative method, the error in the factorization

can be so large as to prohibit its effectiveness as a preconditioner. Dense rows do not prevent the use of a

general-purpose sparse indefinite direct solver to solve the augmented system (3.2), but this fails to take

advantage of the block structure and the need for pivoting for numerical stability inhibits the exploitation

of parallelism. Obtaining robust preconditioners for such systems has been the subject of substantial

research (see, for instance, [4, 21, 31] and the references therein), but this remains a challenge.

Assume the M rows of the (permuted) LS system matrix A are split into two parts with a conformal

splitting of the right-hand side vector c as follows

A =

(
As

Ad

)
, As ∈ Rms×N , Ad ∈ Rmd×N , c =

(
cs
cd

)
, cs ∈ Rms , cd ∈ Rmd , (3.3)
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with M = ms +md, ms ≥ N and ms � md. Problem (2.5) becomes

min
z

∥∥∥∥(As

Ad

)
z −

(
cs
cd

)∥∥∥∥2
2

. (3.4)

Splitting can be used to tackle sparse-dense problems in which A contains md ≥ 1 rows that have many

more entries than the other rows (in our Hessian matrix approximations, md is a multiple of m). These

“dense” rows comprise Ad. In Example 2, the last md = m = 2 rows of A(k) arise from the last row of

B(k), which is dense and so these rows are dense (with n entries). Another possible motivation for splitting

the rows is to accommodate appending a set of additional rows, which are not necessarily dense, to A.

For example, if the number of secant conditions is increased to m+m1 then Ad corresponds to the extra

md = m1n rows and we are then interested in approaches that avoid recomputing everything from scratch.

Using (3.3), the normal equations are given by

Cz = (Cs +AT
dAd)z = d, Cs = AT

s As, d = AT
s cs +AT

d cd.

These can be solved using the equivalent (n+md)× (n+md) blocked linear system(
Cs AT

d

Ad −I

)(
z

Adz

)
=

(
d

0

)
. (3.5)

If As has full column rank and all its rows are sparse, then the reduced normal matrix Cs is symmetric

positive definite and sparse. Let Cs = LsL
T
s be its Cholesky factorization. We then have the signed

Cholesky factorization (
Cs AT

d

Ad −I

)
=

(
Ls 0

Bd Ld

)(
I 0

0 −I

)(
LT
s BT

d

0 LT
d

)
, (3.6)

where Bd is the solution of the triangular system

LsB
T
d = AT

d

and Ld is a Cholesky factor of the md ×md (negative) Schur complement

I +BdB
T
d = LdL

T
d .

Assuming md is small, Ld can be computed using dense linear algebra and most of the work is in computing

the factorization of Cs. Thus, if the rows in Ad change (whether or not they are dense), this approach

provides an inexpensive updating strategy.

In practice, As can contain null columns. This is illustrated by Example 2, in which As comprises

the first 6 rows; column 6 of As is null. In this case, As is rank-deficient and Cs is positive semidefinite

and a Cholesky factorization breaks down. Even if Cs has no null columns, it can be singular or highly ill

conditioned. There are a number of ways to overcome this, including removing the null columns explicitly

[24] or employing matrix stretching [26]. A more straightforward approach is to use regularization in which

the Cholesky factorization of the shifted matrix Cs(α) = AT
s As + αI is computed. Clearly, it is always

possible to find a shift α > 0 so that breakdown is avoided. When using a shift, the computed value of

the least-squares objective may differ from the optimum for the original problem. However, we can seek

to recover the required solution by using the factors within a preconditioner for an iterative method.

It is straightforward to verify that

Cs(α) +AT
dAd =

(
I 0

)(Cs(α) AT
d

Ad −I

)(
I

Ad

)
and

(Cs(α) +AT
dAd)−1 =

(
I 0

)(Cs(α) AT
d

Ad −I

)−1(
I

0

)
. (3.7)
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If we factorize Cs(α), then combined with (3.7), the factorization (3.6) (with Cs replaced by Cs(α)) can be

used to obtain a symmetric positive definite preconditioner for use with an iterative solver such as CGLS,

LSQR or LSMR (see [26]).

An alternative approach is to use the splitting (3.3) with the augmented system (3.2) to obtain

K

rsrd
z

 =

 I 0 As

0 I Ad

AT
s AT

d 0

rsrd
z

 =

cscd
0

 , (3.8)

where

r =

(
rs
rd

)
=

(
cs
cd

)
−
(
As

Ad

)
z.

Eliminating rs reduces the problem to a 2-block system of order (N +md)× (N +md) of the form

Kr

(
z

rd

)
=

(
−AT

s cs
cd

)
, Kr =

(
−Cs AT

d

Ad I

)
. (3.9)

Either K or Kr can be factorized using a sparse symmetric indefinite solver. The former has the advantage

of not requiring the explicit computation of the reduced normal matrix Cs while the latter is a smaller

system that corresponds to choosing the first ms pivots in the factorization of K in the natural order.

4. Numerical experiments. The problems used in our experiments all come from the CUTEst

test collection1 [11]; they are listed in Table 4.1. The table includes the minimum number mmin of secant

equations for the corresponding least squares matrix A(k) in equation (2.4) to be overdetermined (excluding

null rows). In practice, there may be situations, particularly during the earlier iterations of an optimization

algorithm, where there are insufficient past iterations to enable m to be as large as in our experiments. In

the current study, we do not consider this initialisation phase but assume throughout that we can use any

m ≥ mmin.

Table 4.1

CUTEst test problems. The problems in the top (respectively, bottom) part of the table are constrained (respectively,

unconstrained). The columns report the CUTEst identifier, the dimension n of H, the number nnz(H) of nonzeros in the

lower triangular part of H, the number nnull of null rows in H, the largest number nnz(row) of entries in a row of H, and

the number nd of dense rows in H. mmin is the minimum number of secant equations for the corresponding least squares

matrix A(k) in equation (2.4) to be overdetermined.

identifier n nnz(H) nnull nnz(row) nd mmin

BQPGAUSS 2,003 9,298 0 552 1 5

CURLY30 10,000 309,535 0 61 0 31

DRCAV1LQ 4,489 87,635 12 41 0 20

JIMACK 3,549 118,824 0 81 0 34

NCVXBQP1 50,000 199,984 0 9 0 4

SINQUAD 5,000 9,999 0 5,000 1 2

SPARSINE 5,000 79,554 0 56 0 16

SPARSQUR 10,000 159,494 0 56 0 16

WALL100 149,624 1,446,475 0 42 0 10

CAR2 5,999 50,964 0 5,999 1 9

GASOIL 10,403 8,606 6,998 1,602 3 3

LUKVLE12 9,997 22,492 0 2,502 1 3

MSQRTA 1,024 33,264 0 64 0 33

ORTHREGE 7,506 17,509 2 2,504 4 3

TWIRIMD1 1,247 42,197 0 660 0 34

YATP1SQ 123,200 368,550 0 352 0 3

The characteristics of the machine used to perform the experiments are given in Table 4.2. Eight

processor cores are used for our reported results and timings are elapsed times in seconds. All experiments

1https://github.com/ralna/CUTEst
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Table 4.2

Test machine characteristics

CPU Two Intel Xeon E5-2687W octa-core processors

Memory 64 GB

Compiler gfortran version 9.4.0 with options -O3 -fopenmp

BLAS MKL BLAS

(with the exception of the conditioning results given in Table 4.3) are performed using the Fortran linear

least squares solver HSL MA85 from the HSL Mathematical Software Library [16]. This package is designed

for large-scale problems that may contain some dense rows. It solves the system (3.5) or (3.8)/(3.9) using

the sparse direct linear equation solver HSL MA87 or HSL MA97 respectively [13, 14, 15], combined with the

iterative solvers CGLS and GMRES, respectively. HSL MA87 uses a DAG-based algorithm to compute the

Cholesky factorization of sparse symmetric positive definite matrices, while HSL MA97 is a multifrontal code

that incorporates numerical pivoting within an LDLT factorization. Both HSL MA87 and HSL MA97 employ

OpenMP for parallelism and exploit high level BLAS routines. HSL MA85 includes options for scaling the

least squares problem and for ordering the linear systems to limit the number of entries in the factors and

the operations needed to perform the factorizations. We use equilibration scaling and nested dissection

ordering. In our tests, Algorithm 1 of [26] with the density parameter set to 0.05 is used to identify rows

of the least squares matrix that we treat as dense.

For the purposes of verifying the results obtained using our least squares approach, we assume the

Hessian matrix H = {hij} is known and report the relative componentwise error

rel err = max
(i,j)∈S(H)

|bij − hij |/max(1, |hij |), (4.1)

where B = {bij} is the computed approximation of H. We also report the norm of the least squares

residual ‖r‖2 = ‖Az − c‖2.

4.1. Fixed Hessian matrix, general steps. While our ultimate goal is to provide useful, evolving

Hessian matrix approximations for nonlinear functions, we start by testing whether the proposed new LS

methods can compute good approximations in the simple case in which the Hessian matrix is fixed. That

is, H(x(k)) = H for all k. To do this, we consider the (unconstrained) quadratic programming problem

min
x

f(x) =
1

2
xTHx+ gTx+ c, (4.2)

involving a scalar c, vector g and symmetric matrix H (note that here H = ∇2f(x) for all x). This

problem underlies much of unconstrained optimization, with f and g often representing function and

gradient values of a Taylor approximation to a nonlinear function f(x) evaluated at suitable x, and H

being an approximation to its Hessian matrix. This H is the matrix we seek to approximate.

We also want to test problems with constraints; these can involve dense rows. Thus, we consider the

more general problem

min
x

f(x) =
1

2
xTHx+ gTx+ c

such that
1

2
xTHqx+ gTq x+ cq ≤ 0, q = 1, . . . , nc.

(4.3)

Here cq, gq and Hq are the values, gradients and approximations to Hessian matrices of a given set of nc
nonlinear constraints. In this case, if µq are Lagrange multipliers, the quadratic Lagrangian function

L(x, µ) =
1

2
xTHx+ gTx+

nc∑
q=1

µq

(
1

2
xTHqx+ gTq x

)
,

for which the Hessian matrix

HL = ∇2
xL(x, µ) = H +

nc∑
q=1

µqHq, for all x and fixed µq,
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is fundamental to many constrained optimization algorithms. We want to approximate the matrix HL.

Our interest is in investigating how the proposed new LS approximation methods perform in practice.

To do so, we consider idealised instances of problems (4.2) and (4.3) in which the Hessian matrices H and

HL are fixed (they are independent of the iteration k). The method we use to generate our test Hessian

matrices is described in Appendix A. For unconstrained (respectively, constrained) CUTEst problems,

having generated a fixed Hessian matrix H (respectively, HL), we randomly generate s(l) ∈ (−1, 1) and

then compute y(l) = Hs(l) (respectively, y(l) = HLs
(l)) for l = 1, . . . ,m.

4.1.1. Varying the secant parameter. Table 4.3 presents estimates of the extremal eigenvalues for

a subset of the test problems. These values were computed using the Matlab function eigs. They illustrate

how the conditioning of the normal matrix improves as the secant parameter m increases. Choosing the

minimum value mmin for (2.4) to be overdetermined (excluding null rows) can result in the system being

close to singular (or even singular) in machine precision. Based on our experiments, we advocate choosing

m to be at least mmin + 5. However, for some problems a larger value is needed. In particular, we use

m = mmin + 10 for our experiments involving BQPGAUSS, and for TWIRIMD1 we use m = 70. Note

that it is possible to construct artificial examples for which increasing m leads to growth in the condition

number, but we did not encounter this behaviour in practice.

Table 4.3

The conditioning of the normal matrix C(m) for problems from the CUTEst collection. The columns report the

dimension N and number of nonzeros nnz(C(m)) in C(m), the secant parameter m, estimates of the largest and smallest

eigenvalues of C(m) and its condition number. The smallest m is the minimum for (2.4) to be overdetermined (excluding

null rows).

identifier N nnz(C(m)) m λ1(C(m)) λN (C(m)) κ(C(m))

BQPGAUSS 9,298 1,093,014 5 2.10E+02 2.84E-23 7.41E+24

10 2.36E+02 3.88E-17 6.07E+18

15 2.42E+02 1.60E-02 1.52E+04

20 2.53E+02 1.08E-01 2.36E+03

25 2.78E+02 2.10E-01 1.32E+03

NCVXBQP1 199,984 2,499,562 4 1.58E+01 1.27E-19 1.24E+20

9 2.36E+01 2.27E-02 1.04E+03

14 2.91E+01 1.96E-01 1.48E+02

19 3.42E+01 4.36E-01 7.85E+01

WALL100 1,446,475 58,554,691 10 4.55E+01 1.34E-15 3.38E+16

15 5.40E+01 4.41E-04 1.22E+05

20 6.13E+01 4.27E-02 1.43E+03

25 6.61E+01 2.02E-01 3.27E+02

CAR2 50,964 37,339,450 9 2.12E+03 1.44E-32 1.47E+35

14 2.16E+03 1.48E-03 1.45E+06

19 2.17E+03 8.13E-03 2.67E+05

24 2.21E+03 1.78E-02 1.24E+05

29 2.27E+03 2.93E-02 7.72E+04

ORTHREGE 17,509 25,127,545 3 8.73E+02 -8.50E-20 1.03E+22

8 9.01E+02 1.86E-04 4.86E+06

15 9.32E+02 4.39E-03 2.12E+05

25 1.02E+03 2.62E-02 3.89E+04

35 1.05E+03 4.13E-02 2.55E+04

TWIRIMD1 42,197 18,403,497 34 3.63E+02 -5.54E-20 6.56E+21

60 4.23E+02 -1.33E-17 3.18E+19

70 4.46E+02 1.58E-02 2.83E+04

80 4.68E+02 1.82E-01 2.57E+03

90 4.77E+02 4.47E-01 1.07E+03

For the subset of problems in Table 4.3, Table 4.4 shows the effects of varying the secant parameter m

on the performance of the LS solver. Both the normal equation and the augmented system approaches are
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Table 4.4

The effects of varying the secant parameter m on the normal equation and augmented system formulations. The columns

report the secant parameter m, nnz(L) and nflops are the number of entries in the computed matrix factor and the flops

required to compute it. For the augmented system approach, ndelay is the number of delayed pivots. ‖r‖2 is the least squares

residual and rel err is given by (4.1).

identifier normal equation augmented system

m nnz(L) nflops ‖r‖2 rel err nnz(L) nflops ndelay ‖r‖2 rel err

BQPGAUSS

5 3.55E+06 2.20E+09 1.88E-07 2.74E+01 3.32E+06 2.37E+09 2.93E+02 2.74E-09 3.78E+02

10 3.55E+06 2.20E+09 5.63E-09 2.15E+02 3.09E+06 1.93E+09 1.00E+01 2.93E-09 8.94E+01

15 3.55E+06 2.20E+09 2.65E-09 8.26E-11 3.25E+06 2.24E+09 1.00E+00 3.80E-10 2.74E-10

20 3.55E+06 2.20E+09 8.50E-10 4.26E-11 3.41E+06 2.27E+09 0.00E+00 2.35E-10 2.18E-11

25 3.55E+06 2.20E+09 1.93E-08 7.91E-10 3.40E+06 2.29E+09 0.00E+00 2.77E-10 1.49E-11

NCVXBQP1

4 2.06E+07 7.34E+09 1.80E-02 1.69E+02 2.34E+07 1.56E+10 2.77E+04 1.78E-01 1.42E+03

9 2.06E+07 7.34E+09 6.34E-09 1.28E-12 1.97E+07 6.29E+09 9.57E+02 1.47E-08 7.98E-12

14 2.06E+07 7.34E+09 7.92E-09 3.58E-12 2.08E+07 5.97E+09 0.00E+00 1.12E-07 9.26E-12

19 2.06E+07 7.34E+09 9.16E-09 1.22E-12 2.26E+07 5.84E+09 0.00E+00 9.80E-07 3.31E-12

WALL100

10 6.32E+08 1.09E+12 1.20E-08 1.67E-02 5.98E+08 9.44E+11 2.88E+05 2.69E-04 3.88E+00

15 6.32E+08 1.09E+12 1.43E-08 5.08E-11 6.39E+08 9.46E+11 6.57E+03 9.06E-07 2.36E-09

20 6.32E+08 1.09E+12 1.49E-08 1.77E-11 6.52E+08 9.89E+11 2.48E+02 3.85E-06 3.49E-10

25 6.32E+08 1.09E+12 1.64E-08 1.02E-11 6.59E+08 9.95E+11 0.00E+00 1.01E-06 9.01E-11

CAR2

9 3.65E+06 2.73E+08 3.03E-10 1.82E-01 8.22E+06 1.01E+10 1.99E+04 5.80E-12 1.36E+00

14 3.65E+06 2.73E+08 2.05E-10 7.25E-11 3.51E+06 2.48E+08 1.00E+00 5.32E-14 2.23E-14

19 3.65E+06 2.73E+08 1.71E-10 3.15E-11 3.76E+06 2.83E+08 0.00E+00 4.64E-14 5.35E-15

24 3.65E+06 2.73E+08 1.75E-10 1.89E-11 4.02E+06 3.23E+08 1.00E+00 4.76E-14 1.61E-15

29 3.65E+06 2.73E+08 1.83E-10 8.71E-12 4.27E+06 3.63E+08 0.00E+00 5.21E-14 1.57E-15

ORTHREGE

3 4.25E+04 1.43E+05 1.13E-01 6.32E+00 1.28E+07 4.24E+10 5.00E+03 1.00E-08 1.37E+05

8 4.25E+04 1.43E+05 1.80E-06 2.08E-07 4.43E+05 1.54E+07 9.00E+00 2.90E-11 6.11E-12

15 4.25E+04 1.43E+05 1.72E-06 6.14E-08 7.95E+05 4.98E+07 9.00E+00 2.84E-11 3.25E-13

25 4.25E+04 1.43E+05 1.09E-06 1.56E-08 1.30E+06 1.33E+08 9.00E+00 4.90E-11 1.33E-13

35 4.25E+04 1.43E+05 5.45E-09 2.17E-10 1.80E+06 2.57E+08 9.00E+00 3.80E-11 6.22E-13

TWIRIMD1

34 3.11E+08 3.66E+12 7.01E-09 1.05E+00 1.58E+08 9.81E+11 5.10E+04 5.51E-09 1.04E+02

50 3.11E+08 3.66E+12 3.06E-09 3.80E-01 9.41E+07 2.36E+11 8.94E+03 1.73E-09 1.81E+02

60 3.11E+08 3.66E+12 1.41E-08 3.82E-02 1.01E+08 2.43E+11 1.49E+03 7.02E-11 1.58E+01

70 3.11E+08 3.66E+12 2.79E-12 3.71E-13 1.01E+08 2.52E+11 3.10E+01 1.81E-12 1.61E-13

80 3.11E+08 3.66E+12 2.12E-12 8.27E-14 1.13E+08 3.11E+11 3.10E+01 1.55E-12 4.69E-14

90 3.11E+08 3.66E+12 1.99E-12 5.07E-14 1.26E+08 3.75E+11 2.90E+01 1.43E-12 1.92E-14

reported on (with the modifications of Section 3.3 used for the sparse-dense problems BQPGAUSS, CAR2

and ORTHREGE). For the normal equation formulation, the work involved in computing the Cholesky

factors is independent of m but the computed solution, residual and rel err depend on m. The size of

the augmented system increases with m, but this may not mean an increase in the number and entries in

the factor or the operation count. This can occur if for smaller m the problem is ill-conditioned because

then the indefinite factorization involves more work to retain numerical stability. The number of delayed

pivots (reported as ndelay) is an indication of this (for larger m, ndelay is zero, or close to zero). We note

that the quality of the results measured using the residual and relative error is similar for both the normal

equations and augmented system approaches.

4.1.2. The importance of exploiting dense rows. For problems with one or more dense rows,

Tables 4.5 and 4.6 illustrate the importance of exploiting these rows when solving the least squares problem

(2.5). md = 0 means that all the rows (including those that are dense) are treated by the solver HSL MA85
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Table 4.5

Results for the normal system formulation with and without exploiting the dense rows in the least squares matrix A. m

is the number of secant equations and md the number of rows in A classified as dense. nnz(L) and nflops are the number

of entries in the normal matrix Cholesky factor and the flops required to compute it. ‖r‖2 is the least squares residual and

rel err is given by (4.1). The elapsed times (in seconds) for the factor and solve phases of the least squares solver HSL MA85

are given by T(factor) and T(solve).

identifier m md nnz(L) nflops ‖r‖2 rel err T (factor) T (solve)

BQPGAUSS 15 15 3.55E+06 2.20E+09 3.39E-09 6.38E-11 0.004 0.033

0 4.39E+06 2.95E+09 3.99E-10 1.70E-10 0.366 0.009

SINQUAD 7 7 1.50E+04 2.50E+04 2.45E-09 4.25E-11 0.001 0.058

0 1.26E+07 4.21E+10 2.40E-10 4.22E-11 3.279 0.035

CAR2 14 14 3.65E+06 2.73E+08 2.05E-10 7.25E-11 0.016 0.017

0 2.61E+07 9.19E+10 5.85E-14 3.36E-14 6.115 0.034

GASOIL 8 24 1.92E+04 8.00E+04 3.96E-09 1.40E-09 0.001 0.038

0 7.59E+06 1.09E+10 9.60E-13 4.63E-12 0.983 0.014

LUKVLE12 8 8 5.80E+05 2.01E+07 8.73E-08 1.80E-09 0.007 0.106

0 1.09E+07 2.17E+10 2.53E-12 1.33E-13 1.368 0.033

ORTHREGE 8 32 4.25E+04 1.42E+05 4.06E-09 3.33E-10 0.002 0.120

0 4.26E+07 1.73E+11 1.90E-10 3.54E-09 4.539 0.048

Table 4.6

Results for the augmented system formulation with and without exploiting the dense rows in the least squares matrix

A. m is the number of secant equations and md the number of rows in A classified as dense. nnz(L) and nflops are the

number of entries in the augmented system factor and the flops required to compute it. ‖r‖2 is the least squares residual and

rel err is given by (4.1). The elapsed times (in seconds) for the factor and solve phases of the least squares solver HSL MA85

are given by T(factor) and T(solve).

identifier m md nnz(L) nflops ‖r‖2 rel err T (factor) T (solve)

BQPGAUSS 15 15 3.28E+06 2.24E+09 3.80E-10 2.74E-10 0.327 0.009

0 2.29E+06 9.94E+08 1.19E-10 9.14E-12 0.329 0.010

SINQUAD 7 7 8.54E+04 7.25E+05 2.11E-10 4.23E-11 0.045 0.002

0 5.40E+05 6.78E+06 2.11E-10 4.21E-11 0.185 0.005

CAR2 14 14 3.51E+06 2.48E+08 5.32E-14 2.23E-14 0.476 0.022

0 5.30E+06 2.86E+08 4.84E-14 2.06E-14 1.270 0.037

GASOIL 8 24 1.21E+05 1.89E+06 1.53E-13 2.22E-14 0.028 0.002

0 2.53E+05 2.36E+06 1.51E-13 6.89E-14 0.124 0.004

LUKVLE12 8 8 3.22E+05 5.27E+06 2.40E-12 1.12E-13 0.051 0.015

0 9.03E+05 1.02E+07 2.09E-12 8.23E-14 0.474 0.016

ORTHREGE 8 32 4.43E+05 1.54E+07 2.90E-11 6.11E-12 0.089 0.006

0 7.21E+05 1.46E+07 1.54E-11 7.56E-13 0.372 0.006

as sparse. As expected, this leads to much denser factors that are more expensive to compute. For the

normal equation formulation the increases are particularly large. For example, for problem ORTHREGE,

if dense rows are exploited the normal matrix formulation requires 1.42E+05 flops and the solution time

is 0.122 seconds but if all the rows are treated as sparse, the flops needed are 1.73E+11 and the time

increases to 4.587 seconds.

When dense rows are exploited, the normal equations can be significantly faster than using the

augmented system (for example, for problems BQPGAUSS and CAR2). This is because the Cholesky

factorization is faster than an LDLT factorization that has the overhead of pivoting for numerical stability.

In the remainder of the paper, all experiments on problems containing dense rows exploit those rows.

4.1.3. Results for problems with no dense rows. Table 4.7 reports results for the problems that

have no dense rows. Again, both the normal equation and augmented system formulations are successful

and generally of comparable quality.
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Table 4.7

Results for the normal equation and augmented system formulations for problems with no dense rows. The columns

report the secant parameter m, nnz(L) and nflops are the number of entries in the computed matrix factor and the flops

required to compute it. ‖r‖2 is the least squares residual and rel err is given by (4.1).

normal equation augmented system

identifier m nnz(L) nflops ‖r‖2 rel err nnz(L) nflops ‖r‖2 rel err

CURLY30 36 3.12E+08 3.32E+11 5.27E-08 2.87E-13 3.18E+08 3.15E+11 4.85E-06 1.06E-10

DRCAV1LQ 25 8.08E+07 1.16E+11 1.53E-08 9.75E-11 8.46E+07 1.18E+11 1.84E-07 1.46E-09

JIMACK 39 4.20E+08 2.45E+12 4.73E-09 1.26E-09 4.26E+08 2.39E+12 5.55E-09 1.50E-09

NCVXBQP1 9 2.06E+07 7.34E+09 6.35E-09 2.90E-12 1.97E+07 6.29E+09 1.47E-08 7.98E-12

SPARSINE 21 4.16E+08 4.09E+12 3.73E-09 2.06E-11 4.72E+08 5.15E+12 5.12E-08 1.79E-09

SPARSQUR 21 1.39E+09 2.59E+13 1.30E-08 1.87E-11 1.31E+09 2.14E+13 1.74E-07 5.70E-10

WALL100 15 6.32E+08 1.09E+12 1.43E-08 4.51E-11 6.39E+08 9.46E+11 9.29E-07 1.43E-08

MSQRTA 38 1.64E+08 1.28E+12 1.20E-12 8.77E-14 1.89E+08 1.66E+12 2.52E-12 3.29E-13

TWIRIMD1 70 3.11E+08 3.66E+12 2.76E-12 3.37E-13 1.01E+08 2.52E+11 1.81E-12 1.61E-13

YATP1SQ 8 1.08E+08 3.72E+10 1.12E-11 4.47E-11 1.81E+07 2.62E+08 4.51E-12 4.57E-13

4.2. Fixed Hessian matrix, nearly-dependent steps. Having confirmed that under idealized

circumstances we can recover good approximations to Hessian matrices using our least squares approaches,

we now consider two more realistic scenarios. In the first, we recognise that algorithms may produce steps

that lie close to low-dimensional subspaces rather than uniformly in Rn. For example, it is well known that

the iterates generated by the steepest-descent method tend to lie predominantly in a subspace spanned

by the eigenvectors corresponding to the two largest eigenvalues of the Hessian [1, 19]. Our aim is thus to

assess the ability to approximate a Hessian matrix when the step directions s(l) are not well distributed.

Table 4.8

Results for the normal equation and augmented system formulations for problems with nearly-dependent steps. The

columns report the secant parameter m, nnz(L) and nflops are the number of entries in the computed matrix factor and

the flops required to compute it. ‖r‖2 is the least squares residual and rel err is given by (4.1).

normal equation augmented system

identifier m nnz(L) nflops ‖r‖2 rel err nnz(L) nflops ‖r‖2 rel err

BQPGAUSS 20 3.55E+06 2.20E+09 1.23E-08 7.69E-10 3.41E+06 2.27E+09 3.49E-10 6.05E-11

CURLY30 50 3.12E+08 3.32E+11 5.95E-08 1.11E-13 3.32E+08 3.24E+11 4.94E-06 7.13E-12

DRCAV1LQ 30 8.08E+07 1.16E+11 1.78E-08 1.10E-10 8.55E+07 1.19E+11 1.31E-07 3.02E-09

JIMACK 49 4.20E+08 2.45E+12 6.66E-09 2.12E-09 4.23E+08 2.36E+12 1.07E-08 4.32E-09

NCVXBQP1 9 2.06E+07 7.34E+09 6.46E-09 3.71E-12 1.97E+07 6.29E+09 3.95E-07 2.80E-11

SINQUAD 7 1.50E+04 2.50E+04 1.52E-09 4.88E-11 8.50E+04 7.25E+05 1.96E-10 4.87E-11

SPARSINE 30 4.16E+08 4.09E+12 4.19E-09 2.36E-11 4.40E+08 4.43E+12 1.34E-08 5.46E-10

SPARSQUR 25 1.39E+09 2.59E+13 1.38E-08 2.83E-11 1.33E+09 2.17E+13 2.62E-07 1.74E-09

WALL100 20 6.32E+08 1.09E+12 1.50E-08 4.38E-11 6.52E+08 9.89E+11 1.59E-06 9.99E-10

CAR2 19 3.65E+06 2.73E+08 2.22E-10 6.95E-11 3.76E+06 2.83E+08 5.84E-14 1.23E-14

GASOIL 8 1.92E+04 8.00E+04 1.51E-08 4.09E-09 1.22E+05 1.90E+06 1.80E-13 1.87E-14

LUKVLE12 8 5.80E+05 2.01E+07 4.33E-08 1.20E-09 3.22E+05 5.27E+06 2.92E-12 2.99E-13

MSQRTA 50 1.64E+08 1.28E+12 1.30E-12 6.48E-14 1.77E+08 1.39E+12 2.55E-12 1.26E-13

ORTHREGE 8 4.25E+04 1.43E+05 3.56E-09 1.66E-10 4.43E+05 1.54E+07 1.51E-11 8.39E-11

TWIRIMD1 80 3.11E+08 3.66E+12 5.29E-12 3.01E-12 1.13E+08 3.11E+11 2.99E-12 1.48E-12

YATP1SQ 8 1.08E+08 3.72E+10 2.68E-11 6.76E-10 1.81E+07 2.62E+08 6.30E-12 1.61E-11

To this end, we repeat our experiments for the fixed H and HL except we now generate the s(l),

l = 1, . . . ,m as follows. For a chosen d < m, we compute s(l) ∈ (−1, 1) randomly as before for l = 1, . . . , d.

Then for some small 0 < ε� 1 and l = d+1, . . . ,m, we set s(l) = s(l−d) +ερ, where ρ ∈ (−1, 1) is a pseudo

random number. This is intended to simulate optimization steps s(l) that lie in subspaces of effective (but

not exact) dimension d. In our experiments, ε = 10−5 and d = 0.8m. The results are given in Table 4.8.

As the conditioning gets worse with nearly-dependent steps, for some of the problems we found that to
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obtain a rel err of O(10−9) or less a larger secant parameter was required; the values used are reported in

column 2 of the table. For example, for problem BQPGAUSS, we used m = 20, compared to the previous

value of 15. With appropriate m, we again see that both the normal equation and augmented system

formulations are successful in obtaining high quality approximate Hessian matrices.

4.3. Varying Hessian matrix. In practice it is unlikely that the Hessian matrix is fixed, and thus

exact reproduction from gradient differences is unlikely. In particular, from Taylor’s theorem

H(x)s = y + e, where y = g(x+ s)− g(x) and ‖e‖ = O(‖s‖2), (4.4)

for objective functions with gradients g(x) and locally Lipschitz Hessian matrices H(x). If there are m

steps s(l), then

H(x)S = Y + E,

where S = (s(1), . . . , s(m)), Y = (y(1), . . . , y(m)), y(l) = g(x + s(l)) − g(x) and ‖E‖ = O(‖S‖2). Thus if

B = Y S−1 then

‖H(x)−B‖ ≤ ‖ES−1‖,

and B is a good approximation to H(x) provided ‖S‖ and ‖S−1‖ are modest.

We simulate this for l = 1, . . . ,m by generating s(l) as in Section 4.2 and then generating a perturbed

y(l) = Hs(l) + ερ (or y(l) = HLs
(l) + ερ) for small 0 < ε � 1 and pseudo random ρ ∈ (−1, 1). We no

longer expect to reproduce H exactly (as the LS problem no longer has a zero residual), but our hope is

to observe errors in ‖H −B‖ of order approximately ε. In our experiments we set ε = 10−5. Because only

y(l) is perturbed, the least-squares matrix and the factorizations of the normal matrix and the augmented

system matrix are unchanged. Thus, in Table 4.9 we only report the least-squares residual ‖r‖2 and the

relative error rel err given by (4.1). We see that rel err is now O(10−5) or less and, with the default

convergence tolerances for the solvers, both approaches report the same residuals and relative errors.

Table 4.9

Results for the normal equation and augmented system formulations for problems that simulate varying the Hessian

matrix. The columns report the secant parameter m, the least squares residual ‖r‖2 and the relative error rel err given by

(4.1).

normal equation augmented system

identifier m ‖r‖2 rel err ‖r‖2 rel err

BQPGAUSS 15 8.29E-04 2.38E-05 8.29E-04 2.38E-05

CURLY30 36 1.30E-03 2.14E-08 1.30E-03 2.14E-08

DRCAV1LQ 25 8.97E-04 1.18E-05 8.97E-04 1.18E-05

JIMACK S 44 1.12E-03 1.61E-05 1.12E-03 1.61E-05

SINQUAD 7 9.10E-04 2.27E-05 9.10E-04 2.27E-05

SPARSINE 30 1.53E-03 4.14E-06 1.53E-03 4.14E-06

SPARSQUR 21 1.30E-03 7.99E-06 1.30E-03 7.99E-06

WALL100 15 5.16E-03 5.53E-05 5.16E-03 5.53E-05

CAR2 14 1.04E-03 7.06E-05 1.04E-03 7.06E-05

GASOIL 8 7.86E-04 1.27E-04 7.86E-04 1.27E-04

LUKVLE12 3 4.96E-04 8.55E-04 4.96E-04 8.55E-04

MSQRTA 38 4.33E-04 2.01E-05 4.33E-04 2.01E-05

NCVXBQP1 9 2.89E-03 2.84E-06 2.89E-03 2.84E-06

ORTHREGE 8 1.18E-03 1.29E-04 1.18E-03 1.29E-04

TWIRIMD1 70 1.22E-03 2.52E-05 1.22E-03 2.52E-05

YATP1SQ 8 4.54E-03 2.55E-04 4.54E-03 2.55E-04

5. Concluding remarks and future directions. In this paper, we have considered the problem of

approximating sparse Hessian matrices. We have proposed a novel approach that uses the secant conditions
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and then solves a large sparse linear LS problem. Solving this is challenging because the LS system matrix

can contain dense rows (for example, when the underlying optimization problem involves constraints that

involve many variables) and it can be poorly conditioned. In our experiments, we found that increasing

the number m of secant equations improves the conditioning of the LS problem. For many of our tests,

a sufficient value of m was generally not much larger than the minimum value mmin that ensures the LS

problem is overdetermined (typically mmin + 5) but when we generated test problems in which we made

the conditioning worse, larger m were needed to retain approximately the same level of accuracy in the

computed Hessian matrix.

Existing methods for solving sparse-dense LS problems can be used and if these employ sparse direct

solvers, then our numerical tests found them to be robust. The main weakness of the new approach is

the size of the LS system matrix, which has a row dimension of mn and a column dimension equal to

the number of entries in the Hessian matrix. Thus, although we were able to solve all our CUTEst test

examples with a direct solver, the LS approach can be expensive in terms of time and memory requirements

for large problems and for even larger LS problems, a preconditioned iterative solver will be needed. There

is currently a lack of efficient, robust preconditioners for sparse-dense LS, although recent work of Al Daas,

Jolivet and Scott [2] is promising, This lack of preconditioners hinders the development of “black box”

software for computing Hessian matrices using our new approach. Consequently, our future plan is to

design and implement alternative strategies that again use the secant equations but seek to employ more

efficient methods of solution.
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Appendix A. Generation of Hessian matrices using CUTEst. Here we describe how the

unconstrained and constrained fixed Hessians H and HL used in the numerical experiments in Section 4

are generated.

For each unconstrained CUTEst test example we evaluate its Hessian matrix Hcutest(x) at a point

xpert that is a random perturbation of the CUTEst starting point xstart and set H = Hcutest(xpert).

Specifically, if xstarti (1 ≤ i ≤ n) is the initial value for component i of xstart, with lower and upper bounds

xli and xui , then

xperti =


xli if xli = xui ,

xli + ρmin(xui − xli, 1) if xstarti ≤ xli,
xui − ρmin(xui − xli, 1) if xstarti ≥ xui ,
xstarti + ρmin(xui − xstarti , 1) otherwise.

Here ρ ∈ (0, 1) is the pseudo random number returned by the call rand(seed,.true.,rho), where rand

is from the optimization package GALAHAD [10] and the default seed is used.

For the constrained examples, we evaluate the Hessian of the Lagrangian matrix Hcutest
L (x, µ) at a

random perturbation xpert of xstart (as above) and randomly generated Lagrange multipliers µrand
q ∈

(−1, 1) (1 ≤ q ≤ nc), with component i of µrand returned by rand(seed, .false., mu(i)). We then set

HL = Hcutest
L (xpert, µrand).
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