T T TR e am=

CoPy

LENDIN G

FOR

" DL/SCI/TMSIT

technical memorandum

Daresbury Laboraton

NUMERICAL ALGORITHM LIBRARIES FOR MULTICOMPUTERS

by

R.I. ALLAN, SERC Daresbury Laboratory

Ty

LL] 1 '
QO

NLY

L)
L.
LLl

JULY 1991

o

G91/293

Science and Engineering Research Council
DARESBURY LABORATORY |
Daresbury, Warrington WA4 4AD

DL/SCI/TMS8IT
-

cl
1

| | DARESBURY
LABORATORY

Il II}I\ I \III\ | IHHII} 3o 199

LIBRARY

UI‘I_I

© SCIENCE AND ENGINEERING RESEARCHCOUNCIL 1991

Enquiries about copyright and reproduction should be addressed to:—
The Librarian, Daresbury Laboratory, Daresbury, Warrington,
WA4 4AD.

ISSN 0144-5677

IMPORTANT

The SERC does not accept any responsibility for loss or damage arising
from the use of information contained in any of its reports or in any
communication about its tests or investigations.

Science and Engineering Research Council,
Daresbury Laboratory.

Numerical Algorithm Libraries

for multicomputers

R.J. Allan

Advanced Research Computing Group,
Daresbury Laboratory,
Warrington WA4 4AD

Numerical Algorithm Libraries for Multicomputers.

R.J.Allan Advanced Research Computing Group, S.E.R.C.,
Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, U.K.

Abstract

These notes were written to document experiments in the design
of a parallel algorithm library for numerical applications in
FORTRAN-77. The target computer is any cne of the current multiple
ingtruction multiple data (MIMD) distributed-memory multicomputers
although the philosophy is also applicable to shared-memory
computers. Versions of the software are also available for such
UNIX-based multiprocessors and also networked UNIX hosts. I have
used Intel iPSC/2, Intal iPSC/860, Meiko Computing Surface with i860
CPUs and Transputers, and other Transputer-based hardware, and also
Convex and Alliant mini-supercomputers and workstations. Extensive
reference will be made to a previous review [1]1 on programming of
similar parallel machines in FORTRAN-77.

The communications paradigm is that of Fortnet [2,3], which is
representative of the general scheme of parallel communications on
multicomputers. Other public-domain and commercially available
harnesses differ only in detail. Extensions of this scheme are
illustrated which embody algorithms for global communication and
exchange of data between subsets of processes. This is compared with
global communications procedures available in other organised
libraries of software such as the SUPRENUM project grid library and
some commercial software which has ideas similar to our own.

Finally details of subroutine calling sequences and useage of a
number of axisting parallel numerical 1libraries is roviewed.
Examples are also given, taken from working programs, which
illustrate programming styles. These might serve as an introduction
to parallel algorithm design.

Contents

I Introduction, philosophy of parallel programming
II Fortnet v3.0(trace)
III Generalised communications

1) Intel Globals ,

2) Argonne/GMD Macros and SUPRENUM

3) SUPRENUM Grid Communications

4) FPS T-series Topology Daescriptor Routines and

Communications
5) Linda Tuple Space
6) Express Decomposition Tools

7) Fortnet Covering/Connect Schemes and Global Skeletons
IV General programming styles
V Parallel libraries

1) Intel Eiscube and Lincube Libraries

2) Topexpress Parallel library

3) Liverpool Parallel library

4) Fortnet distributed BLAS Libraries

I Introduction

In this introduction I wish to discuss the motives behind oy
work on parallel algorithms and describe a number of ways in which
such algorithms can be designed. Some solutions have been hand-
optimised for specific algorithms. Whilst these will ba illustrated
in section IV they are not of primary interest, what IS is the more
general +type of parallel strategy which underlies a number of
algorithm libraries which are now emerging. These Ilibraries are
fundamentally different one from another and something may be learnt
from each of them. I shall describe

i) Intel globals -- Intel gleobal communications routines [6]

ii) Suprenum grid communications -- Suprenum communications
for grid topology [24]

iii) Argonne/GMD communications macros -- Argonne National
Laboratory and Gesellschaft fur Mathematik und Datenverarbeitung
general routing calls [27]

iv) FPS T-series topology descriptor routines [28]

v) Fortnet v3.0 (trace) -- Fortnet routing harness layers [2-4]

vi) Express -- Parasoft’s message passing harness which
includes some routines for data decomposition [49, 50]

vii) Eiscube and Lincube -- Intel global matrix algorithms and.

level-2 BLAS [55]

viii) Liverpool parallel library -- NA Software Limited’s global
algorithms and work for the Supernode project and NAG Ltd. [17, 25,
26]

ix) Topexpress Parallel library [29]

x) Fortnet library -- Fortnet algorithm library [0]

Other libraries and communications primitives have been written, and
I mean no disrespect by omitting them, but I don’t have sufficient
information to do justice to a full description. Some examples which
I have omitted more for reasons of space are work on SPLIB by Dave
Snelling [9] and the paralle]l library project of MIMD Systems [47,
48] .

Several strategies have been adopted to write parallel
algorithm libraries. They should rely on some underlying global
communications rather than ad hoc solutions for each routine. The
reason for this is twofold; firstly there is a duplication of effort
in writing communications into each algorithm where the job can be
done once, secondly there is the question of data placement. Moving
data between processors is currently expensive, although one hopses
that in future machines it will appear to be of like speed to direct
local memory access rather than an order of magnitude slower.
Optimisation of performance currently involves packing data transfer
inte a single message with the use of an ‘’intermediate’ buffer.

Dther cacheing techniques could be consaidered. This is a messy
business and had better be put into a subroutine rather than left
axplicit.

Some comments on assessing the performance of algorithms were
given in [1] and [14], we will however consider performance to be
largely irrelevant for the present discussion and concentrate on
optimising ’programmability’. Programmability arises through hiding
the communications routing altogether inside subroutines which carry
out certain actions on globally distributed data. Assumptions must
be made in doing this, but first what are the essential actions?

i) distribute data across global memory (scatter) from local

ii) collect data from global memory to local (gather)

iii) move data in global memory

iv) transform data in global memory

Item (iv) 1is the global algorithm which is the goal of our work.
Items (i) to (iii) may be steps towards it. Other operations are
identical to these on sequential vector computers such as local
gather, 1local scatter, local copy and local vector algorithms and
might even be implemented in hardware ae on the Intel or Suprenum. I
would like to consider data motion in a MIMD computer to be
expressible in the same way as vector operations in a vector
computer (such as those available in the VecLib library [6, 42]).

A decision has to be made which is: will data be moved to
processors before the operation of each numerical routine or: will
data be acted upon by the routines no matter where it is in the
computer?

The first of these sclutions has bean widely used already, and
is indeed +the basis for a programming model with an array of

processors attached to a host computer. The host executes a
sequential program which from time to time will call Ilibrary
routines. The action of these routines is to farm data onto the

attached processors and then get them to perform a parallel
operation, the result being brought back to the host. This model, in
a slightly more sophisticated form is typified by the Liverpool
software [17].

Diametrically opposed to it is the model which I have used for
my own experiments, and which is also used by Intel Scientific
Computers, Parasoft and SUPRENUM. A number of global routines are
provided which must be called simultaneously from all the nodes
(called loosely synchronous). In the Intel library, routines operate
on a set of locally defined vectors.

In my work presented here a a crucial distinction is made
between a local variable (memory) space to each process and a global
space. Normal FORTRAN-77 variables refer to local memory and no
message-passing, cache or bus conflicts can arise from using them. &
number of symbolic variables refer to data stored globally in the

computer’s memory, the programmer doesn’t know where. Data may be
put into these variables, moved between them and operated upon by
algorithms, ©but the user need have no knowledge of how the
communication is carried out. This is a matter for the layers of
global communication and routing software which is described.

The Suprenum project alsc identified the need for global
operations using a number of pre-defined grid topogies [24]. A large
library was provided for defining and using grid operatioms.

The aim of both +these approaches is to allow =several
possibilitie to the programmer:

i)} routing may be optimised, eventually in hardware

ii) global communications may be optimieed, possibly in
hardware

iii) distributed-memory algorithms may map on to shared-memory
architectures or vice versa

iv) Communications can be tested once and for all and proved to
be deadlock free

v) The programmer is free to concentrate on applications rather
than difficult problems of data handling

vi) most programs spend a lot of time generating expensive data
'in situ’ and true parallel programming is then essential

vii) portability cam be assured by modifying only
communications layers

viii) Analysis and performance tools may be built in to well-
defined communications layers

ix) With a well-defined set of global routines accessible from
the nede program an automatic parallaeliser can be written

A foature of my own work is that in using the higher-level
routines true parallal programs are written which execute
concurrently on all the nodes. A routine for a global operaticn must
be called simultanscusly by all of them (unless you the user know
otherwise after reading this document). Communications are then done
internally and actions are performed on the true data which may be
accessed by the calling program via a symbolic variable.

& summary of the layers of software iavelved in building a
parallel library is shown in figure 1.

Single-node vector processing capability and justification of
library strategy.

A number of the multicomputers mentioned here, the SUPRENUM,
Intel iPSC/2 Intel iPSC/860 and also the old FPS T-series, derived
their very high potential performance from vector pipeline units on
each node. This is 1likely to comtinue and it is unlikely that
current tachnology will increase the data rate far beyond the
computation rate, or produce a very large-scale parallel array

Figure 1. Software Layers used in building a Library.

Application Program

R
R
W

Library Interface
&
™ e
3 S, Y A
S ik
W
sequential or [~ PARLANCE
Vector Flobal Communicatior
numerical . Skeletons
kernel _ o o
_‘5%\ ' ! : Prof:Ll:Lnlg and
B graphical
Fortnet +3.0 L analysis
. e
Fortran Communication \\\;\5:\\}\ system
Interface 1
I
L
N vy 4
[
. raw communication
other processes harness other processes
Key:
calls

i sends data
i receives data

(exceptions being SIMD machines). In fact the opposite is happening
following the introduction of the Intel i860 processor.

It is therefore essential to be able to include vector
processing in "the kernel of library routines. This can only be
achieved if a vector of operands can be transmitted to the nodes
before the operation is performed; one reason for separating the
communication from the computation step. Vector operations are most
efficient for long vectors, as is communication, which indicates the
coarse-grained nature of the machine i.e. for a distributed vector
there should be MANY more elements than nodes. This also implicates
a large amount of memory per node > 4Mbyte. Except for special
applications it would be usaless to build vector multicomputers with
more than 128 processors if a 128 element vector is the best length.
This is relevant to problems of order 10000. The corollary is that
long communication pathgs do not occur and a strategy of processor to
processor rather than element te element communications is better.
This will be adopted in the following discussion.

The possibility of Automatic Parallelisation.

A number of automatic vectorisors exist to convert sequential
FORTRAN programs to ones in which operations are expressed in terms
of calls to a library (like VecLib) rather than as nested do loops.
This technigue is now well understood. Once we have defined a set of
global routines of a type similar to the sequential ones, and
assumed that the same program is to run on all processors, and that
communications are internal to the routines, the same principles of
vectorisation may be applied to parallelisation.

This has now been done by the Suprenum project in their SUPERB
(SUprenum ParallelisER Bonn) software [22], which produces code
mapping directly onto their grid-topology communications library
driven by the placement of data onto the processors. The ASPAR tool
from ParaSoft performs a similar operation for the Express
primitives [54].

In order that such parallelisers produce efficient code one
further input is required to be given explicitly. That is the
particular way a vector or matrix is distributed, or if it should be
globally present on all nodes. The principle is completely general
and any program can be parallelised, its efficiency depending only
on the availability of underlying global routines for the
application attempted.

Finally, I would not advocate immediate standardisation on any
particular communication scheme or type of algorithm. It is still
too early in the development of parallel computing and many avenuaes
have yet to be explored which may be hindered by acceptance of a
premature standard. The user must therefore bear this in mind. I
have aimed at flexibility in my own work and might thus try to keep

abreast of what is a rapidly developing field.

I1 The development of Fortnet v3.0 (trace), and analogy to
other portable communication harnesses.

The original concept of Fortnet and ite v2.1 incarnation have
been dealt with in refs. [2-4]. A few new additional features are
worth mentioning, and a summary can be given of <the current
situation.

Fortnet is now available for use with the following lower-level
routing software and compilers

i) Meiko Computing Surface occam-2 libraries, C and FORTRAN-77
(6]

ii) Intel iPSC C and FORTRAN-77 [4, 5]

iii) 3L Parallel FORTRAN-77 and C [16, 18, 19]

iv) UNIX 4.2BSD sockets (a.g Convex and SUN operating systems)
using C and FORTRAN-77 compilers [43]

v) Meiko CStools on T800 and i860 nodes [7]

vi) the ipcv3 networked harness for UNIX nodes [51]

vii) TINY transputer harness [12]

viii) Alliant £x/8 or £x/2800 shared-memory [56]

Fortnet is a multi-layered system of subroutines which roughly
follow figure 2. Each layer is largely independent of <the exact
functions of the previous one providing calling conventions are
adhered to. Thus each layer can be independently optimised or
tailored to suit a wide variety of parallel computers. This can be
done as new machines come onto the market. The top layer is always
the application code. The structure of Fortnet is described as
follows.

1) Initial development of Fortnet centred around the need to
supply a convenient means to use FORTRAN on the Meiko computing
surface for writing concurrent programs. This was not available from
Meike Ltd. when I started in 1987. The first stage of Fortnet was
therefore a communication harnese tc pass messages (data) between
the transputers in a controlled fashion. Similar work was done
elsevhere in the UK, e.g. Southampton University with a harness
called ECCL [52], and Edinburgh University with a harness called

TINY [12]. Fortnet also performs some taske like accessing the
front-end file-store, printing diagnostic messages to the screen,
and bookkeeping. This layer of code was written in +the new

concurrent language occam-2 which was designed for the transputer,
and was partly the result of work by Sebastian Zurek who visited
Daresbury during the summer of 1987. Fortnet could in principle be
implemented on any type of transputer array.

2) The second staga of development is a layer of subroutines
which may be called by the parallel FORTRAN-77 program as an
interface to the occam. These incorporate a protocel to verify the

Figure 2. Software Layers in Communication Harness.

Application or

Library

Fortnet v3.0
Communication Interface

—>
—

V4

Fortnet protocol layers
set up/check messages

Profiling and

graphical
analysis
gystem

y ¢

Routing table
map process/nodes

Y

other processes

Low-level routing layer

cther processes

correct transmission of messages and warn the user of any problems.
These problems are often of the sort that occur during early code
debugging which would just cause hangup if no error-checking
mechanism were present. A novel handshaking and blocking paradigm is
used for this checking which differs from other systems. The routine
calls are however superficially similar to those on hypercube
machines such as the Intel iPSC. This was Fortmet v1.0

3) Further development of the v1.¢ layer and incorporation of
full FORTRAN i/o on all nodes of the Meiko occam version was done by
Lydia Heck of Durham University. A full port to the 3L Parallel
FORTRAN language [16, 18] and also to the TINY communications
harness [12] was done by R.K.Cooper of Queen’s University, Belfast.
The i/o capability of the server process was alsc increased, and a
study was made of intermediate buffering of messages and access to
low-level channels tec improve performance. The interface is now
similar in style to other software mostly developed in the USA, e.g.
the PICL harness at Dak Ridge [57], PARMACS and ipcv3 at Argonne
[27, 51], and Express at Caltech [49, 50]. This was Fortnet v2.1.

4) Work started on an implementation to use UNIX sockets for a
TCP network of workstations or other systaems requiring UNIX-style
inter process control. Somevhat earlier work had however been mada
in this direction at Argonne National Lab. USA so when R.J.Harrisomn
visited Daresbury in the summer of 1990 it was decided to combine
the two harnesses. Fortnet therefore now calls the ipcv3 harness to
use sockets and UNIX shared-memory procedures, but ratains its own
higher-level functionality [59].

Completion of stages (3) and (4) yielded Fortnet v2.2 which is
installed on a number of machines in the UK including:

Durham Physics Meiko M10 (CSTools and Occam)

Leeds Computing Science, M10 and InSun system

Lancaster Computer Science Campus M60

Birkbeck College Physics M60

Sheffield Transputar Centre M10 and M40

Liverpool Transputer Centre M40

Bath SWURCC Central Computing Services M60

Rutherford Appleton Lab. M10

Daresbury Lab. M10 (Occam)

Daresbury Lab. M60 (CSTools)

Daresbury Lab. Intel iPSC/2 (Intel version)

Daresbury Lab. PC-based system (3L version)

Daresbury Lab. Convex C-220 (UNIX version)

Daresbury Lab. SUN Sparcstationl (UNIX version)

Daresbury Lab. Stardent P1500 (UNIX version)

Daresbury Lab. Silicon Graphics workstations (UNIX version)

National Physical Lab. M40

Queen’s University Belfast Parallel Computer Centre Parsys (3L
version)

(o

Belfast Applied Maths M40

Northern Ireland Transputer Centre M10

Belfast Aeronautical Eng. PC-based system (3L version)
UMIST Alliant £x/2800

UMIST Stardent P1500 (UNIX version)

The Fortnet harness v2.1 is available from Computer Physics
Communications and the Tramsputer Initiative Program Library at
Liverpool University, and is included in the third-party software
catalog of Meiko Scientific Limited (the Ensemble programme) and 3L
Limited. '

5) A demonstration interface has been written to the graphical
post-mortem display package ParaGraph from the Oak Ridge National
Lab. which was originally designed to replay execution of a program
using the PICL harness [57, 58]. It depicts dynamic execution of an
actual parallel program on +the screen of a workstation running X-11
windows in pseudo-real time allowing one to identify hot spots,
bottlenecks and errors and to effectively compare different
algorithms. Some work is still neaeded to tidy up this interface and
resolve some remaining questions about exactly how the display
should 1lock. Fortnet version 3.0 (trace) is however already
available for use in certain implementations. More details of this
are given below and an example is shown in figure 4.

A parallel profiler has also been written which shows the
activity of each processor in terms of the communications functions
and sequential code which it assumes to be cpu active. An example of
output is shown in figure 5.

Implementation of stage (5) of Fortnet on the Intel hypercube
allows us to benefit from these tools also in developing programs on
the iPSC. Such an exercise was necessary because we do not have
access to the internal workings of the Intel message-passing
subroutines. Furthermore Fortnet now provides a common environment
and devlopment platform on both the Meiko, Intel and UNIX-based
computers allowing direct porting of applicatiomns.

6) Development of a generic set of global-memory operations
required at the application level has started. This is a library of
subroutines which handle synchronisation and communications to, for
example, distribute or recall data in a known way over a known set
of processors allowing results to be calculated in parallel and then
be globally accassed. A& number of frequent operations, such as
generic vector-vector or matrix-matrix operations can then be
programmed where elements of the vectors or matrices are implicitly
distributed. This is the subject of section III of this report.

Further work is needed to investigate optimisation strategies
which will fully extract the parallelism inherent in these global
operations. Those involving a pair of elements will work well if the
available processors are logically divided into sets of independent

H

Figure 3. Schedule/Trace display on a SUN workstation.

Wied [€313edn 4o yihuay

(we B0y iy] [meypay)(_nm._mu_:.ﬂma::g_H..:._J_E.g n_.upw_.

: i 6 [oar] peads juen3

Bulwg |

ant12y

Spuan]

Sjuane Burssedcad
A117100

cop vy alEd]

SORA /B NPE DS el A /Bu00 /eS0 /S pUy AN ISELN
4 Suradedi 21npayas

dunpusaads gos|p
BuLyjou -aouads [eyed :ad|
3 1aaiseasdyuigyeang/asny
durpuaadss 1gs|p
Lo /LA /0q L1 auw/auny s Lidy

dmnpraa aas dunpuazaaas
4sa/ulg/ - |003pwd

Uk

<< 3T0SNOT >>

pairs for instance, and the same for any k-fold covering to
implement an cperation involving k distinct data elements. This is
pursued in section III.

7) The highest layer of the environment would directly call
these global routines to do numerical tasks. Standard library calls
have already been implemented in this way for vectors and matrices.
This is the subject of section V of this report.

Summary of Fortnet calls

The basic synchronisation and routing available in the Fortnet
library is as follows:

inode=nodeid() -- get Fortnet id of curremnt process, 0 for
server, 1 for master and 2 to nnode+l for slaves. This is the
integer parameter used in the following routines

nnode=numslave() -- find number of slave processors in array

chack(m) -- check to see if process m is waiting for data in
order to synchronise communication. This together with subroutine
wait constitutes the blocking mechanism.

wait(n) -- wait until process n checks, or acknowledge ready
to receive data

xsend(m,nbytes,buffer) -~ send nbytes to target process m
from buffer. Strong typing is enforced if X takes any of the values:
A ~ character, 5 - single precision, I - integer, D - double
precision, C - complex, Z - complex double precision, L - logical.
If the character X is omitted no strong typing is enforced. This is
only important when passing messages between different processor
types if it is necessary to change the internal number
representation.

xreceve{n,nbytes,buffar) -- receive nbytes from source process
n inte buffer
xracany (iproc,nbytes,buffer) -- receive nbytes into buffer

regardless of which processor they came from, the source processor
id is stored in iproc

xchange(n, m, nbytes, bufferl, buffer2) -- an efficient
implementation to exchange nbytes of data between processes n and m.

read(lu,nchar,buffer) -- read data from globally accessible
file lu via the driver process

write(lu,nchar,buffer) -- write data to globally accessible
file 1lu via the driver process. A number of other i/o functions have
been written [19]

brlist(proclist, nproc) -- enter nroc processors in the integer
list proclist into a database for broadcasting operations

brall(mode) -- where mode can be *ON’, ’OFF’, 'TOGGLE’, ’>RESET’
controls the behaviour of routines which require a broadcast step.
This enables the user to specify that only partial local results of
operations are required

I

ParaGraph.

in

Figure 4. Some of the display windows availble

A YHL1Inl dJsd4

g8
-}
1
o #0suey) |4
2 &1
n £t T Jaajuldd
! z
. b 001 31w eayy
s
3 L
s . S6G :ewy] do}g
€
F T
°

dilL
WNSIY- IS

18d1S
ZIS imEds
Upoous 1] |OJIS
Sedh aspuo
9] 1S3pou 4o 1

e
sy .“\.M....q..,..\...u AL

PO2My DR
42013
234335 awo)
sansnp Oy
2215 NENQ

HOTEW2ITLIN SUSE3M0Ed B3I

A R B B -

IMSIUIE 1RHIHAAS

brcast(root, nbytes, buffer) -- broadcast nbytes from buffar on
node root to nproc processes whose ids are contained in the
proclist, does a receive operation if incde not root. Loosely
synchronous

sync(root) -- global barrier to synchronise processors starting
from root, targets are specified in the proclist. Loosely
gynchronous

debug(mode) -- where mode is any of 'ON’, ’OFF’ or ’'TOGGLE’
sets the mode of event tracing for the calling node. This trace
information is used by the profiler and graphical analysis tools.

lockon(lockno) =-- lock a critical saection of code and ensure
that it is executed in numerical node order for all nodes appearing
in the proclist. Each process waits for all those with a lower
number to run and is blocked until they call lockoff(). Locks can be
nested with different lock numbers. Error messages are printed if
the nesting is not dona correctly. This may be useful for handling
i/o or other shared resources

lockoff(lockno) -- unlock a ciritical section of code spanned
by a lock of the given number unblocking processes in proclist with
higher numbers

The operation of these routines is described in references [2-
4]. It is significant that they will hardly be used in the following
pages but are incorporated inside higher-level calls.

In the early days Fortnet gave us a way to write parallel
programs in FORTRAN for the Meiko Computing Surface. It has now
become a basis for further developments and provides a standard
portable platform for writing parallel code.

Dafinition of logical processes in Fortmet. Graphical analysis
and profiling tools.

In order +to take over and make use of, on local-memory MIMD
computers, software developed for shared-memory ones (such as CRAY,
Alliant, Convex etc.) it is necessary to define a ’logical process’.

A logical process is a piece of sequential code which runs onr a
processor and has communications at either emd, unless it is - the
beginning or termination of the executing thread. A number of
logical processes placed together end to end on one processor form
what I shall call a ’job’. Jobe are linked together by complex data
dependency paths in a topology which is representative of the
overall ’task’ or program.

In a shared-memory computer a logical process {(or process)
might, for instance, be a subroutine which is scheduled to run on a
processor when data in its argument list is ready. In a local-memory
machine a process is usually a shorter piece of code and data must
be physically transferred to the processor on which it is to run.

13

The scheduling mechanism is howaver identical and does not occur
until all the data dependency is satisfied (it is blocked until
then). We will refer to a job as being a sequential collection of
processes separated by communications to other jobs. A number of
jobs running in parallel is a task.

Job scheduling can be done auntomatically under control of a
main program, as has been done in the Argonne Schadule package [21].
In a similar way the complete task lends itself to graphical display
and profiling in this form; details of the szequential chunks are
less interesting than the passage of data between them. We have
theraefore used the Argonne Schedule Trace package [20] to display
execution of parallel programs running with Schedule at the job
level, as shown in figure 3, and using ParaGraph to show the Fortnet
communications between these jobs as shown in figure 4.

Using this scheme it is possible to profile the length of time
spent in doing data transfer, computation or waiting on each
processor. There is a Fortnet parallel profiler which does this.
This technique of active profiling is in general the only way to
tost real performance of a parallel algorithm, although valuable
theoretical work has been done by the Liverpool group to predict the
performance of some [see 1].

Figure 5. Typical output from the Fortnet profiler

% profile
*#kkx Fortnet »*xxxk Pretrace Facility, nnode = 4rx
..... Processor 1 started at 10.375
..... processor 2 started at 11.875
..... processor 3 started at 12.031
FORTRAN STOP

..... node 1 finished
FORTRAN STOP

..... node 2 finished
FORTRAN STOP

..... node 3 finished

..... sortp0 all finished
*kxkd Fortnet Profiler kkkiok

..... Fortnet timings in seconds
proc, receve, send, wait, chack, sequential

0, 0, 0, 0, 0, 0
1, 142.5, 124.5, 0, 0, 2840.3
2, 144.38, 142 .5, 0, 0, 432.38
3, 124.5, 144.38, 0, 0, 2123.5

..... number of calls

proc, receve, send, wait, check, sequential
¢, 0, 0, 0,0, O
i, 12, 12, 0, 0, 24
2, 12, 12, 0, 0, 24
3, 12, 12, 0, 0, 24

..... diagnostics

processor 0 terminated

proceesor 1 terminated doing sequential code
processor 2 terminated

processor 3 terminated

4

15

JII Global Communications.

In this section I attempt to outline some software which is
able to carry out global data movement. Mostly this takes the form
of simple extensions of breadcast constructs with the contents of
locally defined vectors of numbers being sent to other nodes and a
function performed which may for instance add or contatenate them
elementwise with existing data. There are however also some more
powerful routines.

III.1 Intel Globals

The iPSC communication Jlibrary contains a limited number of
bitwise or elementwisae global operations between vectors defined
locally on the mnodes. Each of these is not a componant of ona
globally defined vector, but is defined locally and they may be of
differing lengths. For instance calling gdsum(x,n,work) on all nodes
does

gdsum(x,n,work) -- (sum(x(n,i)),n=1,ni,i=1,p) where x(1:ni) is a
partial vector on node i, and there are p nedes. Input arguments ara
all locally defined, and the work vector is required to hold values
transmitted from other nodes.

Possible o¢perations listed below, are ’*and’, ’max’, 'min’,
'or’, ’prod’, ’‘sum’ and ’'xor’. An external function may be placed in
a skeleton call for a user-defined operation similar to these. A
concatenation operation for vectors is provided. A sync operation is
provided and a broadcast operation with the possibility to select
nodas.

gcol(x,xlen,y,ylen,ncut) -- global concatenation, places xlen
bytes of x from all nodes and processes with the same pid into y on
every node in increasing order. A broadcast operation. ncut is the
number of bytes returned in y. xlen may have different values on
different nodes.

gopf(x,xlen,work,f) -- global operation of a user-defined
associative and commutative function £f. The external function f must
have +two parametersz, the input value and an array for contribution
from other nodes. Same behavicur as gdsum.

gsendx(type, x,xlen,nodenums,nlen) -- broadcast a vector x of
length xlen bytes to a list of nlen nodes in nodenums() as messages
of type ’type’

gland(1lx,n,work) -- integer bitwise or logical global and
operation for vectors of n olements. Work is a workspace of length
>= n. N may have different values on different nodes.

giand(ix,n,work) -- same as above for integer operands

gshigh(x,n,work) -- global MAX operation on real vector x of

16

length n elements.
gdhigh(...) -~ same as above for double precision operands
gihigh(...) -- same as above for integer operands

gslow{(x,n,work) -- global MIN operation for real numbers
gdlow(...) -- same as above for double precision operands
gilow(...) -- same as above for integer operands
glor(x,n,work) -- global logical OR operation

gior(...) -- same as above for integer operands
gsprod(x,n,work) -- global multiplication of real numbers
gdprod(...) -- same as above for double precision operands
giprod(...) -- same as above for integer operands
gesum(x,n,wvork) -- global sum for real cperands

gdsum(...) -- same as above for double precision operands
gisum(...) -- same as above for integer operands
glxor(x,n,work) -- global bitwise exclusive OR

gixor(...) ~- same as above for integer operands

gsync{) -- global synchronise all nodes

IIT.2 Argonne/GMD Communications Macros and ipcv3

I have included this section because of its use in portability
and its potential extensions to global communication schemes.
The Argonne/GMD macros have been written to help port programs

over a wide range of shared and local-memory MIMD computers. They
consist of instructions in capital letters used as mormal FORTRAN or
C statements or variables with a2 possible list of arguments. They

must be precompiled with a macro expander (such as m4¢ in UNIX
environments) prior to compilation to produce source code specific
to the computer on which the program is to run.

The available macros in the original suite are [27]

ERVHOST -- environment variables for host program. Must be
placed before any executable statement of all routines using the
macros

ENVNODE -- same for node programs

INITHOST -- used to initialise the host environment. Must
appear once before any macro calls

INITNODE ~- same as above for each node program

REMOTE_CREATE(process_file,procid_vector) -- loads the node
programs from a configuration file process_file, and returns a
vector of integer process ids in procid_vector which may be used to
communicate with them.

TORUS(nx,ny,nz,slave,process_file) -~ macro to create the above
mentioned configuration file in a machine-independent way for 1d, 24
and 3d tori. Slave is the full name of the executable image file. It
is planned to add more topology macros later. This has some
resemblance to the FPS software also described in this document

7

MYPROC -- a variable which is the self process id

HOSTID -- a variable which is the host pid

SEND(target_id,buffer,length,type) --send a contiguous memory
section to another process. Returns control to program when message
has left sending process. Asynchronous.

RECV(buffer,buffer_length,length,sender,type,condition) -- type

is a message tag and condition is a selection macro as given below.
This macro receives a message asynchronously

'condition’=MATCH_ID(select_sender) -- select only if id
matches

‘condition’=MATCE_TYPE(select_type) -- selact only if messaga
type matches

*condition’=MATCH_ID_AND_TYPE((select_sender,select_type) --
select only if both type and sender match

'condition’=MATCH_ANY -- selact any message in the ’mailbox’, a
mailbox is a fifo stack of message buffers for reception by a
unique process.

SENDR(target_id,buffer,length,type) -- synchronous send

RECVR(buffer,buffer_length,length,sender,type,condition) --
synchronous receive

PROBE(flag,condition) -~ check mailbox for existence of the
specified message and return flag=1 if it is there, otherwise flag=0

WAIT_MESSAGE -- block the user process until a message enters
the mailbox.

BARRIER -- global synchronise all node processes, blocking
until they have all reached this macro

CLEAN_UP -~ should be put at the end of the host program to
kill and clean up processes on the nodes. This may be followed by a
further REMOTE_CREATE macro.

ERROR -- variable referring to termination of previously
invoked macro: 0 if normal: -ve if warning: +ve if severe error. It
is the user’s responsibility to test this condition, although an
error message is sent to the stdout stream.

This provisional set of macros presents an extension of the
Intel iPSC programming environment with the additional feature that
resulting programs may be ported to other machines. The Intel NX/2
node operating system has been modifed to provide +this extra
functionality by the Gesellschaft fur Mathematische Daten-
verarbeitung in Germany and the Katholieke Universiteit Leuven in
Belgium [27]. Its strength would be further increased by a set of
more powerful global macros using topologies preplaced in the
configuration file, such as the full SUPRENUM library.

4 subset of these macros has been studied in intemnsive
computational science applications by R.J.Harrison at Argonne, and
has been re-written in a simple but robust form as a library called
ipcv3 [51]. We have used this simpler library as a basis for porting

13

our own software in a UNIX ipc envircnment.
ITI.3 SUPRENUM Grid Communications

In the application software of the SUPRENUM project (the German
national supercomputer project) parallel grid-oriented algorithms
are being written especially for multigrid CFD codes. Interest from
this area is now widespread as expsctation of parallel performance
has increased. A central communication library greatly facilitates

the data decomposition. Portability of the resulting applications is
also achieved by means of a single communication library optimised
for various machines (especially the SUPRENUM and Intel). Versioms
are available which use the message-passing primitives of either
Intel, Suprenum or the portable Argonne/GMD macros (see above).

For a particular application a rectangular domain can be
subdivided into smaller rectangles with some overlap, and each
subdomain is assigned to a different process. This leads to a
logical process grid. Mapping of this virtual process grid onto real
processors is done by calling library routines which are optimised
to the underlying architecture. A further assumption is that all
nodes execute the same code (I have also assumed this in Fortnet,
and it is also done in Express).

The 1library provides routines to set up the 1logical process
mapping, carry out global operations, and do exchange of grid
functions across two- and three-dimensional array boundaries. 1In
iterative parallel algorithms this exchange across inner boundaries
(i.e. data belonging to different processors on each side) is a
common task. Data in an overlap region is stored, and is updated
during the exchange operation to reduce the amount of communication
necessary in the other library routines at the slight expense of
additional computation and memory requirement for the duplicated
points. Other multigrid operations involve increasing or decreasing
the number of points considersd in certain areas of the parameter
space, with a need to re-partition them across processors.

The implementation is good, with buffering of all messages
between two processors into a single message (intermediate buffer)
to reduce overheads when possible.

The following routines are in place in the Intel version of the
Suprenum grid communications library [24]. Some common blocks are
used for data as described in the extensive documentation.

agglm2.f(nxnew, nynew, inew, jnew, array, n, nstart, iworkl,
iworkx, idl, idx, jdi, jdx, il, ix, jl, jx, re,.lenre, idimre, in,
lenin, idimin, iorder, repeat, error) -- agglomeration routine for
two-dimensional grid processes. On changing the scale of the grid
not all processes are needed, this reduces the number of executing
processes and scales the variables.

14

agglm3.f(nxnew, nynew, nznew, inew, jnew, knew, array, n,
nstart, iworkl, iworkx, idl, idx, jd1l, jdx, kdl, kdx, i1, ix, j1,
jx, k1, kx, re, lenre, idimre, in, lenin, idimin, repeat, error} --
agglomeration routine for three-dimensional process grids

cmlmsg.f(string) -- allows a message to be written to a
protocel file

cmlver.f -- print out the version date of the communication
library

crgr2d.f(nx, ny, slave, period, re, lenre, in, lenin, error) --
creates a grid process of two dimemsions, an nx* ny logical node
process whose name is contained in the character variable slave.
Links the process information in both 2D grids and binary trees and

sende the information to each grid process on its neighbouring
proceses. This routine must be called from the host

crgr3d.f(nx, ny, nz, slave, period, re, lenre, in, lenin,
error) -- creates an nx* ny* nz three-dimensional grid process
whose path name is slave. Links and sends information as above

gloph.f(re, lenre, in, lenin, tag, error) -- raceive results of
global operations over all node processes ‘

glope.f(re, reop, lenre, in, inop, lenin, back, host, tag,
error) -- perform global operations on real vector re and integer
vector in over a tree structure. Operations available are *+’, ’max’
etc., Broadcasting of the results is optional, but routine gloph must
be called if it is done

grid2d.f(nx, ny, i, j, re, lenre, in, lenin, error) -- node
counterpart of crgr2d, must be called at the start of the node
program execution. Receives information and passes it to the calling
program

grid3d.f(nx, ny, nz, i, j, k, re, lenre, in, lenin, error) --
raceive information as above, node counterpart of crgrd3d

gupdt2.f(array, n, nstart, idl, idx, jd1, jdx, i1, ix, jl, jx,
color, width, order, tag, error) -- sends the values of the grid
functions at points of the overlap zones of inmer processes to the
neighbours and receives the corresponding messages. This is a
combination of the funcionality of rupdt2 and supdt2

gupdt3.f(array, n, nstart, idl, idx, jdl1, jdx, kdl, kd=x, il,
ix, j1, jx, k1, kx, color, width, order, tag, error) -- sends the
valules of grid functions at points in the overlap zones on inner
process interfaces to neighbour processas and receives the
corresponding messages. As above for the 3D processes

hstart.f(error) -~ initialise the process environment of the
host

hstend.f -- clean up the process environment at the emnd of
execution

intrpt.f(string) - allow a user to stop the distributed
application

racia.f(intarr, idl, idx, jdl, jdx, kdl, kdx, imin, imax, jmin,

A

A0

jmax, kmin, kmax, tag, error) -- receive a subarray of integer array
intarr,

recra.f(array, idl, idx, jdl, jdx, kdl, kdx, imin, imax, jmin,
jmax, kmin, kmax, tag, error) -- receive a subarray of real array
array.

racvwh.f(ci, type, buf, len, cnt, node, pid, error) --
simulates the communication routine recvw in the host process

rupdt2.f(array, n, nstart, idl, idx, jdi, jdx, i1, ix, jl, jx,
color, width, dest, tag, error) -- receives the values of the grid
functions at pointe in the overlap zones on inner 2D process
interfaces from neighbouring processes

rupdt3.f(array, n, nstart, idl, idx, jdl, jdx, kdl, kdx, il,
ix, jl, jx, k1, kx, color, width, dest, tag, error) -- as above for
3D process

rupeg?.f(array, n, nstart, idl, idx, jdi, jdx, il, ix, ji, jx,
color, width, dest, tag, error) -- exchange-receive routine as above
but for staggered grids

sendia.f(intarr, idl, idx, jdl, jdx, kdl, kdx, imin, imax,
jmin, jmax, kmin, kmax, idest, jdest, kdest, tag, error) -- sends a
subarry of the integer array intarr to amother process

sendra.f(intarr, idl, idx, jdl, jdx, kdl, kdx, imin, imax,
jmin, jmax, kmin, kmax, idest, jdest, kdest, tag, error) -- as above
for a real array

supdt2.f{array, n, nstart, idl, idx, jd1, jdx, il, ix, j1, jx,
color, width, dest, tag, error) -- sending routine to match rupdt2
above

supdt3.f(array, n, nstart, idl, idx, jdl, jdx, kdl, kdx, il,
ix, j1, jx, k1, kx, color, width, dest, tag, error) -- sending
routine to match rupdt3 above

supsg2.f(array, n, nstart, idl, idx, jdl1, jax, il, ix, jl, jx,
color, width, dest, tag, error) -- sending routine to match rupsg2
above

swtdim.f (lostdm, error) -- switches from a 3D to a 2D
environment. A further call restores the original 3D environment

syncre.f(isend, jsend, ksend, tag, error) -- used to
synchronise two processes in a two-dimensional process grid.
syncse.f(isend, jsend, ksend, tag, error) -- as above for a 3D

grid
testtag.f(tag) -- tests whether a message with the identifier
tag is waiting in the mailbox of the current process

III.4 FPS T-series

The FPS T series was not discussed in the previous document [1]
because it is no longer relevant as a FORTRAN development platform.
It is however useful to review the experience of global
communications on this machine. FPS were probably the first company

21

to recoghise the importance of this higher-level use of processor
arrays.

Tha FPS T series was a hypercube of vector processors with
transputers controlling data flow through multiplexed links. 64-bit
arithmetic could be performed at peak vector speed of 12 Mflops, in
part enabled by a novel use of dual-ported video RAM memory, 1 Mbyte
per node. A complete node occupied a single board and each group of
aight nodes, a 3-dimensional cube, was coordinated by a system node
transputer with attached Winchester disk drive. Connections between
nodes wara over 4-way multiplexed transputer links.

A nice feature of the software which was being developed by FPS
before the model was withdrawn was the capability to construct
'topology descriptors’. These allowed communication between nodes in
a way specified by the topological symmetry (ring, wmesh, torus
aetc.). More than one symmetry could be used simultaneously, and the
mechanism for controlling it, described below, looked rather like
file handling.

The operational enviromment of the T series was ULTRIX with a

micro-Vax front end. A subset of UNIX enabled the cube to be
allocated and programs compiled and locaded onto it. The C00 raleass
of the Penguin Software (now Pentasoft) F77 compiler was rather
primitive and did not have full F77 i/o facilities on the nodes. To
communicate with the terminal the writexxx_h routines are used which
passed data through a file server, where xxx stands for int, str,
r64, nl etc. This is a feature shared with an earlier version of
Fortnet (v2.0), which communicated with files via a server in the
host processor. Later software is also able to provide full i/o. A
host file server is also a crucial feature of Express.

To communicate between nodes on the T series, a topology must
be chosen for the interconnection, and declared by calling one of
the topology routines. The available topologies are: ring, torus or
hypercube, and are declared by calling one of:

call config_hyp(idim, itd)

call config.torus_id(isize, itd)

call config_torus_2d(isizel, isize2, itd)

This is discussed below.

T series utilities allow accese to, and control, the T-series
processor configuration from an executive node program (i.e. running
on the front end). Executive node communication functions allow a
vaector node to communicate with the front end. They are described in
section 5.2 of the manual [28]. System node disk communication

allowed a vector node to access the system disk. Vector node
communications functions allowed a node to communicate with another
node. A 1list is not provided as it is irrelevant to the present
discussion.

Vector node communication was used to balance communication and

L

computation and was accomplished through the following three steps:

Declare a topelogy in which communication occurs. This creates
and initialises a topology descriptor on each processor. The
descriptor contains information about the type of topology, the
number of dimensionz, the number of processors in each dimension,
the given processor’s position within each dimension, and the links
between processors. You can declare any number of concurrent
topologies, and every processor need not be included in every
topology. Remember that declaring a topelogy does not physically
change the machine, it just sets up a file which can map your code
on to a subset of the processors in a particular way, and selects
‘the existing physical links which are required to do this.

Open a topology for one or more typee of structured
communication. This must be done before communication can occur,
rather 1like opening a file to read or write data. When you open a
link file using open_l you must specify which topology it should
belong to, the maximum number of asynchronous i/o operations which
can execute concurrently on the link file, and the communications
medes to use. Any number of 1link files can be opened for a
particular +topology, that just describes the processor mapping
within which communication on the link file will occur.

Perform communication. Once a link file has been opened the
vector (v-) node communications functions allow various patterns of
structured communication within the topology that was associated
with the file. The functions are valid only if they correspond to
one of the declared access modes. A function call initiates
communication asynchronous with +the main process. If the next
statement initiates another it will also execute, until the maximum
number of processes declared in the 1link file is attained.
Communication can in this way be overlapped with computation. If a
following process depends on the result of communication a wait.l
function call should be issued tc ensure that the communication has
indeed terminated. Note that if two communications require the same
set of transputer links they will execute sequentially, whereas if
the links are distinct they may execute in parallel (optimisation?).

ata_ldo(cfh, idim, csend_buf, crcv_buf, icount) -- ordered all-
to-all in 1D of torus

ata_idu(cfh, idim, csend_buf, crcv_buf, icount) -- unordered
all-to-all

ato_1ido{(cfh, idim, idtest, csend_buf, crcv_buf, icount) --
ordered all-to-one

clogse_1(ifd) -- close v-~node communication link

config_hyp(idim, itd) -~ create a hypercube topology descriptor

config_torus(isize, itd) -- create a 1D torus

config_torus(isizel isize2, itd) -- create a 2D torus

config_free(ctd) -- destroy a topology descriptor

config_dim(itd) -- get the number of dimensions in a topology
descriptor

config_size(itd, idim) -- get the number of processors in a
given dimension

config_pos(ctd, idim) -- get ordinal position in a given
dimension

config_name(itd, cprefix, cname) -- build a unique file name

open_1(ctd, ipend, imode) -- open a vector node communications
link

ota_1d(ifh, idim, iorigin, csend_buf, crcv_buf, icount) -- ocne-
to-all communications in 1D of torus

oto_x(ifh, idim, ifrem, ite, csend_buf, crev_buf, icount) --
one-to-one communications across a dimemsion

rotat_1d(ifk, idim, idistr, c¢send_buf, crcv_buf, icount) --
rotate data in 1D of torus

swvap_x(ifh, idim, iprocl, iproc2, csend_buf, crcv_buf, icount) -
- process pair data swap across a dimension

wait_1(ifd) -- wait for completion of pending v-node
communications link activity

The information above related to the the FPS T-20 installed at
D.L. at the end of 1987. I have no information on any later
developments of the software.

III.5 Linda and Kernel Linda.

The original Linda was developed by David Gelernter at Yale
University. Kernel Linda was a trademark of Cogent Ressarch Inc. and
was integrated into the QIX operating system of the XTM workstation
resulting from the work of Wim Leler [30-34]. Both are communication
libraries for standard sequential languages which give an interface
looking like a virtual shared memory computer, but with an explicit
digtinction between access to shared constructs and local variables.
I have chosen to briefly outline the philosophy here because of its
resemblance to the Fortnet systam, and its potemtial use in gobal
algorithm design.

Linda defines an abstract machine with a globally accessible
memory for storage of both passive data and active processes with
environment variables [34]. Lists of data and keywords against which
it is matched are ’tuples’, stored in ’tuple space® (TS). A tuple
might for instance be (’house’, 3, 4.6) which consists of a
character string, an integer and a real number. This might be put
into TS using the routine ’out’ from any process

out{’house’, 3, 4.6)

Another procass may search tuple space for a matching ’template’ and

either remove its entry using in or just read it using rd:
in(’housa’, 7i, 4.6)

L

rd{’house’, 3, ?r)

In the first of these we have asked to match the string and real
number and put the correspending integer into variable i. Similarly
in the second the integer and string are matched and the real value
is read into r. The tuples can contain anhy number of items. In and
rd block exaecution until data exists in TS, alternatives are inp and
rdp which do not block, but return 1 if data is present or 0 if
nothing is found. A fourth routine puts an active tuple into TS
eval(’task’,i,routine(i))

It is evaluated later by any processor requesting a work packet,
initiated when its value is accessed with
in(’task’,i,result)

In Kermel Linda [34] only a single key is used, which might
conveniently be a subset of TS called a dictionary. Variables are
grouped into dictionaries like UNIX files into directories, and
dictionaries of dictionaries are possible. Calls are for instance

k_out(dict, key, val)

k_in(dict, key, var)

Many other routines exist for process creation and management and
for accessing system servers. It is easily possible to use TS in a
similar way to FORTRAN common blocks and teo define variables in
global memory.

A symbol in Fortnet (see below) may correspond to a dictionary
in Linda, and the index of the symbol to a keyword. Thus there is a
corraspondance between:

k_in(dict, key, var) and fetch(inode, 1, 1, dict, key, 1} or
var=fetcha(dict, key)

k_out{dict, key, val) and put(inode, val, 1, 1, dict, key, 1)
or call puta{val, dict, key)

Fortnet, like Linda, uses symbol tables present on each
processor to look up data. There is however no hashing or subtables
yet, and keys are instead a global offset of the requested symbol.

There are other differences. Kernel Linda is implemented at the
operating system level, and memory in a remote processor is searched
for the value of var without the user’s intervention. In Fortnet the
calls must be made in loosely synchronous manner on both source and
target processors f(or for safety’s sake all processors in the
network). This is however more transparent in the vector routines
which vould normally be called on all processors in any case to make
use of the parallelism of vector operations.

III.6 Express message passing and decomposition tools

Ay

Express [49] and the tools which use it are commercial products
of ParaSoft Corp. USA, resulting from research work done at CalTech
starting with the Crystalline Operating System [50]. It is a harness
which is now widespread, ported to a wide range of machines and
which implements a few generic global communication strategies. Ome
tool is F90 which converts FORTRAN-90 source (with array and vector
constructs) into parallel FORTRAN-77 source with Express calls.
Another is ASPAR an automatic paralleliser which takes conventional
FORTRAN or C programs and puts in Express calls for more common loop
based parallelism, such as task farming, with interactive help whare
required (e.g. data dependency). There is alsoc a debugger, NDBTOOL
which is an extension of the original one for the NCubs, and other
profiling tools, VTOOL, CTOOL, ETOOL and XTOOL. One specific example
of an application written using Express is DIME (Distributed
Irregular Mesh Environment) by Roy Williams of CalTech [53] for use
in CFD and Finite Element calculations.

Express itself is currently available for the following range
of computers:

most Transputer-based systems including: INMOS B0OO4 and BOOS
PC-AT boards, B011 abd BO14 SUN boards, Microway, Definicon and CSA
Tranputer boards for PC-AT, Levco Macinteosh boards, Topelogix SUN
boards and Meiko systems

NCUBE

Intel iPSC

SYMULT

SUN-3, SUN-4, SUN-386i

some shared-memory machines

As well as decomposition tools and communications Express
contains primitives for graphical applications. Thes are quite low

level but again use the parallel philosophy in common with the
message-passing harness, and are intended to be portable with
interfaces to PC graphice or X11 windows for instance. We will not
discuss here either the graphics or the basic message-passing layer.
The original documentation is easily obtainable if details are
required.

The global operations in Express are of two kinds, firstly data
oxchange and decomposition tools and secondly i/o control. They have
many aspects similar to our own Fortnet harmess, but work with
locally-defined vector data in a way similar to the Intel global
operations. There is however a more powerful set of decomposition
tools to help form these local vectors from the global data
structure underlying the problem. For i/c there are several modes
suitable for most applications which allow existing programs to be
run intact on the nodes, Every processor also has access to the
operating-system capabilities of the host processor attached to the
network. This is handled by a host process called Cubix which is

b

similar to the Fortnet Server process or the Inmos AFServer. The
Express system, 1like the Intel communications and the Argonne
softwvare, requires typed messages. Some of the relevant routines and
commands are now listed, only the onaes used in global operations are
described in detail,

User Commands:

acctool -- analyse accounting data

cnftool -- configure transputer systems

ctool -- analyse communication profile data

cubix -- download and execute Cubix programs, i/o server
etool -- analyse event profile data and ’toggles’

excustom -- modify Express system parameters
exdump -+ retreive data from RAM files

exinit -- reboot and relecad Express kernel
exreset -- reset transputer system

exstat -- display node useage information
ndb -- source level debugger

xtool -- analyse execution profile data

System initialisation:

kxinit() -- start up Express and initialise xpress common
block. This routine must be called before any others on both host
and nodes. The common block has its various integer variables set as
follows:

common/xpress/nocare,norder ,nonode,ihost ,ialnod,ialprec

These variablaes contain special values used as parameters to
the communication librarytelling it to ignore selection criteria,
send to host, or send to all other nodes.

kxpara(ienv) -- determine run-time configuration. This yields
the values ienv(1), processor number of the calling nodes; ienv(2),
number of processors in group; ienv{(3) processor group index;
ienv(4), process identifier. The information provided by this call
is used with the decomposition procedures to ensure reconfigurable
applications.

Processor allocation and control:

kxclos() -- deallocate processor group

kxload() -- load program into all nodes

kxmain(} -- start execution of main program

kxopen() -- allocate froup of processors

kxpaus{) -- arrange for program to be loaded ’stopped’
kxpid() -- translate UNIX pid to Express process id
kxploa() -- load a program into a single node

kxshar() -- share a processor group between multiple host
programs
kxstar() -- start execution of a node program

Basic communication system:

kxexct() -- define meaning of ’read/write’ wildcards
kxinct() -- define meaning of ’'read/write’ wildcards
kxread() -- read a message

kxtest() -- test an incoming message, non-blocking
kxvrea() -- read a vector message

kxvwri{) -- send a vector message
kxwrit() -- send a message

Global communication system

xxbrod() -- interprocessor broadcast

kxchan(ibuf, ilen, isrc, itype, obuf, olem, odest, otype) --
Synchronous data exchange between source node isrc and destination
odest.

kxcomb(buffer, func, size, items, nnodes, nodel, type) -- Apply
user-supplied integer function func(vl, v2, size) to distributed
data. The routine broadcasts local values of buffer() to all other
processors, they receive the values and perform the operation
vi=func(vi,v2) where v1 is a local sub-vector of buffer of length
size, and v2 the new subvector of length size received in a message
of type type. The function returns an integer error code. This is
ropeated items times so buffer must be of total length size*items
e¢lements long. size may thought of as a vaector stride. nodel is a
list of nodes which will take part in the operation.

kxconc (mybuf, mybyte, resbuf, ressz, sizes, nnodes, nodel,
type) -- concatenate data from nodes, effectively bringing the
distributed data from local vectors mybuf into a single large vector
resbuf, which is broadcast to all nodes in nodel.

kxeync() ~- synchronise all node processors

kxvcha(ibuf, isize, ioff, iitems, isrc, itype, obuf, osize,

coff, oitems, odest, otype) -- synchronous vector exchange, similar
to kxchan

Asynchronous communication system:
kxhand()} -- install asynchronous message handler
kxrecv() -- read a message, non-blocking

kxsend() ~- send a message, non-blocking

Hardware dependent communication system:

28

This provides access to the underlying hardware channels for
the most efficient form of communication, it was originally designed
to allow optimal use of the 3L Parallel FORTRAN language (see also
[18D).

kxchon() -- re-enable Express processing on a channel

kxchof() -- disable Express processing on a channel

kxchrd() -- ready bytes from disabled channel

kxchwt{() -- write bytes to disabled channel

Decomposition tools:

These so-called kxgrid utilities perform automatic
decomposition of user domains onto the underlying machine topology.
4 problem specified as a cartesian grid in N dimensions is mapped
onto the topology, and routines are availeble to provide the
information for the communication calls to work in the wuser’s
topology, i.e. to define the mappings between the global data
structure and local vectors of data. Note that none of these
functions actually do any communication, they merely provide
parameters for the user to program his own communicatio algerithms.
The parameters may however also be put into the ifo system calls
which share data from a file between the nodes. This is perhaps the
most powerful feature of Express and is illustrated below.

kxgdbc(perbc) -- define boundary conditions on user domain. BY
default they are periodic with each cartesian coordinate wrapping
around at the two extreme ends of its axis. perbc is an N
dimensional array of values which, if zero, suppress the periodicity
for that dimension

kxgdco(procno, coord) -- determine position in user domain of a
particular processor. Given procaessor number procnc, the array coord
contains the position in the cartesian coordinate space of this
processcr with the given split

kxgdin(grddim, nprocs) -- initialise decomposition system, this
performs an elementary mapping and is called before the other
routines. grddim is the number of dimensions N, and nprocs is the
numbexr of processors to be used.

kxgdno(procno, dir, dist) -- determine communication parameters
from user domain. Given a processor procno (usually the calling
processor ienv{1l))}, this returns a value which is the number of the
processor dist away in the dirth dimension of the cartesian space.
This can then be used as a parameter to the elementary communication
functions.

kxgdpr(coord) -- map user domain to processor number, returms
the number of the processor which is used for the cartesian
coordinates coord

kxgdsi(procno, global, size, start) -- distribute data among
processors. procno is usally the calling processor (ienv(1)), global

19

is an array containing the size in each dimension of the global
data, size is again an array which contains the size in each
dimension of the local part of the decomposed data structure
belonging to procno. start is the global offset which corresponds to
zero offset in the local data.

kxgdsp(nodes, grddim, nsplit) -- distribute processors on user
domain. This divides up the nodes processors avenly between the
grddinm dimensions. The number in each direction is returmed in the
array nsplit(). This is called after kxgrid.

i/o:

This is probably the most powerful feature of Express, and alse
foatures in its graphical interface in an obvious way. Data is
considered to be one- or two-dimensional and can be automatically
split up over the nodes under control of the Cubix or Plotix host
program. A similar function is performed by the Fortnet server
process.

kabort(status) -- immediately terminate node program and print
status on the standard output device

kmulti(lu) -- switch file i/o to ’multi’

ksingl(lu) -- switch file i/o to ’single’

isasyn(lu) -~ inquire file i/o mode

ismult(lu) -- inquire file i/o mode

kmread(lu, buf, length, order) -- read independent data into
nodes

kmrd2d(lu, buf, totcel, totrow, itemsz, coll, coll, row0, rowl,
skip) -- read two-dimensional data set into nodes

kmwrit(lu, buf, length, order) -- write independent data from
node

kmwt2d (lu, buf, totcol, totrow, itemsz, col0, coll, rowl, rowl,
skip) -- write two-dimensional data set from nodes

kcbxsy(flag) -- assign overall synchronous/asynchronous mode

An example of using kmrd2d follows:

integer ienv(4},gsize(2),lsize(2),0ffsat(2)
¢ number of points in x and y directions

data nx,ny/...,.../

call kxinit()

call kxpara(ienv)

call kxgdsp(ienv(2),2,ndim)
istat=kxgdin(2,ndim)

gsiza(1)=nx

gsize(2)=ny

call kxgdsi(ienv(i),gsize,lsize,offset)

30

¢ read in the data overlapping the edges of each domain by a strip
¢ one item wide
¢ global starting and finishing x offsets of part required
nxstart=offset(1)-1
nxend=offset(1)+1lsize(1l)
¢ global starting and finishing y offsets of part required
nystart=offset(2)-1
nyend=offset(2)+1lsize(2)
¢ Bize of data columns
nxdim=1size(1)+2

¢ perform reading from unit Iu into local storage data by all
¢ processors. This is coordinated by the host program and only the
¢ part of the data actually required is sent in the form of
¢ intermediate vecotr buffers
istat=kmrd2d(lu, data, nx, ny, 4, nxstart, nxend, nystart,
& nyend, nxdim)
Multitasking:

A library of functions to handle process threads is provided.

kexec() -- overlay a node program with another
kxhand() ~- install asynchronous message handler
kxsema{) -- allocate and initialise a semaphore

kxsemf() -- deallocate a semaphore structure

kxsems() -- exit a critical section and signal any waiting
proceses

kxsemw() -- attempt to enter a critical section, waiting if
necessary

kxslee() -- suspend process for an indicated time

ITI.7 Fortnet 'skeleton' library. PARLANCE.

It 1is now necessary to describe the Fortnet global
communication library. This differs significantly from other
developments and depends fundamentally on firstly a set of globally
defined symbolic variables which reference real data somewhere in
the multicomputer’s memory, and secondly, on a set of routines which
control parallel overlapped communications and allow movement of
data between these variables. This is summarised in figure 6.

All the symbolic variables in fact reference contiguous global
vectors of numbers. Any other form of matrix can be mapped on to
these by calculating the indices (routines are provided to do it)
.but, as will be seen below, that is not often necessary. Symbols are
entered into a distributed database which contains details of actual
data storage, or may in fact just be referemces to pointers in

3¢

Figure 6.

Application or
Library

Structure of PARLANCE library.

Sequential
Numerical
Scalar or Vector
Kernels

j do global comms.

Skeleton routines to

Iy

Global symbol
atorage
database

Fortnet Harness

shared memory. Routines are provided to find which elements belong
to a given process, the next element on that process from a given
one, or which process has a given element. Other routines assign
space, put and fetch real data from the symbelic storage, perform
gather, scatter and more complex operations. This is done by
interrogating and manipulating the database.

Global communications routines ~- Canonical definitions

Most of the global communication routines involve either pairs
of processors or higher orders (k-fold) sets. They must be called in
a loosely synchronous manner on all processors which may be involved
in communication. This precludes any use of global routines inside
critical sections of code guarded by Fortnet locks or blocked for
any other communication. Error massages are printed if this rule is
violated.

assign(’a’,nbytes) -- assign nbytes of local memory for storage
of data in symbolic variable ’a’ (up to eight characters) on the
processor which calls it. Enter ’a’ into the symbol table database
for this processor. This is a monadic routine and may be called any
number of times by each processor to produce '‘degenerate’ table
entries. In this way matrices may be stored by columns or blocks for
instance since contiguous storage follows the first entry for each
procesor, then the second, etc.

swaptable() -- global exchange of symbol tables between all
processors. Thie need never be called by the user.

put(iproc,x,offx,stepx,’a’ ,offa,stepa,n) -- This is how actual
data is placed in the global storage, it copies n elements of data
from real variable x defined locally on processor iproc into
globally defined memory referenced by symbol ’a’. Offsets for start
of data and strides are given. offx is the starting offset of the
local vector, but offa is a global offset. Communications are
internal and ’a’ is as defined in previous assignment calls. A
distributed scatter operation.

fetch(iproc,’a’,offa,stepa,x,offx,stepx,n) -- reverse of above.
A distributed gather oparation.
gather0(’a’ ,offa,stepa,’b’ ,offb,stepb,n) -- on the processor on

which thie is called, takes all available elements of ’a’ starting
from the given offset and with the given stride and attempts to
store them in given elements of ’b’ if such are in local memory
area. This is a monadic routine.

scatter1(i,j,’a’,offa,stepa,n} -~ finds all available elaments
of ’a’ as described which are present on processor i and attempts to
send them as a single message to processor j. The data is preceeded
by protocol as follows:

" protocol index

a2

nunber of index bytes
index bytes

number of data bytes
data

The protocol index is

0 -- no data available, abort

1 -- data as requested

2 -- partial data, single offset and stride description
3 -- partial data, separate offset sent for each element

This is a dyadic operation.
gatheri(i,j,’b’,offb,stepb,n) -- receives a message from
procassor i on processor j and attempts to store the data into ’b’
in local memory if possible as described. A dyadic operation.
gatherl, scatterl and gather0 are not usually called by the
user as they are too ’'low level’. They do however form the basis of
higher routines and wers described for that reason. They are very

powarful routines and quite novel in their behaviour. They
implicitly carry out masking =so that only elements which can
actually be stored in local memory on j are sent. The message

contains the ’intermediate’ or ’compressed’ vector bij.
gather2(j,’a’,offa,stepa,’b’,offb,stepb,n} -- collects data
reoferenced by symbol ’a’ from all processors, including processor j,
and attempts to store it in 'b’ on processor j. It builds up the sum
of compressed vectors bj = sum bij, bj is the jth ’segment’ of b.
May be expressed as follows in terms of other routines.
subroutine gather2(j,’a’,offa,stepa,’d’,offb,stepb,n)

do i=1,nproc

if(i.eq.inode.and.i.ne.j)

1 call scatteri(i,j,’a’,offa,stepa,n)
if(inode.eq.j.and.i.ne.j))

1 call gatheri(i,j,’b’,offb,stepb,n)

end do

if(inode.eq.j)

1 call gather0(’a’,offa,stepa,’b’,offb,stepb,n)
and

This already begins to illustrate the power of the system. It is
possible to build quite sophisticated routines from these more
simple ones.

Other important subroutines are provided to determine which
elamonts of the symbolic vectors are on which processors:

nextelement(iproc,’a’,offa,exist) -- determines the next element
on iproc of symbol ’a’ following offa and changes offa to point to
it. If it exists exist=.true. otherwise exist=.false. and no action

is taken.

deassign (’a’) -- removes the symbol ’a’ from the database
entry of this processor only if it was the last entry, otherwise a
warning message is printed on stdout. This is useful for creating
temporary variables in a subroutine using asesign. It will have to be
called several times for degenerate entries. Note that the data is
not lost, and may be picked up by a different assignment. This may
be useful as a trick to change the format in which global data is
distributed, but I have not tried it.

Covering Scheme

An important requirement of global communications is that they
should all work in parallel. This question has not been addressed in
the above routines since thay all target a single processor so no
overlap is possible. More complicated routines will require
communications between constituants of all pairs of processors (e.g.
in a matrix transpose), or of all sets of k processors in the array
of nproc processors. It is possible to optimise the parallelism in
this by ’‘covering’ the machine’s nproc processors with as many
independant k-fold connected subsets as possible, and allow
communications within each to be concurrent with the others, and
then with another covering with different connectiors and so on
until all possibilities have been exhausted. As mentioned in the
introduction, +this is a suitable strategy for coarse-grained
machines. The solution is from permutation theory:

The number of different ways of covering nproc processors with
k of them = .

For pairs I have written a function
ncover=dyadic(nproc)

and for triads
ncover=triadic(nproc)

Higher schemes are possible. Of course if nproc is large, then
ncover is VERY large illustrating a fundamental difficulty of global
communications schemes - the inflation in data movement.

To use the above covering schemes a ’'conmection matrix’ can be
accessed.

common/cover/connect {(nproc)

the nth entry of this indicates that processer n should talk to
processor comnect(n) unless connect(n)=-1. Degenerate entries are
not allowed (they are ’redundant’).

The matrix is filled by calling

covering(i,k,nproc) -- for the ith k-fold covering of nproc

3

processors.

These routines are written in C and are monadic.

I hasten to add that this is just one possibility for a general
scheme. Hand optimisation will be used wherever possible, and other
schemes could be tried. Hand optimisation in all cases would be
time-consuming and I wish to avoid difficulties of that kind.

In addition to overlapping communications some systems allow
the possibility to do ’asynchronous’ communications which overlap
computational activity. This introduces difficulties of data
integrity if one is not careful to check that variables are not used
until they have been updated, or are not changed before they have
been transmitted. I have chosed to omit these issues from the
present discussion.

Topology Routines for Optimal Storage.

As with other software the efficiency of any paritcular
parallel algorithm will be governed by the actual data placement.
The optimal placement is likely tec vary from routine to routine and,
whilst we aim to have routines which will give numerically correct
results for any distribution of data, it may be better to re-arrange
the input if possible. This re-arrangement is in fact performed omn
entry to somea of the more intensive routines.

storebycol(...) -- arrange the storage of matrix ’b’ to cover
the nproc processors with interleaved columns of length lencol, a
band of width widcol is put on each processor. Carry out the
redistribution of data from matrix ‘a’. The original storage is left
in situ,

storebyblock(...) -- similar to the above, but distributing
blocks of length lenblk and width widblk on each processor. These
are interleaved and the communication is dene to distribute the
actual data.

I note that some very similar ideas on global data structures
and their redistribution in linear algebra routinaes have gone into
thinking on the GENESYS project of MIMD Systems [47, 48]. The
GENESYS parallel library is currently writtenm with Helios in mind as
the operating and communication system for a transputer array
attached to a VAX host [59]. Different levels of access to the array
are possible ranging from ’opaque’ in which the host program
automatically c¢alls parallel library routines on the array, to
*transparnt’ with explicit control over message passing.

In the GENESYS software some emphasis is placed on Distribution
Indicators (DIs) which can be carried around with the global data
saets. They tell the system the type of storage used, e.g. column,

25

block etc. and obviate a great deal of database searching since the
distributions are then pre-defined for special cases (e.g. full
columns of a 2D matrix of order m on N processors). This could be
used to improve the efficiency of the Fortnet system, but has not
yot been investigated in detail.

Examples

The following example is the kermel of a matrix multiplication
=b*c where all three matrices may be distributed across the whole

machine. It shows a way of using the dyadic covering with masks when
not all processcrs are needed. This can be understood by reference
to the matrix times vector multiply example which will be described
in more detail in section IV and gather2 above.

In simple terms the algorithm is as follows, wusing FORTRAN-90
notation

do i=1,n

v1i(1:n)=b(i,1i:n)

do j=1i,n

v2(1:n)=c{1:n,j)

a(j,i)=ddot(vi,1,1,v2,1,1,n)

end do

end do

Note that it separataes moving the data into two vectors from the
actual vector multiplication. The ddot routine is clever enough to
execute the following code:

do i=1,n

do j=1,n

temp=ddot (’b’,i,n,’c’,{j-1)*n+1,1,n)

call puta(temp,’a’,(j-1)*n+i)

end do

end do

and will carry out communications intermally for each vector
multiply. However there will be no overlapping so this would be less
efficient.

One solution to that problem iz as follows, it is s5till not
ideal as it collects vectors vi and v2 repeatedly before the ddot
operation instead of leaving vi until all values of v2 have been
used.

subroutine matmul(a,b,c,n)

character*8 a,b,c

real*8 temp

logical exist(nproc),existi(mproc)

dimension in(nproc),jn(nproc)

common/cover/connect (nproc,2)

LY

data exist,existl,in,jn/nproc*.false.,nproc*.false.,
1 nproc*0,nproc0/
call assign(’vl’,n*8)
call assign(’v2’,n*8)
kount=0

10 continue
m=dyadic(nproc)
do i=1,m
do j=1,nproc
exigtl(j)=exist1(j).or.exist(j)
exist(j)=.false.
end do
call covering(i,2,nproc}

¢ flow contrel loop
do k=1,nproc
k2=connact(k)
if(k2.ne.-1)then
if(.not.exist(k))call nextelement(k,a,jn(k),exist(k))
if(.not.exist(k2))call nextelement(k2,a,jn(k2) ,exist(k2))
in(k)=mod(jn(k),n)
in(k2)=mod (jn(k2),n)
if(k.eq.inode)then
if(exist(k2))then
call scatterl(k,k2,b,in(k2),n,n)
call scatteri(k,k2,c,jn(k2)-in(k2)+1,1,n)
end if
if(exist(k))then
call gather1(k2,k,’v1’,1,n)
call gather1(k2,k,’v2’,1,n)
end if
else if(inode.eq.k2)then
if(exist(k2))then
call gatheri(k,k2,’v1’,i,n)
call gatheri(k,k2,’v2’,1,n)
end if
if (exist(k))then
call scatteri(k2,k,b,in(k),n,n)
call scatteri(k2,k,c,jn(k)-in(k)+1,1,n)
and if
end if
end if
end do
end do
do i=1,nproc
if (exist1(i))kount=kount+1
end do
¢ monadic part completely parallel

3T

if(existi(inode))then
call gatherO(b,in(inode),n,’v1i’,1,1,n)
call gather0O{c,jn(inode)-in(inode}+1,1,’v2’,1,1,n)
call brall(’0FF’)
temp=ddot(1,’v1’,1,1,’v2’,1,1,n)
call puta(temp,a,jn(inode))
call brall(*RESTORE’)
end if
if (kount.1lt.n*n)goto 10
c release virtual storage space
call deassign{’v2’)
call deassign(’v1’)
end

The above code is somewhat complex and detailed study of it
should perhaps be resumed after reading esection IV. Almost all the
code is doing communications, which proves that we must produce more
powerful routines to simplify this. Normally applicationg would be
written at a higher level in which no reference is made to a
processor’s identity. A second example, which is a matrix transpose,
will demonstrate a more difficult line of development.

A good matrix transpose program is difficult to write, partly
because the sequential version is =so simple, partly because it ought
to involve no computation so that the overhead in doing parallel
communications and computing offsets are disasterously highlighted.
This appears to be a case whare a hand-coded solution with knowledge
of the distribution of elements is needed. Let us however examine

the more geoneral problem in a series of steps. Firstly the
sequential version

do i=1,n

do j=i+i,n

temp=a(i,j)
a(i,j)=a(j,i)
a(j,i)=temp
end do

end do

Next a vector version
do i=1,n-1
k=i+1
vi(k:n)=a(i,k:n)
v2(k:n)=a(k:n,i)
a(i,k:n)=v2(k:n)
a(k:n,i)=vi(k:n)
end do

This can trivially be expressed in a simple parallel form using

a8

our Fortnet routines, but there is no overlapping communications!
if(inode.eq.1)then
call assign(’vi’,n*8)
call assign(’v2’,n*8)
end if
do i=1,n~1
k=i+1
call dcopy(n-k+1,’vi’,1,1,%a’,(k-1)*n+i,1)
call dcopy(n-k+1,’v2’,1,1,%a’,(i-1)*n+k,1)
call dcopy(n-k+1,’a’,(k-1)%n+i,1,’v1’,1,1)
call dcopy(n-k+1,’a’,(i-1)%n+k,1,’v2%,1,1)
end do
if(inode.eq.1)
call deassign(’v2’)
call deassign(’v1’)
end if
end

Whilst the above program should execute and carry out all the

communications required implicitly, it would be hideously slow. One
truly parallel matrix transpose can be done by employing a trick.
That 1is to create an identical copy of the storage for symbel ‘a’
and call it ’b’. The elements are on the same processors as those of
'a’ so that masking in the gatheri and scatterl routines will work
properly. Now we can use dyadic communications to put the transpose
of a into b. Then do ome big monadic gather at the end to move it
back and delete b!

call assign(’b’,n*n*8/nproc)

m=dyadic (nproc)

do i=1,m

call covering(i,2,nproc)
¢ flow control loop

do k=1,nproc

k2=connect (k)

if(inode.eq.k)then

do 1=1,n-1

p=1+1

call scatteri(k,k2,’a’,(p-1)*n+l,n,n-p+1)

call scatteri(k,k2,’a’,(1l-1)*n+p,1,n-p+1)

call gather1(k2,k,’b’,(1-1)*n+p,1,n-p+1)

call gatheri(k2,k,’b’,{p-1)%n+l,n,n-p+1)

end do

else if(inode.eq.k2)then

do 1=1,n-1

p=1+1

call gatheri(k,k2,’b’,(1-1)*n+p,1,n-p+1)

call gatheri(k,k2,’b’,(p-1)*n+l,n,n-p+1)

39

call scatteri(k2,k,’a’,{(p-1)*n+l1,n,n-p+1)
call scatter1(k2,k,’a’,(1-1)*n+p,1,n-p+1)
end do
end if
end do
end do
¢ Temaining monadic part
do 1=1,n-1
p=l+1
call gather0(’a’,(p-1)*n+l,n,’b’,(1-1)*n+p,1,n-p+1)
call gather0(’a’,(1-1)*n+p,1,’d?,(p-1)*n+l,n,n-p+1)
end do
call gather0(’b’,1,1,’a’,1,1,n*n)
call deassign(’b*)
aend

This involves a factor 4 times more data movement than is actually
required; a factor 2 times too much between nodes!

Finally here is a truly parallel version that manipulates the
matrix in situ and invelves a minimum of data movement. It does
require gquite a lot of index computation which, however, is done
concurrently on the processor pairs.

m=dyadic{nproc)

call brall(’0FF’)

do i=1,m :

call covering(i,2,nproc)

c flow contrel loop

do k=1,nproc

k2=connect (k)
¢ let processors k and k2 transpose any elements they can, like in
¢ the sBequential version

do 1=1,n-1

do p=1+1,n

if(inode.eq.k.or.inode.eq.k2)then
check for element a{l,p) on k

isk=(p-1)*n+l

ismi=isk-1

call nextelement(k,ismi,’a’,exist)

if(isml.eq.isk)then
chack for element a(p,l) on k2

igk2=(1-1)*n+p

ism1=isk2-1

call nextelement(k2,isml,’a’,exist)

if(isml.eq.isk2)then
c found it, swap elements

if(inode.eq.k)then

temp=fetcha('a’,isk2)

40

temp2=fetcha(’a’,isk)
call puta(temp2,’a’,isk2)
call puta(temp,’a’,isk)
else(if.inode.eq.k2)then
temp=fetcha(’a’,isk2)
call puta(temp,’a’,isk2)
end if
end if
end if

check for element a(l,p) on k2
isk=(p-1)*n+l
iami=isgk-1
call nextelement(k2,isml,’a’,exist)
if(isml.eq.isk)then

check for element a(p,l) on k
isk2=(1-1)*n+p
ismi=isk2-1
call nextelement(k,isml,’a’,exist)
if(isml.eq.isk2)then

¢ found it, swap elements
if(inode.eq.k)then
temp=fatcha(’a’,isk)
temp2=fetcha(’a’,isk2)
call puta(temp2,’a’,isk)
call puta(temp,’a’,isk2)

else(if.inode.eq.k2)then
temp=fetcha(’a’, isk)
call puta(temp,’a’,isk)
end if
end if
end if
end if
aend do
end do
end do
ond do

¢ remaining monadic part
do 1=1,n
do p=1+1,n
isk={(p-1)*n+1
isml=isk-1
call nextelement(inode,isml,’a’,exist)
if(isml.eq.isk)then
isk2=(1-1)*n+p
isml=isk2-1
call nextelement{inode,isml,’a’,exist)
if(isml.eq.isk2)then

41

¢ both elements found
temp=fetcha(’a’,isk)
temp2=fetcha(’a’,isk2)
call puta(temp,’a’,isk2)
call puta(temp2,’a’,isk)
end if
end if
and do
end do
call rball{’RESTORE’)
end

Which of these various formulations will prove to be the most
efficient depends on several issues. Firstly the size of the matrix
dictates whether it must be handled in situ or not, secondly the
speed of data transfer to other nodes compared to the individual
processor speed will govern the choice of an algorithm which does
rodundant data movement or one which has expensive index
calculations, loops and communications overheads for each matrix
element. These issues cannot currently be decided due to the rapid
evolution of hardware. It would be interesting to use the Fortnet
profiler to investigate the differences between the different codas
on current machines.

Remaining global communication and skeleton routines

One subset of the remaining routines are used to provide
'skeleton’ forms of commonly-used communication patterns and call an
external function which performs some transformation on one or more
of the arguments. An example is the scalar-vector primitive which
might be an elementwise addition, multiplication, £ill, or more
complex function like cosine. One skeleton routine globalla suffices
to express all thaese forms and calls externals add, mult, £ill, and
intrinsic dcos to perform the correct action. The external function
may be user supplied, and might be quite complicated since it could
access data in common areas of the calling program. There is
similarity here to routines provided by Intel and ParaSoft.

The real power of my approach to building parallel libraries is
in the use of these ’skeleton’ routines. The reason for this is

i) We accept that communications times will always be slow, or
that the growth in data movement will kill off very ’fine-grained’
programming

ii) current machines are ’medium grained’ or ’coarse grained’

iii) programmability requires hiding the communication from the
programmer so that he can think in his conventional model.

The outcome of this appraisal is that a set of ’communications

A2

skeletons’ 1is required for dyadic, triadic etc. operations into
which very complicated operators may be substituted. Some of these
skalatons are described below, and will be used to build specific
vector routines in the following sections. I note that the use of
skeleton routines is not original. Delves and Brown have already
discussed the ‘’insidae-out? nature of parallel routines, and
circumvented the problem by the devalopment of the Liverpoel library
sleeper and restriction of the user’s program to the host computer
(also facilitates multi-user programming).

Another further set of routines in PARLANCE obtain information
from the system’s symbol tables and may be used particularly to
enquire about elements in a square matrix representation of the
storage associataed with a particular symbol. Fossible questions are
on what processor is element a(i,j) located, or what are the offsets
and stride to describe the portion of the data belonging the a which
is stored on the current processor?

List of routines in the present version:

subroutine allocate() -- initialize Fortnet global system. This
must be done before calling any of the other routines.
subroutine extracta(A) -- extracts information about the symbol

a from the tables and stores it in a common block:
common/extra/aproc(nproc) ,alocal(nproc),aglobal(nproc),lastex
where aproc(i) is the processor on which the ith entry resides (it
might occur more than once if the storage is fragmented), alocal(i)
is the offset from the beginning of the core storage are for the
start of this piece of contiguous memory, aglobal(i) is the global
offset of tha start of this piece of virtual storage (in other words
where it is in the completae vector a). Lastex just returns with the
character string a to reduce redundant index calculations. The

number of elements of a stored on processor aproc(i) is clearly
aglobal(i+1)-aglobal(i).
subroutine extractb(B) -- same as above but uses a common area
common/axtrb/bproc,blocal,bglobal,lbstex
subroutine extractc(C) -- same as above but uses a common area
common/extrc/cproc,clocal,cglobal,lcstex
subroutine globall(A,iastart,iastride,in,fun) -- glcbal
skeleton for a=fun(a)
subroutine global2(C, iCstart, iCstride, A, iastart, iastride,
in, fun) -- global skeleton for c=fun(a)
subroutine global3(a, iastart, iastride, b, ibstart, ibstride,
in, fun) -- global skeleton for c=fun(a,b)
subroutine globalia(A,iastart,iastride,in,fun,alpha) - global
skeleton for a=fun(alpha) where alpha is a real scalar
subroutine global2a(C,iCstart,iCstride,A,iastart,jiastride,
in,fun,alpha) -- global skeleton for c=fun(alpha,a)

£3

subroutine global3a(c, icstart, icstride, a, iastart, iastride,
b, ibstart, ibstride, in, fun, alpha) -- global skeleton for
c=fun(alpha,a,b)

Various assorted routines are provided to expediate coding of
higher-level algorithms as follows:

subroutine usea(a,idim,i,j,n) -- extracts information about
element a(i,j) and stores it in the nth entry of tables in common
common/liquorice/proce(nproc) ,offs(nproc) ,seg(nproc) where procs(n)
is the processor which holds the element, offs(n) is the offset from
the start of its local core memory and seg(n) is something else.
This routine uses common extra for intermediate indices.

subroutine useb(a,idim,i,j,n) -- same as above but uses common
extrb.

subroutine usec(a,idim,i,j,n) -- same as above but uses common
extrc.

onea(ia,iacore,iaproc) -- for a symbol which has previously
been extracted into common/extra/ this monadic routine finds the
local core memory offset iacore and the id of the processor iaproc
containing element with global offset ia.

oneb(ib,ibcore,ibproc) -- same as above for extrb

onec(ic,iccore,icproc) -- same as above for extrc

puta(temp,’a’,ia) -- monadic routine, assuming the value of
temp is globally present it puts into the local memory of whichever
processor contains a(ia), uses common/extra/

putb(temp,’b’,ib) -- same as above using common /extrb/

putc(temp,'c',ic) -- same as above using extrc
temp=fetcha(’a’,ia) -- fetches the value a(ia) and does a
broadcast to all other processors, uses common/extra/
temp=fetchb(’b’,ib) -- same as above using extrb
temp=fetchc(’c’,ic) -- same as above using extrc

elementa{iproc,a,ifirst,jfirst,ilast, jlast,iapos,iadim) --
enquire to find what elements of a square matrix of dimension iadim
are on processor iproc. Uses common extra and iapos points to the
entry in the tables of this common block.

elementb(iproc,a,ifirst,jfirst,ilast, jlast,iapos,iadim) -- same
as above but uses common extrb.

elementc(iproc,a,ifirst,jfirst,ilast,jlast,iapos,iadim) -- same
as above but uses common extrc.

brall(directive) -- routine switches broadcasting on or off as

described in section II above. It is useful in some algorithms to be
able tc use functions such as ddot in a monadic fashion without the
roquirement to broadcast results to all processoxs. Result is
available only on the calling processors, and only if they contain
data in the range of symbol indices. Possible values of the
character string directive are ’*ON’, °'OFF’, *TOGGLE’ and ’RESET’.
i=index2d(ndin,j,k) -- find the offest of element (i,j) from

4

the start of a 2-dimensional array of storage of column length ndim.
A monadic routine.

brlist(proclist, nproc) -- installs the vector proclist into
tha database for subsequent broadcast operations, eraseing what was
there already, but sets the entry for inode equal to -1 (a null
node). This avoids a processor sending to itself.

4§

IV General Programming Styles.

Most of this discussion has been placed in references [1-4] and
we need say very little in addition. Some examples can howaver be
given of a new programming style which, given the current memory
limitations and slow i/o of multicomputers, may prove useful. It
also illustrates simple calls to the glebal routines defined in the
last section. I refer to this style as ’power sharing’.

Suppose a program requires a particularly large amount of data,
and that the common 4 or 8Mbyte local-maemory limit is insufficient.
It may then be convenient to allow the processors to act in pairs,
one simply storing some of the data and passing it to the second
which performs some, but not all, of the computation. This is almost
trivial using the routines described above. 0ther attempts to do
this for particular applications have been made and the system need
not be limited to pairs.

This scenario is the basis for a multiple memory server,
howaver it would be rather incomvenient, but possible, to do the
same using server protocols for messages requesting data transfer.
Is it better to do this, or to store data on disk in a virtmal-
memory arrangement, and fully use the compute power of the eXxtra
nodes? The answer will depend on hardware available, at present i/o
is slow. In any case it will be a useful exercise.

Suppose the matrix a is divided between processors iproc, which
will be called the ’primary’ processor, and iproc+l, which will be
called the ‘’secondary’. This division is performed with the
following assignment:

character*8 a
data a/’ s
¢ just do coda on omne pair of procs, could do it on all pairs
if(inode.eq.iproc.or.inode.eq.iproc+1)then
a(l:1)="a’
this gives a unique name to the symbel for this pair of procs
and it is the same name for both procs in the pair
write(a(2:3),’(i2)’}iproc
nproc=2
¢ a has n elementz of 8 bytes each
call assign(a,n*8/nproc)
this assigns half of a teo each processor
end if

0O 0

(e}

The local-memory data may be computed in situ by the processors
executing concurrently, or in some other way. We now illustrate an
operation which requires the data to be wused on the primary
processor, @.g. a matrix x vector multiply which yields a second

4b

vactor.

c vi=a * vi
ncol=sqrt(n)
¢ assign vectors on iproc
if(inode.eq.iproc)then
call assign(’v1’,ncol)
call assign(’v2’,ncol)
call assign(’temp’,ncol)
¢ now compute contents of ’‘vi’
end if
c now do multiplication
¢ first collect row of a into vector ’temp’
do irow=1,ncol
k=irow-1
if (inode.eq.iproc+1)then
call scatteril(inode,iproc,a,k*ncol+l,ncol,nccl)
else if(inode.eq.iproc)then
call gatheri(iproc+1,inode,’temp’i,i,ncol)
¢ remaining monadic part
call gather0({a,k#*ncol+i,ncol,’temp’1,1,ncol)
end if
¢ now do vector dot product on iproc
call brall(’0FF’)
x2=ddot(’temp’,1,1,’v1’,1,1,ncol)
call puta(x2,’v2’,irow)
call brall(’RESET’)
end do

Notice that the code is executad by both processors and only in
the gather/scatter part do we need to distinguish. We might
alternatively 1replace this by +the following calls on both
processors (see section III.7):

do irow=1,ncel

k=irow-1

call gather2(iproc,a,k*ncol+1,ncol,’temp’1,1,ncol)
call brall(’0FF’)
x2=ddot{’temp’,1,1,’v1’,1,1,ncol)

call puta(x2,’v2’,irow)

call brall(’RESET?)

aend do

This is much more consise and illustrates how I wish to
simplify the programmer’s job so that he may concentrate on more

&7

important things. Furthermore the above code fragment would have
worked equally well if the wvirtual matrix a were distributed over
more than two processors.

Df course the ddot routine is more powerful and the above code
might trivially be replaced by

call brall(’0OFF?)

do irow=1,ncol

k=irow-1
temp=ddot{a,k*ncol+1,ncel,’v1’,1,1,ncol)
call puta(x2,’v2’,irow)

end do

call brall(’RESET’)

The original coding might however represent its internal
working (but does not since optimisation was done).

48

V Parallel Numerical Libraries

We will now dive intc a description of parallel software which
has been used for numerical algorithms for linear algebra. Omitted
from this description is the GENESYS project of MIMD Systems, which
was aimed particularly at sparse matrix decomposition and solution.
No doubt there are also other linear algebra or BLAS libraries which
have been adapted for distributed execution and of which I am
unawvare.

V.1 Intel Eiscube and Lincube

A parallel version of the Eispack library [55,35,36] for matrix

eigenvalue problems is being prepared for the Intel hypercube. 5o
far only the central part of the library is available, that is the
computation of all eigenvalues and eigenvectors of a demse, real,

symmetric matrix. Calculations are distributed, and the innermost
loops of the algorithms access columns of the matrix. A matrix of
order N is distributed over n processors by storing N/n columns per
processor. There may be a small lecad imbalance if N is not a
multiple of n.

The programs use Housholder similarity reduction te tridiagonal
form, followed by bisections on each processor and ‘perfect-shift’
tridiagonal QR iterations with accumulation of <the distributed
eigenvalue matrix.

The following routines are used:

subroutine tridib(N,EPS1,D,E,E2,LB,UB,¥11,M,W,IND,IERR,RV4,RV5)
-- Bisection method of Barth, Martin and Wilkinson fo find
oeigenvalues of a tridiagonal symmetric matrix within specified
boundary indices. Called by psytqr

subroutine psytre(A,LDA,N,M,P,ID,D,E,Z,W0RK) -- Parallel
SYmmetric Tridiagonal REduction. Reduces a real symmetric matrix to
tridiagonal form

subroutine psytqr(D,E,SIGMA,N,X,MM,WORK,JOB,INF0O) -- Parallel
SY¥mmetric Tridiagonal QR. Computes the eigenvalues and optionally
the eigenvectors of a real-symmetric tridiagonal matrix.

subroutine pf1ip(ID,N,M,P,AR,AC,R) -- transpose a matrix
stored by rows into one stored by columns

The Lincube 1library developed from Linpack [7] for the Intel
hypercubas analyses and solves systems of linear algebraic equations
involving dense matrices. Data is again distributed columnwise as in
Eiscube.

The following routines are used:

subroutine pgesl(A,LDA,N,M,P,ID,IPVT,B,WORK,MSG) -- "Cornell"
algorithm for parallel linear equation solver

subroutine pgemul (A,lda,n,m,p,id,x,y) -- computes y=A*x where

b

matrix A is distributed over p nodes, x is on node O and y is on
nede 0

subroutine pgefa(A,LDA,N,M,P,ID,IPVT,BUF) -- Parallel GEneral
matrix FActor. Parallel version of dgefa from Linpack. LU
factorisation by Gaussian elimination

There are also Intel implementations of parallel code to
perform two and three-dimensional fast Fourier transforms. These
call highly optimised assembler-coded one-dimensional routines for
the primitive transform on the iPSC/2 vx and i860 nodes, but still
require a transpose of -one plane in the 3D space which is the most
costly part of the algorithm.

V.2 Topexpress Parallel Library

The former parallel processing division of Topexpress Ltd. [29]
(Cambridge) wrote a number of libraries for T800 transputers. These
were sequential and vector routines for single-transputers, and
concurrent routines. The latter are called from a sequential host
program and each call initiates a load of the relevant code into the
transputer array via an executive. The library is available for
Maiko FORTRAN, € and occam and is partly written in T800 assembler
code, sSo 1is mnot portable to other systems. Routines provided
include: Fast Fourier transforms, general matrix routines,
eigenvalue/eigenvector routines, symmetric matrix routines, sparse
matrix routines, iterative equation solvers and sorting routines.
The routines can be run on a system with any number of transputers,
and each routine has the same intercomnect. Some typical routines
are (I don’t have a complete set of documentation):

GAUSSP -- solve a set of linear equatiomns with partial piveting
for a single right hand side
CHLSLP -- solve a symmetric positive definite matrix equation

with a single right hand side
STURMP -~ calculate all eigenvalues/eigenvectors of a symmetric
matrix by Sturn sequences

R2DFTP -- two-dimensional real to complex fast Fourier
transform

ISORTP -~ integer sort
V.3 Liverpool, NAG (Supernode) and NA Software Limited

A large amount of systematic work has been done by the
Liverpool group to investigate parallel algorithms and incorporate
them into a library interface. Results of this work are available as
reports to the original EEC Esprit P1085 project [26] and SERC EMR
(ExtraMural Research) project [25].

Parallel codes for transputers are currently written in occam

£o

or a language such as Fortran with an occam harness providing the
communications. All occam channels must be placed explicitly, and
they must correspond in a one-to-one way with transputer links. This
has lead to the provision of pre-written harnesses with holes for
the insertion of user code as the basis of library facilities. The
drawvbacks of this are:

i) only limited facilities are provided unless underlying
information is available about data storage across the whole global
memory

ii) It is difficult to adapt old Fortran codes for the new
machines

The Liverpool group has however the following aims:

i) provide an enviromment similar tc a sequential library for
calling routines from a single host program

ii) allow more than one routine to be called with the same
data placement

iii) routines should be pre-compiled and be

iv) calleable from occam, Fortran, C oxr Pascal

Furthermore a study was made of:

i) techniques of writing parallel algorithms for transputer
arrays

ii) design an error mechanism similar to NAG

iii) writing a small number of finished routines

The work aimed at efficiency, and made a study of different
arrays and the theoretical way the ratio of communications/cpu time
changes the performance of an algorithm [see 1].

A basic premise of the work, mentioned in section I, 1is that
the user of the library must have a single serial Fortran program
from which the 1library modules may be called. This imposes the
constraint that at the beginning of a routine data must be ’fanned
out’ from the host to the nodes. Some alternative methods have been
devisad for data that is already in placa.

A discussion of the efficiency of algorithms related to the
average path length in a given topology indicated that a two-
dimensional grid was best for transputers (with 4 links). The older
routines which were developed had however a daisy chain, grid, or
tree topology depending on the routine. This is of course not a
problem with routing hardware.

Delves and Brown [25] give a discussion of what they call the
*inside out’ structure of parallel libraries which I refer to as a
'skeleton’ structure. They concluded that for a single user program
running on a host trangputer and calling a library on an attached
array, this structure could not be maintained. They believe that a
single host calling program per parallel application is an

st

essential methodelogy for multi-user systems. The aim of the project
was therefore to provide a paradigm that was identical to that found
in a serial environment and could ultimately support multiple users.
The underlying 1library strategy is therefore as follows. A
static harnese is provided on the transputer array, referred tc as a
'library sleeper’. This is able tc load code, data or both onto the
array from the master transputer, and execute the library routines.
It provides a rudimentary overlay facility for multi-user systems.
The major impact of +the Liverpool work has been in the
theoretical evaluation of algorithms, and in the comstruction of an
error mechanism (similar to NAG). Some final routines are fully
documented and now marketed by NA Software Limited [17] (although I
don’t have a complete set of documentation). They are available for
the following transputer arrays: Superncde, P1085, Meike Computing
Surface, Inmos Item, PC boards, Atari wvorkstations, and are
described as follows using occam syntax:
PAR
. other routines if desired
ERROR.HARD (message,reply,errnum)
Blas101(vectorl,vectors,count,n,message,reply) -~ evaluates
the inner product of two vectors. Error diagnostics are sent over
"channel message, the reply chamnel can be used for the error
recovery handler. Chain topology.
PAR
ERROR.HARD (message,reply,errnum)
Blas201(matrix,vector,result,n,message,reply) -- evaluates a
matrix*vector multiplication. Chain topology
PAR
ERROR.HARD (message,reply,errnum)
Blas301(4,B,C,work,n,message,reply) -- Multiplies square
matrices A*B to obtain matrix C. Square array topology.
PAR
ERROR.HARD (message,reply,errnum)
LinAlg.Sing01(matrix,rhs,xvec,matrix.size,message,reply) -~
Uses gaussian elimination with partial pivotting to solve Ax=b for
large dense systems with a single right hand side. Ring topology
PAR
ERROR.HARD(message,reply,errnum)
LinAlg.Sing02(amat,rhs,xvals,no.of .procs,message,reply) --
Solves Ax=b as above with multiple right hand sides handled in
parallel. Daisy-chain topology
PAR
ERROR.BARD(message,reply,errnum)
LinAlg.MMO1(...) -- calculates the matrix produce c=ab. The
matrices need not be square.
PAR
ERROR.HARD (message,reply,errnum)

52

LinAlg.TriEg01(...) -- This routine solves TX=B for large
dense systems, where T is an upper triangular matrix. Parallelism is
achieved by placing columns of the right hand side B on each
processor and sending rows of the triangular matrix T in reverse
order.

PAR
ERROR .HARD (messaga,reply,errnum)
LinAlg.Eig01(matrix,eval,evec,matrix.size,tolerance,
max.loops,ho.loops,message,reply) -- Evaluates a single
eigenvalue-eigenvector pair of the system Ax=kx using an iterative
inverse-power method given an estimate of the required eigenvalue.
Ring topology
PAR
ERROR.HARD (message,reply,errnum)
LinAlg.Sparse01(nproc,xdir,ydir,overlap,rhs,x,pointer,
max.loops,no.loops,tolerance,message,reply) -- Solves a
system of linear equations Ax=b using a sparse varient of Gaussian
elimination, where A is a bleck tri-diagonal, symmetric, positive-
definite matrix. Rows of A are distributed and a chain of
transputers is used.
PAR

ERROR . HARD (message,raply, errnum)

LinAlg.BlockTriDiag(...) --Solves a system of linear
equations Ax=b, where A is a block tri-diagonal , symmetric,
positive definite matrix. Parallelism is achieved by ’tearing’ the
region to computa the solution for the torm blocks in separate

processors
PAR
ERROR.HARD (message,reply,errnum)
Linprog.Simplex(...) -- Finds the minimum of a linear

function subject to constraints using the Simplex method. Holds
blocks of constraint rows on each processor

PAR
ERROR.HARD (message ,reply,errnum)
poly.Solve(...) -- calculates approximate values for the

zeros of an nth degree poelynomial. A number of zeros are calculated
on each transputer
PAR

ERROR.HARD (message,reply,errnum)

FFT.Complex01(...) -- Parforms an f=FFT on complex sample
data which is distributed among the processors. Each processor
performs its own FFT and passes it back one lavel for combination
with the other data.

PAR
ERROR.HARD (message,reply,errnum)
FFT.Complex02(...) -- Uses decimation in time and distributes

the data in a tree. Assumes a binary tree configuration of

53

transputers
PAR
ERROR.EARD (message,Teply,errnum)
FFT.Multiple.Complex(...) -- Uses time decimation on complex
radix.e input samples. Transforms are distributed among the

transputers.
PAR
ERROR.HARD(message,reply,errnum)
Sort.Merge01(...) -- Borts a vector of input values into

ascending or descending order. When all processors have sorted their
subvectors a parallel mergs is performed.

Note that irn occam the user’s program may also execute in
parallel with the library routines. A similar facility is planned
for the Mk.2 FORTRAN library. The current library comntains both
gingle and double-precision versions of all routines.

V.4 Fortnet, PARLANCE library

PARLANCE stands for Parallel Library and Networked Computing
Environment. Only the numerical library interface has been
documented in this review. The network and task scheduler which is
alsoc contained in this software system are dealt with in anoth
Technical Memorandum [59].

Syntax of calling sequences

The style of the PARLANCE global memory interface has been
presented in section III.7 above., Arguments of the routines are
alwvays symbols, character*8 variables, which refer or point to
globally accessible virtual storage as previously described or a
scalar input quantity. Each of +these symbols is followed by an
integer offset referring to the starting point for computation from
the beginning of the virtual storage, and an integer stride for
vector computation, unless the quantity is a scalar. In my global
routines the order of arguments is as follows:

processor pair source, target or target only or omitted

result

operands in order of rhs e.g. a=b#*c

number of elemente in vector

an external function

a scalar quantity (real number)

To remain compatible with the syntax of the VecLib and other
libraries routines emulating these are slightly different. The first
argument in most of the calling sequences is now usually the number
of elements in the vectors for which computation is to be done. An

&4

example of this was already used in section III.7 and IV.
temp=ddot(n,’vt’,1,1,’v2,1,1)

which takes the dot product of vectors vi and v2 and broadcasts the
result to a variable temp. The actual data to which this calling
sequence Yefers may be on any processors, and internal
communications are done to access it, which should not be the
concern of the application programmer. Broadcasting can be switched
off using the routine brall, in which case the routine will yield
only a partial result.

Many routines in this library, such as ddot, are intended to
provide a parallel implementation of the Veclilk Ilibrary, for
instance as described in the Intel or Convex documentation [4, 42]
but with changes to the syntax of the argument list as noted above.
This is a useful international standard and provision of it in
parallel form should aid porting codes to multicomputers. Other
libraries for lavel 2 and 3 BLAS and higher matrix operations are
also being tackled.

The implemented routines are listed below along with their
calling sequences.

Libraries in the PARLANCE system (for instance the Intel
version)

fortnet.a -- The Fortnet v3.0 (trace) point to point
communications library. Optimised versions of this are available for
a wide variety of hardware as outlined in section II abova. Software
enabling graphical playback of parallel program execution and
profiling of a task once it has completed (or hung) is available.
This was also described in section II.

parlance.a -- underlying global-memory handling subroutines
used by all the algorithm libraries. This is the code layer which
provides the virtual machine interface. The global routines allocate
an area of memory on each processor (commen/core/...) assign parts
of that area to symbols in a table, and allow storage (distribution)
of local data, and retrieval (gather) of global data. The way the
data is distributed is known <to these routines and global memory
operations are then available to handle it. The operations are
closely analogous to generic forme of the usual vector operationms,
and calls to Veclib routines and other libraries are mapped directly
onto them.)

The symbolic variables, for instance A, B, C, are assigned
space in the local core memory and this forms contiguous storage
distributed over the whole machine. Their allocations are found
through a call to routines extract or use. These routines are meant
to be optimised for each specific multicomputer, =so that programs

55

calling them are machine independent. Definition of the routines was
given in section III above.

veclib.a -- et of routines with the same names and calling
sequences as the single-precision VecLib library routines. Mainly
lavel-2 BLAS. These are mapped onto the above global routines so
that they handle distributed data and can be made parallel. They
use a skeleton philosophy to get the complete computational
functionality from the basic communication modules.

The routines are machine~independent. Calls to the parlance
library must have been used to set up the distributed data in the
required place, thereafter the calls should be data-independant and
internally consistent.

This 1library embraces the idea of ‘skeleton’ routines in
parallel computing so that there is a common set of communications
routines in parlance into which are put different numerical parts
(the scalar*scalar functions) which could equally well be extremely
complicated functions defined by the user. The global communications
routines in PARLANCE are meant to be optimised for each different

parallel computer. Current implementation is poor, with 1little
intermediate buffering to transmit long messages. There is also no
use of vector hardware. This will be improved im future
implementations.

For a detailed description of each routine refer to <the
corresponding Intel or Convex documentation.

subroutine dfill(m,alpha,a,inca)

function dasum -- broadcsting of the result is optional

subroutine daxpy

subroutine dclip

function ddot -- broadcsting of the result is optional

subroutine dgathr ’

function idamax

function idamin

subroutine diclip

function idmax

function idmin

subroutine dneg

function dnrm2 ~- broadcsting of the result is optional

subroutine dramp

subroutine dsadd

subroutine dscal

subroutine dscatr

subroutine dcopy(n,a,inca,b,incb)

subroutine dvatan(n,a,inca,b,incb)

subroutine dvcos(n,a,inca,b,incb)

subroutine dvexp(n,a,inca,b,incb)

subroutine dvlgiO(n,a,inca,b,incb)

56

subroutine dvlog(n,a,inca,b,incb)

subroutine dvneg(n,a,inca,b,incb)

subroutine dvrecp(m,a,inca,b,incb)

gubroutine dvsin{(n,a,inca,b,inchb)

subroutine dvsqrt(n,a,inca,b,incb)

subroutine dvabs(n,a,inca,b,incb)

subroutine dsadd{n,alpha,a,inca,b,inch)
subroutine dsdiv{n,alpha,a,inca,b,incb)
subroutine dsmul(n,alpha,a,inca,b,incb)
subroutine dssub(n,alpha,a,inca,b,incb)
subroutine dvadd(n,a,inca,b,incdb,¢,incc)
subroutine dvatan2{(n,a,inca,b,incb,c,incg)
subroutine dvdiv{n,a,inca,b,incb,c,incc)
subroutine dvmax{(n,a,inca,b,incb,¢,ince)
subroutine dvmin(n,a,inca,b,incb,c,incc)
subrcutine dvmul(n,a,inca,b,incb,¢,incc)
subroutine dvpow(n,a,inca,b,incb,c,incc)
subroutine dvsub{(n,a,inca,b,incb,c,incc)
function dsum -- broadc¢sting of the result is optional
subroutine dswap

subroutine dvabs

subroutine dsvmvt(n,alpha,a,inca,b,incb,c,incc)
subroutine dsvpvt{n,alpha,a,inca,b,inch,c,incc)
subroutine dsvtvm(n,alpha,a,inca,b,incb,c,incc)
subroutine dsvtvp(n,alpha,a,inca,b,incb,c,incc)
subroutine dsvvmt(n,alpha,a,inca,b,incb,c,incc)
subroutine dsvvp{(n,alpha,a,inca,b,incb,c,incc)
subroutine dsvvtm(n,alpha,a,inca,b,incb,c,incc)
subroutine dsvvtp(n,alpha,a,inca,b,incb,c,incc)

The following monadic functions are used in the generic
skeletons to provide full functionality, some are implemented as C
code.

function aneg(b)

function arecp(b)

function adiv(a,b)

function amul(a,b)

function apow(a,b)

function asub(a,b)

function avmvt(alpha,a,b)

function avpvt(alpha,a,b)

function avtvm(alpha,a,b)

function avtvp(alpha,a,b)

function avvmt(alpha,a,b)

function avvpt(alpha,a,b)

function avvtm(alpha,a,b)

function avvtp{alpha,a,b)

57

MathAd.a -- This 1library implements some routines <from the
MathAdvantage collection [41]. Many of them are equivalent to ones
in the VecLib library, and are implemented in the same way

subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine

idstart, id, n)

subroutine
subroutine

vemul(a,jastart,ia,alpha,c,icstart,ic,n)
vsin{a,jastart,ia,c,icstart,ic,n)
vfill(alpha,c,icstart,ic,n)
vgathr(x,ixstart,incx,y,iystart,iy,z,izstart,iz,n)
vlog(a,iastart,ia,c,icstart,ic,n)
vliogiO(a,iastart,ia,c,icstart,ic,n)
vmov(a,iastart,ia,c,icstart,ic,n)
vmsa{a,iastart,ia,b,ibstart,ib,alpha,n)
vmul(a,iastart,ia,b,ibstart,ib,c¢,icstart,ic,n)
vneg(a,iastart,ia,c,icstart,ic,n)
vrecip(a,iastart,ia,c,icetart,ic,n)
vsadd(a,iastart,ia,alpha,c,icstart,ic,n)
vrvre(c,icstart,icstride,in)

vsbem(a, iastart, ia, b, ibstart, ib, alpha, 4,
vscatr(a,iastart,ia,b,ib,c,icstart,n)
vsdiv(a,iastart,ia,alpha,c,icstart,ic,n)

double precision function aindiv(a,b)
subroutine mtrans -- matrix transpose, see comments under the
mtrans routine in the matrix library

blas3.a -- routines to do higher level BLAS operations. Not yet
implemented

Cray.a -- Routines from the CRAY library [44]

double precision function cvmgp(a,iastart,b,ibstart,c,icstart)
double precision function cvmgz(a,iastart,b,ibstart,c,icstart)

Linpack.a -- Routines from Linpack [7]. Not yet implemented

Eispack.a -~ Routines from Eispack [7]. Not yet implemented
Matrix.a -- This is a library of algorithms for real double-
precision matrices which have been collected from various sources or
adapted from existing sequential programs

matmul(a,iadim,b,ibdim,c,icdim,n) -- multiply square matrices
a=b*c. Actual dimension of matrix in virtual storage is ixdim,
actual order is n -)

mtrans(ndim,a,n) -- transpose matrix a. Actual dimension and
order are ndim and n. Two versions of the matrix transpose routine
exist as outlined in section IV above. This one transposes the

£

matrix in place. The other version is implemented in the Mathid
library and yields the transposed elements in a second matrix. That
is quicker but less efficient on memory.

matinv(ndim,a,det,n) -- invert matrix a and give its
determinant. Actual dimemsion and order are ndim and n. This routine
makes calls to the level-2 BLAS to swvap elements of rows and columns
of the matrix.

This library will also incorporate an interface the Intel
routines for real symmetric matrices soon.

Suprenum.a -- Port of tha SUPRENUM grid application library to
the Fortnet and PARLANCE system. Not yet implemented.

signal.a -- some signal-processing routines in parallel, take
single~precision complex data so far

cfftid(...) -- fft of a vector of numbers, very inefficient

cfft2d(...) -- fft of a matrix of numbers, incorporates a
single matrix transpose if matrix stored by columns

cfft3d(...) -- fft of a 3D array of numbers, incorporates a
single matrix transpose if array stored by 2D planes

Conclusions

The work presented above shows the evolution of global
communications and distributed numerical algorithm libraries on a
number of different computers. Clearly there is some tremd, and
poerhaps in two directions. There is firstly the possibility to treat
a processor array as being an attached compute engine which can be
utilised by a parallel 1library called from a sequential host
program. Secondly the array itself may be programmed, and it is
rather this last issue which I hoped to address. A virtual-machine
programming strategy is important as it removes a lot of the burden
from the programmer. The mapping of processaes and processors, and
communications, should be contained within the subroutines rathar
than being explicit. I have used this apprecach, and it is also
adopted by the SUPRENUM project, and is a fundamental part of the
Linda [30-34] programming language extensions (lately developed for
use in the QIX operating system by Cogent Research Inc. [45]), and
also of dataflow and object-oriented languages such as Strand-88
[46].

If portability is to be addressed I would not contemplate a
programming environment which does not address the issue of the
virtual machine. It is no longer sufficient to sell boxes of
processors with point to point communications software (occam, POSIX
etc.} as this simply results in every application having its own
restrictive harness layer which needs to be adapted to different
hardware configurations.

A final area of great controversy is the mapping of shared-
memory and distributed-memory software. It seems that there is
currently no common ground, and that the two areas are diverging,
with the American PFC (parallel FORTRAN committee) being assembled
from shared-memory machine manufacturers, and European activity
largely directed toward the distributed-memory ideal. Perhaps some
compromise will be 1reached indeed if mot in word with hybrid
machines having a shared resource. The Cogent XTM Workstation
already has a shared bus and controller processor which maintains
much of the functicnality of a conventional shared-memory Tresource
in a distributed-memory environment, and this trend is continuing.

Acknowledgements

Part of the practical work in developing Fortnet was carried
out on a Meiko M10 Computing Surface which is on loan from the
SERC/DTI Transputer Initiative loan pool. The work on Fortnet was
done in collaboration with Dr. Lydia Heck of Durham University and
Dr.Richard Cooper of Queen’s University Belfast. My special thanks
are due to them for many valuable discussions on parallel computing.

60

Work on the parallel algerithm library and PARLANCE system was
carried out on the Intel iPSC/2 and iPSC/860 hypercubaes and Alliant
£x2808 machines in the Advanced Research Computing Group at
Daresbury. Graphical work was also done on the Alliant which was
bought by the Computational Fluid Dynamics Initiative and is now
installed at UMIST, Manchester. Some of this work was carried out by
Norman Clancy of Bristol Polytechnic, and has led to his obtaining
an M.Sc. degree in parallel computing.

I also thank Drs. Karl Solchenbach and Reiner Vogelsang forx
helpful discussicns and for enabling me to visit SUPRENUM GumbHE in
Bonn in December 1989, Prof. L.M.Delves and Drs. N.Brown and R.Wait
for helpful discussion on libraries and in particular their
numerical algorithms which are available from NA Software Ltd.,
Liverpool. Thomas K.Donaldson for his enthusiastic response and
discussion of similar work going on at MIMD Systems, California. Dr.
Dirk Roose who visited Daresbury in January 1991 shed light on many
areas of common interest. Drs. Rolf Hempel of GMD Sankt Augustin and
Patrick van Renterghem of Ghent gave helpful comments on an early
manuscript. Finally I thank Dr. Richard Chamberlain of Intel
Scientific Computers for advice on using the iPSC/2 and Adrian
Lincoln of Scientific Computers Ltd. for introducing me to Linda.

Finally I thank my collegues at Daresbury for their support and
stimulus to continue this work.

Refarences

[0] this report

[1] R.J.Allan "FORTRAN-77 Programming of Parallel Computers"
(1989) Daresbury Laboratory DL/SA/TM61T

[2] R.J.Allan, and L.Heck, "Parallel FORTRAN in scientific
computing: a new occam harness called Fortnet" D.L. preprint
SCI/P640T (1989)

R.J.Allan, and L.Heck, "Parallel FORTRAN in scientific
computing: a new occam harness called Fortnet" in ’'Transputer
Applications 1' Proceedings of the International Conference on
applications of transputers, Liverpool 23-25 August
1989 ed. L.M.Delves (I0S Press: 1990)

[3] R.J.Allan, L.Heck, and S.Zurek, "Parallel FORTRAN in
scientific computing: a new occam harness called Fortnet" Computer
Physics Comms. 59 (1989) 325-44

[4] L.Heck "Running FORTRAN programs in an occam environment"
in ’supercomputational science’ proceedings of the sumer school on
computational science, september 18-29, 1989 Abingdon, eds.
R.G.Evans and S.Wilson ISBN 0-306-43663-9 (Plenum Praess, 1990)

[5] Intel Scientific Computers Limited "iPSC/2 and iPSC/860
User’s Guide" order number 311532-006 (June 1990)

[6] Intel Scientific Computers Limited "iPSC/2 Fortran

6l

programmer’s referance manual" order number 311708-001 (March 1989)

[7] Meiko Scientific Ltd. "CSTools for SUNDS" two volumes,
edition 83-008A00-02.01 (1990}

[8] Meiko Scientific Ltd. "Computing Surface Reference Manual"
Bristol (March 1989)

[9] D.F.Snelling and Geerd-R.Boffman "A comparative study of
libraries for parallel processing" Parallel Computing 8 (1988) 255-
66

[10] K.Solchenbach "Suprenum FORTRAN - an MIMD/SIMD language"
Supercomputer 4(March 1989) 25-30

{11] U.Trottenberg "Suprenum - the concept" Supercomputer
4(March 1989) 5-12

W.Giloi "Suprenum - the system" Supercomputer 4(March 1989) 13-
19

K.H.Wernar, U.Brass and E.Thomas "The Suprenum User
Interface" Supercomputer 4(March 1989) 20-24

[12] L.J.Clarke "TINY, Discussion and User Guide" Edinburgh
Supercomputer Project ECSP-UG-9 (7/3/90)

L.J.Clarke Ph.D. Thesis University of Edinburgh (1990)

[13] R.J.Allan "FORTRAN-77 programming of parallel computers.
I: Operating systems and environments'" Parallelogram 19 (October
1989)

[14] R.J.41lan "FORTRAN-77 programming of parallel computers.
II: Programming techniques and analysis toocls" Parallelogram 20
(November 1988)

{15] R.J.Allan "FORTRAN-77 programming of parallel computers.
III: Helios operating system and FORTRAN compiler" Parallelogram 20
(December 1989)

[16] R.J.Allan "FORTRAN-77 programming of parallel computers.
IV: 3L Parallel FORTRAN" Parallelogram 20 (January 1990)

[17] NA Software Ltd. "The Liverpool Parallel Transputer
Libraries" brochure Ni Software Ltd., Transputer Division, Mersyside
Innovation Centre, 131 Mount Pleasant, Liverpool, L3 S5TF

[18] 3L Ltd., "Parallel Fortran Reference Manual” 3L Ltd., Peel
Bouse, Ladywell, Livingston, Edinburgh EH54 6AG

[19] R.K.Cooper and R.J.Allan "Fortnet (3L) v1.0: A message-
passing eystem for transputer using 3L Parallel FORTRAN" Computer
Phys. Comms. {1991) in preparation

[20] J.J.Dongarra and D.C.Sorensen "Schedule User’s Guide"
Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Avenue, Argonne, I1l. 60439

J.J.Dongarra and D.C.Sorensen "Schedule: tools for developing
and analysing Fortran programs" Argonne National Lab. Technical
Memorandum MCS-86-86 (1986)

[21] J.J.Dongarra and D.C.Sorensen "A Portable Environment for
developing Parallel FORTRAN Programs" Parallel Computing 5 (1987)
175-86

bL

[22] H.-J.Bast, M.Gerndt and C.-A.Thole "SUPERB - the Suprenum
Paralleliser" Supercomputer 30 (1989) 51-7

U.Kremer, H.-J.Bast, M.Gerndt and H.P.Zima "Advanced tools and
techniques for automatic parallelisation” Parallel Computing 7
(1988) 387-93

U.Kromer, H.-J.Bast and M.Gerndt "SUPERB: a tool for semi-
automatic MIMD/SIMD parallelisation' Parallel Computing 6 (1988) 1-
18

[23] B.Thomas and K.Peize "Suprenum comfort of parallel
programming" Supercomputer 30 (1989) 31-43

[24] R.Hempel "The Suprenum communications subroutine library
for grid-oriented problems" user manual GMD (Gesellschaft fur
Mathematik und Datenverarbeitung; Sankt Augustin, 1989)

R.Hempel "The Suprenum communication subroutine library for
grid oriented problems" Argonne National Lab. technical report ANL-
87-23 (1987)

R.Hempel and A.Schuller "Experiments with multigrid algorithms
using the Suprenum communication subroutine library" GMD Studie 141
(Sankt Augustin, 1988)

[25] L.M.Delves and N.G.Brown "SERC Extramural research
contract. Numerical libraries for transputer arrays: project N2A
8RO775: Final report" Liverpool 5/3/88

[26] L.M.Delves and N.G.Brown "Esprit project P1085: Work
package 17: Numerical libraries for transputer arrays: Interim
report" Liverpool 16/11/87

[27] L.Bomans, D.Roose and R.Hempel "The Argonne/GMD macros in
Fortran for portable parallel programming and their implementation
on the Intel iPSC/2" Arbeitspapiere der GMD 406 (Gesellschaft fur
Mathematik und Datenverarbeitung; Sankt Augustin, 1989) and Parallel
Computing 15 (1990) 119-32

[28] FPS "T-series User’s Guide"

[29] Topexpress library documentation

[30]1 N.Carrierc and D.Gelernter "How to write parallel
programs, a guide to the confused" Research Report YALEU/DCS/RR-628
(May 1988)

[31] A.Lincoln "Desk top parallel supercomputers - the future
workstations" Scientific Computers Limited, Burgess Hill, W.Sussex,
RE15 9LW

[32] D.Gelernter "Getting the job dome" Byte (Nov. 1988) 301-7

[33] T.Merrow and N.Henson "System design for parallel
computing" High Performance Systems (Jan. 1989) 36-44

[34] Wm. Leler "Linda meets UNIX" IEEE Computer Magazine 23
(Feb. 1990) 43-54

{36] J.J.Dongarra, J.J.Du Cruz, I.Duff and S.J.Hammarling "4
set of level 3 basic linear algebra subproblems" ACM Trans. Math,
Soft. (December 1989)

[36]1 J.J.Dongarra, J.J.Du Cruz, S.J.Hammarling and R.Hanson “"&n

63

extended set of FORTRAN basic linear algebra subproblems" ACM Trans.
Math. Soft. 14 (1988) 1-32

[37] C.Lawson, R.Hanson, D.Kincaid and F.Krogh "Basic linear
algebra pubprograms for FORTRAN usagae" ACM Trans. Math. Soft. 5
(1979} 308-25

[38] Linpack documentation

[39] B.T.Smith, J.M.Boyle, J.J.Dongarra, B.S.Garbow, Y.Ikebe,
V.C.Klema and C.B.Moler "Matrix Eigenvalue Routines - EISPACK Guide"
Springer Lecture Notes in Computer Science 6 (1976)

[40] B.S.Garbow, J.M.Boyle, J.J.Dongarra and C.B.Moler "Matrix
Eigenvalue Routines - EISPACK Guide Extension" Sprimger Lecture
Notes in Computer Science 51 (1977)

[41] Quantitative Technology Corporation "Math Advantage User
Manual - FORTRAN version 2.0" QTC, Beaverton, Oregon (1986)

[42] "Convex VecLib User’s Guide" 3rd edition, Comvex
Corporation (March 1988) Document No. 740-002330-202

[43] S.J.Leffler, R.S.Fabry and W.N.Joy "A 4.2BSD
Interprocessor Communications Primer" Computer Systeme Research
Group, Department of Electrical Engineering and Computer Science,
University of California, Berkley, CA 94720

[44] CRAY Res&arch Inc. "UNICOS autotasking user’s guide" SN-
2088 CFT77 3.1

CRAY Research Inc. CRAY X-MP user’s manual

[45] R.J.Allan "The Cogent XTM Parallel Workstation"
Parallelogram 22 (March 1990) see also refs. [30-34]

[46] I.Foster and S.Taylor "Strand ~ New concepts in parallel
programming" Strand-88 (Prentice Hall, 1990) ISBN 0-13-859587-X

I.Foster and S.Taylor "Strand: a practical parallel programming
tool" Argonne National Lab. preprint MCS-P80-0889 (1989)

[47] MIMD Systems Inc. “"The Genesys Compute Server; Software
Capabilities and Requirements Document" #10 Rev. #0 (1/1/89)

[48] Expert Systems Inc. "Final Report: SBIR Project NAS2-
12968: Development of a System Library Facility for Parallel
Computers"

[49] ParaSoft Inc. "Express User’s Manual' (1989)

ParaSoft Corp. "An opsrating system for parallel computers"
(1987)

{50] A.Kolawa and J.Flower "A ’packet’ history of Message
passing Systems" C3P report CalTech

[51] R.J.Harrison ipcv3 program documentation Argonne National
Lab (1990)

[52] M.Surridge "ECCL a general communications harness and
configuration language" in ’Applications of Transputers 2’
proceedings of the second international conference on applications
of transputers, 11-13 Jult 1990 ed. D.J.Pritchard and C.J.Scott ISEN
90 5199 035 9 (IDS Press: 1990)

[53] R.Williams "DIME: A Programming Enviromment for

bk

Unstructured Triangular Meshes on a Distributed-memory Parallel
Processor" C3P report 502, CalTech (1988)

[54] K.Ikudome “ASPAR: The Automatic Symbolic Paralleliser"
presentation to the Fifth Distributed Memory Computing Conferenca,
Charleston, South Carolina USA (April 1990)

K.Ikudoms, G.C.Fox, i.Kolowa and J.W.Flower "An automatic and
symbolic parallelization system for distributed memory parallel
computers'

[65] Intel Scientific Computers Eiscube and Lincube
documentation

[56] R.J.Allan and W.H.Purvis "The Alliant £x2800"
Parallelogram 35 (March 1990) in press

[57] G.A.Geist, M.T.Heath, B.W.Peyton and P.H.Worley “PICL a
Portable Instrumented Communication Library" Oak Ridge National
Laboratory Technical Memorandum ORNL/TM-11130 (0ak Ridge, 1990)

[58] M.T.Heath "Visual Animation of Parallel Algorithms for
Matrix Computations" préprint of IEEE 7777 (1990) 1213-22

[59] R.J.Allan "Portable Message-passing Tools" Daresbury
Laboratory Technical Memorandum DL/SCI/TM71E (November 1990)

[60] Distributed Software Ltd. "HELIOS-PC/s V1.1i" (1989)

Distributed Software Ltd. "Meiko FORTRAN 77 Manual" (1989)

Distributed Software Ltd. "The Helios parallel programming
tutorial” part number H09012 (1390)

Distributed Scftware Ltd. "The CDL Guide" part number HOS9014
(1920)

65

Index

3L Parallel FORTRAN 5, 9

Alliant 7, 9, 12

Argonne Schedule/Trace 6,7

Argonne/GMD Macros 3, 10, 17-18, 19
ASPAR 6

asynchronous 13

automatic parallelisor 6

BLAS 49, 55-59

blocking 10, 31

broadcasting 12, 44

buffering 12 - see also intermediate buffer
cache 4 - see also intermediate buffer
CFD 10

coarse grained 6, 42

Cogent Research 24 - see also Kernel Linda, QIX
configuration 6,31

Convex 1, 5, 12

covering scheme 12, 34-35

CSTools 9 - see also Meiko

CRAY 12, 58

Database 31, 54

dictionary 26

distributed memory 6

Distribution Indicator 35

dyadic operation - see covering

ECCL 9

Eispack 49-50, 58

Esprit 30

Express 3, 10, 19, 26-31

Fortnet 1, 3, 9-15, 19, 25, 31-45, b54-59
FP5 T-series 5, 21-24

gather 3, 32-33

' GENESYS 35, 46 - see also MIMD Systems
global memory operations 3, 16-48

GMD - see Argonne/GMD Macros

graphical analysis 9-15

handshaking 5

harness 5

host program 29,30,31

IBM PC 26

Inmos 27

Intel Eiscube and Lincube 3, 4, 49-50
Intel Globals 3, 10, 16-17

Intel iPSC/2 and i860 1, 3, 4, 5, 9, 10, 19, 26

b6

intermediate buffer 3, 19, 55
ipcv3 10, 18

job 12

k-fold covering 34-35

Kernel Linda 24-25

key 24

layered software 5,9-15

library sleseper 50

library strategy 5

Linda 24-25 - see also Kernel Linda, QIX
Linpack 49-50, 58

local memory operations 34 - see also monadic
logical process 7, 12

loosely synchromous 12, 25, 31
MathAdvantage 58

matrix library 36

matrix multiply example 18-20
matrix multiply example 27-28
matrix transpose example 20-23
Meiko 1, 5-6, 9, 10, 12

memory requirements 6, 27, 46
MIMD 1,3,7,13

MIMD Systems 3, 35, 46

monadic operation - see covering
multicomputer 3

multigrid 19-21

NA Software 3, 50-54

NAG 3, 50, 51

NCube 26

occam 9-15, 50-54

ParaGraph 9-15 - see also PICL
ParaSoft 3, 4, 6, 19, 26-31
PARLANCE library i6, 31-45, 54-59
PARMACS - see Argonne/GMD Marcos
partial vector - see intermediate buffer
PICL 10 - see also ParaGraph
power sharing 55-56

primary processor 55

process ~ sae logical process
profiler 6, 9-15
programmability 3

QIX 24-25

scatter 3, 32-33

Schedule 12 - see also Trace
secondary processor 55

SERC 20, 60

sarver 10, 26, 46

6T

shared memory 7, 9, 26, 31

skeleton routines 31-45

SPLIB 3

SUN 4, 9, 10, 26

Superb 6

Supernode 3,31

Suprenum 3, 6, 7, 18

Suprenum Grid Comms 3, 19-21, 59

. symbolic variables 16, 31-45, 55-56

SYMULT 26

task 12 - see also job

thread 31

TINY 9, 10

Topexpress 3, 50

topology descriptors 22, 23, 35 - see also Distribution
Indicator and Database

torus - see topology descriptors

Trace 19-31 - see also Schedule

transputer 1, 5, 9-15, 26-31, 50-54

triadic operation - see covering

tuple 24-25 - see also Linda, QIX, Kernel Linda

UNIX 1, 9, 10

VecLib 3, 6, 33, 34-35, 54-59

vector processing 6, 22

X-11 10, 26

XTM - see Cogent Research, Kernel Linda, QIX

b8

