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Abstract

A method of performing time-of-flight measurements on a neutron
polarisation analysis instrument is described. The method involves a
crosscorrelation technique in which the neutron beam polarisation
prior to the scattering sample is modulated by a neutron spin flipper
according to a predetermined pseudorandom sequence. It is shown that
the final crosscorrelation of the measured countrate at the detector
with the pseudorandom sequence yields a time-of-flight spectrum which
is proportional to the difference between the spin flip and non spin
flip scattering cross-sections of the sample. Implementation of the

technique and an example of its use are discussed.

It is also shown that in a simple form the crosscorrelation technique

is useful in providing discrimination against inelastic scattering.
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1. INTRODUCTION

The principles and applications of the crosscorrelation techmique in
thermal neutron scattering time-of-flight studies  have been
extensively discussed in the literature during the last fifteen years
(see, for example, {ih). Briefly the technique involves the
modulation of the intensity of a monochromatic neutron beam according
to a predetermined pseudorandom pulse sequence. Each resulting
neutron burst is modified in shape by the transfer function (ie time-
of-flight, or energy, spectrum) of the sample by which it is
scattered. The times of arrival of scattered neutrons at the detector
are recorded in the appropriate channels of a multichannel analyser
and at the end of the experiment the transfer function of the sample
is recovered by crosscorrelation of the stored countrate with the

modulating pulse sequence.

Mezei and Pellionisz [2] introduced a modification to the conventional
cross—correlation procedure wherein the incident monochromatic neutron
beam is polarised and the net spin direction of the beam, rather than
its intensity, is modulated according to the pseudorandom segquence.
The application of the modified crosscorrelation technlque to the case
of a polarised neutron spectrometer was briefiy discussed by Mezed and
pellionisz and it was indicated that a time-of-flight specirum
representing the difference between the transfer functions of a
magnetically saturated sample for spin up and spin down neutroms 1is

obtained from the final crosscorrelation.

The conventional and modified crosscorrelation techniques differ in

that the former allows detected neutrons to be associated only with an
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on pulse of the pseudorandom sequence whereas the latter has
detected neutrons arising from both “on" and "off" pulses. It is the
purpose of this report to examine in detail the principles of the
modified crosscorrelation technique and to consider its application in

neutron polarisation analysis instrumentation.

2. THE MODULATING SEQUENCE

Before proceeding to a detailed discussion of the mathematical
principles of the modified crosscorrelation technique it will be

useful to examine first the statistical and physical properties

required of a modulating sequence.

(1) The statistical nature of the sequence

For any time dependent function, s(t), to be considered as a random
sequence over the period T it must have an autocorrelation function,

Agg( 1), which satisfies the criterion

T
Bes(D) = 3 [ s() s(e-n)de = ag () + 2 (1)

where aj and ajy are constants. While the output sequences of white
noise and random number generators generally satisfy this relationship
as T + «», marked deviations frow the required behaviour are found when
T becomes short. Consequently, should a finite and reproducible
modulating sequence with autocorrelative properties of a random

sequence be required, great care must be exercised in selecting s(t).

The statistical base of a finite sequence can be defined as a binary
string of L bits, sj, which repeats such that sj4j = sj. The s; can
take only the values 0 or 1, and of the L bits of the string K are 1

and 1-K are 0. The autocorrelation function of such a binary string

can be written as
L
e = 12 81514k (2)

The binary string is pseudorandom providing that this autocorrelation

function is of the same form as that given by eq (1), ie if
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A = (Ap—R) 8(k) + A 2(a)
with

Ao 1if k=0, L, 2L etc
Ap =
A otherwise

From equation 2

L
Ao = (] s1 2)= x
i
and
L L
Imc=(Isp?2 =x?
=1 i=1
As
P
= Ap + (L-1)A
k=1Ak
we have
K(K-1) = A(L-1) (3)

As A must be integer, this equation provides a selection rule for

permitted values of L and K. Also 2(a) can be written

Ak = K(l-c) 8(k) + Ke 2(b)
with
O K-1
¢ = 11

c represents the "duty cycle" of the binary string.

It has been shown [3] that for a finite binary string, si, to have the
appropriate autocorrelation function (eq {2a)) and satisfy the
selection rule of eq (3) it must belong to the class of binary
sequences known as Cyclic Difference sets [4], and for the purpose of
crosscorrelation measurements a cyclic difference set can thus be used

as the statistical base for a finite pseudorandom modulating sequence.,

Unfortunately most cyclic difference sets are difficult to construct,
although the appendix to ref [4] contains a very useful list of all
known difference sets for which K < 225 catalogued according to the
expression (L, K, A). There is however one class of cyclic differece
sets, the sub-group known as Singer sets, which may be readily
generated electronically from shift register sequences (see eg [3]).
Such sets have a length given by L = 2%-1, where n is any integer, and

a duty cycle of c = %.

The main points of this section are illustrated in Figure 1 where
three binary strings with L = 127 are shown together with their
respective autocorrelation functions. 1(a) shows a sequence generated
by the random number intrinsic of a computer, while 1(b) shows the
shift register sequence (127, 64, 32). Only the latter has an
autocorrelation function of the correct form. The importance of
maintaining the order of elements within a pseudorandom binary string
is demonstrated in (c¢) where the sequence shown in (b) has had only
two elements, s;; = 0 and 8g3 = 1, dinterchanged. The resulting
autocorrelation function is clearly no longer that of a pseudorandom

sequence.

(ii) The physical characteristics of the modulating sequence

From the string of L bits with the statistical properties outlined
above a modulating sequence of pulses with precisely the same
statistical properties must be obtained. Ideally pulses should have
as rapid rise and fall times as possible and also be symmetrical about
their centres (eg a rectangular pulse shape). 1If pulses of shape I'(t)

are centred at times ti the required modulating sequence M(t) can
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therefore be constructed by convoluting the statistical and physical

characteristics, ie

M(t) = § sy T(t-ty) 0 < M(t) <1 %)
i

the condition of pulse shape symmetry being expressed by

Y Te-tg) =1 for all t (5)
i

3, PRINCIPLES OF THE MODIFIED CROSSCORRELATION TECHNIQUE

In a conventional crosscorrelation experiment one usually wants to
obtain the form of the TOF or energy spectrum, F(T1), of the specimen.

"on'" pulses of the pseudorandom

As incident neutrons arise only from
modulating sequence the time dependent countrate at the detector will
reflect the modulation of the incident beam. In fact the observed
countrate is simply a convolution of F(t1) with M(t), thus

Ty

z(t) = [ F(OM(t-T)dT
° (6)
Tp
= fo F(1) g s, r(t—ti—T)dT

Here Z(t) is the observed countrate and Tp is a time interval outside
which P(T1) is always zero. The function F(T1) can then be recovered

from the countrate by performing the crosscorrelation
T
c'(1) = jo Z(t)M(t-T1)dt (N

where T is the total time of the experiment

In the modified crosscorrelation experiment, however, two countrates
are measured simultaneously, one arising from the "on" pulses, the
associated neutrons having sampled a TOF spectrum S{t), and the other
arising from the "off" pulses with the associated neutrons sampling a

different spectrum N(71). The countrates at time t are thus
_5..-

Zon(t) = [ s(t") 12 s, T(t-t -t")dr'

(8)

Z t) = J - Sre—— [

OFF( ) = [ N(<") g (1 si) I'(t £t Ydt
In a real experiment, of course, there will be an additional countrate
due to a background, b', which is correlated with neither "on" nor

"off" pulses. The total countrate at a time & will therefore be
Z(t) = ZON(t) + ZOFF(‘:) + b? (9)

One could now perform the crosscorrelation of Z(t) with M{t) described
in equation 7, as 1is generally done in crosscorrelation experiments,
but dinstead a crosscorrelation procedure first suggested by Von Jan
and Scherm [5] will be wused in which the countrate Z(t) is

crosscorrelated with the statistical base of the pseudorandom sequence

only, ie with s(t), such that

c(1) = ? Z{t)s(t-1)dt (10)

o
This is equivalent, for the purposes of the crosscorrelation only, to
treating the modulating sequence as a series of d6-functions located at
the centre of each pulse. This procedure not only simplifies the
mathematics which follow, but was shown by Von Jan and Scherm to

provide for increased resolution in the final recovered spectrum.

If the total time of the experiment T is an integer multiple, r, of
the length of the finite pseudorandom sequence T, such that T=rT,
equation 10 becomes

rL

c(t) = Z s Z( T+t ) (11)
j=1 3 3

from which we obtain, using equations 8 and 9

rL
c(1)=) sj(fs(r’)ZSiF(T—ti—T'+tj)d1'+fN(T')Z(l—si)r(r-ti—r‘+tj)dr'+b')
j=1 i i
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- - ' 45 [ N(T')T(T-t +c —T')dT!
id_l{sjsi [ s(t)T(T ti+tj T')dT sJ] (t") Tty

- sis, f N(t')T(1-t 4+t —-t')dt'} + Kb’
J

thus

L
C(1)=r E{Sisij(T')r(T—

+tj—r')dr' + sij(T')r(T—ti+tj—1')dt'} + rXb'
i,3=1

“t (12)
where D(T') = S(t')-N(t'), ie D(t') represents the difference between
the transfer functions of the sample measured by neutrons assoclated
with the "on" and "off" pulses of the sequence respectively. The
significance of this in an experiment in which the neutron beam spin
direction is being modulated will be discussed in detail in a later

section.
Taking the first term in brackets in equation 12

L
T 2 sisj f D(T')T(T—ti+tj—T9dT

]

r{slsl [ p(r)T(r=1")dT" + slszf D(r‘)r(r—T'—tl)dr' o e

+

5,8, [ D(t")T(r=-1")dT' + szs3f D(r')P(T—r'—ti)dt' H 0w o

e o s o s« o etcl

L
r ) [ p(e")P(r+e, ~7')d T’
e A K

Ay being defined in equation 3
we therefore have

L
=r ) &(1-c)&(k) [ Dt )T(the, ~t')d7' + Ke [ D(r')T(w+t ~t')d’
k=1

Finally using the pulse symmetry condition of equation 5 this reduces

to
_7_

= rkK(1-¢) [ D(t")T(t-t")dt" + rke [ D(t")dt’ 12(a)

While the first term of equation 12(a) is clearly a convolution of
D(t') with the pulse shape, the second term is proportional to the
difference between the total number of "on" counts and the total
number of "off" counts recorded in the experiment. Turning now to the

second expression in equation 12

L

r Z s,f N(T")T( 1=t +t —~1')dT’
% i ]

i,j=1

= r{slf N(T)T(r-1')dT" + 5, IN(T')T(T—T"(-tl)dT' S
+ szf N(T')F(r—r'-tL_l)dr' + szf NCT)T(t=1")dT" + o o o o o »

+ etec

il

rK f N(t')T(t1")dt' + rK f N(T')F(T~T‘+t1)dr' + . . « o etc

K z f N(Ct")T(t=-t'+t, )dt’
K k

and again, using the symmetry condition, this becomes
rk [ N(t')dT 12(b)

Equations 12{(a) and 12(b) can now be combined to give, for equation
12,

C(1) = rK (1-c) [D(t")T(1-1')d1’ + rRe [ D(t')dt' + rK[N(7')dt' + rKb'

which finally reduces to

C(T)=rK(1—c)fD(r')P(T—T')dT' + rchS(T')dT' + rK(l—c)fN(r')dT' + rKb!

(13)

In an actual experiment the countrate Z(t) and ultimately C(t) will be
contained in a finite number of channels, N, of a multichannel
analyser. The time width of each MCA channel, &, should be chosen
such that NS is somewhat greater than the overall width of both S(T)

and N(T1). The background per channel is thus b=6b'. Using a

-8



subscript notation rather than arguments to denote the quantities
measured in an MCA channel of width §, and also adopting a convention
in which asterisk superscripts indicate that a quantity has been

convoluted once with the pulse shape I'(t) eg

6/2
D* = [ [ pCe)r(et')dr dr
™8/2

equation 13 can be written as

N, N,
c. = rk(1-c)p* + K& 7 g* KU v F (14)
* t P =1

Where p is an integer representing the ratio of the modulating pulse
width to the channel width, &.

Equation 14 is extremely important as it contains all the information
embodied in a modified crosscorrelation experiment. It can now be
seen that the result of crosscorrelating the measured countrate with
the statistical part of the modulating sequence yields, in a
particular channel 7T, a term proportional to the difference between
the two transfer functions §%, and N*,, superimposed upon a
"background of ignorance” which, within statistical accuracy, should

be completely independent of channel.

4, APPLICATIONS OF THE MODIFIED CROSS-SECTION TECHNIQUE IN NEUTRON
POLARISATION ANALYSIS

The expression "polarisation analysis" is somewhat of a misnomer;
experimentally it is the partial cross-sections connecting the two
neutron spin states that are measured rather than the final
polarisation of the scattered beam. Furthermore it is wusual to
measure cross-—sections for the spin flip (SF) and non spin flip (NSF)
processes without differentiating between +4— and — or between ++ and
-=— scattering events, The SF and NSF cross—-sections are related to
the magnetic, nuclear and nuclear spin incoherent scattering cross-

e

aq aQ dg

and ultimately it is these cross—sections that are of interest [6].

d M a4 N £ NST
sections, ie E—é) s Eﬁg) and E}‘) respectively, of the sample

For systems in which, averaged over the whole sample, the atomic spins
are randomly oriented (eg multidomain antiferromagnets and para-

magnets) the SF and NSF cross-sections can be expressed as [6].
SF NSI M
dg = 2 [dg L (do 2
(ﬁ)r“?(dnjf +2(d§2)t(l+cosd’)
M
A RS U ) I € T R N ) IS I
da)r T 3 \4de) aq) " 2z (@) 1 v

Here ¢ is the angle between the neutron polarisation direction and the

(15)

scattering vector, K. The subscript 7 has the same meaning as in the

previous section.

In a neutron polarisation analysis experiment where the neutron
polariser and analyser have polarising efficiencies of the same sign
it is normal to assoc®ate the SF and NSF cross-sections with the
countrates obtained with a neutron spin flipper placed before the
sample in the ON and OFF conditions respectively. If the spin flipper
is therefore switched according to a pseudorandom sequence we can

write, in the nomenclature of the previous section

SF NSF
dg do
s'r o (ﬁ) T ° N'r = (dﬂ) T 16(a)

where the constants of proportiomality are related to instrumental and
sample characteristics. This is only strictly correct, however, in
the ideal situation of perfect neutron polarisation and spin analysis,
and for a perfectly efficient neutron spin flipper. Although the
latter condition is not difficult to realise [eg 7] the efficiencies
of neutron polarsers and analysers often vary greatly with neutron

energy.

-10-
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Assuming a 100% efficiency for the spin flipper, equation 16(a) can be

rewritten

NSF

SF
1 d 2 dg 2
STG—Z_( Q) T (1+Pt)+(ﬁ_fa T (l—PT)}
NSF SF
1 d 2 do 2
NTG'-E{( )T' (1+PT)+(dQ) ' (1—1’1)

T
SF NSF
2 do do
similarly DT a PT {Eaﬁj g = Eaé) T } 16(c)

where P is the effective beam polarisation for time—of-flight T.

Q

|

(=9

16(b)

Q

=%
2

Although it is not immediately clear why a difference spectrum such as
that given in equation 16(c) should be of interest a great deal of
information can be obtained from it. To illustrate this point two
specific situations will be considered; (i) that in which the neutron
beam is polarised in a direction perpendicular to the scattering plane

and (ii) that in which the polarisation within the scattering plane.

(i) If the scattered neutrons are detected in the horizontal plane,
then vertical polarisation of the neutrons at the sample
position ensures that whatever the energy change of the
scattered neutron the polarisation remains perpendicular to the
scattering vector, ie ¢ = 90°. The measured difference spectrum

D. is therefore

T

1 (a0 ™ (ag) ¥
3 (dQ) 1 de ) T
g NSI
dﬂ) is relatively small, and in general

For most elements Eé—

N
2 | dg
D o= P, dﬂ) . 17(b)

_ll.—

In otherwords the cross correlation spectrum consists of a
purely nuclear time-of-flight spectrum superimposed upon the
background of ignorance. The magnetic scattering has been
totally and unambiguously removed from the time-of-flight
spectrum, and appears only as a contribution to the £flat

background of ignorance.

(ii) 1In situations where the neutron polarisation at the sample is in
the scattering plane of the detected neutroms it is usual to
arrange the polarisation direction to be parallel to the
scattering vector for elastic scattering (Fig 2). The angle ¥
therefore varies as a function of energy transfer of the neutron

according to the expression

2
cosZy = (1 - cos 20) (KI + KF)
(18)

2 2
2(KI + KF ZKI KFcos 26)

where 28 is the scattering angle and Ky and Kp are the incident

and scattered neutron wavevectors respectively. D, therefore

can be written as

NSI N M
2 ) 1l(dg _ (4o do 2
Dr o PT { 3 (dSJ T (dﬂ) T ¥ (dsz) ¢ ©O8 ‘JJ} (19)

From the expressions 17(a) and 19 it can be seen that magnetic
scattering will always occur as a positive going peak in the cross
correlation function C., while nuclear scattering appears as a dip
below the background of ignorance. Furthermore the subtraction of C_
obtained in case (ii) from that obtained in case (i) isolates the

magnetic scattering ie

(i) (ii) M
2 2 dg
D, - D, a P {cos ¥ (éa) ,t] (20)

with the background of ignorance removed by the subtraction.

-12~-



5. IMPLEMENTATION OF THE POLARISATION MODULATED CROSSCORRELATION
TECHNIQUE

The flexibility of the polarisation modulated crosscorrelation
technique is such that it can be used to perform either complete
energy analysis of the scattered neutroms or alternmatively, using much
simpler equipment, to perform discrimination against inelastically

scattered neutrons:

5(1) Full energy analysis can be accomplished by performing the

crosscorrelation in one of two ways.

The "direct" method invelves counting the scattered neutrons in the
time channels of an MCA appropriate to their time of arrival at the
detector. At the end of the experiment this stored countrate is
finally cross correlated with the statistical base of the pseudorandom

sequence used to switch the flipper.

The second method involves the crosscorrelation being performed on-
line in a manner similar to the "inverse time-of~flight" method
described by Hiismaki [8]. In this "inverse" method a detected
neutron triggers a sweep of the MCA during which elements of the
delayed pseudorandom sequence (ie previous states of the spin flipper)
are stored in the appropriate MCA channels. In this way a cross-
correlation pattern, mathematically identical to C, in equation (14)
is constructed dynamically. The "inverse" method is somewhat simpler
to implement than the "direct" method as it does not require a single
final computation of the crosscorrelation function, and allows the
time-of-flight spectrum to be viewed continuously during data
acquisition. However its use is restricted to experiments with low

count rates, as only one neutron event can be stored per MCA sweep.

5(ii) Discrimination against inelastic scattering: To discriminate

against dinelastic scattering events the pseudorandom spinflipper

switching sequence is delayed by the time-of-flight of elastically

_13_

scattered neutrons, Te1» and used to trigger an electronic gate
routing detected neutrons to one of two scalers depending upon the
state of the switching sequence. This is equivalent to evaluating the

cross correlation function, C at a single channel corresponding to

T’
™=T,1, the channel width being the same as the switching sequence
pulse width (ie. p=1). Assuming that the duty cycle of the
pseudorandom sequence is %, inspection of the expression for C, shows

that for the scaler associated with the flipper-on condition

on - -
cTel K H(S*Tel N*Tel) +4 Js* + 1 IN*_+ b]

ie. €O = rk[s*
T
el

+ 4 {Jsx, - 5%+ JNE_ -

- b )

Tel el

As the total, flipper—on plus flipper—off, inelastic scattering I* can

be expressed as

= * % -~ S* -~ N*
I* Z(ST+NT) sTel N‘fel

the flipper—on scaler records

on
Tel

€% = rr[s*_  + 4I* + b]

Tel

In this mode, the situation for the flipper—off state is symmetrical
with that for the flipper-on and in the other scaler

Coff

g = X [ns

L AT +b]

is measured. In other words the elastic flipper-on or flipper—off
scattering is measured in the appropriate scaler, while the
flipper-on  plus flipper—off inelastic scattering 1is, within
statistical accuracy, equally distributed between the two scalers.
The difference between the two scalers is, of course, independent of
any inelastic scattering processes. The switching frequency of the

flipper governs the resolution of the elastic discrimination.

14—
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The LONGPOL neutron polarisation instrument at AAEC Research
Establishment, Lucas Heights, Australia has recently been modified to
allow the polarisation modulated cross correlation technique to be
implemented in either the full time-of-flight analysis mode (employing
the "inverse" method) or the inelastic discrimination mode. A full
description of the LONGPOL instrumentation and implementation of the
cross correlation procedures described in this report can be found in

Ref [9]. A schematic diagram of LONGPOL is given in Figure 3.

An illustration of the application of the LONGPOL time—of-flight
facility is given in Figure 4 where a spectrum obtained from an
antiferromagnetic ~Y-MnNi single crystal is shown. The crystal,
maintained at room temperature, was oriented such that a low
wavevector magnon could be observed. Details of the experimental
parvameters are given in the figure. The illustrated spectrum was
collected in 90 hours, but the position of the magnon was quite clear
after 40 hours. TFor clarity the "background of ignorance" has been
subtracted from Co leaving a difference spectrum proportional to

DX = (S*T - N*r)‘ No correction has been made for imperfect beam

polarisation.,

As the polarisation direction of the beam is closely parallel to the
scattering vector  for small energy changes 8%, Trepresents
predominantly magnetic scattering whereas N* is predominantly nuclear
scattering. It is therefore to be expected that D*T is negative, as
observed, for elastic scattering as for the present orientation of the
crystal the elastic scattering consists of diffuse atomic disorder and
magnetic defect scattering in the ratio ~ 3:1 [10]. The positive peak
at an energy transfer of 10 meV, on the other hand, unambiguously
shows that at this energy transfer the magnetic scattering is far
greater than any nuclear contribution. This peak can therefore be

identified as resulting from magnon annihilation.

Figures 3 and 4 have been reproduced from Ref [9].

—-15-

6. SUMMARY

In this report the mathematical principles and the methods of
implementing a polarisation modulated crosscorrelation technique in
neutron polarisation analysis time-of-fiight studies have been
discussed. It has been shown that crosscorrelation of the observed
neutron countrate with the statistical base of the pseudorandom
sequence used to switch the neutron spin flipper provides a time-of-
flight spectrum which is proportional to the difference betwesn the
spin flip and non spin flip scattering cross—sections of the sample
superimposed on a background which, within statistical accuracy, is
independent of time-of-flight. It has further been shown that
changing the relative orientations of the neutron polarisation
direction and scattering wvector at the sample position enables the
time-of~-flight spectra for nuclear and magnetic scattering to be

unambiguously separated.

A method for using the crosscorrelation procedure to simply
discriminate against inelastic neutron scattering has also been
described.

Although the crosscorrelation technique as described in this report is
strictly wvalid only for steady state neutron sources, with a
monochromatic polarised mneutron beam incident on the scattering
sample, the application of a similar technique to pulsed neutron
sources and polychromatic polarised beams 1is currently under

investigation and details will be reported shortly.
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