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ABSTRACT 

The basic requirement that, in quantum theory, the time-evolution of any state is deter­

mined by the action of a unitary operator, is shown to be the underlying cause for certain 

"exact" results which have recently been reported about the time-dependence Qf transition 

rates in quantum theory. Departures from exponential decay, including the "Quantum 

Zeno Effect", as well as a theorem by Khalfin about the ratio of reciprocal transition-rates, 

are shown to follow directly from such considerations. At sufficiently short times, uni­

tarity requires that reciprocity must hold, independent of whether T -in variance is valid. 

If T-invariance does not hold, unitarity restricts the form of possible time-dependence of 

reciprocity ratios . 
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I. Introduction 

The Weisskopf-Wigner theory [1] of decaying states has been used with great success In 

a wide variety of applications. Nevertheless, since it is an approximate theory, it is not 

surprising that there should be circumstances in which one expects [2, 3, 4] departures 

from the predictions of the theory. Some of these issues have acquired renewed interest 

because of advances in experimental methods [5]; others arise from the expected [6, 7] 

deviation from time-reversal symmetry in weak interactions. The question of the correct 

treatment of unstable particles also arises in the application of current gauge theories of 

weak interactions, where the instability of intermediate bosons and fermions cannot always 

be neglected [8]. In this note, we show that many of these corrections can be directly traced 

back to the fundamental requirement of unitarity, which is satisfied only approximately in 

the Weisskopf-Wigner method. 

In the Weisskopf-Wigner approximation -which can be generalized [9] to the case 

of decays arising from two or more states- certain initial states are singled out for spe­

cial attention. Transitions from these distinguished states, to other states, deplete the 

population of these initial states. The Weisskopf-Wigner approximation allows for this by 

replacing the matrix-elements of the exact (full) Hamiltonian, in the subspace spanned by 

those states, by a non-Hermitian submatrix. For a single unstable state, the (negative) 

imaginary part of the complex "energy" assures that the probability decreases exponen­

tially with time. While this prescription accounts for the "leakage" of probability in terms 

of the rate of transitions out of the initial states, detailed analysis outlined below, shows 

that theWeisskopf-Wigner procedure cannot satisfy unitarity exactly. The circumstance [2J 

that the "law" [10] of exponential decay cannot be exactly right in quantum theory can be 

directly related to the fact that the exponential Ansatz is incompatible with the unitar­

ity requirement which is essential for the basic interpretation of the theory. In this note, 

the general condition imposed on transition amplitudes by the restriction of unitarity is 

explicitly stated. When applied to a theorem about tests of reciprocity originally given 

by Khalfin [11], one obtains not only a simpler and more direct proof of the theorem but 

also a stipulation on the nature of the variation whose occurrence Khalfin could infer, but 

not specify further. The present formulation of the unitarity conditions could be used to 
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explicitly take account of this constraint in possible future attempts to improve on the 

Weisskopf-Wigner approximation. 

Section II presents the unitarity conditions which the exact transition amplitudes 

must satisfy, and shows how these lead to useful results, in addition to providing a new 

and simpler proof of Khalfin's theorem. Section III summarizes our conclusions. 

II. Unitarity Constraint on Transition Amplitudes 

Theorem. If Akj(t) is the exact transition amplitude for a state initially prepared in the 

state j to be found in the state k after a lapse of time t, unitarity requires that 

(1) 

Correspondingly, if fkj(t) = Akj(t)jAjk(t), the function fnj(t) should satisfy the relation 

(2) 

Proof. By general principles of quantum mechanics, (using units Ii = 1) 

AkAt) = (kl exp(-iHt)lj) (3) 

for any two states k and j, where H is the complete Hamiltonian governing the time­

evolution of the system. 

Hermiticity of H assures that the operator U(t) exp(-iHt) IS unitary SInce 

[exp(-iHt)]t = exp(iHt). Thus 

(klUlJ) (kl exp(-iHt)lj) UI exp(+iHt)lk)*. 

From Eq. (3), the conjugated quantity on the R.H.S. is just Ajk(-t). Consequently, 

for transitions induced by any Hermitian Hamiltonian H, which is exactly Eq. (1). This 

may be regarded as the unitarity constraint on transition amplitudes. If we rewrite Eq. (1) 

in the form: 

1, (4) 
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which must be valid for any j, k, then the condition <pjk <Pkj leads to 

Ajk( -t) Akj(-t) 
Akj(t) Ajk(t) , 

which is equivalent to Eq. (2). Q.E.D. 

Our first application of the theorem will be to use it to show that the decay probability 

of an unstable state must be an even function of time. Setting j = k in Eq. (1), we obtain 

(5) 

Therefore, the probability for a quantum system to remain in its initial state, and conse­

quently also the complementary probability to make transitions to other states, must be 

an even function of time. This result has been known for some time, even though it has 

not yet found its way into many textbooks. The symmetry of Pjj under t -+ -t is even 

more apparent if one writes 

(6) 

making use of Eq. (1). Provided that Pjj (t) is differentiable -a condition which is assured 

if (H) exists for the given initial state- at t = 0, it follows that FjAt), which must 

correspondingly be an odd function of time, must vanish at t O. We can explicitly verify 

this by calculating 

(7) 

Then 

(8) 

and, if we substitute the explicit expressions from Eq. (3), we obtain 

(9) 

and thus 

2S'm(Ulk)(kIHlj)) , (10) 

which yields [12] 

2S'mUIHlj) O. (11) 
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This constraint has been called [13] the Quantum Zeno Effect. Observation [5] of the ex­

pected non-linear time-dependence at short times, for the closely related process of induced 

transitions, can be regarded as evidence in support of the effect. 

A corollary statement is that, since exp(-,t) does not have a vanishing derivative at 

t 0, the hypothesis of exponentially decaying states is inconsistent with the requirement 

of unitarity. The deviations from exponential decay, both at very short times and at very 

long times, have been extensively studied by many authors [2,4]. 

Our next use of the theorem will be to provide a new and simpler proof of Khalfin's 

theorem [11]: that if the ratio of the transition amplitudes for two reciprocal [14] transitions 

a -+ band b -+ a is constant, then the only possible value for the modulus R of that constant 

is unity. We have seen that fkj(t), defined after Eq. (1), must satisfy 

Thus, if we are given that fkAt) = ( = constant for all t ~ 0, it follows from above that f kj 

must also be constant for all t :s; O. Continuity of Ifkj I at t 0 requires that 

R 1(1 = 1, (12) 

which is Khalfin's theorem. Since Khalfin arrived at this conclusion by a more complicated 

argument, we should like to note that the proof presented here required little [15] more than 

the assumption of unitarity. In particular, no assumption is required about the positivity 

of the spectrum of H, viz. the assumption Spec H ~ 0, made in Khalfin's proof, appears 

to be unnecessary. 

Our next application of these ideas will be to prove that reciprocity must hold (inde­

pendent of the question of time-reversal invariance) at very short times, as a consequence 

of unitarity alone. From Eq. (1), 

(13) 

which states that a kind of reciprocity is exactly valid at t O. This can be understood 

directly as follows. For small values of t, let us expand the RHS of Eq. (3) in a power series, 

(k11 - iHt + ---Ij). (14) 
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If the state k is not orthogonal to j, the value of the RHS of Eq. (14), for t = 0, is the 

complex conjugate of, and therefore has the same magnitude as, Ulk). Therefore, Pkj(O) 

and Pjk(O) must be equal in that case. If k is orthogonal [16] to j, we must go to the 

term linear int in Eq. (14), and we :find that the transition amplitude is proportional to 

Hkj . But, since H must be Hermitian, this is the complex conjugate of the matrix-element 

Hjk for the inverse transition and we recover the result, reported in many textbooks [17], 

that in lowest-order perturbation theory, reciprocity follows from the Hermiticity of the 

interaction Hamiltonian. This requirement of reciprocity, independent of the T -invariance 

or otherwise of the Hamiltonian H, at early times t ---t 0, can be stated more precisely by 

expanding the Pkj( t) as a power series in t: 

. 1 .. 2 3 
Pkj(O) + Pkj(O) t + 2" Pkj(O) t + O(t ). (15) 

We have already seen that Pkj{O) = l(klj)12 and 1\j(0), Eq. (10), both vanish if (klj) = O. 

By direct calculation, we :find 

(16) 

which shows explicitly that reciprocity must be preserved if (klj) = 0, to order t 2
, solely 

as a consequence of the Hermiticity of H, viz. of the requirement of unitarity for the 

time-evolution operator. 

By an application of this result to the argument which led to the "quantum Zeno's 

paradox", we can conclude that any departure from reciprocity, which would be expected 

if T-invariance is not a symmetry of the underlying Hamiltonian, will be reduced or sup­

pressed if the system undergoing change is monitored too closely. Thus, for example, 

frequent observation, amounting to a measurement of its strangeness, of a neutral kaon 

state, could reduce the inferred value of the C P- and T-violating parameter e (under the 

assumption of TCP-invariance) relative to the one measured for "free" kaons. Possible 

implications of the corresponding quantum Zeno effect for baryogenesis in the Universe 

will be discussed elsewhere. 

From his theorem Khalfin could conclude that, if reciprocity is not satisfied, R must 

vary with time although nothing further could be said about the nature of that variation. 

The general solution for a function satisfying the unitarity condition (2), can be written 
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as: 

exp[g(t) + ih(t)], (17) 

where g(t) and h(t) are real functions of t which must be odd and even, respectively, 

under t ---....+ -t. Any phenomenological representation of Ajk(t), and correspondingly of 

fjk(t), to take account of possible deviations from reciprocity, which conforms to Eq. (17), 

will automatically satisfy the requirement of unitarity. The Weisskopf-Wigner formalism, 

as extended to the case of interfering [9] decaying states, was applied by Lee, Oehme, 

and Yang [18] to the KO kO system, a form which can accommodate possible T­

noninvariance--, and appears to adequately represent the data obtained thus far. Notwith­

standing its great success, our foregoing discussion has shown that this description is not 

strictly compatible with unitarity of the exact theory [19]. 

Knowledge of the spectral content of the initial state, and thereby of the spectrum 

of H, determines [21], in principle, the complete time-evolution of the system through 

decomposition of its state-vector into a complete set of eigenvectors of H. Even in the 

absence of such detailed knowledge, any additional information about the spectrum of H, 

which could be expressed as further constraints [22] on the functions g(t) and h(t) -beyond 

the conditions on g(t) mentioned already- would obviously help to define the admissible 

forms of time-dependence. 

We have already seen above that the Weisskopf-Wigner exponential Ansatz cannot 

exactly satisfy unitarity. Eq. (17), with possible supplementary conditions, offers a natural 

point of departure for a new phenomenology satisfying exact unitarity. 

III. Conclusions 

In this note, we have shown that the existence of certain puzzling and unexpected phenom­

ena, such as the quantum Zeno effect or deviations from Rutherford's law of exponential 

decay, can be directly traced back to the unitarity condition, which is required in quantum 

theory for a consistent description of any (isolated) dynamical system. Further conse­

quences which are expected in principle, in addition to the Khalfin theorem mentioned 

already, include an analogue of the Zeno effect for the comparison .of rates of reciprocal 

transitions. Whereas these rates are not directly related unless T-invariance is imposed 
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on all relevant interactions, unitarity alone requires that a test of reciprocity must yield a 

result conforming to the T-invariant expectation if the measurements are made sufficiently 

rapidly. This means, for example, that even if we accept the usual interpretation [6] that 

the observed GP-noninvariance observed in neutral K-meson decays is associated with a 

T-noninvariant interaction, the corresponding expected [7] departure from reciprocity in 

KO ~ RO transitions would be suppressed, and indeed disappear, if the comparison were 

made at shorter and shorter times. Such asymmetries have been invoked [23] to explain 

the observed baryon asymmetry of the Universe; possible implications of this "G P and T 

quantum Zeno effect" will be discussed elsewhere. 
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