
CAIAXJLATION OF THE TOUSCHEK LIFETIME IN ELECTRON STORAGE RINGS 

R.P. Walker 
SERC Daresbury Laboratory, Warrington WA4 4AD, UK 

Abstract: Various formulae for calculating 
the Touschek lifetime of a ribbon beam of electrons are 
examined. It is shown that two commonly used approxi- 
mations can give inaccurate results in certain circum- 
stances. A method is suggested for calculating the 
lifetime accurately and efficiently using a combination 
of formulae. 

Introduction 

I" electron storge rings electrons within the 
same bunch can scatter elastically off each other due 
to their betatron motion and after collision may be 
lost if the change introduced in the longitudinal 
momentum is larger than can be accommodated by the r.f. 
acceleration system. The effect, first observed on the 
small storage ring AdA [l], was explained by 
B. Touschek, and so is most often referred to as 
Touschek scattering. The loss rate due to this process 
is given by 

dNb No -= 
dt 

- a Nb2 ; Nb = 
1 + aNOt 

where Nb is the number of electrons per bunch. The 
half-life, T, known as the Touschek lifetime, is then 
given by: 

’ = aN 
-r 0 

The loss rate depends on the beam current, r.f. accept- 
ante, the distribution of transverse momentum and bunch 
volume. It is very energy dependent and is often the 
limiting factor in determining the minimum injection 
energy of a storage ring. However, even at relatively 
large energies with the very small beam emittances 
being proposed for the next generation of synchrotron 
radiation sources the Touschek lifetime can make a 
significant contribution to the overall beam lifetime. 
Loss of the particles may also occur if the transverse 
motion after collision exceeds the physical or dynamic 
aperture. This process is often neglected but may be 
important in certain cases and can be accounted for by 
introducing an effective r.f. acceptance related to the 
aperture [Z]. 

Less violent collisions also take place which 
do not lead to loss but which give rise to a growth in 
the energy spread and emittance of the particles [3]. 
The effect called multiple Coulomb scattering, or more 
commonly intra-beam scattering, will not be discussed 
further here. In this report the various formulae 
which have been derived to calculate the Touschek life- 
time for an equilibrium distribution of particles, 
whether this refers to the "natural" values or those 
including the effects of intra-beam scattering, will be 
examined and their range of validity explored. 

Touschek Lifetime Calculations 

Various formulae to compute the Touschek life- 
time have been derived [4-71 using different approxima- 
tions; however, the basic method was the same in all 
cases. Firstly, the M$ller scattering cross-section 
[8,9] in the centre-of-mass frame of the two electrons 
involved in the collision is integrated over the angu- 
lar region for which sufficient momentum can be trans- 
ferred into the longitudinal direction to result in the 
loss of both particles. Then the scattering rate is 
evaluated by integrating the total cross-section over 
the distribution of transverse momentum in the bunch. 
It is usual to assume two simplified assumptions: 

i) All particles have the same energy, Eo. This is a 
good approximation since the energy spread in most 
storage rings is small compared to the r.f. acceptance 
to ensure adequate quantum lifetime. 
ii) The vertical component oE transverse momentum can 
be neglected, or equivalently, that the vertical beam 
divergence is small compared to the horizontal: 
u' < 6'. In many cases this approximation of a "ribbon 
e&act& beam" is reasonably good, since averaged 
around the circumference typically a$/~$ * 5-10 in most 
machines. However, there are situations where it may 
be desired to induce a high degree of coupling between 
horizontal and vertical betatron motion either to pro- 
duce "round beams" for synchrotron radiation sources, 
or possibly in order to increase the beam volume and 
hence increase the Touschek lifetime. In such cases a 
more complicated analysis is necessary and this topic 
has received little attention until recently when 
Miyahara [lo] put forward a simplified expression for a 
perfectly round beam (u; = 0') in the non-relativistic 
regime, which is in agreemen 8 with measurements made on 
the SOR-RING. 

The analysis used to explain the results 
obtained with AdA [l] and which appears in the book by 
Bruck [4] was based on the further approximation, that 
the transverse momentum is non-relativistic. The 
condition for validity of this approach is that the 
transverse momentum, p,, in units of mOc, is less than 
unity. For an electron of momentum ymOc travellinq at 
an angle 0 to the reference orbit this condition 
reduces to: ye < 1. In many electron storage rings 
the value of yo;, averaged around the circumference, is 
in the range 0.1 - 0.5 at full energy; however, it can 
be larger. For example, the SRS (before the recent 
upgrade [ll]) had a typical divergence u; of 0.4 mrad 
at 2 GeV giving yu; = 1.5. It is clear therefore that 
a non-relativistic approximation is not valid in all 
cases ; the errors involved will be considered later. 

Bruck's result was as follows: 

1 &I ro2 c Nb C(E) 
T= 6s Y* T2 v 

(11 

where rO = classical electron radius 
V = 8s312 ox oy os, the bunch volume 
6q = r-m.5 transverse momentum in units of 

1 

11 = ~~~m~,~'~he maximum relative energy 

deviation accepted by the r.f. system 
E = (ri/6q)2 

The function C(E) is given by: 

C(E) = - $ esE + $ JE u e m I" u -u du 

(2) 
(3s - E 1" E + 2) rrn c du 

+ZaE u 

and is shown in Fig. 1. For E << 1 Bruck gives the 
approximation: 

C(E) = - In(c) - 2.077 (3) 

The approximation, shown dotted in Fiq.1, is good to 2% 
for E ( 5.10-3. 

Gitelman and Ritson [5] used a small angle 
approximation for the cross-section and derived expres- 
sions for the Touschek lifetime in the limiting cases 
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Fig.l. Non-relativistic approximation for the Touschek 
lifetime, eqn.(2). The dotted line shows the 
limiting solution for E << 1 (eqn.(3)). 

of non-relativistic (p, << 1) and extreme relativistic 
(p, >> 1) transverse momentum. VBlkel [6] showed that 
the small angle approximation was equivalent to taking 
the limit n + 0, and indeed their result for the non- 
relativistic case is equivalent to eqn.(3) above. 

Vtllkel [6] extended the analysis of ref.[5] 
using the exact expression for the scattering cross- 
section. His result was as follows: 

, _ 4n ro2 c Nb 

-r- 
Y2 ,1* v 

J(v,Gq) (4) 

The general expression for J, for a Gaussian distribu- 
tion of momentum, is: 

-($I‘ 
J = Jrn &q e 

tl 2Jir 6q 
J""2[(, + s:* (1 - $ e$) 

(5) 

+ q* - x2 (1 /1+X* 

1+x2 
- 7. 7) + ,1* p;*) nn (11 f@)] 

where the symbol x has been used to denote the trans- 
verse momentum, px. Figure 2 shows the results of 
numerically integrating eqn.(5) for a wide range of 
values of n and 6q : 10m4 < n < 10-l, lam4 < 6q < lo*. 
It can be seen that the lifetime is worse (larger J) 
the smaller the r.f. acceptance (n), as expected. 
Generally as the transverse momentum decreases (reduc- 
ing beam divergence or energy) the lifetime also gets 
worse, however a minimum is reached at n/oq = 0.2. A 
minimum is expected since for an individual collision 
if V/P, > 1 the particles cannot transfer sufficient 
momentum into the longitudinal plane to cause loss. Of 
course, as mentioned earlier, the influence of intra- 
beam scattering in this regime is likely to be strong. 
At extremely relativistic transverse momenta it can be 
seen that S approaches unity, independent of r.f. 
acceptance, as predicted by Gittelman and Ritson [S]. 

Wiedemann [7] examined the non-relativistic 
limit (x << 1) of eqn.(5). In fact, the result obtained 
was identical to eqn.(l) with: 

J - C(E) 

4JT 6q (4 
<< 1) , (6) 

Fig.2. General formula for the Touschek lifetime, 
eqn.(5). The dotted lines show the non-rela- 
tivistic approximation (eqns.(2) and (6)). 

Results obtained using the non-relativistic approxima- 
tion are shown in fig.2 by the dotted lines. It can be 
seen that the approximation is valid for dq 5 0.1 and 
becomes increasingly inaccurate for larger 6q. Figure 3 
shows the error in using the non-relativistic approxi- 
mation more clearly, and it can be seen that for better 
than 2% accuracy 6q < 0.1 - 0.3 depending on the value 

of q. For &q = 1 errors of between 10% and 40% can 
result, depending on n. 

aq 
Fig.3. Ratio of the non-relativistic approximation for 

the Touschek lifetime to the exact result. 

VUlke.1 gave several useful approximations of 
eqn.(S) for the limiting case n + 0. With a Gaussian 
momentum distribution numerical integration is still 
required, however with the simplification of a rectan- 
gular momentum distribution the following expression 
was derived: 

(7) J approx = (1 + 6P*]l'* + & {n*(L) - F 
6P rl 

+;I* [ I; 1 ;;;;:;; ; ;] + $ Iln (6p + (1 + 6p2)"2)] 

where the limits of the momentum distribution are ?rdp, 
related to the rms width by 6q = 6p/J3. Figure 4 shows 
that the approximation is accurate for Gq/n 2 100. How- 
ever, outside this range the approximation becomes very 
poor and will even predict negative values of J [12], 
and hence of the lifetime, for 6q/n 5 3. The formula 
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Fiy.4. Ratio between a simplified expression for the 
Touschek integral, eqn.(7), and the exact 
result, eqn.(5). 

eqn.(7) appears in the CERN BEAMPARAM program [13] 
which should therefore be used with some caution for 
calculating the Touschek lifetime. 

Taking the limits r) + 0 and 6q << 1 Vtllkel 
also derived the equivalent result to eqn.(3), namely: 

J = & [In y, - 1.0391 (8) approx 

The range of validity of this equation can be inferred 
from the results given previously for small n/6q and 
the non-relativistic approximation. This formula there- 
fore allows a very simple calculation of Touschek life- 
time but for a restricted range of situations. 

In applying the formulae to a real machine the 
scattering rate should be averaged around the storage 
ring circumference (141 since both the transverse 
momentum distribution (beam divergence) and beam size 
vary around the ring. In one case it was shown that 
errors of up to a factor of two could be produced using 
average values for the lattice functions compared to 
averaging the scattering rate [151. 

Conclusion 

It has been shown that one commonly used 
formula for computing the Touschek lifetime, eqn.(l), 
is valid only for non-relativistic transverse momentum 
and that at high energy with large beam emittance siy- 
nificant errors compared to the more general formula 
can result. Another approximation, eqn.(7), can break 
down to the extent that negative lifetimes are indi- 
cated, particularly in the case of low energy and low 
emittance beams with a large r.f. acceptance. 

For preference therefore one should use in the 
general case the result of Mlkel, eqns.(4) and (5). 
However, in order to reduce the amount of computer time 
used, particularly as the calculation must be performed 
many times in order to take into account the varying 
lattice functions around the ring circumference, it is 
useful to incorporate approximations wherever they are 
appropriate. Taking as a criterion a requirement for 
2% accuracy the two approximations, eqns.(7) and (8), 
have been examined in detail to determine the ranges of 
parameter space over which they can be applied. The 
result IS shown in Fiy.5. The most useful is eqn.(7) 
whose range of validity is defined by the constraints 
6q > 1 and Gq/n > 130. The region over which eqn.(8) 
may be used is given by: q < 5.10-3, 6q < 0.2 and 
6q,'q > 16. It can be seen that there is a region of 
parameter space where it may be applied when eqn.(7) 

6q 

Fig.5. Ranges of validity of two approximations to the 
Touschek integral for 2% accuracy. 

does not give sufficient accuracy. In the region of 
overlap eqn.(8) would also be preferred as being 
somewhat more efficient than eqn.(7). 
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