
Preprint
STFC-P-2024-001

Approximating large-scale
Hessian matrices using
secant equations
JM Fowkes, NIM Gould, JA Scott

May 2024

Submitted for publication in ACM Transactions on Mathematical
Software

Enquiries concerning this report should be addressed to:

RAL Library
STFC Rutherford Appleton Laboratory
Harwell Oxford
Didcot
OX11 0QX

Tel: +44(0)1235 445577
email: library@stfc.ac.uk

Science and Technology Facilities Council reports are available online at:
https://epubs.stfc.ac.uk

Accessibility: a Microsoft Word version of this document (for use with assistive
technology) may be available on request.

ISSN 2753-5819

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their reports or
in any communication about their tests or investigations.

mailto:library@stfc.ac.uk
https://epubs.stfc.ac.uk/

STFC Author Identifiers (ORCIDs)

Author ORCIDs are provided where available.

Jaroslav Fowkes

0000-0002-8048-4572

Nicholas Gould

0000-0002-1031-1588

Jennifer Scott

0000-0002-2130-1091

https://orcid.org/0000-0002-8048-4572
https://orcid.org/0000-0002-1031-1588
https://orcid.org/0000-0003-2130-1091

Approximating large-scale Hessian matrices using

secant equations

Jaroslav M. Fowkes∗ Nicholas I. M. Gould∗ Jennifer A. Scott∗†

May 16, 2024

Abstract

Large-scale optimization algorithms frequently require sparse Hessian matrices

that are not readily available. Existing methods for approximating large sparse

Hessian matrices either do not impose sparsity or are computationally prohibitive.

To try and overcome these limitations, we propose a novel approach that seeks to

satisfy as many componentwise secant equations as necessary to define each row of

the Hessian matrix. A naive application of this approach is prohibitively expensive

on Hessian matrices that have some relatively dense rows but by carefully taking into

account the symmetry and connectivity of the Hessian matrix we are able devise an

approximation algorithm that is fast and efficient with scope for parallelism. Example

sparse Hessian matrices from the CUTEst test problem collection for optimization

illustrate the effectiveness and robustness of our proposed method.

Keywords: Sparse nonlinear systems, sparse Hessian matrices, secant equations.

1 Introduction

Let us suppose we are given a smooth objective function f(x) of n variables x, whose

gradient g(x) := ∇xf(x) is known. Our aim is to compute estimates B(k) of the Hessian

matrix H(x) := ∇xxf(x) at a sequence of given iterates x(k). Such a requirement lies at the

heart of both Newton-like methods for minimizing f and methods that try to assess the

stability of its gradient. We are particularly interested in the case where H(x) = {hij(x)}
is large and sparse with a known sparsity pattern S(H(x)) := {(i, j) : hij(x) ̸= 0}. We say

that the Hessian matrix has an entry in row i and column j if hij(x) ̸= 0 for some x.

If we are extremely fortunate, an analytic expression for the Hessian matrix may

be available. Alternatively, it may be possible to obtain approximations to H(x) using

∗STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, UK
†School of Mathematical, Physical and Computational Sciences, University of Reading, Reading RG6

6AQ, UK. Correspondence to: jaroslav.fowkes@stfc.ac.uk. All authors were supported by EPSRC

grant number EP/X032485/1.

1

2 J. M. Fowkes, N. I. M. Gould, J. A. Scott

automatic differentiation [16]. If not, we could consider finite-difference approximations to

compute one column of B(k) at a time, for instance using forward differences

B(k)ei ≈
g(x(k) +∆ei)− g(x(k))

∆
,

where ei is the i-th unit vector and ∆ is an appropriate small scalar [10]; more expensive

but more accurate central differences can also be used [6, §5.6]. Note that if the Hessian

matrix is dense then n + 1 gradient evaluations are needed to find B(k). If, however, it

is sparse, it may be possible to partition N = {1, . . . , n} into a small number q ≪ n of

disjoint subsets N =
⋃q

j=1 Ij with Ii ∩ Ij = ∅ (1 ≤ i < j ≤ q), such that the rows indexed

in each Ij are orthogonal. In this case,

∑
i∈Ij

B(k)ei ≈
g(x(k) +∆

∑
i∈Ij ei)− g(x(k))

∆
,

and only q+1 gradients are required. Exploiting symmetry reduces the count further [2,20].

Another possible approach is to require that B(k) satisfies the secant equation

B(k)(x(k) − x(k−1)) = g(k) − g(k−1),

where g(k) := g(x(k)). Traditionally, B(k) is obtained from the previous estimate B(k−1) by

imposing the secant equation and requiring B(k)−B(k−1) is of low rank [6,19]—usually rank

one or two—rather than sparse. Thus it is highly unlikely that B(k) will be sparse, even

if its predecessor was, and the computational gains from utilising sparse linear algebra are

lost. Although there have been attempts to derive sparse updates [7,23,24], their stability

is a problem [22].

Secant methods start from an initial estimate B(0) (often B(0) = I) and build up the

approximation as new points are added. Thus, after k steps, a rank k (for the SR1 method)

or 2k (for methods like BFGS or DFP) update will have been applied to B(0). A related

limited-memory approach is to use dense low-rank updates, but instead of applying them

all to B(0), apply the last m updates as if they had been applied to a re-initialized B(k−m).

In practice, the sequence of m previous differences s(l) := x(l)−x(l−1) and y(l) := g(l)−g(l−1)

(l = k− 1, . . . , k−m) are recorded and then the effect (product with, solve with) of using

the relevant B(k) is computed as it is required. Efficient algorithms exist for this [17, 18]

but, as before, without attempting to impose the sparsity structure of H(k) := H(xk) on

B(k).

If the function f(x) is partially separable, that is,

f(x) =

p∑
i=1

fi(x),

where each “element” fi(x) has a large invariant subspace [15], then an approximation

B(k) =

p∑
i=1

B
(k)
i

Approximating large-scale Hessian matrices 3

can be computed in which each element Hessian estimate B
(k)
i satisfies its own secant

equation

B
(k)
i (x(k) − x(k−1)) = gi(x

(k))− gi(x
(k−1)),

where gi(x) := ∇xfi(x). The invariant subspace assumption implies gi and B
(k)
i are

structured. In particular, any differentiable f(x) for which the Hessian matrix is sparse

is partially separable [14], and in this case, each element secant equations only involves a

few variables, leading to an excellent sparse approximation. This and its generalization to

group-partial separability [3] forms the basis of the approximations used in LANCELOT [4].

However, it does not appear to have been widely adopted, and this is apparently because

users are either unable or unwilling to provide the necessary separability structure.

From the user’s perspective, a more appealing approach, and the one we advocate in

this paper, is to use the past m accumulated data pairs {s(l), y(l)}kl=k−m+1 and the sparsity

structure of H(k) to estimate B(k) directly. The only developments we are aware of in this

direction are that of Fletcher, Grothey and Leyffer [8] and our recent sparse linear least

squares approach [9]. The original idea of Fletcher et al. was to build an approximation

B(k) that satisfies as well as possible the multiple secant conditions

B(k)s(l) = y(l), l = k −m+ 1, . . . , k, (1.1)

together with the symmetry condition

B(k) = (B(k))T ,

and the sparsity condition

S(B(k)) = S(H(k)).

Because (1.1) will usually be inconsistent, a reasonable compromise is to solve instead the

convex quadratic program

min
B

(k)

k∑
l=k−m+1

∥B(k)s(l) − y(l)∥2F such that B(k) = (B(k))T and S(B(k)) = S(H(k)),

where ∥B∥2F denotes the squared Frobenius norm of the matrix B. The solution B(k)

may be found by solving a linear system of order ne, the number of entries in the

upper triangle of H(k). As ne can be large, estimates of the solution B(k) may better

be found using an iterative scheme such as conjugate gradients [8], but even this can be

prohibitively expensive to compute, especially if such an approximation is to be used within

an optimization code.

The idea behind our recent sparse linear least squares approach [9] is to instead stack

the nonzero entries in the upper triangular part of B(k) row-by-row above each other in

a vector z(k) (equivalently, the entries in the lower triangular part are stacked column-by-

column). In this way, we redefine the problem as a large sparse linear system of equations

given by

A(k)z(k) = c(k), (1.2)

4 J. M. Fowkes, N. I. M. Gould, J. A. Scott

where the matrix A(k) and the vector c(k) are known and depend on the secant conditions

(1.1) (see [9] for details). This enables us to find B(k) by computing the least squares

solution to (1.2), that is, the z(k) that minimizes

∥A(k)z(k) − c(k)∥22,

using existing sparse linear algebra solvers. However, as z(k) by construction contains all

the nonzero entries in the upper (equiv. lower) triangular part of the Hessian, the resulting

linear system can be huge for large Hessian matrices and thus prohibitively expensive to

solve, due to the large flop-count required, even by state-of-the-art sparse direct linear

solvers. This unfortunately greatly hinders the ability of this approach to be incorporated

inside existing optimization solvers and thereby its applicability in practice.

The objective of this paper is therefore to develop a more computationally efficient

approach than either [8] or [9] to estimating a sparse Hessian matrix given m past iterates

and gradient values. We assume throughout that most of the rows of the Hessian we seek

to estimate are very sparse but there may be a small number of rows that are relatively

dense. The paper is organised as follows. In Section 2, we lay the groundwork for our

sparse Hessian approximation technique and introduce our proposed new approximation

algorithm. In Section 3, we report results of numerical experiments that illustrate the

potential of the new algorithm for approximating large sparse Hessian matrices in practice.

Finally, concluding remarks and suggestions for future work are given in Section 4.

2 Sparse Hessian approximation

2.1 Hessian matrices with all rows sparse

We start by assuming that each row of the Hessian matrix has only a small number of

entries; in the next section we allow for the case of practical importance in which some

rows have a larger number of entries. As in [8,9], our proposed approach uses accumulated

data. But rather than imposing the full secant conditions (1.1) for the previous m steps,

for each row i in the approximate Hessian B(k) we aim to satisfy as many componentwise

equations

eTi B
(k)s(l) = eTi y

(l), l = k, k − 1, . . . , (2.3)

as are necessary to define the row. We present two algorithms that solve the above

componentwise equations in the case where each row has only a small number of entries.

Row-wise independent algorithm

Equation (2.3) can be rewritten as∑
j∈S(k)

i

b
(k)
ij s

(l)
j = y

(l)
i , l = k, k − 1, . . . , (2.4)

Approximating large-scale Hessian matrices 5

where

S(k)
i := {j : h(k)

ij ̸= 0}

is the set of column indices of the unknown entries in row i of the Hessian. Naively (and

neglecting any inconsistencies or redundancies in dependencies), to compute row i, we need

as many equations (2.4) as there are entries in the row. Let z
(k)
i denote the vector of entries

in row i and let nzi := |S(k)
i | be the number of such entries. Then the equations (2.4) that

must be satisfied by z
(k)
i can be rewritten as an nzi × nzi dense linear system

A
(k)
i z

(k)
i = c

(k)
i , (2.5)

where A
(k)
i is the matrix whose rows l = k, k − 1, . . . , k − nzi + 1 consist of the entries s

(l)
j

indexed by j ∈ S(k)
i and c

(k)
i is the vector with entries y

(l)
i , l = k, k − 1, . . . , k − nzi + 1.

The following simple example illustrates this matrix formulation.

Example 1 Consider the 3× 3 approximate Hessian matrix

B(k) =

b
(k)
11 b

(k)
12 0

b
(k)
21 0 b

(k)
23

0 b
(k)
32 b

(k)
33

 , with b
(k)
12 = b

(k)
21 and b

(k)
23 = b

(k)
32 .

For row i = 2, S(k)
2 = {1, 3}, nz2 = 2 and the linear system (2.5) is given by(

s
(k)
1 s

(k)
3

s
(k−1)
1 s

(k−1)
3

)
︸ ︷︷ ︸

A
(k)
2

(
b
(k)
21

b
(k)
23

)
︸ ︷︷ ︸

z
(k)
2

=

(
y
(k)
2

y
(k−1)
2

)
︸ ︷︷ ︸

c
(k)
2

.

Similarly, for row i = 3, S(k)
3 = {2, 3}, nz3 = 2 and (2.5) is given by(

s
(k)
2 s

(k)
3

s
(k−1)
2 s

(k−1)
3

)
︸ ︷︷ ︸

A
(k)
3

(
b
(k)
32

b
(k)
33

)
︸ ︷︷ ︸

z
(k)
3

=

(
y
(k)
3

y
(k−1)
3

)
︸ ︷︷ ︸

c
(k)
3

.

It may well be the case that we do not have sufficient past data pairs {s(l), y(l)}kl=k−m+1

available for the matrices A
(k)
i to be non-singular, however there are a number of approaches

one can pursue to remedy this. For clarity of exposition we defer the discussion of such

approaches for handling the case of insufficient data to Section 2.4.

Using (2.5), we can compute the sparse Hessian approximation B(k) as outlined in

Algorithm 2.1. Both the off-diagonal entries b
(k)
ij and b

(k)
ji are computed, and then, in the

final step, the average is taken to obtain a symmetric approximate Hessian matrix. If the

full sparse Hessian approximation B(k) is stored, then the rows can be computed in parallel

in any order. However, it is often the case that only the upper triangular (or equivalently

lower triangular) part of the sparse Hessian is stored and it may not be desirable to form the

full Hessian, in which case the rows cannot be computed in parallel but must be computed

in sequence.

6 J. M. Fowkes, N. I. M. Gould, J. A. Scott

Algorithm 2.1 Sparse Hessian approximation (row-wise independent)

1: for i = 1, . . . , n do

2: Compute the nzi entries in row i by constructing and solving linear system (2.5).

3: end for

4: Symmetrise B(k) := (B(k) + (B(k))T)/2.

Row-wise dependent algorithm

Taking an average of the two off-diagonal entries (or accepting one of the computed values)

does not truly account for symmetry. Instead, consider rewriting (2.4) as∑
j∈U(k)

i

b
(k)
ij s

(l)
j = y

(l)
i −

∑
j∈K(k)

i

b
(k)
ij s

(l)
j , l = k, k − 1, . . . , (2.6)

where

K(k)
i := {j : h(k)

ij ̸= 0 and b
(k)
ij is already known} and U (k)

i := {j : h(k)
ij ̸= 0} \ K(k)

i ,

are the column indices of the known and unknown entries, respectively, in row i of the

Hessian. It follows that data from (at least) nui := |U (k)
i | previous steps is required. The

i-th componentwise equation (2.6) can be rewritten as the dense linear system

U
(k)
i z

(k)
i = c

(k)
i −K

(k)
i w

(k)
i , (2.7)

where w
(k)
i holds the entries in row i of B(k) that are already known, z

(k)
i holds the remaining

entries in the row, and K
(k)
i and U

(k)
i are the corresponding sub-matrices of A

(k)
i (note that

K
(k)
i will in general not be square even if sufficient data is available). This formulation is

illustrated in the following simple example.

Example 2 Consider the 5× 5 approximate Hessian matrix

B(k) =


b
(k)
11 0 0 b

(k)
14 0

0 b
(k)
22 0 b

(k)
24 0

0 0 0 b
(k)
34 0

b
(k)
41 b

(k)
42 b

(k)
43 b

(k)
44 b

(k)
45

0 0 0 b
(k)
54 b

(k)
55

 with b
(k)
14 = b

(k)
41 , b

(k)
24 = b

(k)
42 , b

(k)
34 = b

(k)
43 and b

(k)
45 = b

(k)
54 .

Assume the rows are computed in the natural order 1, 2, 3, 4, 5. Row 4 has five entries and

by symmetry b
(k)
41 , b

(k)
42 , b

(k)
43 are already known. The linear system (2.7) for row 4 is therefore

(
s
(k)
4 s

(k)
5

s
(k−1)
4 s

(k−1)
5

)
︸ ︷︷ ︸

U
(k)
4

(
b
(k)
44

b
(k)
45

)
︸ ︷︷ ︸

z
(k)
4

=

(
y
(k)
4

y
(k−1)
4

)
︸ ︷︷ ︸

c
(k)
4

−

(
s
(k)
1 s

(k)
2 s

(k)
3

s
(k−1)
1 s

(k−1)
2 s

(k−1)
3

)
︸ ︷︷ ︸

K
(k)
4

b
(k)
14

b
(k)
24

b
(k)
34


︸ ︷︷ ︸

w
(k)
4

.

Approximating large-scale Hessian matrices 7

For this approach, the order in which the rows are computed is crucial. This can be

seen from the following two Hessian sparsity patterns with arrow-head structures that are

symmetric permutations of each other.
∗ ∗

∗ ∗
· ...

∗ ∗
∗ ∗ · · · ∗ ∗

 and


∗ ∗ · · · ∗ ∗
∗ ∗
... ·
∗ ∗
∗ ∗

 .

Assume the rows are processed in the order 1, 2, . . . n. For the matrix on the left, for each

of the first n − 1 rows, two entries—one on the diagonal and one in column n—must be

computed. The last row has n entries but, by symmetry, all the off-diagonal entries have

already been computed. Thus only the diagonal entry is unknown, and hence all the entries

can be computed using two data pairs {s(k), y(k)} and {s(k−1), y(k−1)}. This is in contrast

with the second matrix, where the first row contains n entries. Computing these requires

n data pairs {s(l), y(l)}kl=k−n+1. Whilst this also requires n computations, the first matrix

ordering is clearly much better since it only requires two past data pairs, i.e. past iterates,

to be available.

Using (2.7), we can compute the sparse Hessian approximation B(k) as described in

Algorithm 2.2, which employs the adjacency (or connectivity) graph G(B(k)). Recall that

this is an undirected graph with n vertices and an edge (i, j) if and only if b
(k)
ij ̸= 0, i ̸= j.

If there is an edge (i, j) then i and j are said to be neighbours. The degree of vertex i is

the number of neighbours it has, which is equal to the number of off-diagonal entries in

row i of B(k). Algorithm 2.2 aims to limit the number of data pairs required at each step.

It starts by selecting a vertex v of minimum degree (ties are broken arbitrarily). This can

be done using a counting [21, §2.4.6] or bucket [5] sort in O(n) + O(ne) operations and

storage locations (ne is the number of edges). Once chosen, v is removed from the vertex

set and the degree of each neighbour of v is decreased by one (corresponding to removing

all edges involving v from the edge set). The process is then repeated for the reduced

graph (but a complete reordering of the remaining vertices should be avoided). We define

the current degree of a vertex to be its degree in the reduced graph (initially, the current

degree is equal to the degree).

Algorithm 2.2 Sparse Hessian approximation (row-wise dependent)

1: Compute the adjacency graph G(B(k)) and the (current) degree of each vertex.

2: for i = 1, . . . , n do

3: Select vertex v of current minimum degree; assign the corresponding row as row i.

4: Compute the nui unknown entries in row i by solving the linear system (2.7).

5: Remove v; decrement the current degree of each of its remaining neighbours by 1.

6: end for

While Algorithm 2.2 generally requires fewer floating-point operations than

8 J. M. Fowkes, N. I. M. Gould, J. A. Scott

Algorithm 2.1, it has two related disadvantages. The first is that the steps in Algorithm 2.1

may be performed in parallel (if the full sparse Hessian approximation B(k) is stored) while

Algorithm 2.2 is largely sequential—in practice, vertices i and j of minimum current degree

with non overlapping sparsity patterns (I+
i ∩ I+

j = ∅) can be processed in parallel. The

second more serious defect is that inaccurate estimates from earlier steps in Algorithm 2.2

can be magnified when solving (2.7), leading to error growth even for constant Hessian

matrices (H(k) = H for all k). The observed error growth is usually gradual but relentless;

the more times an inaccurate early value occurs in later rows, the worse the effect, and this

is potentially particularly pernicious for matrices in which some of the rows have a large

number of entries. This sparse-dense case is not a problem for Algorithm 2.1 because each

row is computed independently.

2.2 Sparse-dense Hessian matrices

We now explore the case where some rows of the Hessian matrix have appreciably more

entries than others. We refer to such rows as dense (even though the number of entries

may be significantly less than n). We assume the approximate Hessian matrix B(k) has

been symmetrically permuted to

B(k) =

(
B

(k)
11 B

(k)
12

B
(k)
21 B

(k)
22

)
, with B

(k)
21 = (B

(k)
12)

T , (2.8)

where the blocks B
(k)
11 and B

(k)
22 are square symmetric matrices, the n1 < n rows of

(B
(k)
11 B

(k)
12) are sparse and the remaining n2 = n−n1 ≪ n1 rows of (B

(k)
21 B

(k)
22) are classified

as dense. Note that we do not explicitly perform this symmetric permutation, but define

it here for ease of presentation of the subsequent algorithms. In practice, we simply need

to determine the sets of sparse and dense row indices based on the row densities of B(k).

Combined and thresholding algorithms

An obvious approach is to compute the n1 sparse rows of B(k) using (2.5) from

Algorithm 2.1; set B
(k)
21 by symmetry and then use (2.7) from Algorithm 2.2 to compute

the n2 dense rows. This is outlined in the report [11], but on some examples it suffers from

error growth (as discussed earlier for Algorithm 2.2).

An alternative strategy generalises Algorithm 2.2 by using (2.7) to compute the

unknown entries in row i only if the number of all entries nzi in row i is deemed too

large to use (2.5). This is also outlined in [11], but again this can suffer from error growth

on some examples as documented in the report.

Block parallel algorithm

A better approach that prevents potential growth is the following, which is almost the same

as the naive combined algorithm above. The n1 sparse rows (B
(k)
11 B

(k)
12) are computed using

Approximating large-scale Hessian matrices 9

(2.5) from Algorithm 2.1; B
(k)
21 is set by symmetry and then crucially the small n2 × n2

block B
(k)
22 is computed using a variant of (2.7). That is, consider rewriting (2.4) as∑

j∈V(k)
i

b
(k)
ij s

(l)
j = y

(l)
i −

∑
j∈L(k)

i

b
(k)
ij s

(l)
j , l = k, k − 1, . . . , (2.9)

where

L(k)
i := {j : h(k)

ij ̸= 0 and b
(k)
ij ∈ B

(k)
21 } and V(k)

i := {j : h(k)
ij ̸= 0} \ L(k)

i ,

are the column indices of the known entries in B
(k)
21 and unknown entries, respectively,

in row i of the Hessian. It follows that data from (at least) nvi := |V(k)
i | previous steps

is required. The i-th componentwise equation (2.9) can be rewritten as the dense linear

system

V
(k)
i z

(k)
i = c

(k)
i − L

(k)
i w

(k)
i , (2.10)

where w
(k)
i holds the entries in row i of B(k) that are already known (i.e. in B

(k)
21), z

(k)
i holds

the remaining entries in the row, and L
(k)
i and V

(k)
i are the corresponding sub-matrices of

A
(k)
i . This formulation is illustrated in the following simple example (note that, as before,

L
(k)
i will in general not be square even if sufficient data is available).

Example 3 Let n = 4 and consider the approximate symmetric Hessian matrix

B(k) =

(
B

(k)
11 B

(k)
12

B
(k)
21 B

(k)
22

)
=


b
(k)
11 0 b

(k)
13 b

(k)
14

0 0 b
(k)
23 b

(k)
24

b
(k)
31 b

(k)
32 b

(k)
33 b

(k)
34

b
(k)
41 b

(k)
42 b

(k)
43 b

(k)
44


where the first two rows are considered sparse and the last two rows dense. The 2 × 2

linear system (2.7) for the dense row 3 is(
s
(k)
3 s

(k)
4

s
(k−1)
3 s

(k−1)
4

)
︸ ︷︷ ︸

V
(k)
3

(
b
(k)
33

b
(k)
34

)
︸ ︷︷ ︸

z
(k)
3

=

(
y
(k)
3

y
(k−1)
3

)
︸ ︷︷ ︸

c
(k)
3

−

(
s
(k)
1 s

(k)
2

s
(k−1)
1 s

(k−1)
2

)
︸ ︷︷ ︸

L
(k)
3

(
b
(k)
13

b
(k)
23

)
︸ ︷︷ ︸

w
(k)
3

,

and for the dense row 4 the 2× 2 system (2.7) is(
s
(k)
3 s

(k)
4

s
(k−1)
3 s

(k−1)
4

)
︸ ︷︷ ︸

V
(k)
3

(
b
(k)
43

b
(k)
44

)
︸ ︷︷ ︸

z
(k)
3

=

(
y
(k)
4

y
(k−1)
4

)
︸ ︷︷ ︸

c
(k)
3

−

(
s
(k)
1 s

(k)
2

s
(k−1)
1 s

(k−1)
2

)
︸ ︷︷ ︸

L
(k)
3

(
b
(k)
14

b
(k)
24

)
︸ ︷︷ ︸

w
(k)
3

.

The final value of entries (3,4) and (4,3) of B(k) is (b
(k)
34 + b

(k)
43)/2 (symmetrisation).

The complete algorithm is described in Algorithm 2.3. Here not only the sparse rows,

but also the dense rows can be handled in parallel if the full sparse Hessian approximation

is stored, i.e. both lower and upper triangles. In fact, a dense row can be computed as

soon as all the entries coming from the sparse part are known (and thus it may not be

necessary to wait until all the sparse rows have been computed before starting the dense

rows, although we have not implemented this).

10 J. M. Fowkes, N. I. M. Gould, J. A. Scott

Algorithm 2.3 Sparse-dense Hessian approximation (block parallel)

1: parallel for i = 1, . . . , n1 do

2: Compute all the entries in row i of (B
(k)
11 B

(k)
12) by solving the linear system (2.5).

3: end parallel for

4: Set B
(k)
21 := (B

(k)
12)

T .

5: parallel for i = 1, . . . , n2 do

6: Compute all the entries in row i of B
(k)
22 by solving the linear system (2.10).

7: end parallel for

8: Symmetrise B(k) := (B(k) + (B(k))T)/2.

2.3 Hessian matrices with variable row densities

Finally, we present an algorithm that can handle general sparse Hessian matrices with

variable row densities. For clarity of exposition, we omit the superscript (k), and assume

that the approximate Hessian matrix B at the k-th iteration has been symmetrically

permuted to

B =


B11 B12 · · · B1N

B21 B22 · · · B2N
...

...
...

...

BN1 BN2 · · · BNN

 , BT
12 = B21, etc., (2.11)

for some 2 < N < n, where the blocks Bij are all square symmetric matrices with the

row blocks ordered according to increasing row density, i.e. the rows in (B11 B12 · · · B1N)

are the sparsest, followed by those in (B21 B22 · · · B2N), etc. with finally the rows

in (BN1 BN2 · · · BNN) being the densest. We do not explicitly form this symmetric

permutation, but we simply determine the sets of row indices belonging to each row block.

Recursive block parallel algorithm

Algorithm 2.3 can be extended to (2.11) by applying it recursively: after the first sparse

row block is computed using (2.5) and the corresponding symmetric entries are populated,

the dense row block becomes the next sparse row block and is computed using (2.10),

where only the entries in the previously computed symmetric blocks are assumed known.

The process is repeated until there are no more sparse rows. We illustrate this for two

levels of recursion in the diagram below, where the superscript denotes recursion depth.

B =

(
B

[0]
11 B

[0]
12

B
[0]
21 B

[0]
22

)
=⇒ B

[0]
22 =

(
B

[1]
11 B

[1]
12

B
[1]
21 B

[1]
22

)
=⇒ B

[1]
22 =

(
B

[2]
11 B

[2]
12

B
[2]
21 B

[2]
22

)

where B
[0]
11 = B11, B

[1]
11 = B22 and B

[2]
11 = B33 in (2.11). As before, we assume at each level

of recursion r that n
[r]
1 rows of (B

[r]
11 B

[r]
12) are classified as sparse and the remaining n

[r]
2

rows of (B
[r]
21 B

[r]
22) are classified as dense. This approach of course requires a threshold for

the sparse/dense split in terms of the unknown entries per row nvi on which to recurse,

Approximating large-scale Hessian matrices 11

and a natural choice is m the number of past iterates available. Since it is inefficient to

solve very small dense linear systems, we also include a minimum unknown entries per row

threshold nmin. Finally, to prevent the algorithm from recursing excessively (which could

hamper parallelism), we also require a maximum recursion depth rmax. As before, all the

row blocks can be handled in parallel if the full sparse Hessian approximation is stored.

The complete algorithm is described in Algorithm 2.4. Note that if there is no recursion

(r = 0) then Algorithm 2.4 is equivalent to Algorithm 2.3 above.

Algorithm 2.4 Sparse-dense Hessian approximation (recursive block parallel)

Require: rmax maximum recursion depth, nmin minimum entries per row to recurse on.

1: Find rows i with nzi ≤ m and place them in (B
[0]
11 B

[0]
12).

2: parallel for i = 1, . . . , n
[0]
1 do

3: Compute all the entries in row i of (B
[0]
11 B

[0]
12) by solving the linear system (2.5).

4: end parallel for

5: Set B
[0]
21 := (B

[0]
12)

T .

6: Initialise recursion counter r := 0.

7: while r < rmax and there exist rows i with nmin ≤ nvi ≤ m do

8: Increment r := r + 1

9: Find rows i with nmin ≤ nvi ≤ m and place them in (B
[r]
11 B

[r]
12).

10: parallel for i = 1, . . . , n
[r]
1 do

11: Compute all entries in row i of (B
[r]
11 B

[r]
12) by solving the system (2.10) where

12: only the entries in previously computed symmetric blocks are assumed known.

13: end parallel for

14: Set B
[r]
21 := (B

[r]
12)

T .

15: end while

16: parallel for i = 1, . . . , n
[r]
2 do

17: Compute all entries in row i of the remaining B
[r]
22 by solving the system (2.10)

18: where only entries in previously computed symmetric blocks are assumed known.

19: end parallel for

20: Symmetrise B := (B +BT)/2.

2.4 Implementation details

In each of the four algorithms described above, we need to solve a dense linear system of

equations for each row i of the approximate Hessian B at each iteration (here we omit the

iteration superscript (k) for clarity). This dense system is either of the form (2.5), i.e.

Aizi = ci,

or of the form (2.7), i.e.

Uizi = ci −Kiwi,

12 J. M. Fowkes, N. I. M. Gould, J. A. Scott

or of the form (2.10), i.e.

Vizi = ci − Liwi.

Thus generically, we can write each of these dense linear system in the form

Az = c, (2.12)

for A ∈ IRms×ns where we solve for the unknowns z ∈ IRns in a particular Hessian row.

Dealing with insufficient data

Ideally, we would have sufficient past data available so that m ≥ ms and the matrix A

in (2.12), made up from the ms most recent {s(l)}kl=k−ms+1, would be non-singular. But

clearly this may not be the case. Firstly, in the early stages of the optimization algorithm,

there may simply not be enough data; this will certainly be the case if m < ms. Secondly,

A formed as above may be singular (or close to singular) and in this case either again

there will not be enough data to determine z uniquely or, if the objective function f is not

quadratic, the gradient data c, made up from the ms most recent {y(l)}kl=k−ms+1, may itself

be inconsistent. In such cases, one possible remedy is simply to assign certain components

of z to zero, and solve for the remainder (for example, entries far from the diagonal could

be dropped). However, this is relatively arbitrary and a better strategy is to find the

smallest z consistent with the data by solving the constrained least-squares problem

min
z∈IRns

∥z∥2 subject to Az = c,

using, for example, the singular-value decomposition of A. When the latest data is

inconsistent, rather than trying to find earlier data to exchange, we can add earlier data

into A and c and then solve a weighted least-squares problem

min
z∈IRns

∥W (Az − c)∥2,

where the diagonal weighting matrix W favours the latest data. Once again, a singular-

value decomposition ofWA is suitable. However, for simplicity our preference in this paper

is to simply find the least-squares solution to Az = c of minimum ℓ2-norm, i.e.

min
z∈IRns

∥Az − c∥2,

from the singular-value decomposition of A; this is used in all of our implementations.

Solving the linear system

In both the under- and over-determined cases, we compute the compact singular-value

decomposition A = UΣV T ∈ IRms×ns , where the columns of U ∈ IRms×rs and V ∈ IRns×rs

are orthogonal, Σ ∈ IRrs×rs is non-singular and diagonal, and rs is the rank of A. We

then find the required solution z = V Σ−1UT c using gelsd, the SVD divide-and-conquer

Approximating large-scale Hessian matrices 13

algorithm from LAPACK [1]. It is also possible to use a faster but potentially less stable

variant based on a QR factorization of A with interchanges using LAPACK gelsy, as well

as a faster-still LU-based approach when A is square and non-singular using LAPACK gesv,

but we have found that the resulting dense linear systems are small enough that these offer

little advantage (the largest linear system solved by Algorithm 2.3 or 2.4 in the tests is of

size 95 × 94). For numerical stability it may be desirable to add extra data (if available)

when solving the linear system and we include such an option in our implementations.

3 Numerical experiments

We now examine how the proposed algorithms perform in practice. To do so, we consider

the subset of Hessian matrices from the CUTEst [13] collection that was used in [9] and

is listed in Table 3.1. Our experiments are performed on either a single processor core

identifier n nnz(H) nnull nnz(row)

BQPGAUSS 2,003 9,298 0 552

CURLY30 10,000 309,535 0 61

DRCAV1LQ 4,489 87,635 12 41

JIMACK 3,549 118,824 0 81

NCVXBQP1 50,000 199,984 0 9

SINQUAD 5,000 9,999 0 5,000

SPARSINE 5,000 79,554 0 56

SPARSQUR 10,000 159,494 0 56

WALL100 149,624 1,446,475 0 42

CAR2 5,999 50,964 0 5,999

GASOIL 10,403 8,606 6,998 1,602

LUKVLE12 9,997 22,492 0 2,502

MSQRTA 1,024 33,264 0 64

ORTHREGE 7,506 17,509 2 2,504

TWIRIMD1 1,247 42,197 0 660

YATP1SQ 123,200 368,550 0 352

Table 3.1: CUTEst test problems. The problems in the top (respectively, bottom) half of

the table are unconstrained (respectively, constrained). The columns report the CUTEst

identifier, the dimension n of H, the number nnz(H) of nonzeros in the lower triangular

part of H, the number nnull of null rows in H, and the largest number nnz(row) of entries

in a row of H.

or 28 processor cores of a dedicated single node on the STFC SCARF cluster, comprising

32 AMD Epyc 7502 CPUs clocked at 2.5GHz with 256 GB of RAM. The algorithms from

Section 2 have been implemented in the Fortran 2018 package SHA as part of the GALAHAD

library [12]. All codes are compiled in double precision using GNU Fortran 13.2 with O2

optimization, znver2 processor architecture, and OpenMP parallelism for the parallel codes.

14 J. M. Fowkes, N. I. M. Gould, J. A. Scott

The necessary LAPACK routines are provided by OpenBLAS 0.3.24 compiled for the cluster

node as provided by SCARF (and limited by configuration to 28 OpenMP threads).

In our numerical experiments, we seek to investigate the accuracy attained by the

different algorithms under ideal circumstances. We therefore test whether they compute

good approximations in the simple case in which the Hessian matrix is fixed, that is,

H(x(k)) = H for all k. The method we use to generate our test Hessian matrices is described

in Appendix A. Having generated a fixed Hessian matrix H, we randomly generate s(l) ∈
(−1, 1) and then compute y(l) = Hs(l) for l = 1, . . . ,m. We vary the number of past

iterates m = 1, . . . , 100 to explore how well the algorithms cope in both the under and

over determined cases. For numerical stability, we require 1 extra past iterate if available

when solving the linear system. To verify the accuracy of the computed approximations

B = {bij}, we assume H is known and compute both the maximum relative componentwise

error

max rel err = max
(i,j)∈S(H)

|bij − hij|/max(1, |hij|), (3.13)

as well as the median relative componentwise error

med rel err = med
(i,j)∈S(H)

|bij − hij|/max(1, |hij|), (3.14)

where med denotes the median.

3.1 Results when treating all rows as sparse

We start by illustrating the potential shortcomings of the row-wise independent and row-

wise dependent algorithms. In Table 3.2, we report the maximum and median relative

errors when applying the serial Algorithms 2.1 and 2.2 to the test examples with m = 100

past iterates. For Algorithm 2.1, we see that while the median relative error is close

to machine precision, the maximum relative error can be large for problems containing

dense rows. This is to be expected as Algorithm 2.1 treats each row i independently and

therefore requires as many past iterates m as there are entries nzi in the row. We can see

from Table 3.1 that a number of problems in our test set have rows with more than 100

entries and it is precisely on these problems that Algorithm 2.1 struggles. The situation

is much worse for Algorithm 2.2, where there is relentless error growth for a significant

number of problems. Again this is to be expected, since inaccurate estimates from earlier

steps in Algorithm 2.2 are magnified when substituted into subsequent rows (as we have

previously discussed). We will therefore not consider Algorithms 2.1 and 2.2 any further.

3.2 Results when allowing for rows of different densities

Next, we start by illustrating how the block parallel and recursive block parallel algorithms

are able to remedy the shortcomings of the row-wise independent and row-wise dependent

algorithms presented earlier, in the case where sufficient data is available. In Table 3.2,

we report the maximum and median relative errors when applying Algorithms 2.3 and 2.4

Approximating large-scale Hessian matrices 15

identifier Algorithm 2.1 Algorithm 2.2 Algorithms 2.3 and 2.4

max rel err med rel err max rel err med rel err max rel err med rel err

BQPGAUSS 2.19E+02 1.42E-15 7.88E+14 2.89E-15 7.95E-12 1.71E-15

CURLY30 8.83E-10 9.69E-15 6.00E-06 9.29E-12 5.41E-11 5.56E-15

DRCAV1LQ 9.38E-07 1.08E-14 ‡ ‡ 2.56E-09 7.02E-15

JIMACK 1.98E-09 2.57E-14 ‡ ‡ 5.32E-10 1.62E-14

NCVXBQP1 1.41E-09 1.22E-15 ‡ 2.59E+01 3.15E-11 1.07E-15

SINQUAD 9.77E-01 2.30E-16 3.66E-11 2.30E-16 1.99E-11 2.17E-16

SPARSINE 3.38E-09 6.01E-14 ‡ ‡ 6.13E-10 4.40E-14

SPARSQUR 3.24E-09 1.69E-14 ‡ ‡ 7.63E-10 1.28E-14

WALL100 1.05E-07 7.77E-15 ‡ 1.77E-09 2.32E-09 5.16E-15

CAR2 4.46E-12 0.00 ‡ ‡ 3.81E-14 0.00

GASOIL 1.67E-01 3.33E-16 7.56E-12 3.57E-16 8.84E-12 2.22E-16

LUKVLE12 9.55E-01 6.33E-16 3.22E-09 1.63E-15 4.48E-13 6.66E-16

MSQRTA 3.69E-12 4.66E-15 ‡ ‡ 9.47E-13 2.66E-15

ORTHREGE 4.12 4.76E-16 6.42E+03 4.76E-16 1.25E-12 6.05E-16

TWIRIMD1 1.15 4.33E-15 ‡ 4.59E-14 2.87E-12 2.60E-15

YATP1SQ 2.10 9.44E-16 2.41E-09 9.44E-16 1.36E-11 9.17E-16

Table 3.2: The maximum and median relative error when applying Algorithms 2.1, 2.2,

2.3 and 2.4 to the test problems with m = 100 past iterates. ‡ indicates error exceeds 1015.

in parallel on 28 processor cores to the test problems with m = 100 past iterates. For

Algorithm 2.4 we set the maximum recursion depth rmax = 25 and the minimum entries

per row to recurse on nmin = 10. For both algorithms we see that the median relative

error is close to machine precision and the maximum relative error is acceptably small,

even for problems containing dense rows — in contrast to the row-wise independent and

row-wise dependent algorithms presented earlier. In fact, in this setting where sufficient

past iterates are available, the errors for both Algorithms 2.3 and 2.4 are identical, but

this is not always the case as we shall shortly illustrate in the insufficient data regime.

Let us now turn our attention to runtime and illustrate the benefits that parallelism

brings to Algorithms 2.3 and 2.4. Note that whilst Algorithm 2.1 is of course also trivially

parallelisable, we do not consider it here since it can require an excessive number of

past iterates as we have illustrated earlier in Section 3.1. In Table 3.3, we report the

runtime in seconds for the serial (single core) and parallel (28 core in this case) variants

of Algorithms 2.3 and 2.4. Runtime for each algorithm is measured in seconds using the

Fortran system clock routine. We can see from Table 3.3 that Algorithms 2.3 and 2.4

both achieve a significant parallel speedup on problems that are not already fast to solve

in serial (i.e. have runtimes less than 0.1 seconds), meaning that in parallel we are able to

approximate the Hessian for all examples in less than about 0.5 seconds.

16 J. M. Fowkes, N. I. M. Gould, J. A. Scott

identifier Algorithm 2.3 Algorithm 2.4

serial parallel speedup serial parallel speedup

BQPGAUSS 0.06 0.01 4.00 0.05 0.01 3.50

CURLY30 4.55 0.34 13.23 4.63 0.36 12.68

DRCAV1LQ 0.84 0.08 11.04 0.83 0.10 8.18

JIMACK 1.98 0.19 10.65 1.98 0.21 9.34

NCVXBQP1 0.53 0.05 10.06 0.53 0.05 10.23

SINQUAD 0.01 0.01 2.17 0.01 0.01 1.71

SPARSINE 0.70 0.07 9.94 0.70 0.07 9.67

SPARSQUR 1.40 0.12 11.38 1.40 0.12 11.29

WALL100 8.23 0.44 18.88 8.18 0.52 15.88

CAR2 0.19 0.02 8.22 0.19 0.03 6.37

GASOIL 0.01 0.01 2.00 0.01 0.01 2.17

LUKVLE12 0.04 0.01 4.78 0.04 0.01 4.78

MSQRTA 0.51 0.06 8.10 0.51 0.06 9.00

ORTHREGE 0.02 0.01 3.83 0.02 0.01 1.77

TWIRIMD1 0.60 0.09 6.95 0.60 0.09 6.60

YATP1SQ 0.49 0.07 7.17 0.49 0.06 8.22

Table 3.3: The runtime (in seconds) when applying Algorithms 2.3 and 2.4 in serial (single

core) and parallel (28 cores) to the test problems with m = 100 past iterates, as well as

the actual parallel speedup achieved. For Algorithm 2.4 we set the maximum recursion

depth rmax = 25 and the minimum entries per row to recurse on nmin = 10.

3.3 Results in the low accumulated past data regime

We now turn our attention to the case where we have a low number of past data pairs, i.e.

when the number of past iterates m is small. To this end, we will examine the behaviour

of Algorithms 2.3 and 2.4 as m varies from 1 to 100.

Firstly, we consider the block parallel algorithm. In Figures 3.1 and 3.2, we report the

maximum and median relative errors, respectively, when applying Algorithm 2.3 to the

unconstrained (left) and constrained (right) test problems as the number of past iterates

m varies from 1 to 100. Corresponding runtimes for Algorithm 2.3 are given in Figure 3.3.

We see that when there is insufficient past data (m is too small) there is little the algorithm

can do to get an accurate Hessian approximation, however once enough data pairs become

available (m is sufficiently large) there is a sharp transition to an accurate approximation.

This is most clearly seen for the CURLY30 test problem which has a banded Hessian with

a total bandwidth of 61. For this problem there is a sharp transition after m = 61 for both

the maximum and median relative error as expected. It is also interesting to see that a

large maximum relative error is not necessarily indicative of a poor Hessian approximation.

For example, the BQPGAUSS test problem has high maximum relative error until m = 92

but a low median relative error from m = 11 onwards. This suggests that for this problem

the Hessian approximation is mostly very good from m = 11 onwards, aside from some

Approximating large-scale Hessian matrices 17

outlier Hessian entries that require more data pairs. Looking at the runtime in Figure 3.3,

we see that the times are generally reasonable (under one second). However, we note the

presence of large runtime spikes for JIMACK and WALL100 as the algorithm does not

fully utilise the variable row densities present in these problems, we shall return to this

issue in more detail shortly when we discuss the recursive block parallel algorithm.

Secondly, let us consider the recursive block parallel algorithm. We focus here on the

test problems for which the recursion in Algorithm 2.4 shows a clear benefit, so that we can

compare directly with the non-recursive Algorithm 2.3 (for completeness, we report the full

numerical results for Algorithm 2.4 in Appendix B). In Figure 3.4, we report the maximum

(left) and median (right) relative errors when applying Algorithms 2.3 (dashed line) and

2.4 (solid line) to the test problems for which recursion shows a clear benefit as the number

of past iterates m varies from 1 to 100. Corresponding runtimes for Algorithm 2.4 are given

in Figure 3.5. We see that, once again, in the insufficient past data case (m too small) it

is not possible for the algorithm to achieve an accurate Hessian approximation, however

once enough data pairs become available (m sufficiently large) Algorithm 2.4 outperforms

Algorithm 2.3 on several problems. For example, for problem BQPGAUSS, Algorithm 2.3

requires m = 92 past iterates to achieve a maximum relative error around 10−11 whereas

Algorithm 2.4 requires only m = 39 past iterates to achieve the same maximum relative

error. Similarly, for problem WALL100, Algorithm 2.3 requires m = 42 past iterates to

achieve a maximum relative error around 10−8 whereas Algorithm 2.4 requires only m = 21

past iterates. Much the same behaviour can be observed for the median relative error: for

example, for problem JIMACK, Algorithm 2.3 requires m = 81 past iterates to achieve

a median relative error around 10−14 whereas Algorithm 2.4 requires only m = 55 past

iterates. Similarly, for the TWIRIMD1 test problem, Algorithm 2.3 requires m = 94 past

iterates to achieve a maximum relative error around 10−14 whereas Algorithm 2.4 requires

only m = 64 past iterates. These examples illustrate the primary aim of the recursion

in Algorithm 2.4: to reduce the number of past iterates required to achieve an accurate

Hessian approximation by reducing the number of unknown Hessian entries that need to

be solved for in each row of the Hessian.

Finally, looking at the runtime in Figure 3.5, we can also clearly see the benefits of

recursion as the large runtime spikes present for Algorithm 2.3 on the JIMACK and

WALL100 test problems are now absent for the recursive Algorithm 2.4. For these

two problems, Figure 3.6 shows the number of rows in each level of recursion within

Algorithm 2.4. The number of rows in the first ‘sparse’ level n
[0]
1 (lines 2-4 in Algorithm 2.4)

is depicted in blue, the number of rows in the last ‘dense’ level n
[r]
2 (lines 16-19 in

Algorithm 2.4) is depicted in black, and the number of rows in the intermediate levels

n
[r]
1 (lines 10-13 in Algorithm 2.4) are depicted using other colours. Note that for the non-

recursive Algorithm 2.3 we only have the first and last level (blue and black). We can see

from the figure that when m is sufficiently large (i.e. sufficient past iterates are available)

no recursion is necessary and all rows are treated as ‘sparse’ (blue). As m decreases,

we see that recursion is required to reduce the number of unknown entries we need to

18 J. M. Fowkes, N. I. M. Gould, J. A. Scott

Figure 3.1: Maximum relative error when applying Algorithm 2.3 on the unconstrained

(left) and constrained (right) examples as m varies from 1 to 100.

Figure 3.2: Median relative error when applying Algorithm 2.3 on the unconstrained (left)

and constrained (right) examples as m varies from 1 to 100.

Figure 3.3: Runtime (in seconds) when applying Algorithm 2.3 on the unconstrained (left)

and constrained (right) examples as m varies from 1 to 100.

Approximating large-scale Hessian matrices 19

Figure 3.4: Maximum relative error (left) and median relative error (right) when applying

Algorithm 2.3 (dashed line) and Algorithm 2.4 (solid line) on problems for which recursion

shows a clear benefit as m varies from 1 to 100.

Figure 3.5: Runtime (in seconds) when applying Algorithm 2.4 on problems for which

recursion shows a clear benefit as m varies from 1 to 100.

determine in each row of the Hessian, so that we stay within the given budget of m past

iterates. Eventually, m becomes so small that there are not enough past iterates available

to accurately estimate the Hessian and all rows are treated as ‘dense’ (black).

4 Conclusions and future work

We have presented a number of new methods for computing approximate Hessian matrices

from optimization iterate and gradient differences when the sparsity structure is known in

advance. The methods are promising in many cases, and have the potential to exploit

reasonable parallel execution on a modest number of processors. Unlike some earlier

methods, unwarranted growth in matrix entries due to rounding seems to be avoided in

practice. The methods are available in the Fortran module sha, with a C interface, as part

of the open-source GALAHAD library.

20 J. M. Fowkes, N. I. M. Gould, J. A. Scott

Figure 3.6: Number of rows in the block for each level of recursion (each colour) when

applying Algorithm 2.4 on problem JIMACK (left) and WAL100 (right) as m varies from

1 to 100.

The next step is to see how these methods behave in practice when embedded inside

actual optimization algorithms. In particular, we would like to know if such accumulated

Hessian approximations obtained only from gradients lead to good second-order (Newton-

like) algorithms. Or in other words, whether such Hessian approximations capture sufficient

curvature information to still enable the higher-order convergence exhibited by second-

order optimization algorithms. This is the subject of our current ongoing research.

Finally, although we have motivated our estimation strategies on m past observed

optimization steps {s(l)}kl=k−m+1 and gradient differences {y(l)}kl=k−m+1 generated as an

optimization algorithm proceeds, they apply equally to methods that judiciously choose

steps s(l) and compute approximate y(l) = (g(x(k) + ∆s(l)) − g(x(k)))/∆ at a particular

point x(k), as is typical of the sparse finite-difference schemes [2, 20] we have mentioned

in the introduction. The application of our estimation strategies to such methods is an

interesting avenue for future research.

Acknowledgments

We are grateful to Coralia Cartis, Lukas Mackinder, Jared Tanner and Philippe Toint

for earlier stimulating discussions. In particular, in 2016, Lukas Mackinder submitted a

dissertation for a Master of Science degree at the University of Oxford related to the initial

ideas behind this work; the dissertation is not publicly available.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. J. Dongarra, J. DuCroz,

A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. C. Sorensen.

LAPACK Users’ Guide. SIAM, 1999.

Approximating large-scale Hessian matrices 21

[2] T. F. Coleman and J. J. Moré. Estimation of sparse Hessian matrices and graph

coloring problems. Math. Programming, 28(3):243–270, 1984.

[3] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. An introduction to the structure of large

scale nonlinear optimization problems and the LANCELOT project. In R. Glowinski

and A. Lichnewsky, editors, Computing Methods in Applied Sciences and Engineering,

pages 42–51. SIAM, 1990.

[4] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Numerical experiments with the

LANCELOT package (Release A) for large-scale nonlinear optimization. Math.

Programming, 73(1, Ser. A):73–110, 1996.

[5] E. Corwin and A. Logar. Sorting in linear time – variations on the bucket sort. Journal

of Computing Sciences in Colleges, 20(1):197–202, 2004.

[6] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization

and Nonlinear Equations. Prentice-Hall Series in Computational Mathematics.

Prentice Hall, Englewood Cliffs, NJ, 1983.

[7] R. Fletcher. An optimal positive definite update for sparse Hessian matrices. SIAM

J. Optim., 5(1):192–218, 1995.

[8] R. Fletcher, A. Grothey, and S. Leyffer. Computing sparse Hessian and Jacobian

approximations with optimal hereditary properties. In A.R. Conn, L.T. Biegler, T.F.

Coleman, and F.N. Santosa, editors, Large-scale Optimization with Applications, Part

II: Optimal Design and Control,, volume 93 of IMA Vol. Math. Appl., pages 37–52.

Springer, New York, 1997.

[9] J. M. Fowkes, J. A. Scott, and N. I. M. Gould. Approximating sparse Hessian matrices

using large-scale linear least squares. Numerical Algorithms, pages 1–24, 2023.

[10] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. Computing forward-

difference intervals for numerical optimization. SIAM J. Sci. Statist. Comput.,

4(2):310–321, 1983.

[11] N. I. M. Gould. Computing useful sparse Hessian approximations satisfying

componentwise secant equations I: using a known sparsity pattern. Working Note

RAL 2013-1, STFC-Rutherford Appleton Laboratory, Oxfordshire, UK, 2013.

[12] N. I. M. Gould, D. Orban, and Ph. L. Toint. GALAHAD, a library of thread-safe

Fortran 90 packages for large-scale nonlinear optimization. ACM Transactions on

Mathematical Software (TOMS), 29(4):353–372, 2003.

[13] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEst: a constrained and unconstrained

testing environment with safe threads for mathematical optimization. Computational

optimization and applications, 60:545–557, 2015.

22 J. M. Fowkes, N. I. M. Gould, J. A. Scott

[14] A. Griewank and Ph. L. Toint. On the unconstrained optimization of partially

separable functions. In M.J.D. Powell, editor, Nonlinear optimization, 1981, NATO

Conf. Ser. II: Systems Sci., pages 301–312. Academic Press, London, 1982.

[15] A. Griewank and Ph. L. Toint. Partitioned variable metric updates for large structured

optimization problems. Numer. Math., 39(1):119–137, 1982.

[16] A. Griewank and A. Walther. Evaluating derivatives: principles and techniques of

algorithmic differentiation. SIAM, second edition, 2008.

[17] D. C. Liu and J. Nocedal. On the limited memory BFGS method for large-scale

optimization. Math. Programming, 45(3, (Ser. B)):503–528, 1989.

[18] J. Nocedal. Updating quasi-Newton matrices with limited storage. Math. Comp.,

35(151):773–782, 1980.

[19] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations

Research and Financial Engineering. Springer New York, 2006.

[20] M. J. D. Powell and Ph. L. Toint. On the estimation of sparse Hessian matrices. SIAM

J. Numer. Anal., 16(6):1060–1074, 1979.

[21] H. H. Seward. Information sorting in the application of electronic digital computers to

business operations. Technical report, Report R-232, Digital Computer Laboratory,

Massachusetts Institute of Technology, USA, 1954.

[22] D. C. Sorensen. An example concerning quasi-Newton estimation of a sparse Hessian.

ACM SIGNUM Newsletter, 16(2):8–10, 1981.

[23] Ph. L. Toint. On sparse and symmetric matrix updating subject to a linear equation.

Math. Comp., 31(140):954–961, 1977.

[24] Ph. L. Toint. Some numerical results using a sparse matrix updating formula in

unconstrained optimization. Math. Comp., 32(143):839–851, 1978.

A Generation of Hessian matrices using CUTEst

Here we describe how the fixed Hessians H for unconstrained and constrained CUTEst

problems used in the numerical experiments in Section 3 are generated.

For each unconstrained CUTEst test example we evaluate its Hessian matrix Hcutest(x)

at a point xpert that is a random perturbation of the CUTEst starting point xstart and set

H = Hcutest(xpert). Specifically, if xstart
i (1 ≤ i ≤ n) is the initial value for component i of

Approximating large-scale Hessian matrices 23

xstart, with lower and upper bounds xl
i and xu

i , then

xpert
i =


xl
i if xl

i = xu
i ,

xl
i + ρmin(xu

i − xl
i, 1) if xstart

i ≤ xl
i,

xu
i − ρmin(xu

i − xl
i, 1) if xstart

i ≥ xu
i ,

xstart
i + ρmin(xu

i − xstart
i , 1) otherwise.

Here ρ ∈ (0, 1) is the pseudo random number returned by the call rand(seed,.true.,rho),

where rand is from the GALAHAD library [12] and the default seed is used.

For the constrained examples, we evaluate the Hessian of the Lagrangian matrix

Hcutest
L (x, µ) at a random perturbation xpert of xstart (as above) and randomly generated

Lagrange multipliers µrand
q ∈ (−1, 1) (1 ≤ q ≤ nc), with component i of µrand returned by

rand(seed, .false., mu(i)). We then set H = Hcutest
L (xpert, µrand).

B Complete numerical results for Algorithm 2.4

24 J. M. Fowkes, N. I. M. Gould, J. A. Scott

Figure A.1: Maximum relative error when applying Algorithm 2.4 on the unconstrained

(left) and constrained (right) examples as m varies from 1 to 100.

Figure A.2: Median relative error when applying Algorithm 2.4 on the unconstrained (left)

and constrained (right) examples as m varies from 1 to 100.

Figure A.3: Runtime (in seconds) when applying Algorithm 2.4 on the unconstrained (left)

and constrained (right) examples as m varies from 1 to 100.

	STFC-P-2024-001 cover.pdf
	preprint_cover
	STFC-P inner cover

	STFC-P-2024-001 orcid_inner_cover.pdf
	STFC-P-2024-001 preprint.pdf
	Introduction
	Sparse Hessian approximation
	Hessian matrices with all rows sparse
	Sparse-dense Hessian matrices
	Hessian matrices with variable row densities
	Implementation details

	Numerical experiments
	Results when treating all rows as sparse
	Results when allowing for rows of different densities
	Results in the low accumulated past data regime

	Conclusions and future work
	Generation of Hessian matrices using CUTEst
	Complete numerical results for Algorithm 2.4

