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ABSTRACT

We consider a working-set method for solving large-scale quadratic programming problems for
which there is no requirement that the objective function be convex. The methods are iterative
at two levels, one level relating to the selection of the current working set, and the second due to
the method used to solve the equality-constrained problem for this working set. A preconditioned
conjugate gradient method is used for this inner iteration, with the preconditioner chosen espe-
cially to ensure feasibility of the iterates. The preconditioner is updated at the conclusion of each
outer iteration to ensure that this feasibility requirement persists. The well-known equivalence
between the conjugate-gradient and Lanczos methods is exploited when finding directions of neg-
ative curvature. Details of an implementation—the Fortran 90 package QPA in the forthcoming
GALAHAD library—are given.
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1 Introduction

In this paper, we consider a working-set method for finding a second-order critical point for the
so-called /1 QP problem

minimize f(z) = 3(z, Ha) + {¢,z) +p [(Az — )7, (1.1)

where A and H are respectively m by n and n by n symmetric matrices, p is a given (fixed)
parameter, and the components of w™ are the minima of w; and zero. We shall refer to the
components (a;, ) — b; of Az — b as its constituents. In practice, such problems often include
“equality” terms

p (@i, z) — bl

“two-sided bounds”

p (min(0, (a;, ) — ;) + max(0, (a;, ) — u;)),

or “simple bounds”

p (min(0, z; — ;) + max(0, z; — u;)) ,

but for simplicity we shall ignore theses possibilities here except as to mention that such terms
provide scope for algebraic improvements. We shall make no assumption that H is positive
definite, and thus cannot guarantee that any critical point found actually solves (1.1). Not
withstanding, we shall refer to any second-order critical point as a solution to (1.1).

Our particular interests are twofold. Firstly, we are interested in solving nonlinear pro-
gramming problems using Fletcher (1982, 1987, Section 14.4)’s Sl;QP method, which involves
a sequence of subproblems of the form (1.1). Secondly, we are interested in solving quadratic
programming (QP) problems

minimize i(z, Hz)+ (c,z) subject to Az >b
z€IR"

using an exact penalty function formulation (1.1) for some sufficiently large p (see, for example,
Conn and Sinclair, 1975, Han, 1981).

The reader may wonder why we are considering yet another active/working set method for the
problem, especially since interior-point methods are now usually considered to be superior when
there are many variables. The answer is simply that there are certain circumstances in which
we believe working set methods still have advantages. The most obvious is when there is good
a priori knowledge of what the optimal active set might be, since then one may anticipate there
being relatively few working set changes before the optimal set is found. Interior point methods
tend not to be able to take full advantage of such a priori information, preferring instead to
calculate the optimal active set ab initio. Successive quadratic programming (SQP) algorithms
for general nonlinear programming (NLP) problems are cases in point. It is well known (see
Robinson, 1974) that these methods tend to predict the optimal active set for the NLP as they
approach a limit point, and that the optimal active set from one QP is a good starting set for
the next.
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1.1 Notation

The symmetric matrix M is said to be second-order sufficient with respect to the m by n matrix

k- (20 u

is nonsingular and has precisely m negative eigenvalues. This is equivalent to requiring that

A if and only if the augmented matrix

(y, My) > 0 for all nonzero y satisfying Ay = 0, or to the reduced matrix N7 M N being positive
definite, where the columns of N span the null-space of A (see, for instance, Chabrillac and
Crouzeix, 1984, and Gould, 1985). If M is second-order sufficient, the augmented matrix K is
said to be standard. Otherwise, it is nonstandard. The inertia of K is the triple,

ID(K) = (k+a k‘*a k())a

where k;, k_ and kg are respectively the numbers of positive, negative and zero eigenvalues of
K. Thus K is standard if and only if In(K) = (n,m,0).

2 The basic iteration

At the start of the k-th iteration, a set of constituents is assigned to the working set Wy. The
constituents in the working set are chosen as a (sub)set of the active set Ay = A(xy),

Alz) ={i | {(ai,z) = b;},

where zj is the current estimate of the required solution. We shall also refer to the wviolated and
satisfied sets, Vi = V(zy) and S, = S(zy) respectively, where

V(z)={i | (ai,z) <b;} and S(z)={i | (ai,z) > b;}.

Notice that the active, violated and satisfied sets divide R™ into 3™ partitions.
An iteration is made up of three basic tasks. Firstly, a search direction si is chosen to reduce
the quadratic function

q(zx +5) = $(s, Hs) + (gk, 9),

where

gk =Hzp+c—pY_ a;,
iEVkU.Ak\Wk

while at the same time ensuring that the constituents in the working set stay active by requiring
that Axs = 0, where the rows of Ay are those of A indexed by W;. Secondly, a step oy is taken
in the direction s; to reduce f(xy + asg). Finally, zx, 1 is set to zx + axsk, and the working set
is updated to ensure progress, if at all possible, at the next iteration. We now discuss each of
these stages in turn.
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2.1 Computing the search direction

The search direction subproblem is to

minimize 1(s, Hs) + (gg,s) subject to Ags =0, (2.1)
sER™
where the rows of Ay are the vectors al, i € Wy. As we wish to be able to solve large problems,
we do not necessarily intend to solve (2.1) very accurately. In fact, we prefer to use an iterative
method, since this gives us more flexibility.

In the absence of the constraint Axs = 0, the method of conjugate gradients (see Hestenes and
Stiefel, 1952) would be the method of choice, particularly if applied with a suitable preconditioner.
This immediately suggests that if we were able implicitly to “project” the iterates into the null-
space of Ay, we might be able to recreate a conjugate gradient-like method for constrained
problems. Certainly, convex quadratic programming methods based upon conjugate directions
have been suggested by many authors (see, for example, Best and Ritter, 1976, Benveniste, 1979,
and Hestenes, 1980). The method we shall describe here is due to Gould, Hribar and Nocedal
(1998), but has its origins in the proposals of Polyak (1969) and Coleman (1994).

Let us assume, for the time being, that H is second-order sufficient with respect to A, and
thus that the solution to (2.1) occurs at its critical point. Let Py be a projector into the null-space
of Ag. Then our method may be described as follows:

Algorithm 2.1: Preconditioned conjugate gradients for (2.1)
Given 5o = 0, set gox = gk, and let
vo,k = Pk gok (2:2)
and pg; = —vo k. For j =0,1,..., until convergence, perform the iteration,
Tk = (Gjk>vik)/(Pjje, HDj)
Sj+lk = Sjk T OjkDjk
gj+ik = ikt OjkHPjk
Vitik = Prgivik (2.3)
Bik = <9j+1,1c, Uj+1,k>/<9j,ka Uj,k)
Pit1k = —Vitik t BikPjk

The matrix P, plays the dual role of projecting the iterates into the required null-space, and
preconditioning the iteration. A number of forms are possible, but the most appealing is to solve

M, Af Yivrk | _ [ 9i+1k (2.4)
A 0 Wjt1,k 0

for some auxiliary vector w;1,; and second-order sufficient matrix Mj. Thus, in practice, we use
Algorithm 2.1, but replace (2.2)/(2.3) by (2.4). The resulting method is known as the projected

the augmented system
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preconditioned conjugate gradient method. Of course, we solve (2.4) using one of the stable
symmetric, indefinite factorization methods introduced by Bunch and Parlett (1971) and later
improved by Bunch and Kaufman (1977) and Fletcher (1976) in the dense case, Duff, Reid,
Munksgaard and Neilsen (1979) and Duff and Reid (1983) in the sparse case, and Ashcraft,
Grimes and Lewis (1998) in all cases.

Notice that the first-order optimality conditions imply that the solution to (2.1) satisfies the

(Z ?)(jy):(_gk) (2:5)

Therefore Algorithm 2.1 is only appropriate if the cost of solving (2.5), is significantly greater

augmented system

than that for a sequence of (2.4), and the art is in choosing the preconditioner so that this is so.
If My is diagonal, range- or null-space approaches (see Gill, Murray and Wright, 1981, Section
5.4.1) are sometimes preferable to (2.4), illustrating the flexibility of Algorithm 2.1.

We must enter a word of caution here. While Algorithm 2.1 may appear to be attractive, it is
crucial that (2.4) be solved accurately, as otherwise, recurrences which rely on v;, 1 lying in the
null-space of Ay may be invalid. A particularly troublesome case occurs when g; 1 j is large but
vj41,k is small, for then (2.4) indicates that w;; j will usually be large—such cases often occur
in SQP methods when approaching the solution of a nonlinear program. In this case, although it
is possible to compute the composite vector (vj41% wj+1,%) to high relative accuracy provided a
stable factorization is used, the components v;, ; may have little relative accuracy. A number
of precautions, including iterative refinement, have been proposed by Gould et al. (1998), but
the most effective appears to be to note that (2.4) is equivalent to

M A% Yitie | _ gj+1,k_A£yj+1,k (2.6)
Ak 0 uj—|—1,k 0

where w115 = Yjt+1,6+Uj+1,k. and to choose y;i1x so that ||gj+1,k — AF Yj+1,/ is small. For then
vj41,k may be computed with much higher relative accuracy, and the iterates lie substantially
closer to the null-space of A. Picking y;1 4 as the previously-generated u;j appears to be
effective in practice.

We now turn to the possibility that H is not second-order sufficient with respect to Ay. If
this is the case, the problem either has a subspace of weak minimizers, or is unbounded from
below. The first strategy which suggests itself is to follow the proposal of Steihaug (1983) and to
monitor (p;, Hpj ) as the iteration progresses. If this is negative, p; ; is a direction of negative
curvature; if it is zero and (g, v;k) # 0, pjk is a direction of linear infinite descent. In either
case, we pick sy = £p;1/||p;kll, where the sign is chosen to ensure that (s, gx) < 0.

However, since such the direction is somewhat arbitrary, we prefer a slightly more sophisti-
cated approach which aims to produce a vector which is closer to the eigenvector corresponding to
the leftmost eigenvalue of H constrained to lie in the subspace Aps = 0. We merely note, as have
many others, that the conjugate gradient and Lanczos methods are two different ways of produc-
ing a basis for the same (Krylov) subspace, and while the former is most usually associated with
solving linear systems, the latter is best known as a method for finding (in particular) extreme
eigenvalues of large symmetric matrices. We shall not give details here, since our method has
essentially already been defined in full by Gould, Lucidi, Roma and Toint (1999)—the (GLTR)
method given in this paper, and the resulting HSL (2000) code VF05, also involved a trust-region
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constraint, which we may either set to a large value (which will bias the solution towards the
leftmost eigenvalue) or a smaller value which increases the contribution from the projected pre-
conditioned steepest descent direction, —Pygi. Experience reported in Gould et al. (1999) has
suggested that letting the Lanczos method run for a few (say 5) iterations beyond the first at
which negative curvature is encountered can often significantly improve the quality of the negative
curvature direction found.

2.2 Computing the step

This part is entirely standard. The objective function ¢x(a) = f(zx+asg) is a piecewise quadratic
function of «, and we aim to find its first local minimizer as a increases from zero. We call the
values at which (a;, zy + asg) = b;, i ¢ Wy, the breakpoints, and, starting from «gy = 0, we
examine the behaviour of ¢;(a) between consecutive breakpoints o < a1, until a suitable
value is found. There are three possibilities.

Firstly, the slope of ¢ () may be strictly positive for all small @ > «; ;. In this case, we
choose the local minimizer ay = o . Secondly, ¢(«) may have a minimizer o) < a;-’fk < Qg g
If this occurs, we choose «;, = a;-’fk. Finally, the required minimizer may lie at or beyond ;11 k,
and we compute the next breakpoint ;o as well as updating the slope at ;1.

To examine these possibilities, we need to be able to calculate and sort the breakpoints in
increasing order, and to evaluate ¢ (a) as a increases. For efficiency the sorting is perhaps best
achieved using the Heapsort method (see Williams (1964)), which is particularly appropriate, as
it performs a partial sort from which the ¢ + 1-st smallest member of a set may be found very
efficiently once the first ¢ smallest are known. Thus breakpoints beyond the minimizer need not
be completely sorted. The function ¢, () may be expressed as

dr(a) = djp + ad , + Lo ¢},

where ¢} = (sg, Hsy), for all aj; < @ < ajq1,k. A simple calculation reveals that

ik = ikt e [ai,se)| and
Z'EBj+1,k

Pj+1k = Gjk+ 04j+1,k(¢§',k - ¢3’+1,k)’

where B are the indices of constituents which define the j + 1-st breakpoint. Of course, the
initial values are
bk = f(xx) and ¢y = (gr,s6) —p D _(ai; k),
1€8j+1,0
where
Bjti,0= {1 <i<m ‘ (ai, k) < b, or {(a;,zx) =0b; and (a;,sk) < O}.

One other eventuality is that the last breakpoint is not a local minimizer, and the curvature
is negative. In this case, f(z) is unbounded from below along the arc zj + asg, and the algo-
rithm should be terminated. Strictly, this might be viewed as the major weakness of the whole
approach (particularly if we are interested in solving quadratic programs), since f(x) is (globally)
unbounded from below whenever H is indefinite.

We have to be slightly cautious here, since it is an open question as far as we know (and
contrary to claims made by Conn and Sinclair, 1975) whether the algorithm as it stands might
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actually cycle infinitely through different sets Vi U A \ Wy for the same working set Wy. This
might happen, for example, if the unconstrained minimizer of ¢x(«) lies between breakpoints
beyond the first for all k& > k¢ for some ky. In order to prevent this (remote) possibility, the
simplest precaution is to stop at the breakpoint directly before the unconstrained minimizer once
ever so often, since this will result in a gradual increase in the number of constituents in the
working set, and once |[Wy| = n, this working set cannot reappear.

An alternative to the forward-stepping strategy given here might be to perform a Armijo-type
backtracking linesearch, as suggested in broadly similar circumstances by Bertsekas (1982), Cala-
mai and Moré (1987) and Toint (1988), to avoid stepping through a large number of breakpoints.
We have not investigated this possibility.

2.3 Updating the working set

The final step of our iteration is to decide what the working set should be for the next itera-
tion. There are four possible outcomes from the linesearch. Firstly, we may detect that f(z) is
unbounded from below, in which case the algorithm will be terminated. Secondly, we may stop
at a breakpoint. If this is the case, one of the constituents which becomes active at zy; should
be added to Wy, to form Wy1. Notice that in principle it doesn’t matter which constituent is
added, since the gradient of each is linearly independent of the rows of Ay because (a;, sg) # 0
while Asy = 0, but it may be wise to pick the constituent for which |{(a;, sg)|/||a;||2||sk||2 is largest
as this then gives the “most” independent a;. The third possibility is that the linesearch stops
beyond the first breakpoint, but between subsequent ones. In this case, the minimizer cannot
occur within the current partition, but may nevertheless might result from the same working set.
We thus simply adjust gx11 to account for the change in partition, but retain Wy1 = Wg. The
final possibility is that the linesearch stops before the first breakpoint, and it is this case that we
now consider.

Ideally, the computed search direction would be the solution to (2.1). In this case, zyy1 is
a candidate solution to the original problem. In order to investigate this possibility, we need to
compute Lagrange multipliers at the solution to (2.1). If the exact solution to (2.1) has been
found, the vector v, will be zero. As a consequence (2.4) implies that

T _ _ _
Apwipr g = 9jp, = Hsjpp + 9, = Hsp + g5,

and thus that y; = w; 1 are Lagrange multipliers. If 0 < y;, < 1, standard optimality conditions
(see, for example, Fletcher, 1987) imply that zj.1 is a first-order critical point for (1.1) (Note
that we cannot be sure that this is a second-order critical point unless either M; = H, in which
case H is second-order sufficient with respect to A or the whole of the null space of A has been
investigated by Algorithm 2.1, since then the algorithm will have established that H is positive
definite in this space.) On the other hand, if there is a component [y]; ¢ [0, 1], further progress
is possible (provided other active constituents not present in the current working set do not
interfere) simply by deleting the corresponding constituent from the working set. As is common
in such a case, there may be more than one candidate for deletion, and there are a number of
possible rules to decide which is ultimately chosen.

Of course, one of the advantages of using the preconditioned projected conjugate gradient
method is the scope for terminating the iteration well before optimality. This has, unfortunately,
a downside as well. So long as we solve (2.1) (and so long as a suitable anti-cycling rule is chosen),
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we ensure that we cannot return to the working set Wy, once we have left z5,1. Thus, as there
are only a finite number of possible working sets, our algorithm would be finite. If we do not
solve (2.1) exactly, and we subsequently remove a constituent from the working set based on
approzimate Lagrange multiplier estimates, it may re-enter at a later stage. Unless care is taken
this zigzagging between working sets may lead to non convergence (see, for example, Fletcher,
1987, Section 11.3). We are unaware of suitable termination rules for the conjugate gradient
method that guarantee to prevent this, except, of course, to run the method until the gradient is
“numerically” zero.

3 Algebraic issues

The computation is divided into a sequence of major iterations. At the start of each major
iteration, a factorization of the preconditioning matrix

M, AT
Ky = k
k (Ak 0 >a

involving the set of constituents in the current working set, is found—we shall call the set of
these constituents at the start of a major iteration the reference set. The symmetric matrix My,
is chosen so that it is second-order sufficient, but is otherwise arbitrary. In particular, there is no
requirement that M} be positive definite, although if this were the case it would automatically
be second-order sufficient. Common choices are My, = H (if this is allowed, and if K} does not
suffer significant fill-in) or My = I. We stress here that although it is desirable to choose a good
approximation of H, the overriding concern is that M}, be second-order sufficient.

Having determined the factors of Kj, all subsequent linear systems during the current major
iteration are solved using the Schur complement method. That is to say, if we require the solution

M, AT se ) 9e
() ()=-(%); @

Mk = Mfa

of a system

for £ > k, and if

the solution is obtained using the factors of K and an appropriate Schur complement involving
My, Ay and A;—notice here that thus far we do not allow M, to change during the course of a
major iteration. To be specific, suppose without loss of generality, that

A = A = = .2
k <AD), ¢ <AA>andCe (CA>, (3-2)

that is that the rows Ay are common to A and Ay, but that the rows Ap in Ay are replaced by
the rows A, in Ay. In this case, the solution to (3.1) also satisfies the expanded system

My AL AL AL O s¢ ge
Ac 0 0 0 0 to ce
A, 0 0 0 I tr |==1 o [, (3.3)
A, 0 0 0 0 ts Ca
0 0 I 0 0 g 0
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te
ty = .
Notice that the leading 3 by 3 block of the coefficient matrix of (3.3) is simply K}, and thus that
the system may be written as

K, BT v h
(5 ) ()= (i),

for the appropriately repartitioned data

Sy
A, 00 t
Bg:(OA 0 I),W: to andwg:<u/;>,

where we recover

tp
and solution
ge c
he=1| co anddg:<A>.
0 0

Thus (3.4) can be solved in the standard way using the factors of K} and those of the Schur
complement S; = —B; K, 1BET. Crucially, the factors of S; may be updated rather than recom-
puted every time a constituent is added to or removed from the working set. It is usual to store
the growing matrix Sy and its factors as dense matrices; as a consequence each major iteration is
concluded when the dimension of Sy exceeds a given upper limit (default, 75), or perhaps when
the cost of continuing to enlarge the Schur complement method is believed to exceed that of
re-factorizing K.

This method was first suggested by Bisschop and Meeraus (1977), and championed by Gill,
Murray, Saunders and Wright (1990, 1991). We have implemented such a method as part of the
package MA39 in HSL—the package is actually designed to handle updates in the unsymmetric
case, but is capable of exploiting both symmetry and even a priori knowledge that Sy is definite.
In principle, a symmetric indefinite factorization of Sy is both possible, and possible to update.
However, the details are complicated (see Sorensen, 1977), and we have chosen instead to use a
non-symmetric (QR) factorization since updates are then relatively straightforward.

It is important to be able to check the inertia of K, at every iteration, but fortunately this
can be achieved knowing those of Kj and Sy using Sylvester’s law. Specifically, a very minor
modification of Gill et al. (1991, Lemma 7.2) shows that so long as both K and K, are standard,

In(Sy) = (0—-,04,0), (3.5)

where o constituents have been added since the start of the major iteration, and o_ have been
deleted. Since we require that Kj is standard, it follows that if, at any stage, the inertia of S
does not agree with (3.5), it must be because K is nonstandard. It is easy to check this condition
since the inertia of Sy may be recurred as its factors are updated (in our case, since we are using
the non-symmetric QR factors, we record the determinants S, on subsequent iterations—a change
in sign indicates an extra negative eigenvalue, while a repeated sign indicates an extra positive
one—directly from the products of those of () and R. We ensure by construction that det Q = 1,
while the eigenvalues of R are merely its diagonal entries.). We now consider the implication of
adding and deleting constituents for the inertia of Kj.
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3.1 Adding a constituent

If K, is standard, and we add a constituent to the working set, K,y is also standard. This
follows immediately, since as we have already said K, being standard is equivalent to NV, eT My N,
being positive definite, where the columns of N, form am orthonormal basis for the null-space of
the full-rank matrix Ay, the fact that
Neta
Ne= ( n; ) Q

for some vector n and orthonormal matrix @ (see Gill, Golub, Murray and Saunders, 1974), and
the observation that NZrleNgH is then a principal submatrix of the positive definite matrix
QTN} My N,Q and hence is itself positive definite.

3.2 Deleting a constituent

Complications arise when we delete a constituent, since then it does not automatically follow
that Ky, is standard even if K, was. Fortunately, provided we are prepared to modify M}, when
necessary, we can avoid this potential defect.

Suppose the columns of N form am orthonormal basis for the null-space of the full-rank
matrix A, i.e., AN = 0. Suppose furthermore that N7 M N is positive definite. Let

in which case
AN =0 and oI N =0. (3.6)
Then there is a vector n for which the columns of (N n) form an orthonormal basis for the
null-space of 4, i.e.,
AN =0, NT"n=0 and An =0. (3.7)

Now consider the matrix M + daa” for some scalar §. Then

T T T n
< J\; >(M—l—6aaT)(N n) = ( JZTAJ‘ZJ\}’ " Mi’; i{xa,ny ) (3.8)

where we have used the fact that N'a = 0 from (3.6). Since the columns of (AT N) form a
basis for IR", we may write
n=ATw+ aa + Nv

for some vectors finite w and v and scalar «. Premultiplying by n’, and using (3.7) and the
orthonormality of (N n) yields that 1 = a(a, n), from which we deduce that (a,n) # 0. Thus we
can ensure that the matrix (3.8) is positive definite by, if necessary, picking ¢ sufficiently large.

Of course, we are not basing our method on (3.8), but rather on being able to solve augmented
systems like (3.3). In order to accommodate changes to My of the type suggested above, we
actually need to solve systems of the form

My AL AL AL 0 s¢ ge
Ac 0 0 0 0 to ce
A, 0 0 0 I ty == o [, (3.9)
A, 0 0 0 0 ta Ca
0o 0 I 0 D, g 0
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where D, is a diagonal matrix. To see why this is appropriate, on eliminating ¢, and uy and

M, + AgDDAD A{ Se \ _ _ [ 9¢ (3.10)
Ay 0 17 co )’ '

M,=M, +ATD, A,.

A diagonal entry in D need only be nonzero if the resulting K; would otherwise be nonstandard.

using (3.2), we obtain

which is (3.1) with

Crucially, as before, the leading 3 by 3 block of (3.9) is simply K, and thus that the system may

K, BT v h
(5 o) (o)== (%) =
p- (20,

Thus (3.11) can be solved in the standard way using the factors of Kj and those of the Schur

be written as

where

complement S, = D, — B,K, IBZT, and the factors of the latter can be updated as the working
set changes.

To see this, suppose (without loss of generality) that we have added constituent gradients
whose Jacobian is A,, and now intend to remove the first row from A,. The resulting Schur

5(5) = 0 0\ (-BK'B" —-BK™'b
N 0 6 —'K-1BT _p'K-1p

complement is then

_ QR v

N vl §+ 8

_ Q 0 R w A=
Lo 1)HTH<UT 5+ﬁ>_QR(‘S)’

where
B:(AA 0 0), sz(o 0 1),
QR=-BK'BT, v=—-BK~'b, f=-b'K~'b and w= Q"v,
and the orthonormal matrix
H=(H n)

is a product of plane rotations chosen to eliminate the spike v’. But then

_ _ R w _ _ T &

R(8) = H<UT 5+ﬂ>_(HR+hv Hw+ph )+5(0 h)

= RO)+6(0 h)

and the introduction of ¢ simply adds dh to the last row of the updated upper triangular factor
R(0). Fortunately, the updated orthonormal matrix is

S_ (@ 0\ gr_(QH"
o=(§ 1) =(5F)

and hence h is available. We can evaluate the sign of the determinant of R(0), and if this indicates

that the new K is nonstandard, add a sufficiently large ¢ to change the sign of the last diagonal
of R.
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3.3 Deleting a non-reference constituent which has previously been added

One case of interest is when a constituent, not contained in the reference set but added to
the working set on a subsequent iteration, is now asked to leave. The obvious approach is
to proceed exactly as in Section 3.2 by adding an appropriate extra row/column to the Schur
complement S;,; (perhaps including a nonzero diagonal term ¢ if this is needed to ensure that
K. is standard). An alternative is to “undo” the previous addition by removing the row and
column from Sy corresponding to the outgoing constituent row ( al 00 0 0 ) However
complications arise if we intend, once again, to ensure that K;,; is standard by adding a (possible
nonzero) multiple, §, of a,a’ to M;.
To see this, and to see how to avoid any difficulty, consider the analog of (3.9),

M, AL AL AL AL AT 0 0 0 s g
A 0 0 0 0 0 0 0 O to co
A, 0 0 0 0 O I 0 0 to 0
Ay, 0 0 0 0 0 0 I 0 tn, 0
Ay 0 0 0 0 0 0 0 I tv == 0 |, (3.12)
A, 0 0 0 O O 0 0 O ta Ca
0 0 I 0 0 0 D, 0 0 up 0
0o 0 0 I 0 0 0 0 0 v 0
0 0 0 0 I 0 0 0 Dy wy 0

where Dp and Dy (# 0) are diagonal matrices, and where the rows Ay and Ay, correspond
to non-reference constituents that are added at some stage but subsequently removed—the sub-
scripts NV and Ny indicate those constituents for which modifications are, and are not, needed
on removal, respectively. Since our intention is to avoid the introduction of the last two block
rows and columns of the coefficient matrix in (3.12), eliminating the variables v, and w, (and
implicitly ¢y,) leads to

My AT AT AL AT 0 st ge
A 0 0 0 0 0 te ce
A I
» 0 0 0_1 0 to _ 0 ’ (3.13)
Ay 0 0 -—-Djy 0 0 ty 0
A, 0 0 0 0 0 ta Ca
0 0 I 0 0 Djp Uy 0
which is exactly of the form (3.11) with data
Ay 0 0 -Dyt 0 0 Sg ty
Be = AA O 0 ) Dz == 0 O O ) 'U[ — tc a.nd UJ@ == tA )
0 0 I 0 0 D, to Uy
and solution
ge 0
hy=1 cc and dy = | ca
0 0

Notice that the essential difference between this case and its predecessor is that the extra diag-
onal terms —D,! will appear in the Schur complement S, whenever removing a non-reference
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constituent might otherwise lead to a non-standard K,. We now consider how this manifests
itself.

Suppose that, at iteration ¢, a non-reference constituent is to be deleted, We might then try
to remove its corresponding row and column from the p by p Schur complement S; to obtain
S¢y1. Furthermore, suppose (without loss of generality) that it is the last row and column of S,
that is to be removed, that

S =QR (3.14)

for some upper triangular R and orthonormal Q—if not, standard orthogonal matrix techniques
(see, for example, Gill et al., 1974) may be used to reorder the rows and columns of Sy, and recover
the required form of the factors, so that this is so—and that the sign of the determinant of Sy is
known. Given (3.14), we now choose the orthogonal matrix H, a product of plane rotations (the
j-th of which involves columns p — j and p, for j = 1,...,p — 1) so that

_ Q 0 THp _ R r
QH_(O 1) andHR—(lT p).

for new upper triangular R and orthonormal Q. Then it is safe to use Sy;1 = S, where
S = QR, (3.15)

so long as the sign of the determinant of S is the opposite of that of Sy (this follows from the
inertial result (3.5))—in practice, we ensure that det(Q)) = 1 for all orthonormal @, so that sign
of det(Sy,1) is the product of the signs of the diagonal entries of R. Conversely, if the signs are
the same, of if R is singular, this indicates that it is not safe to remove the row/column from Sy,
and instead we need to introduce an extra diagonal term (c.f. —Dy! in (3.13)) into S; so as to
change its inertia.

At face value, this might look rather expensive, since we might have to “undo” the transfor-
mation using H if (3.15) turns out to be unsatisfactory. Fortunately, it is not actually necessary
to apply H to Q or R in order to find the diagonals of R. All that is needed is (1) to compute
the plane rotations to reduce last row of @ to epT (in temporary store), and (2) to apply these
rotations to the diagonal entries of R (again in temporary store).

3.4 Adding a constituent which has previously been deleted

Another case of interest is when a constituent which is in the reference set, but which has been
deleted from the working set at iteration j, now wishes to re-enter the working set. According to
Section 3.1, the simplest mechanism would then be to introduce the constituent’s gradient as the
new last row of K,1, and we can be assured that the resulting K, ; is standard. An alternative
is to “undo” the previous deletion by removing the row and column from S, corresponding to one
of the artificial rows ( 007 00O ) which is added to K to effect the deletion (see equation
(3.3)). However, the reader may then be concerned that, according to (3.9), the original deletion
may have actually required that we add a row of ( 0 0 I 0 Dp ) for nonzero Dy rather

than ( 007 00 ) so as to ensure that the resulting K; was standard. If we delete this
row from K, can we be sure that resulting K, is standard? To see that this is indeed the case,
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note that if we reintroduce the row a’, of A, we must have that

Mk + AgDD AD A{ ap
Ay 0 0
al 0 0

is standard because of our discussion in Section 3.1. Since this is equivalent to saying that
<57 (Mk + AgDDAD)5> >0

for all s for which

we then have that

0 < (s, (Mk + AgDDAD)S> = (s, (Mlc + AEDDAD + 5aDa£)3> = (s, (Mlc + AEDDAD)S>

where ¢ is the diagonal of D, corresponding to the row aL, and where D, and A, are the

remaining rows of D and Ap respectively. Thus

M +ATD,A, AT a,
Ap 0 0
al 0 0

is standard, and thus removing the row ( 0 01 0§ ) has the desired effect.

4 Other details

As Roger Fletcher (U. Dundee) has cautioned us on a number of occasions, computational
quadratic programming is all about seemingly insignificant, but, in practice, absolutely vital
details. In this section we describe these details for our Fortran 90 package QPA (from the forth-
coming GALAHAD optimization library) that implements the basic algorithm outlined in this
paper. An enhanced version of QPA, HSL_VE19, in which QPA’s core linear algebra package MA27 is
replaced its more powerful successor MA57 (see Duff, 2001), will be available in the next release
of HSL (2001).

4.1 Constituent deletion strategies

Among the many strategies for removing constituents that have been suggested, our default is
to pick the constituent whose Lagrange multiplier is furthest from the interval [0,1]—ties are
resolved by selecting the one with smallest index. Another strategy that is available as an option
is to remove the last constituent that was added to the working set for which [yx]; ¢ [0, 1], since
this gives priority to those non-reference constituents whose removal from the Schur complement
is cheapest to effect. A third option is a variation on both these themes in which the last &
constituents (for some user-given k) in the working set for which [yx]; ¢ [0,1] are candidates, and
the one whose Lagrange multiplier is furthest from the interval [0, 1] is selected. Again, this gives
some precedence to constituents whose removal may be effected most cheaply.
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4.2 Simple bounds

As we mentioned in the introduction, problems frequently involve “simple bounds” of the form
p (min(0, z; — I;) + max(0,z; — u;)). Although these might be exploited at various stages of
the linear algebra (most particularly when updating the Schur complements as simple bound
constituents enter and leave the working set) we have contented ourselves to exploit them only
at the start of a major iteration. Specifically, since each system to be solved throughout the
progress of the major iteration involves one or more solutions of the reference system

(4 5)()-(

for suitable g and ¢, it pays to exploit the structure of this system. So suppose (by implicitly
reordering if necessary) that

AZX AER MISX MI?DT
Ak:< I 0 ) ande:(M,?D M;R

SFX 46¢ gFx cGC
s:<SFR>7 t:<tSB>’ g:<gFR> a‘ndc:<CSB>

Then clearly (4.1) may be written as

as well as

MISX M]?D T A};X T I gFX ng
M]COD MISR AER T 0 gFR _ gFR
APX AR 00 oo | eS|
1 0 0 0 t°° 3
from which we may deduce that
s = g%, (4.2)
MFR  AFRT sFR hFR def gFR _ MODgFX
§R k GC = GC = GC I}?‘X FX ’ and (4'3)
5B — SB_ M}fxst _ MkOD TSFR _ Azx Tth_ (4_4)

Thus rather than obtain factors of Kj, we need only find those of

K]SR: ( MIE‘R AZRT >
AFR

and solve (4.1) via (4.2)—(4.4).

4.3 Solving the reduced reference system

The reduced reference system (4.3) may most obviously be solved using a direct factorization of
K;*. However, if M;® is non-singular and diagonal, it is often more efficient to find

gFR — _MkFR —1(hFR o AIP;X TtGC)’ where AERMkFR —1A£R Tth — AzRleR —thR — dS¢ (4.5)
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using the factors of AZ"M, ™ “LAFRT  particularly when AER has few nonzeros per column. Our
default strategy is to use the alternative (4.5) whenever My " is both diagonal and positive definite
and A} has less than a user-supplied number (default, 35) nonzeros per column.

Whichever approach is attempted, the HSL solver MA27 (see, Duff and Reid, 1983) is used to
factorize the relevant matrix and solve related systems. Perhaps unusually, a very small thresh-
old tolerance is used (default, 0.1,/€xs), since, in our experience, this almost always results in far
sparser factors, without any perceivable loss in accuracy, than with MA27’s default. As a precau-
tion, the residuals of linear systems are periodically monitored, and any noticeable inaccuracies
are handled by one or more steps of iterative refinement or, as a last resort, re-factorization with
an increased pivot tolerance.

4.4 Preconditioners

Of course the choice of preconditioner My, is vital. We provide a number of choices for Mj. The
three “obvious” options, ranging in sophistication (and effectiveness), are to pick My to be H or I
or a matrix made up of entries of H lying within a band of user-specified semi-bandwidth (default,
5). In addition, since we aim to use (4.2)—(4.4) rather than (4.1), we may sometimes prefer to
set M;* and MQP to zero. In all cases (except when M}, = I), we have to be careful that Kj is
standard. Thus, if the given M;® is not second-order sufficient (this information is available after
the attempted factorization of K}), we use the simple expedient of adding ||M;*||1I to M;*, and
re-factorizing. We accept that this is a rather simplistic strategy—indeed, we only really need to
boost M in the null-space of A *—but it appears to be effective in practice.

The default preconditioner is chosen automatically, at the start of each major iteration, from
the above, using the following heuristic. Firstly, an attempt to use M} = H is made, but this is
abandoned, unless Hy, is itself diagonal, if the number of nonzeros in the factors of K exceeds
a given multiple (default, 10) of those in the Kj, itself. Next, if this failure occurs, the banded
approximation described above is attempted. If the banded approximation fails because there
is insufficient room, the required semi-bandwidth is set to zero, and a diagonal approximation
attempted. Finally, if all of the preceding fail, the identity matrix is chosen. Although this might
appear ad hoc, such an automatic strategy has worked reasonably well in practice.

4.5 The search direction and anti-zigzagging

Our current anti-zigzagging procedure is extremely crude. The initial approximation to the
solution of the search-direction problem (2.1) is a low-accuracy solution based on a few (often
simply one) iterations of the GLTR method mentioned in Section 2.1. If this solution is not
optimal for (2.1), and if the active set has not changed in the interim, a far more accurate
solution of (2.1) is sought, typically only terminating when the “residual” (g;x,v;x) < max(eg -
(90,k> V0 k), €4) for some user-supplied relative and absolute convergence tolerances er (default,
zero) and €4 (default, \/err). We plan to investigate more sophisticated schemes in due course.

4.6 Linear independence

The whole algorithm is predicated on the constituents in the working set having linearly indepen-
dent gradients. This may fail in practice for two reasons. Firstly, the initial working set provided
may have dependent constituent gradients. Secondly, barely independent constituents may be
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picked up as the algorithm proceeds. We thus find it periodically necessary to try to identify
(and consequently) remove such rogue constituents. Our strategy is simply to factorize

T ART
(e )

(which may or may not be reused later as the preconditioner), using MA27, with a large threshold
tolerance (default, 0.5), and to use relatively small diagonal entries in its block diagonal factor to
predict dependent constituents—any eigenvalue of this factor smaller than a fixed factor (default,
€%-7) of the largest in absolute value is considered dependent. We apply this “pruning” strategy
at the start of the algorithm, and at the start of each major iteration for which there is some
suspicion that the previous one might have introduced “close to dependent” terms—this is usually
apparent when factors of the Schur complement S; become ill-conditioned.

While our strategy is not foolproof, and, admittedly, may be expensive, we believe that it
is a prudent precaution that has proved most worthwhile in practice. Of course, more sophis-
ticated strategies (such as those involving the singular value decomposition or a rank-revealing
factorization) are more reliable, but they are almost always too expensive for the size of our
application.

4.7 Feasibility tolerance

In practice, constituents are considered active if |(a;, ) —b;| < €4, for some user-supplied tolerance
€q > 0. (default, 6'1\7/[5, where where € is the relative machine precision).

4.8 Handling degeneracy

While there are many possible anti-cycling rules (see, for example, Chvétal, 1983, Chapter 3), we
have chosen to avoid the issue altogether by randomly perturbing the data b before starting to
solve the problem. Once optimality is achieved, the perturbations are gradually reduced and the
problem resolved, until the perturbations have effectively vanished. Specifically, positive initial
random perturbations in the range (0, /€y - max(1, [|b||)] are added to b; on termination, they
are reduced by a factor 0.1 - min(1,€,/+/€r), and the problem resolved, until they are smaller
than 10¢;,.

4.9 Cold and warm starts

Options are provided for the user to specify which constituents are to be initially in the working
set (usually known as a warm start), or for the initial point itself to be given, or for cold starts with
initial working sets made up with either no active constituents, or as many active constituents as
possible, or only “equality” constituents. The gradients of the active constituents at the initial
point are always checked for independence, and some dependent constituents may be removed
from the initial working set.

4.10 The penalty parameter

When solving QPs, the initial penalty parameter p is supplied by the user (default, 10). If the
constraints are violated at the solution to (1.1), or if f(x) has been diagnosed as being unbounded
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from below, p is increased by a factor of user-supplied factor (default, two), and (1.1) resolved. In
addition, p is increased by the same factor whenever the relative infeasibility fails to decrease by
at least a given factor (default, 0.75) over a prescribed period (default, 100) of iterations. While
this strategy is rather naive, it has worked satisfactorily. We also note that, although finding a
good value of p can help reduce the number of iterations performed, it does not seem to be as
critical for reliability as we had been lead to expect.

5 Numerical results

Preliminary numerical results obtained using the method described here are given in a companion
paper (Gould and Toint, 2001a), in which our present proposal is compared with a competing
primal-dual interior-point trust-region approach (QPB in GALAHAD, or HSL_VE12 in HSL, 2000,
see Conn, Gould, Orban and Toint, 2000). For brevity, we do not propose to repeat these here,
but direct the reader to Gould and Toint (2001a) for details. Moreover, since QPA will eventually
incorporate our quadratic programming preprocessing procedures (see, Gould and Toint, 20015),
we feel it is wise to report on the complete code when it is ultimately released.

We should stress that the conclusions drawn in Gould and Toint (2001a) are not particularly
favourable for our working-set approach, since it is comprehensively outperformed for large-
scale cold-started applications by its interior-point rival. Even when a good prediction of the
optimal working set is available (a warm start), the working-set method described here does not
always beat the interior-point approach, simply because the latter requires so few iterations, while
the former can easily be fooled by just one incorrect assignment to the working set and most
especially by degeneracy. Having said this, for small problems, and in some warm-started cases,
the working-set approach does appear to perform better than its rival, and thus our contention
that it is advantageous to have both methods available appears still to be valid.

6 Conclusions

We have presented a working-set based quadratic programming method capable of finding (at
least) first-order critical points in the non-convex case. The method is designed to solve large-scale
problems, and uses a suitably-preconditioned conjugate-gradient iteration at its heart. Methods
for updating the preconditioner, while maintaining crucial inertial properties are described, and
a large number of implementational details are provided. The method has been implemented,
and versions will shortly be available as part of both the GALAHAD and HSL (2001) suites of
software packages.
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