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ABSTRACT

The Finite Element Tearing and Interconnecting method for the Helmholtz equation is
a recent non-overlapping domain decomposition method for solving linear systems aris-
ing from the finite element discretization of Helmholtz problems in bounded domains.
This method was validated on two-dimensional external problems with first order ab-
sorbing boundary conditions. The purpose of this paper is to study the robustness and
efficiency of iterative methods for the solution of the associated interface problem for
three-dimensional interior problems arising from the automotive industry.
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1 Introduction

The motivation behind this work is the design of acoustically performant products, which
is a major concern in many industrial sectors, and more specifically in automotive com-
panies. This process relies on the use of various acoustic models. In the present study,
uncoupled acoustic models for closed cavities are considered. The acoustic problem is
‘decoupled’ from the surrounding structure, i.e. the pressure field is assumed not to
interact with the enclosing structure.

In its simplest linear form, the acoustic problem is governed, in the frequency domain,
by the Helmholtz equation with suitable boundary conditions (Pierce 1981). The main
unknown is the acoustic pressure field while boundary conditions are related to (Dirich-
let) pressure constraints, (Neumann) normal pressure gradient constraints and (Robin)
normal admittance constraints. The solution of such a problem is usually computed for
a frequency range. This allows the acoustic response at particular locations within the
cavity to be assessed. For a car compartment, these are usually the driver’s and passen-
ger’s ears. The practical evaluation relies on the use of appropriate numerical models.
For complex automotive geometries, boundary element and finite element methods offer
the required flexibility. For finite element methods, some mesh requirements should be
taken into account (around ten nodes per wavelength) which leads to huge mesh sizes
when the dimension of the structure is proportional to some wavelength.

For industrial applications, the linear system obtained after a finite element discretiza-
tion is usually solved with direct solvers for reasons of robustness. Unfortunately, the
memory requirements and computational cost grow rapidly with the size of the acoustic
model. In order to be able to solve larger models, parallel computers are employed. The
parallel solution by direct methods is an option (Duff 1998). Iterative methods are of-
ten easier to parallelize and require less memory but may suffer from lack of robustness
(Magoulés, Roux, Coyette and Lecomte 1998b). Another approach, called domain de-
composition, relies on the decomposition of the entire domain into subdomains, so that
the global problem is decomposed in a number of local problems, which can be solved
independently. Because of this property, domain decomposition is well-suited for parallel
computing. In the case of non-overlapping domain decomposition and in order to restore
the connection between the subdomains, boundary conditions are imposed on the inter-
faces between the subdomains. This leads to a so-called interface problem that describes
the coupling of the subdomains. The solution of this interface problem readily produces
the solution on the global domain. A particular non-overlapping domain decomposition
method called Finite Element Tearing and Interconnecting (FETI) (Farhat and Roux
1992) uses a direct solver for the local problems but an iterative one for the interface
problem. The purpose of the method is to combine the robustness of a direct method
with the flexibility of an iterative procedure.

The one-level FETI method for the Helmholtz equation with two Lagrange multipli-
ers (Magoulés, Roux and de La Bourdonnaye 1998a) was initially developed for exterior
Helmholtz problems, and has shown its performance for huge linear systems. The aim of
this paper is to illustrate the robustness and efficiency of the method for three-dimensional
internal Helmholtz problems with relatively small dimension. The theoretical computa-
tional cost is also derived. The method is much easier to implement in an existing code
than the preconditioned method (Farhat, Macedo, Lesoinne, Roux, Magoulés and Bour-



donnaye n.d.b). Moreover, its performance is expected to improve with the use of a global
preconditioner based on Krylov spaces, as already shown for two-dimensional problems
(de La Bourdonnaye, Farhat, Macedo, Magoulés and Roux 1998).

The plan of the paper is as follows. In 2, the mathematical formulation of the orig-
inal problem is presented. In 3, the concept of the FETI method is introduced for the
Helmholtz equation with two Lagrange multipliers and iterative solvers for the interface
problem are also discussed. Section 4 deals with implementational aspects for the inte-
gration in an acoustic finite element code. In 5, convergence results for a number of test
cases are shown. The first example is concerned with the design of a car compartment
and the second is related to the prediction of transmission characteristics of an exhaust
system. The main conclusions are formulated in 6.

2 Mathematical formulation

In this section, the problem is formulated and its variational formulation and discretiza-
tion are presented. The general Helmholtz problem for the acoustic pressure u, in a
bounded domain 2 with boundary conditions on 92 can be written as follows: for

f € L*(Q) and g € L?(89), find u € H(Q) such that

—Vu—k*u=f in Q
?+au:g on 02
14

where k denotes the wave number, v the unit outward normal on 0f2, and « is a scalar.
The boundary conditions are chosen in such a way that this problem is well-posed and has
a unique solution. The boundary conditions are often defined as homogeneous or non-
homogeneous Neumann boundary conditions (case o = 0) which are related for example
to a rigid body if ¢ = 0, or Robin boundary conditions (case a # 0) as induced by
specific acoustic treatments such as absorbing materials. It is important to note that in
the case of absorbing materials, the scalar a usually is complex, which implies complex
arithmetic. Dirichlet boundary conditions are not considered here, because they are not
often used in industrial simulations.

The variational formulation of this problem can be written as follows : for f € L?()

and g € L*(99Q), find « € H'(Q) such that

vwe ' (Q), [(Vuvo—kuw)+af w=[ o+ [ g

The equivalence between the variational formulation and the initial hyperbolic problem
can be found in (Lions and Dautray 1985). After Galerkin discretization with finite
elements, the linear system B
Kr=1» (1)
is obtained where b denotes the right-hand side, and K the sparse matrix defined by
K=K kM +aMg

where K is the stiffness matrix, M the mass matrix, and Mp the contribution from Robin
boundary conditions along 0€2. Since « is complex, K is, in general, complex symmetric
i.e. non-Hermitian.



3 A domain decomposition method for acoustics

In this section, the Finite Element Tearing and Interconnecting method for the Helmholtz
equation is presented and the associated interface problem is derived. Iterative solvers
for the interface problem are briefly discussed.

Various domain decomposition techniques exist and the reader is referred to (Roux
1995) for more details about sub-structuring methods. The idea behind the primal Schur
complement method (Tallec 1994) and the dual Schur complement method (Farhat and
Roux 1994) consists in solving independent problems on each subdomain with an addi-
tional constraint that forces continuity of the pressure u and pressure normal derivative
OJu/0v along the interface. Both methods have been proven effective for coercive ellip-
tic partial differential equations but serious difficulties are encountered for non-coercive
elliptic problems, including the Helmholtz equation when the wave number k& becomes
an eigenvalue of the Laplacian operator. The original method (Després 1990) is based
on a non-overlapping additive Schwarz algorithm and consists of the addition of a Robin
boundary condition on the subdomains interfaces. This method has further been im-
proved by the optimal choice of the coefficients (Chevalier and Nataf 1998) and extended
to non-conforming meshes. A non-overlapping multiplicative Schwarz algorithm has been
developed (Collino 1993).

The Finite Element Tearing and Interconnecting method for the Helmholtz equation
is based on the Finite Element Tearing and Interconnecting (FETI) method for structural
problems (Farhat and Roux 1992). The interface boundary conditions are modified so
that after discretization, the local Helmholtz matrix in each subdomain does not become
singular for some wave number k. This method can be derived with one Lagrange mul-
tiplier (Farhat, Macedo and Lesoinne n.d.a) (FETI-H) or with two Lagrange multipliers
(Magoules et al. 1998a) (FETI-H2LM). Note that this last formulation, coming from an
augmented Lagrangian formulation, can be interpreted as a reformulation with two La-
grange multipliers of the original algorithm developed in (Després 1990). The key point
is that for two-dimensional applications both formulations present the same dependency
on frequency, mesh size, and number and shape of subdomains (Farhat et al. n.d.b).

3.1 Finite element tearing and interconnecting

The FETI-H2LM for the Helmholtz equation can be defined for two subdomains as
follows. Let the domain 2 be decomposed into two non-overlapping subdomains €2,
s = 1,2;let I'; denote the interface I'; = 8Q;N0Q,. Then for f € L*(Q) and g € L%(012),
find u, € H'(Q,) so that

—Vu, — k*u, = f,  in

du
4 + aug, = g, on 00Q,N N
ov,
Ou,
i + tkus = A, on I'y
ov,

under the double constraint

[g—:l—l—iku]:O and [S—Z—I—iku]zo on I';
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where [p] = p; — p2 denotes the jump in p on either sides of the interface I';, f, (resp.
gs) denotes the restriction of the function f (resp. g) in subdomain Q, (resp. 9, N 9N),
and v, the external normal vector of €, for s =1, 2.

This method is called the FETI-H2LM method because it involves two Lagrange
multipliers Ay and A;. It is important to note that the FETI-H2LM method ensures the
continuity of the pressure and the continuity of the pressure normal derivative on I'; :

Uy — U = 0
0 0
Ou  Ouz _ o
81/1 8V2

These relations ensure that the continuous solution in each subdomain is the restriction
of the global continuous solution of the initial problem.

Each local problem is well-posed because of the complex boundary conditions. The
variational formulation now leads to the following pseudo-hybrid problem : for f € L%(Q),
for g € L2(09), find u; € HY(Q), o € HY(Q2), Ay € HY2([;) and X\, € H V2(I)
such that

/ (Vui Vg — kuyv;y) + zk/ wvy  + a/ U1V
N r; 801190
= / fiv1 + / 911 +/ A1v1
Q1 001NN s
/ (Vua Vg — k*uyvy) + zk/ UgUy + a/ UV
2 T 80,n00
= fava + / gov2 + A2vg
Q2 002N00 Iy
/P (A + Ao — 2ikuz)v = 0
I
/I‘ ()\1 + )\2 — 2'Lku1)v =0
I

and that for all v; € HY(Q4), vo € HY(Qy) and v € HY?(T;). With the same notation,
the discretization leads to the linear systems

[ f(ll KlS ] T1 by
=), W | = (1) ) (2a)
L K31 K33 + ’l/kM[ ] T3 b3 + /\1
[ Rzz K23 ] T2 by
= =) o) = | .o (2b)
L Kgg K33 + ’Ll{?MI i .’L’3d b3~ + /\2
with the two constraints on the interface :
AL+ Ay — 2ikMzl?) = 0 (3a)

The matrix M; is the mass matrix related to the interface I'; and thus is symmetric
positive-definite. The vector b:(;) denotes the contribution from subdomain €2, to the
nodes on the interface and a:gs) is the solution on the interface computed by solving the
local problem in subdomain €2,. Clearly, adding the contributions of the elements from

1 and €25 on the interface, gives K33 = K§3) + K§3) and b3 = b( ) + b( 2)
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Theorem 3.1 The discrete solution obtained in subdomain Qg with the FETI-H2LM
method is equal to the restriction of the discrete solution of the initial problem onto 2.

Proof Starting from Eq. (3), 23 can be set to 23 = xgl) = x:(f). Next the assembly of

the two previous systems and a simplification give the linear system :

Ky 0 Kis T by
0 Ko Kos zy | = by
Ky Kay Ké;{,) + ffé? z3 bz(’,l) + bf)

Recalling the relations Ks3 = f(?f;) + f(gf? and b3 = b:())l) + b§2), this system is exactly
the initial discrete problem (1) when the unknowns z in (1) are ordered appropriately.
This means that the discrete solution obtained in each subdomain with the FETI-H2LM
method corresponds to the restriction in each subdomain of the discrete solution of the
original problem.

Sometimes the short notation for the local unknows and right-hand side vectors,

T b
Uy = and f, = )
l_:())s) bgs)

will be used. So, the linear systems (2) can be written as

K’lul = fl + BiAl and KQUQ = f2 + B;AQ (4)

with the constraints
Al + Ag — QikM[Bg’U,g =0 (5&)
/\1 + )\2 — QikMIBlul =0 (5b)

where K, denotes the new local regularized Helmholtz matrix defined as
K, = K, — k*M, + aMp, + ik B M; B,

and B is the discrete restriction from €, on I';. By the elimination of u, from (4) into
(5), the linear system

Fi=d (6)
is obtained where A is defined by A = (A1, A2)%, and F is the non-Hermitian matrix
[ I I —2ikM;B, K, B! ]
F = . I
| 1 —2ikM;B,K{ Bl I ]

and B
i 2ikM;By Kyt fo
O\ 2%kEM;BiK{'fy )

This problem is solved by an iterative method and once (A1, A2) is known, the pressure
values u; and up can be computed by solving (4).
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3.2 Iterative solution of the interface problem

This section is devoted to the iterative solution of the linear system (6) on parallel
computers. The reader is referred to (Barrett, Berry, Chan, Demmel, Donato, Dongarra,
Eijkhout, Pozo, Romine and van der Vorst 1994, Saad 1996, Dongarra, Duff, Sorensen
and van der Vorst 1998) for reviews on iterative methods. In this paper, unpreconditioned
GMRES(m) and BiCGStab(#) are considered, so the only operation for F' required is a
matrix-vector product.

The conjugate gradient method is designed for Hermitian positive definite matrices
and the work per iteration is usually dominated by the matrix-vector product with F'.
The storage of five vectors of the dimension of A is required. The method is optimal
since it minimizes the error in the F-norm and has a smooth convergence behaviour.
For non-Hermitian matrices, other methods must be used. The GMRES(m) method,
proposed by Saad and Schultz (Saad and Schultz 1986), keeps the property of optimal
and smooth convergence behaviour, but the memory requirements can be large, since the
basis vectors of a large Krylov space should be stored (cf. Algorithm 1). One step of the
GMRES(m), as defined in Algorithm 1, by 3.1-3.7 requires one matrix-vector product.
The quantity TOL is the residual tolerance used for the stopping criterion.

Algorithm 1 (GMRES(m))

1. Compute the residual r = d — F' )\
Compute : B = ||r||

2. First basis vector : vy =1/

3. Forj=1,...,m.
3.1. Compute w; = Fu;
3.2. Compute Gram-Schmidt coefficients : h;j = viw;, 1 =1,...,7
3.8. Gram-Schmidt orthogonalization : w; = w; — E{Zl hijv;
3.4. Normalization : vj41 = wj/hji1; with hjyq; = ||w;|
3.5. Let H; = [ha){ 1), 1) with by = 0 for i > 1+ 1
3.6. Solve the least squares problem H;z; = [Be;
3.7. Update the solution A = Ao + [v1, .. .,v,]2;

4. Compute r = d — FA

5.If ||r|]| > TOL, set A\g = A, and go to step 1.

Methods based on biconjugate gradients require less memory, but the convergence
behaviour is not optimal and can be very irregular. Among this type of methods, the
BiCGStab(#) method is selected as a compromise between smooth convergence and small
storage requirements. It combines ¢ steps of the biconjugate gradient method (BiCG)
with £ steps of GMRES (cf. Algorithm 2). In this way, the method is able to keep the
memory requirements low, but at the same time uses the stabilizing effect of GMRES.
The implementation of BiCGStab(¢) is rather technical and the reader is referred to
Fokkema (Fokkema 1996) for software details. One step of the BiCGStab({) as defined
in Algorithm 2 by 2.2.1-2.2.8 requires two matrix-vector product.

Algorithm 2 (BiCGStab(¥))
1. Compute the residual 7o = rg = d — FAq
Setuy =0, a=py=w = 1.



2. While ||ro|| > TOL do

2.1. pg = —wpy

2.2. For j=0,...,0—1
2.2.1. p1=7gr;, B = alp1/po)
2.2.2. pp = p1.
2.2.3. Update search vectors [u, ..., u;] = [ro,..., ;] — Bluo, .., u,]
2.2.4. Compute the new search vector uj 1 = Fu;.
2.2.5. Compute o = 7lluj1, a = p1/o.
2.2.6. Update the solution A = X + auyg
2.2.7. Update the residuals [ro, ..., ;] = [ro,...,7j] — aui, ..., uj1]
2.2.8. Compute the new residual vector rj.1 = Fr;.

2.8. Compute Z = [ry,...,r)"[r1,. .., 7]

2.4. Solve the problem Zy = [ry,...,r]"rq

2.5. Update the solution x = x + [rq,..., 74 1]y

2.6. Update the residual vector rog =rog — [r1,..., 7]y

2.7. Update the search vector uy = ug — [uq, ..., uly

The parallel solution of the linear system (FA = d) takes place as follows. The
vectors A, d as well as the iteration vectors are distributed in the same way among the
processors of the distributed computer. The computation of the matrix-vector product,
in parallel, is discussed in 4. The operations on the vectors of large dimension are all
carried out in parallel. This does not require communication between processors for vector
updates (y < y + ax) since this operation can be carried out for each component of y
independently, but communication is required for the inner product ¢ = z¥y. The other
operations are carried out simultaneously without communication on each processor. The
reader is referred to (Barrett et al. 1994, Dongarra et al. 1998) for implementation details.

4 Implementation aspects

4.1 Decomposition into subdomains

In a finite element method, the elements are connected via their faces; these are lines
in a 2-D model and surfaces in 3-D. The elements of the global domain are decomposed
into N, domains by numbering or colouring all elements. All elements with the same
number or colour form a subdomain. Subdomains are sets of elements, so the interface
consists of a set of faces. The interface is defined by the faces connected to elements with
a different subdomain number. The domain decomposition method is by nature parallel :
the solution can be computed independently for each subdomain, while the interface
equation connects all the independent subdomains into a global problem. Because of this
independence, each domain can be allocated to a single processor of the parallel system,
for example. Operations related to a single subdomain take place without communication.
The solution of the interface problem, however, requires communication since it connects
all the subdomains.

The decomposition should be done in such a way that the work to solve the N, local
problems is equal in order to obtain a good load balancing among the subdomains and so
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that the number of interface nodes is small in order to have a small interface problem. In
many cases, this decomposition can be done by hand, but for practical applications, it is
often a very difficult and tedious task. The decomposition into subdomains is intensively
studied using graph theory and the reader is referred to the references in (Karypis and
Kumar 1997). In this paper, the meshes of the test problems were decomposed by hand
so that each subdomain has almost the same number of unknowns.

4.2 Matrix-vector product by the interface operator

In 3.1, the FETT-H2LM method for two subdomains has been discussed. For each inter-
face degree of freedom (dof), there are two Lagrange multipliers, one for each subdomain.
The interface boundary conditions make the link between the multipliers on both sides of
the interface. This concept is still valid when more than two subdomains are present as
long as the interface nodes only connect two neighbouring subdomains. It may happen,
however, that three or more subdomains share a node at the interface as illustrated in
Figure 1. Subdomain 1 is connected to subdomain 2 via common faces and similarly to
subdomain 3, but not to subdomain 4, since subdomains 1 and 4 only share a common
node. The Lagrange multipliers for nodes that connect more than two subdomains are
duplicated in order to be able to use the formulation for two subdomains. The conse-
quence is that, for each subdomain, the number of Lagrange multipliers is, in general,
larger than or equal to the number of unknowns on the interface. In this situation, sub-
domain 1 has at node ¢, a multiplier A, that is connected to domain 2 and a multiplier
A3 connected to domain 3. In this case, both Ay and A3 should be added together to the
same row in the right-hand side of (4) for the solution of the local problem. The relation
between the Lagrange multipliers A, and the local pressure unknowns u, is given by the
restriction matrix B,, i.e. A, = B,u,. When the interface connects two subdomains, B,
just copies the corresponding coefficients from u, into A,. When more than two subdo-
mains are involved, then a pressure unknown can be copied to more than one Lagrange
multiplier. The inverse operation u, = Bt),, is very similar. When the interface involves
two subdomains, A,’s are copied to u,’s. When more subdomains are involved, the A,’s
are added together into the corresponding wu,.

1 2 1 ™ 2
c — Laiad®
. i .
L)
3 4 3 4

Figure 1: Tlustration of four subdomains with a common node. The arrows denote the action of the
interface boundary conditions for subdomain 1.

Here is the algorithm for the computation of the matrix-vector product with the



interface matrix.

Algorithm 3 (u = F))
1. Set the right-hand side f, = BA\; for s =1,..., N;.
This operation adds all \y’s together that correspond to the same pressure unknown.
2. Solve the local problem K,u, = f, where s =1,..., Ny,
3. Restrict the solution to the interface X, = Byu.
This operation copies the pressure unknowns to the Lagrange multipliers.
4. Put Ay in X!. Exchange each component of X! with the corresponding neighbouring
subdomain.
5. Compute the sum X' = A, + X!
6. Add together and apply the regularizing mass matriz : p = N — 2tk M\,

The work in Algorithm 3 is dominated by two operations.

e First, the solution of the local problem by a (sequential) sparse direct method in
Step 2. The computational cost depends on the number of unknowns in the subdo-
main and the connectivity of the nodes, i.e. the geometry of the mesh. Therefore,
the global domain is decomposed in such a way that the subdomains have (almost)
the same number of unknowns. Ideally, the decomposition should happen such that
the matrix factorization is equally expensive for all subdomains.

e Second, the communication cost for the iterative methods increases with a larger
number of interface variables. This implies that a small interface is preferred.

The FETI-H2LM method was integrated within the acoustic simulation package SYS-
NOISE (SYSNOISE Rev 5.4 1999). The MPI library (Forum 1994) was used for commu-
nication between the subdomains. For the solution of the interface system, GMRES(m)
and BiCGStab(2) were used. These use matrix-vector products by the interface matrix.
No preconditioning is employed.

The computation of vector inner products is performed by global communication
commands from the MPI library (MPI_Allreduce). The current implementation does
not overlap communication and computation. Step 4 in Algorithm 3 requires commu-
nication between neighbouring subdomains. Non-blocking communication was used for
the computation of the mean of \. The communication consists of a sequence of two-
processor exchanges, that represent two neighbouring subdomains. These are the MPI
commands MPI Isend, and MPI Irecv. The other operations in Algorithm 3 are fully
parallel without communication.

The local assembled finite element matrix K was factorized by the SYSNOISE built-
in direct solver, which is an LDL! factorization. Since each evaluation with F' by Algo-
rithm 3 requires the solution of a linear system with K, it is advantageous to factorize
once and perform just the forward and backward substitutions in Step 2 of Algorithm 3.

4.3 Theoretical computational cost

In this section, the operation count is analyzed for a (simple) model problem with two
subdomains. Figure 2 shows a rectangular mesh with 2n elements in vertical direction



and m elements horizontally. The entire domain is decomposed into two subdomains {2,
and 5 of n X m elements each, with the interface I'; of p = m + 1 unknowns. This
section presents theoretical results for the operation counts for a parallel direct method
and the FETI-H2LM method. We assume that n,m > 1.

O

L'y

Figure 2: Decomposition of an m x 2n rectangular mesh of elements. (Here n = 4 and m = 10.)

Following the conventions on the ordering of the unknowns, the assembled linear
system has the block form

Ku ~0 f:(ls T by
~0 fgzz ffzs 2 | = | be . (7)
K31 Ki Kag z3 bs

Assuming that Kss can be factorized into Kss = Lser;Fs with L, lower triangular, a linear
system can be solved using the block factorization

Ly 0 0 LT, 0 LitKs
_ 0 L2 0 0 L%, L3 Ka
KsiLit KaoLoy T 0 0 S

Note that K3,L;T = (L7 1K,3)T, so the Schur complement

S=FKy— Y LLLs with Lg=LK;.
s=1,2

Let the unknowns in each subdomain be ordered columnwise. The matrix K ss has N = np
rows and columns and is a band matrix with bandwidth BW = n. The matrix factoriza-
tion of K, without pivoting then requires approximately 2- BW?- N = 2n>p operations.
Computing L, = L;ll%sg requires p forward substitutions of BW - N operations each.
This gives a total of n?p? operations. Since K, is sparse, the computation of L,; can be
organized in a more efficient way so that the total cost is an’p? with 0 < a < 1 where
a is a reduction factor that depends on the sparsity of K,3. We can show that for this
example, a = 0.5. Once L3 is known, the term L% L3 in S can be computed. Since S
is symmetric, it is sufficient to form only the upper triangular part. When L3 is dense,
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this work is of the order 2 - N - %pQ = np?. Taking into account the sparsity of L3, we
can show that the cost of this operation can be reduced to %'np3 for this example. The
addition of the terms in S is of the order of p? operations and the factorization of S
requires about p® operations. When m and n are large, these are negligible to the other
operations. When two processors are used, the factorizations of K1 and Ko takes place
in parallel, as well as the computation of L;3 and Ls3. Roughly speaking, the cost on
each processor for the parallel direct method described here is of the order of

3 L oo 1 3
2np+§np —|—§np .

For the FETI-H2LM method, the local matrices K, contain the assembled matrix
for the elements in ) including I';. This implies that K, has N = (n 4+ 1)p rows and
columns. If the unknowns are numbered columnwise, the bandwidth is BW = n+ 1. The
number of operations for the factorization of K, is 2-BW?- N = 2(n+ 1)3p. The forward
and backward substitutions with K, cost about 2- BW - N = 2(n + 1)?p operations. The
most expensive operation in the iterative solvers is the matrix-vector product with F,
which is in turn dominated by the local solve with K,. On each iteration, each processor
performs one forward and one backward substitution, i.e. requires 2-BW-N = 2(n+1)%p
operations. For g iterations, the total cost (including factorization) is of the order of

2(n +1)%p + 2q(n + 1)%p =~ 2n3p + 2qn’p .

Compared with the direct parallel method, the operation count of the FETI-H2LM
method is smaller than the operation count of the direct method when

1 1
2n3p 4+ 2qn?p < 2n%p + —n?p? + —np?

2 3
1 1p
< (=+=2)p.
7= (4+3n)p

In words, the FETI-H2LM method requires less floating point operations than the parallel
direct method described here, when the number of iterations is much smaller than the
number of interface variables.

5 Numerical results

The numerical examples have been selected in order to demonstrate the current capabil-
ities of the presented method. The first example is related to a car compartment and
the second is dealing with an exhaust system. These problems were solved using the

SYSNOISE software tool for vibro-acoustic simulation (SYSNOISE Rev 5.4 1999), on a
four-processor SGI Origin 200, using the MPI library.

5.1 Car compartment

The first example is related to a car compartment. The main objective of this evalua-
tion is the synthesis of the frequency response function, at the driver’s and passenger’s
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ears, subjected to some velocity boundary conditions along the firewall. This example is
representative of a wider class of problems where the acoustic response within a cavity is
evaluated as induced by vibrating panels.

The evaluation of the acoustic response is performed using a three-dimensional finite
element model as presented in Fig. 3. The discrete model involves 6448 hexaedral
elements, 544 pentaedral elements, and 8417 nodes. Neumann boundary conditions
are considered along the firewall, and Robin boundary conditions are considered along
the ceiling. Homogeneous Neumann boundary conditions are considered elsewhere as
presented in the longitudinal cut of the car Fig. 3. The two mesh partitions represented

N, =2 N, =14

T

777

THHH

T ]

CH

iy =
L

=

Firewrall

Figure 3: Car compartment — mesh and boundary conditions

Fig. 4 have been used for the numerical simulation. The first consists of two subdomains
(N, = 2) with 4429 degrees of freedom (dofs) each and the interface has 441 dofs. The
second partition in four subdomains (N, = 4) consists of two subdomains with 2443 dofs
and two with 2229 dofs ; the interface has 955 dofs. The size of the interface problem
for the FETI-H2LM method is the double of the size of the interface, because of the use
of two Lagrange multipliers. This leads to an interface problem of size 882 for the first
partition and to one of size 1910 for the second.

The convergence curves obtained for the two partitions for 100 Hz are presented in
Fig. 5. This figure shows the influence of the choice of iterative method. Three algorithms
have been used, namely GMRES(20), GMRES(50), and BiCGStab(2). The curves show
the scaled interface residual ||FFA — d||/||d|| versus the iteration number.

For all cases, GMRES(50) is the fastest in terms of iterations. Note that the fig-
ures do not represent the cost per iteration. Indeed, GMRES(m) requires more (paral-
lel) inner products than BiCGStab(2), which can lead to an important overhead. But,
GMRES(m) requires only one matrix-vector product per iteration and BiCGStab(2) two.
Another difference between GMRES(m) and BiCGStab(2) is the convergence behaviour :
GMRES(m) converges smoothly, while BICGStab(2) has a somewhat irregular behaviour.

It can be seen that the decomposition into four domains leads to a more difficult
problem, since each of the methods require more iterations. This is very pronounced for
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GMRES(20), which requires more than 2000 iterations in the case of four subdomains
and converges very slowly, compared to the case of two subdomains. The difference
in convergence behaviour between GMRES(20) and GMRES(50) shows how important

the number of iteration vectors is. Clearly, the robustness of GMRES(m) can only be
guaranteed when the number of iteration vectors m is large enough.

The GMRES(50) and the BiCGStab(2) have been used for computing the acoustic
response for the frequencies 100, 200 and 400 Hz. Selecting the total length of the cavity
as the reference length (a = 286 cm), the corresponding reduced frequencies (ka) are
1.848, 3.696 and 7.392.

The dependency on the number of subdomains and the frequency for GMRES(50) are
shown in Fig. 6. It is clear that when N, = 4, the number of iteration vectors is too small
for fast convergence. The results for BiCGStab(2) are presented Fig. 7. The dependency
on frequency and number of subdomains is similar to GMRES(m). The GMRES(20)
method performs very badly. Since for N, = 2, the number of interface nodes (p = 441)
is about 10 to 20 times the number of matrix-vector products of the iterative methods
for 100 and 200Hz, the FETI-H2LM method is expected to be cheaper in floating point
operations than the parallel direct method described in §4.3. This is not true for 400Hz.

N, = 2, GMRES(50) N, = 4, GMRES(50)
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Figure 6: Car compartment — convergence history

5.2 Exhaust system

The second example is related to an exhaust line of a Jaguar car. For such a silencer,
the main objective is the evaluation of acoustic transmission properties. The length of
the tube, the location of expansion chambers, the particular geometry of these chambers
and the use of absorbent materials and/or perforated facings are some factors which

could affect these transmission properties. Useful characteristics of such a system are the
transmission loss or the insertion loss.
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Figure 7: Car compartment — convergence history

The finite element model presented here involves 39254 hexaedral elements and 46966
nodes. Dirichlet or Neumann boundary conditions along inlet and outlet sections are
imposed ; homogeneous Neumann conditions are set on the other boundaries. The mesh
was partitioned into two subdomains (N; = 2), as shown Fig. 8. Each subdomain has
23483 unknowns and the interface has 347 unknowns. The associated interface system is
of order 694.

Figure 8: Exhaust system — domain decomposition (N; = 2)

The computations were performed for frequencies 100, 200 and 500 Hz. Convergence
curves for GMRES(30) and BiCGStab(2) of the interface residual ||[FA — d||/||d|| are
presented in Figure 9. In contrast with the previous example of the car compartment,
the dependency on the frequency is less pronounced. Obviously, the geometry of the
problem and the decomposition reduces the dependency on the frequency. Since the
number of interface nodes (p = 347) is about three times the number of matrix-vector
products for GMRES(30) and of the same order for BICGStab(2), it is expected that
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FETI-H2LM will not be more efficient than a direct parallel method.

N, = 2, GMRES(30) N, = 2, BiCGStah(2)
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Figure 9: Exhaust system — convergence history

6 Conclusions

In this paper, a brief overview of a one-level Finite Element Tearing and Interconnecting
method for the Helmholtz equation has been presented. The performance of this method
has been studied for two representative three-dimensional applications originating from
the automotive industry. Two iterative solvers for the interface problem have been used.
The following conclusions can be drawn. First, the behaviour of GMRES(m) strongly
depends on the number of iteration vectors m. The number of iteration vectors should be
chosen quite large in order to obtain acceptable convergence speed. For the two examples
tested, more than 25 vectors are recommended. This is feasible, because those vectors
are defined on the interface and their storage is small compared to the storage of the local
regularized Helmholtz matrix in each subdomain. Second, the BiCGStab(2) method does
the job very well in terms of the number of iterations. Its storage cost is relatively low,
since only nine vectors are required, but two matrix-vector products are involved at each
iteration. Furthermore, the convergence behaviour is more irregular than GMRES(m).
Third, increasing the number of subdomains leads to a more difficult problem and the
solution becomes more expensive for higher frequencies, but this property depends on
the geometry.

The three-dimensional applications of the FETI-H2LM method without precondition-
ing on a car compartment and on an exhaust system depend on the frequency and the
number and the shape of the subdomains in a similar way as two-dimensional appli-
cations. This is discouraging since domain decomposition is potentially the method of
choice for higher frequencies where fine meshes are required. However, this problem may
be solved with a global preconditioner based on Krylov spaces and the method can be
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derived as a two-level Finite Element Tearing and Interconnecting method as introduced
in (de La Bourdonnaye et al. 1998).
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