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ABSTRACT

The Conjugate Gradient method has always been successfully used in solving the sym-
metric and positive definite systems obtained by the finite element approximation of self-
adjoint elliptic partial differential equations. Taking into account recent results by Golub
and Meurant (1997), Meurant (1997), Meurant (1999a), and Strako$ and Tichy (2002)
which make it possible to approximate the energy norm of the error during the conjugate
gradient iterative process, we adapt the stopping criterion introduced by Arioli, Noulard
and Russo (2001). Moreover, we show that the use of efficient preconditioners does not
require to change the energy norm used by the stopping criterion. Finally, we present
the results of several numerical tests that experimentally validate the effectiveness of our
stopping criterion.
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1 Introduction

In this paper, we combine linear algebra techniques with finite element techniques to obtain
a reliable stopping criterion for the conjugate gradient algorithm. The finite element method
approximates the weak form of an self adjoint, coercive elliptic partial differential equation
defined within a Hilbert space by a linear system of equations

Az =10

where A € RV*Y is symmetric and positive definite and b € RY. The conjugate gradient
method is a very effective iterative algorithm for solving these linear systems. In particular,
using the conjugate gradient algorithm, we will compute the information which is necessary
to evaluate the energy norm of the difference between the solution of the continuous problem,
and the approximate solution obtained when we stop the iterations by our criterion. Owing
to the close relationship between the conjugate gradient method behaviour and the variational
properties of finite element methods, we will focus only on stopping criteria based on the
energy norm: ||y||4 = y? Ay. Moreover, our experiments give very good evidence that the
usual stopping criterion based on the Euclidean norm of the residual b — Az can be totally
unsatisfactory and frequently misleading.

Recently, several authors have proposed rules that compute error bounds for the conjugate
gradient method (Ashby, Holst, Manteuffel and Saylor 2001, Axelsson and Kaporin 2001, Cal-
vetti, Morigi, Reichel and Sgallari 2000, Calvetti, Morigi, Reichel and Sgallari 2001, Golub and
Meurant 1997, Golub and Strakos 1994, Meurant 1997, Meurant 1999a, Meurant 199954, Strakos
and Tichy 2002). Some of these rules compute estimate of the error in Euclidean norm and
others compute estimates related to the energy norm. In their historical paper, Hestenes and
Stiefel (1952) proposed a method for the estimate of the error energy norm that use the val-
ues computed during the conjugate gradient method. Strako§ and Tichy, (2002), studied the
relations between the estimates proposed by Hestenes and Stiefel (1952), Golub and Meurant
(1997), Golub and Strakos (1994), and Meurant (1997), (1999a), (1999b6) and they proved that
the Hestenes-Stiefel estimate is numerically stable.

We shall first summarise the principal properties of the finite-element method in Section 2.
Then, in Section 3, we will use the recent results of Arioli et al. (2001), Golub and Meurant
(1997), Meurant (1997), (1999a), and Strakos and Tichy (2002) to build reliable stopping criteria
and to analyse their properties. Finally, in Section 4, we will present the numerical experiments
we performed on a selected ill-conditioned test problem, and, in Section 5, we will present our
conclusions.

For the sake of simplicity, we will mainly focus on the 2D case. The results can be easily
extended to the 3D case. In the paper, we will use the following notation.

Let Q be a simply connected bounded polygonal domain in R?, defined by a closed curve T.

In the following, we will denote by D(2) the space of all infinitely differentiable functions
with compact support in €2 and by

Dau—ﬂ a=(a,09) € N?, |a| = a1 + ay ,x = (21, 29)
- 80‘1.’13160‘2332’ - 1,2 ’ — G1 2 8 — 1,42)-
Furthermore, we will denote by H*(2) (Grisvard 1992) the space of all distributions u
defined in 2 that satisfy the following properties



e D% € L?(R) for |a| < m when s = m is a non-negative integer,

e uc H™(Q) and

|Du(x) — D*u(y)?
luls.0 = Z //QXQ \x—y|2+2f’ dxdy < +o0,

al=m

where m = |s| and 0 = s — [s] when s € Ry \ IN.

We define the Hilbert norm on H*(2) by

1/2
||u||sn—(2/|D“ |dx> ,

|a|<m

in the first case, and, by

s £ [ [Pt )"
u X ,
™, x0 |x_y‘2+20 y

al=m

in the second case. Finally, we will denote by H{(Q2) the closure of D(2) in H*(2), and by
H~%(Q) the dual space of H§(Q).

2 An elementary Finite Element framework

Let

a(u,v) = /Q.Q(X)Vu -Vvdx, Yu,v e Hy(R) (1)

be a continuous and coercive bilinear form:

Yu,v € H}(Q), Iy € Ry and IM € R such that

Muliq < a(u,u) (2)
a(w,v) < MlulliaflvilLe (3)

and L(v) = [, fvdx be a continuous linear functional, L(v) € H~'(Q). Using the hypotheses
stated above the problem

Find u € H{(Q) such that

(4)
a(u,v) = L(v), Vv € H}(Q),
has a unique solution. A finite element approximation of problem (4) with the use of continuous
piecewise linear elements can be briefly described as follows. Let Tj be a family of triangulations
of Q, i.e. each T}, is a set of disjoint triangles {7'} which covers €2 in such a way that no vertex
of any triangle lies in the interior of an edge of another triangle. Let h = max diameter(7'),
S8

we assume that T is regular in the sense of Ciarlet (1978, page 132), i.e. triangles do not



degenerate as h — 0. Moreover, we assume that each triangle cannot have more than one edge
lying on I'.
Consider then the space:

Vi = {va(x) : @ = R, vj(x)|r is linear VT' € Ty, vp|r = 0} .

The space V}, is the piecewise linear space (we refer to Ciarlet, 1978, for a detailed analysis),
and V}, C H}(2). We will now describe the usual finite element basis for V},. Let {Pi}io .~
be the set of internal vertices of T} (i.e. we exclude the vertices lying on I'). Then for all j,
1 < j < N, we define the function ¢; € V}, by

1, i=j
0, i #7

bi(P;) =

and then we extend it linearly on each triangle T'. It is easy to show that {¢;} J=1,..N is a basis
for Vj; hence, dim V}, = N. Every v, € V}, is a linear combination of the functions belonging to
the basis

N
V(%) = D 0jd;(x).
=1
Therefore, the approximated problem that we want to solve, will be

Find uj, € V}, such that
(5)

a(uh’vh) = L(vh)7 VVh € Vha

Hereafter, for the sake of simplicity, we assume that all the integrals are computed exactly. The
approximated problem (5) is equivalent to the following system of linear equations:

Au="b (6)
where A and b are defined as follows

Azg = a’(¢i7¢j)7

bi = L(¢)
If we use an iterative method, at each step k we will have a vector u*) € RY, which in turn
identifies a function ugk)(x) =N, uz(k)gbi(x), ugk)(x) € Vj, and a residual ng) € V) (V) is the

topological dual space of V) which is defined by
R,(lk) (vp) = a(uglk),vh) — L(vy), Vv, €V

Arioli et al. (2001) propose a stopping criterion based on the evaluation of the dual norm of
k
RP(vy) :
k
IRSY va) s,

which is appropriate when the bilinear form is non symmetric.



Here however, we want to take full advantage of the following relation:
v! Av = a(vp(x), vi(x)), Vv €V}, (7)

and of the fact that the bilinear form a(-,-) induces on H{ () the norm: | - ||, = (a(-,-))"/?
equivalent to || - |[1,0. Since, Ciarlet (1978, page 105),

||11 - uh”a < ||11 - Vh”aa Vv, €V,
we have that

[u—wlla < Jlu—Tlxul, (8)
[urlla < [lulla + f[o = uplla, (9)

where II,u € V}, denotes a suitable interpolation of u (Ciarlet 1978).
Let uj, € Vj, be a function such that:

lup = whllz = a(up — uj, up - uy) < h*a(up, up) = A [lug|f3. (10)
Therefore, using (9), we can give the following estimate of the error |ju — uj||,:

[u = uj lu —uplla + [lup —
lu = uplla + B [luslla
la = uplla + b ([[ulla + lu — uplla)

hllulla + [u = uplla(1 + A).

VAN VAN VAR VAN

Finally, assuming that A < 1 and ¢ > 0, we have

[u—ujlla < hMlullg +2[lu - uplo- (11)
In the following, the function uj, will be ugk) the function identified by the last iteration of the
conjugate gradient method. The value of the parameter ¢ is related to the threshold we will
use in our stopping criterion and will depend on the regularity of the solution. In the present
paper, we do not assume that the domain €2 is convex. In particular, in some of our numerical
tests 2 has an L-shape. Therefore, the solution u € H*(Q) N H (), with 1 < s < g (Grisvard
1992). Under this regularity of u, it is possible to prove (Babuska 1971, Babuska 1972, Dupont
and Scott 1980) that

lu —Thull,e < CA*Huls g, (12)

with C independent from h and u. Therefore, from (2), (3),(11), (8), and (12), we have that

| M
1.0 < 20 _hsfl(htfs-}—l”u
v
M .
Oy =k Hlullse,
Y

[u— uj 1,0+ |uls0)

IA

with C independent from h and u.



Remark 2.1 Let us assume that K is a piecewise constant function and Ty, is such that K|lr =
const, YT € Ty. It is possible to express the bilinear form a(-,-) as follows

a(u,u) = Z ﬁT|Vu|gyT, Yu € H(Q). (13)
TeTh

Therefore, the error ||u — uplle can be more precisely bounded as follows (Dupont and Scott
1980)

lu—wl; = > &r[V(u-uw)ir (14)
TeTH
2(s—1),..(2
< Co Y Rrhy’ iy, (15)
TeT

where hr is the diameter of the triangle T' and Cy is independent from h and u. Let hyy be
the smallest diameter of a triangle: Ry, = mingeg, diameter(T). If b= hypin, > c1h?, ¢ <1
independent from h and hpipn, and p > 0, we have that

GCTIREED S frfufly <Y &k ufy
TeT, TeT

< KD SN frjufg.
TeTh

In particular, if p > 0 we have a non uniform mesh. If we consider the exponent t in (10) to
be greater than (p+ 1)(s — 1), we assume that ¢1 is not too small (i.e. ¢1 > 0.25), and we are
in favourable situation

2(s—1
lu—wl2= 3 &rh2 Vlu2y,
TeTy

then we can reasonably erpect that

lu—upla = flu —uja -

3 The stopping criterion for the conjugate gradient method

When using an iterative method for solving the linear system (6), we normally incorporate a
stopping criterion based on the a-posteriori component-wise or norm-wise backward error theory
(Arioli, Duff and Ruiz 1992, Higham 1996). If we use the conjugate gradient method, it is quite
natural to have a stopping criterion which takes advantage of the minimization property of this
method. At each step k the conjugate gradient method minimizes the energy norm of the error
6u®) = u — u®) (u solution of (6)) on a Krylov space u(?) 4+ K, (Greenbaum 1997):

min  6u®T A5u®). (16)
u(k) e u(0)+j<k

The space R with the norm
lylla = (y" Ay)*/?)



induces on its dual space the dual norm

I flla-r = (fTA7LF)E/2),

Let 7(¥) = b — Au(®) denote the residual at step k. Therefore, the value ||6u(®)| 4 will be equal
to the dual norm of the residual ||r(¥)|| 4,—1. Moreover, from (7), we have that

k
la®a = 9 lla V.
Therefore, a stopping criterion such as the following:
IF || Au™ —b|| 41 <1n[b] -+ THEN STOP, (17)

with 7 < 1 an a-priori threshold fixed by the user, will guarantee (Arioli et al. 2001) that a u(*)
which satisfies it, is the solution of the perturbed linear system:

Au®) = p— k),
lr® a1 < nllbll a1

Moreover, we have for uj, = Z;-V:l uj¢j, solution of (5), and ugk) = Ej-v:l u§k)¢j that

k
lup — 0o = [ju = u® |4 = [[r®)| =1 < gllblla-r = nllulla = 7l

The choice of n will depend on the properties of the problem that we want to solve, and, in the
practical cases, 7 can be frequently much larger than ¢, the roundoff unit of the computer finite
precision arithmetic. From (10) and (12), a reasonable choice for n would be:

n="h*"1 or n=h2

Frequently, it is easier to have the area of each triangle for a given mesh instead of h. This is
indeed the case in some of our experiments. Therefore, a practical choice could be:

1/2
n= (max/ ldx) ~ h.
T;€Ty T;

First of all, we need to add , within the conjugate gradient algorithm, some tool for estimat-
ing the value eff) = ()T A=17-(k) at each step k. This can be achieved using Gauss quadrature
rules as proposed by Golub and Meurant (1997) or using the rule presented by Hestenes and
Stiefel in their original paper (1952). Golub and Meurant (1997) present three different quadra-
ture families: Gauss, Gauss-Lobatto and Gauss-Radau. The Gauss quadrature does not require
any a-priori knowledge of the smallest and the biggest eigenvalues and computes a lower bound
of egf). The other two quadrature rules compute both a lower and an upper bound using the
extremes eigenvalues of A. In particular, the Hestenes-Stiefel rule computes a lower bound &
for ef) that is equal to the bound computed by the Gauss rule proposed by Golub and Meurant
(1997). Moreover, Strakos and Tichy (2002) proved that the Hestenes-Stiefel rule is numerically
stable when finite precision arithmetic is used. Owing the better stability properties and the
independence of a-priori estimates of the spectrum, we choose the Hestenes-Stiefel rule. The
Hestenes-Stiefel rule can be cheaply computed using the quantities already computed during



the conjugate gradient process. The conjugate gradient iterates satisfy the following relations
(Greenbaum 1997, Meurant 1999aq):

= DT . (k—1)

(k) (k1) (k1) _
u u + ag_1p s Ok_—1 p(k_l)TAp(k._l) )
(k)T (k)
k) _— (k) (k-1) -’
p = rm+ 5k—1p ’ /Bk—l - rk—1)T p(k—1)”

where (9 = 0 and r(® = p(® = p. The quantity ax_; gives the step-size on the direction plk=1)
during the conjugate gradient algorithm. Therefore, in exact arithmetic, we have that the final
value

N .
w= Z ajp(a) ’
=1

and taking into account that ' .
PV A =0, i#,

the energy norm of the error is

N
J0uf = e = 32 ayrTe). (18)
j=k+1

Under the assumption that egchd) << eff), where the integer d denotes a suitable delay, the

Hestenes-Stiefel estimate &, will be then computed by the formula

k+d
o= a0,

j=k+1

(Golub and Meurant 1997) indicated d = 10 as a successful compromise, and numerical ex-
periments support this conclusion ((Golub and Meurant 1997, Arioli and Baldini 2001)). In
Section 4, we will indicate that the cheaper choice d = 5 can be reliable if the solution u of(4) is
reasonably regular, and we will experimentally compare several choices for the value of d when
the matrix A is very ill conditioned and the solution u is only continuous. In this latter case,
we must choose a larger value for d.

Finally, we must estimate b” A='b. It follows from (16) that

rB) Ty — 0, Vv € Ky, .
Therefore, we have

ul Au+ uwPT Ay®) — BT gy
ul Au + u®T Au®) — 25T k)

u” Au — (u® 4 o*))T (k) _ pT'y, (k)
ul Au — wOT k) — Ty k)

ul Ay — u®Tp0) _ T, (0)

su®T A5y ®



Then, it follows that
uwl Au > w0 4 pTy ), (19)

and the right-hand side will converge monotonically to |[u||%. Taking into account (19), we
could replace ||b]| 4~1 with its lower bound at the step & of the conjugate gradient method.
Therefore, we can substitute (17) with:

IF & < n?(@®TrO® £ p74))  THEN STOP. (20)

Introducing a preconditioner, we want to speed up the convergence rate of the conjugate
gradient method but this will change the matrix and, therefore, the energy norm. However, we

(k)

still want to estimate e},”. Nonetheless, we can prove that the energy norm of the preconditioned
problem is equal to eff).
Let us assume that we symmetrically precondition the linear system (6) by the non singular

matrix U. We obtain the equivalent system
U TAU 'y =U"Tb, (21)

where y = Uu. If we directly apply the conjugate gradient method to (21), the iterates satisfy
the following relations (Greenbaum 1997, Meurant 1999a):

(k) _ (k1) ~(k—1) _ Fle—1)T a(k—1)
Yy = Y + Ap_1p , Ofp_1 = ﬁ(k_l)TU_TAU_lﬁ(k_l) )
f(k) — f(k_l) _ CVk_1U_TAU_1ﬁ(k_1) ’
(k)T (k)
Ak) Ak A(k—1 _ T
p( ) = 7'( )+5Ic—1p( )7 Br—1 = m,

where y(o) =0 and 7O = $(© = U=Th. Moreover, in exact arithmetic, we have that #*) =
U Th—UTAU 1y*) and, therefore, defining u¥) = U1y we have that

i) = U T(b— Au®)) = U Trlb),
Then, we have that
O
= il

Finally, if we define p'¥) = U~1$*¥) and M = UT U, we obtain the variant of the preconditioned
conjugate gradient algorithm, which incorporates the proposed stopping criterion with a suitable
choice of d described in Figure 1.

Remark 3.1 The value of the exponent t in formula (10) can be higher than the one suggested
by (12) which depends on the regularity of the solution. This is the case when super-convergence
in the nodes of the mesh occurs and we know that the values in the mesh nodes are very accurate
(Wahlbin 1995, Babuska, Strouboulis, Upadhyay and Gangaraj 2001).



Preconditioned Conjugate Gradient Algorithm (PCG)
Given an initial guess u(9), compute 7® = b — Au(®, and solve
Mz =70 Set pO = 20 8y =0, a_q =1, po = bTu®, and

§0 = Q.

k=0

while &, > n%(po + r07u*)) do
k=k+1;
v, = rE=DT5(k=1) .

k=T (k—1)

7l 2(
k-1 = p(k—l)TAp(Ic—l);
Yk = Qg1 Xk
u(k) = fu,(k_l) —+ Oék71p(k_1);
,’.(k) — Ir'(k_l) — Olkf]_Ap(k_l);
Solve Mzk) = k),
r(R)T 4(k)

k= Lk—D)T ,(k—1)°

p* =25+ B

if K > d then
k
= D Wy
j=k—d+1
else
&k = Ek—1;
endif
end while.

Figure 1: Preconditioned Conjugate Gradient Algorithm (PCG)

Remark 3.2 The conjugate gradient algorithm convergence rate can be estimated by the Cheby-
shev polynomials (Greenbaum 1997), and we have that

k

bl

= u® s _ l W) - 1
Flls =" (Ve +1

where k(A) = ||A||2||A7Y|2 is the condition number of A. Therefore, the number k* needed to
guarantee that

lu — u® |4 < nllulla,
can be estimated by

VE(A)

2 7

L1 — 1 ——

9

k* =~ |logn|

and, choosing n = h,



Finally, we observe that, if R = 1 in Q, k(A) = h~2. Therefore, for this Poisson like equation,
we can reach convergence when

1 1
k* ~ §|logh|h_1 R~ ix/ﬁlogN.

This bound is very pessimistic, and, in our experiments, we reach convergence much before.
Nonetheless, these bounds present a theoretical interest when we look at 3D problems. The
previous theory still holds without major changes and we have:
* 1 -1 L
S §|logh|h ~ -N3logN.
This upper bound of the max number of steps needed to have convergence, combined with the

cost of a step of the conjugate gradient method, gives an estimate of the global computational
complezity which is asymptotically better than the one for a direct solver.

Remark 3.3 The effect of rounding errors on the Gauss quadrature calculations has been anal-
ysed by Golub and Strakos (1994). More precisely, Golub and Strakos (1994) proved that the
total accuracy of the Gauss quadrature, computed by a finite precision arithmetic conjugate gra-
dient algorithm, is related to the energy morm of the error of the conjugate gradient process
itself.

Strakos and Tichy (2002) proved that the Hestenes-Stiefel rule is mathematically equivalent
to the Gauss quadrature and, moreover, that is numerically stable. In our numerical experi-
ments, we tested both these rules and compute the relative error between them. The numerical
tests show that both the rules give the same results within an error of order machine precision
times k(U~TAU1).

4 Numerical experiments

We generated two test problem classes using FEMLAB®© under Matlab©. The first test
problem class is define on a L-shape domain © of R2. The second test problem class is defined
on the cube [0,1] x [0,1] x [0,1]. In both the classes, we chose boundary condition zero and,
in the conjugate gradient algorithm, the staring point u(®) = 0. Finally, in all the figures, the
estimate of the energy norm stops d steps before the final iteration because of the choice of our
stopping criterion, and the values in the legends of the figures are:

o [|Aut®) — b||2/||b||2, the value of the residual at step k is computed using A;
o ||6ulla/l|ulla = ||u — u®)||4/||u||4 energy norm of the algebraic error;

1/2
o ||6ulla/l|ulle = |Ju - ugc)Ha/HuHa = (a(u, u) — bTu(k)) / error in energy between the
solution of (4) and current solution at step k.

4.1 L-shape test problems

In Fig. 2, we plot the geometry of the domain Q. In problem (4), we choose the functional
L(v) = [ 10vdx, Vv € H} (), and in the bilinear form (1), the function &(x) € L*®(£2) takes

10



different values in each subdomain. In the first test problem within this class we have:

(1 x € O\ {1 UQUQ3},
107% x¢ Qq,
A(x) =4
1074 x¢ Qo,
L 1072 x¢ Q3.

For the second problem, we have:

(1 xeQ\{QUQUQs),
105 x € Qy,
Ax) = 4 '
10 x € Qo,
{ 102 x € Q3.

Using FEMLAB©, we generated a mesh where the largest triangle has an area of 3.44305 x

0.9

0.8 @ Q

0.7 1 Q

0.6 G © (<, ©

0.3 @ Q
Q

0.2 G 3 O

0.1r

o (<, ©

0 01 02 03 04 05 06 07 08 09 1

Figure 2: Geometry of the domain €.

1075, and we refined the mesh around the corner (minimum triangle area 7.90545 x 10~7),
therefore, the resulting linear system (6) has 59807 triangles, 30190 nodes, and 29619 degrees
of freedom.

11



In the preconditioned conjugate gradient algorithm, we chose 1? = 3.44305 x 10~ which is
the max area of the triangles. Moreover, we used three kinds of preconditioners: the classical
Jacobi diagonal matrix, M = diag(A), the incomplete Cholesky decomposition of A with zero
fill-in (Greenbaum 1997, Meurant 1999a), and the incomplete Cholesky decomposition of A
with drop tolerance 10~? (Greenbaum 1997, Meurant 1999a). Using the incomplete Cholesky
decompositions, we computed the upper triangular matrix U such that M = UTU. In Table 1,
we report on the values of the condition numbers x(A) and x(M~1A) for both problems, and
for the Jacobi and incomplete Cholesky with zero fill-in. The condition numbers of the precon-

M Problem 1 | Problem 2
I 3.6 108 1.8 100
Jacobi 2.4 10* 1.5 10°

Inc. Cholesky(0) 7.2 103 4.3 108

Table 1: Estimates for x(M ! A).

ditioned matrices M ' A for the second problem are are still very high, and only the incomplete
Cholesky preconditioner with drop tolerance 102 is an effective choice. Unfortunately, we could
not compute the condition number of the preconditioned matrix for lack of memory.

Finally, we assume that the solution u computed by a direct solver applied to (6) is exact,
and we assume that the energy norm of the solution on the finer mesh with ~ 500000 degree of
freedom is a good approximation of the energy norm of u solution of the continuous problem (4)
for both Problem 1 and Problem 2. Therefore, by this approximate value &(u), we estimated
the error at step k:

(k) (k) /2
6ua aju ’u
[[9u] =<1_<h7uh)> ~ (g (%) = u(x)l[a/[0()]la-

In the experiments, u¥) is the computed value at iteration k of the conjugate gradient algorithm.
We compare the behaviour of

lu — u®la _ [[Au® — b]|4-s

i |Iblla-r

with the corresponding estimate & /(6" u(®) + r(OT4(*)) and the value of ||Au® — b|j2/||b||2.
Moreover, we plot the values at each step k of ||dul|s/||u|a-

The stopping criteria normally used are based on the values of ||Au*) — b||o/||b]|2 (Arioli et
al. 1992). In the practice, the conjugate gradient algorithm is stopped when || Au(®) —b||o/||b||2 <

NG

4.1.1 Problem 1

In Fig. 3 and Fig. 4, respectively for the Jacobi and the incomplete Cholesky decomposition
preconditioners and for d = 5, we present the history of convergence for Problem 1. During the

12



initial iterations of the conjugate gradient algorithm, the ratio between [|u(®)||4 and ||u|/4 is
relatively large, as can be seen from Fig. 5 relatively to the Jacobi preconditioner. Nevertheless,
the ratio value quickly stabilises itself close to 1. We obtained similar plots for the incomplete
Cholesky preconditioner.

4.1.2 Problem 2

Problem 2 is harder to solve. Both Jacobi and Incomplete Cholesky without fill-in failed for
small values of d. In Fig. 6, we plot the estimates relative to several values of d for the Jacobi
preconditioner. Only when d > 90, the oscillations were smaller than 7 and, then, the algorithm
stopped with an accurate solution. In Fig. 7 and Fig. 8, we present the convergence history
for the cases relative to the incomplete Cholesky with drop tolerance 1072 and d = 10 and
d = 20 respectively. In these cases, the good preconditioner allows to choose a small value for
d. Nonetheless, the convergence is not particularly fast and we can see in Fig. 9 that the ratio
between the lower bound (19) and ||u||% stagnates. Finally, in Fig. 10, we forced the large value
of d = 160 when using the incomplete Cholesky preconditioner with drop tolerance 10~2. We
point out that in this case the ||Au®*) — b||2/||b]|2 does not go under the value /€. Therefore,
in this case, the criterion based on the Euclidean norm of the residual gives a misleading
information about the iterative process.

4.2 Three dimensional test problems

The second test problems class has been built on the unitary cube choosing £(x) = 1 in problem
(4). The function f has been computed analytically from the exact solution:

ux) = — (22 —z)(y? —y)(z® — 2) + % sin (57z) sin (57ry) sin (57z).

For this Problem 3, we generated by FEMLABQO a mesh of 190656 Tetrahedrons with 36365
nodes and 32226 degrees of freedom. The volume of the largest element is a0, = 2.72601 x 107>
and the volume of the smallest element is 5.69 x 10~7. We have chosen n? = (amm)Q/ 3 =9x1074.
In Fig. 11 and Fig. 12, respectively for Jacobi and the incomplete Cholesky with zero fill-in,
we present the convergence history for d = 5. Even if the solution is highly oscillatory, the
convergence is very fast and the final solution is close to the exact solution of (6) computed by
a direct solver. The final error ||u —u®)||5/||u||2 is 1.4 x 10~2 for the Jacobi preconditioner and
7 x 1073 for the incomplete Cholesky preconditioner.

4.3 Error upper bounds and practical choices of d

Up to now, we have mainly focused on the lower bound estimate provided by the Hestenes
and Stiefel algorithm. Nonetheless, there are two algorithms that provide upper bounds of the
energy norm of the error and that deserve further discussion.

The upper bound based on the Gauss-Radau integration formula introduced by Golub and
Meurant (1997) and utilised in the preconditioned conjugate gradient algorithm by Meurant
(1999b), requires the knowledge of a lower bound of the smallest eigenvalue Ay, of the pre-
conditioned matrix M ~'A. In our experiments this was a serious drawback: we were able to
compute an estimate of A\, only for the Jacobi preconditioner cases. Moreover, the cost for
computing of the estimate has be quite high. We point out that loose approximations produce
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L-Shape 2D - Jacobi Preconditioner (d = 5)
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Figure 3: Behaviour of the norms of the residual for the Jacobi preconditioner in Problem 1.

L-Shape 2D - Cholesky(0) Preconditioner (d = 5)
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Figure 4: Behaviour of the norms of the residual for the incomplete Cholesky preconditioner in
Problem 1.
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L-Shape 2D - Jacobi Preconditioner (d = 5)
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Figure 5: Ratio bTu(®) /||u||% for the Jacobi preconditioner in Problem 1.

L-Shape 2D - Jacobi Preconditioner
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Figure 6: Comparison of several estimates of the energy error for d = 10, 70, 90, 130 in Problem 2.
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L-Shape 2D - Cholesky(1e-2) Preconditioner (d = 10)
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Figure 7: Behaviour of the norms of the residual for the incomplete Cholesky preconditioner
with drop tolerance 10~2 and d = 10 in Problem 2.

L-Shape 2D - Cholesky(1e-2) Preconditioner (d = 20)
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Figure 8: Behaviour of the norms of the residual for the incomplete Cholesky preconditioner
with drop tolerance 10~ 2 and d = 20 in Problem 2.

16



1.2

L-Shape 2D - Cholesky(1e-2) Preconditioner (d = 10)
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L-Shape 2D - Cholesky(1e-2) Preconditioner (d = 160)
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with drop tolerance 1072 and d = 160 in Problem 2.

Figure 10: Behaviour of the norms of the residual for the incomplete Cholesky preconditioner
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Poisson 3D - Jacobi Preconditioner (d = 5)
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Figure 11: Behaviour of the norms of the residual for the Jacobi preconditioner with d = 5 in
Problem 3.

Poisson 3D - Cholesky(0) Preconditioner (d = 5)
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Figure 12: Behaviour of the norms of the residual for the incomplete Cholesky preconditioner
with zero fill-in and d = 5 in Problem 3.
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very conservative upper bounds that can be of some use only when the convergence has been
already obtained. Usually, we noticed in our experiments that a stopping criterion based on the
Gauss-Radau approximation would have request a number of steps significantly greater than
the stopping criterion based on the Hestenes-Stiefel lower bound approximation.

An other upper bound that can be used in estimating the energy norm of the error is the
one computed by the anti-Gauss algorithm (Calvetti et al. 2000, Calvetti et al. 2001). The
anti-Gauss approach does not need any estimate of \.,;,: this is a very attractive property,
however, the method does not always produce a bound. The algorithm computes the upper
bound by means of the difference between the (1,1) entries of the inverses of two tridiagonal
matrices Ty and T}, of size k. Calvetti et al. (2000), (2001), proved that

ISl = 1Bl 37—+ [T s = (T ] -

The tridiagonal matrix T}, is the matrix of the Lanczos method and it can be easily computed
during the conjugate gradient algorithm. Let w; and v;,% = 1,..., k, be respectively the diagonal
and the super(sub)-diagonal entries of T. Then, their values can be computed by means of the
values of «; and f; (see Figure 1) as

1 n Bi—1 VBi

) Yi = .
Qi1 G2 Qi1

w; =

The tridiagonal matrix T}, is obtained by the tridiagonal matrix 7" by a correction of rank one
and a symmetric scaling:

v wk)

Tk = D(Tk - 76166{)3,

where D = diag(1,...,1,4/2) is a diagonal matrix of size k and e, is the k-th column of the
k x k identity matrix. Because De; = ej, by using the Sherman-Morrison formula, we can
deduce the following recursive formula for the anti-Gauss estimate & of ||duy|% at step k,

1
GG = m=—,
w1
1
Gk = ——5—, Pk = —Ve—1CkME—1 5
Wg — Vk_le—l
2
4 HiWk
& = |Ibl5- s
M9 ke

The matrix Tj is symmetric but there is not guaranty that it will be positive definite,
and that the (1,1) entry of the inverse will be either positive or bigger than (7} ')1;. In our
experiments this phenomenon appeared frequently making the overall estimate process very
fragile. For test problem 2 when using Jacobi preconditioner, the value of Sk was negative in
36% of the iterations. In Figure 13, we compare the results of the anti-Gauss strategy with
the Gauss-Radau and the Hestenes-Stiefel ones, when the choice d = 150 is made, for the test
problem 2 with the Jacobi preconditioner. In plotting the anti-Gauss estimate, we eliminated
the points with negative values for fk. We point out that the anti-Gauss formula would have
arrested the conjugate gradient method at the wrong iteration and does not give the desired
upper bound until the convergence is already reached.
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L-Shape 2D - Jacobi Preconditioner (d = 150)
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Figure 13: Anti-Gauss estimate versus Hestenes-Stiefel and the Gauss-Radau upper bound for
the Jacobi preconditioner with d = 150 in Problem 2.

In Figure 6, it is show how can be difficult to identify a delay parameter d for the Hestenes-
Stiefel estimate that would be reliable. The oscillatory behaviour of the estimates is very
strong when despite the precondidioner the convergence is poor and the graph of energy norm
of the error versus iterates stagnates. An a priori correct choice of d can be as difficult as the
determination of a lower bound of A,;, for the Gauss-Radau method. Taking into account
that ||dug|| 4 decreases monotonically, a possible heuristic for a dynamic choice of d can rely on
comparison of the two consecutive values & and &g11. Every time &x41 > 7€ , where 7 > is a
threshold parameter, we increase the value of d by a fixed ammount id. In Figure 14, we report
the result of a such strategy when 7 = 1.01 and ¢d = 20. This crude strategy increased the
value of d from the initial value d = 10 upto a final value d = 110 and the stopping criterion
halted the conjugate gradient method at the correct iteration. We reserve to investigate more
on this and other heuristics in the future.

5 Conclusions

In this paper, we try to bridge the finite element method with the linear algebra aspects of the
cojugate gradient method. The aim was to estract useful information regarding the accuracy
of the computed function from which we would approximate the true solution of the original
partial differential equation.

We gave evidence that the proposed stopping criteria (17) and (20) are cheap and capable of
stopping the conjugate gradient method when the function uj (x) is a reasonable approximation
of u(x).

Finally, because of the independence of the energy norm from the choice of the precondi-
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L-Shape 2D - Jacobi Preconditioner (d = 110)
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Figure 14: Adaptive strategy for the dynamical choice of d in Problem 2 for the Jacobi precon-
ditioner (initial value of d is 10, id = 20 and 7 = 1.01).

tioner, the stopping criterion (20) would be the appropriate measurement tool for evaluating
preconditioner performance in accelerating the convergence of the conjugate gradient method.
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