
Preprint
STFC-P-2024-003

Sparse linear least
squares problems
J Scott, M Tuma

October 2024

Submitted for publication in Acta Numerica

Enquiries concerning this report should be addressed to:

RAL Library
STFC Rutherford Appleton Laboratory
Harwell Oxford
Didcot
OX11 0QX

Tel: +44(0)1235 445577
email: library@stfc.ac.uk

Science and Technology Facilities Council reports are available online at:
https://epubs.stfc.ac.uk

Accessibility: a Microsoft Word version of this document (for use with assistive
technology) may be available on request.

ISSN 2753-5819

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their reports or
in any communication about their tests or investigations.

mailto:library@stfc.ac.uk
https://epubs.stfc.ac.uk/

STFC Author Identifiers (ORCIDs)

Author ORCIDs are provided where available.

Jennifer Scott 0000-0003-2130-1091
Miroslav Tuma 0000-0003-2808-6929

https://orcid.org/0000-0003-2130-1091
https://orcid.org/0000-0003-2808-6929

Acta Numerica (2024), pp. 1–118 Printed in the United Kingdom
doi:10.1017/S09624929XXXXXXXX

Sparse Linear Least Squares Problems

Jennifer Scott
Department of Mathematics and Statistics,

School of Mathematical, Physical and Computational Sciences,
University of Reading, Reading RG6 6AQ, UK

and Scientific Computing Department, STFC Rutherford Appleton Laboratory,
Harwell Campus, Didcot, Oxfordshire, OX11 0QX, UK

E-mail: jennifer.scott@reading.ac.uk

Miroslav Tůma
Department of Numerical Mathematics, Faculty of Mathematics and Physics,

Charles University, Sokolovská 49/83, 186 75 Praha 8, Czech Republic
E-mail: miroslav.tuma@mff.cuni.cz

Least squares problems are a cornerstone of computational science and engineering.
Over the years, the size of the problems that researchers and practitioners face has
constantly increased, making it essential that sparsity is exploited in the solution
process. The goal of this article is to present a broad review of key algorithms
for solving large-scale linear least squares problems. This includes sparse direct
methods and algebraic preconditioners that are used in combination with iterative
solvers. Where software is available, this is highlighted.

CONTENTS
1 Introduction and basic concepts 1
2 Sparse matrices, their graphs and ordering algorithms 16
3 Sparse Cholesky factorizations 26
4 Sparse QR factorizations 38
5 Direct methods for the augmented system formulation 52
6 Iterative solvers and algebraic preconditioners 58
7 Iterative refinement for least squares problems 84
8 Updating techniques and sparse-dense problems 89
9 Equality constrained least squares problems 98
10 Summary and outlook 104
References 106

1. Introduction and basic concepts
This article seeks to present an overview of current approaches to solving large-
scale linear least squares problems. These problems typically occur as part of a
more complex computational problem. Most real-world problems are nonlinear and

© The Author(s), 2024. Published by Cambridge University Press.

2 J. Scott and M. Tůma

many approaches to understanding and solving them proceed by locally replacing
the nonlinear problem by a linear one. Specifically, analyzing and solving nonlinear
least squares problems frequently requires the solution of a sequence of linear least
squares problems. More generally, almost any problem with sufficient data to
over determine a solution needs an approximation method: least squares - the first
and best-known technique for fitting models to data - remains central to scientific
computing

1.1. Background

The use of models is fundamental throughout scientific computing. Models are
used in science and engineering, finance and economics and, more recently, in
rapidly developing areas such as machine learning, AI, and speech processing.
Models are only useful when calibrated against real-world systems and driven by
data. The huge explosion in the availability of data and of computing resources
has led to many new opportunities to improve the effectiveness and reliability of
models. For this, algorithms that incorporate the data into the models are needed;
therein lies the continued importance of the method of least squares.
The method of least squares provides a solution to the problem of adjusting the

parameters of a model function to best fit a given data set. A simple model in
two dimensions is a straight line. In this case, linear least squares computes the
best-fitting line through a set of points, that is, it minimizes the sum of the squares
of the distances between the points and the line. The method originated during
the eighteenth century in the fields of astronomy and geodesy, as scientists and
mathematicians sought to address the challenges of ocean navigation. Being able
to accurately and reliably predict the behavior of celestial bodies was key for ships
in open seas where land sightings cannot be used for navigation. The least-squares
method was first published by Adrien-Marie Legendre (Legendre 1805), although
it is also credited to Carl Friedrich Gauss (Gauss 1809), who made significant
contributions to the mathematical formulation and theoretical understanding of
least squares around the same time as Legendre. Gauss successfully used the
method to approximate the orbit of the newly-discovered asteroid Ceres from the
few observations that had been made of it before it was lost in the glare of the sun.
Today, least squares is an essential tool in mathematics and statistics that is

widely used in a variety of fields. It is the simplest and most commonly applied
formof linear regression, which in turn is themost straightforwardmachine learning
algorithm. Least squares problems can be linear or nonlinear, depending onwhether
or not the residuals are linear in the unknowns. The nonlinear problem is usually
solved by an iterative procedure; at each iteration the system is approximated by a
linear one, and thus the core calculation is similar in both cases.
Diverse application areas of least squares include the following.

• Medicine e.g., to study the impact of environmental factors on human health

Sparse Linear Least Squares Problems 3

by using variables such as air quality, water quality, pollution levels and
exposure levels to assess risks, design interventions and monitor outcomes.
• Finance e.g., to help quantify the relationship between two or more variables,
such as a stock’s share price and its earnings per share.
• Marketing e.g., to model the relationship between advertising spending and
sales.
• Image processing e.g., to enhance, restore or compress images by using
models that capture the features, structures or patterns of the images.
• Geophysics e.g,. to interpret subsurface structures from field data by min-
imizing a target objective function expressed as the sum of squared residuals
between observed and modeled data to estimate the physical properties, loc-
ations and shapes of geological formations or anomalies.
• Climate change e.g., to study the relationship between greenhouse gas emis-
sions and global temperature, and to predict future temperature changes based
on emissions scenarios.
• Sports science e.g., to measure the performance of athletes by using variables
such as scores, statistics, rankings and ratings to predict outcomes, evaluate
strengths and weaknesses, and identify trends and patterns.

The focus in this article is on solutionmethods for large-scale least squares problems
arising from large data sets; we do not examine specific application areas but
introduce general techniques that are widely applicable.

1.2. Introduction to linear least squares fitting

To set the scene, let us assume we have < data points

(C1, 11), (C2, 12), . . . , (C<, 1<),

and the relationship
18 = Γ(C8) + 48 , 1 ≤ 8 ≤ <,

where the unknown function Γ(C) describes the noise-free data. The (unknown)
data errors or noise 41, 42, . . . , 4< represent measurement errors and/or random
variations in the physical process that generates the data. The 18 are termed
the observations. We want to approximate Γ(C) in the interval [C1, C<]1. The
approximation is given by the fitting (or prediction) model H(G, C), where the =
parameters G = (G1, G2, . . . , G=)) that characterize the model are to be determined
from the given noisy data. The method of least squares is a standard technique
for determining the unknown parameters in the fitting model. Let the residual A8
associated with the 8-th data point be given by

A8 = A8(G) = 18 −H(G, C8), 8 = 1, 2, . . . , <. (1.1)

1 Without loss of generality, we assume C1 ≤ C2 ≤ . . . ≤ C<.

4 J. Scott and M. Tůma

If we assume that all the data errors are uncorrelated and of the same size, that
is, the errors 48 have mean zero and identical variance then the least squares fit
minimizes the sum of the squared residuals

min
G∈R=

F(G) =
<∑
8=1

A8(G)2 =

<∑
8=1

(18 −H(G, C8))2. (1.2)

More generally, if the standard deviation depends on 8 then from the Maximum
Likelihood Principle, the weighted residuals are minimized, with the nonzero
weights equal to the reciprocals of the standard deviations, that is,

min
G

<∑
8=1

(
A8(G)
e8

)2
= min

G

<∑
8=1

(
18 −H(G, C8)

e8

)2
,

where e8 is the standard deviation of 48 . Observe that the residual can be written
as the sum of two terms:

A8 = 48 + (Γ(C8) −H(G, C8)), 8 = 1, 2, . . . , <.

The data error 48 comes from the measurements and the approximation error
Γ(C8) −H(G, C8) is the difference between the data function and the fitting model.

In linear data fitting, the model is of the form

H(G, C) =
=∑
9=1
G 9 5 9(C),

where the 5 9(C) are called the model basis functions. The choice of the 5 9(C)
depends on the objective of the data fitting. They may be given by the underlying
mathematical model that describes the data or chosen from functions that give
the desired approximation and enable stable computations. Defining the matrix
� ∈ R<×= to be

� =

51(C1) 52(C1) . . . 5=(C1)
51(C2) 52(C2) . . . 5=(C2)
.

51(C<) 52(C<) . . . 5=(C<)

 ,

for the unweighted (ordinary) linear data fitting problem we have the relations

A = 1 − �G and
<∑
8=1

A2
8 = ‖A ‖22 = ‖1 − �G‖

2
2 .

Here ‖.‖2 denotes the Euclidean vector norm ‖G‖2 = (G) G)1/2. The basic linear
least squares problem that we seek to solve is the following.

Given � ∈ R<×= with A0=:(�) = A: ≤ min(<, =) and 1 ∈ R<, find G ∈ R= that
minimizes ‖1 − �G‖2.

Sparse Linear Least Squares Problems 5

For the weighted problem, the covariance matrix , is a diagonal matrix with
entries F88 = 1/e2

8
. We then have

<∑
8=1

(
A8(G)
e8

)2
=

,−1/2(1 − �G)
2

2
.

More generally, for a symmetric positive (semi)definite matrix , , the weighted
linear least squares problems is

min
G∈R=

F(G) = min
G∈R=
‖1 − �G‖, −1 , (1.3)

where ‖D‖, −1 = (D),−1D)1/2.

Our main emphasis is on overdetermined problems, that is, < > =. In this case,
it is straightforward to show that G is a solution of the least squares problem if and
only if it satisfies the = × = normal equations

�G = �) 1, � = �) �, (1.4)

or, in the weighted case, the generalised normal equations

�),−1�G = �),−11.

The concept of a pseudoinverse generalises that of the inverse of a square matrix;
it can be used to express the general solution of the linear least squares problem.

Lemma 1.1. (Björck 2024, Laub 2005). Let � ∈ R<×= with A0=:(�) = A: . Then
there exist unitary matrices * = (D1, . . . , D<) ∈ R<×<, + = (E1, . . . , E=) ∈ R=×=
such that

� = *Σ+) = *

(
Σ1 0
0 0

)
+) , (1.5)

with Σ1 = 3806(f1, f2, . . . , fA :). The f8 are the singular values of �, which are
assumed to be ordered so that

f<0G = f1 ≥ . . . ≥ fA : > fA :+1 = . . . = f<8= = 0.

The factorization (1.5) is the singular value decomposition (SVD) of � and the
matrix

�† = +Σ†*) = +

(
Σ−1

1 0
0 0

)
*)

is termed the Moore-Penrose pseudoinverse (or simply the pseudoinverse) of
�. The general expression for the solution of the linear least squares problem
minG ‖1 − �G‖2 is

G = �†1 + (� − �†�)F,

where F ∈ R= is an arbitrary vector.

6 J. Scott and M. Tůma

In most practical cases, the least squares solution can be expressed in a simpler
way, as shown by the following results.

Lemma 1.2. (Björck 2024). Let � ∈ R<×= with < > =. The normal matrix
� = �) � is symmetric positive definite (SPD) if and only if A0=:(�) = =. The
unique least squares solution and corresponding residual are then given by

G = (�) �)−1�) 1 and A = 1 − �(�) �)−1�) 1, (1.6)

and the pseudoinverse of � is �+ = (�) �)−1�) .

If A0=:(�) < = (that is, � is rank deficient) then the null space of � is of
dimension = − A0=:(�) > 0 and the solution of the least squares problem is not
unique. In this case, we often seek the unique least-norm solution, that is,

min
G∈S
‖G‖2, S = {G ∈ R= | ‖1 − �G‖2 = min}.

But note that because there are infinitely many possible solutions, in practice the
choice as to which solution is singled out should reflect the physical model that
underlies the problem (Hansen 2010).

Lemma 1.3. (Björck 2024). Let G be a solution of the problem minG ‖1 − �G‖2.
Then G is a least squares solution of least norm if and only G = �) I, I ∈ R<. If the
system �G = 1 is consistent, then the solution of the least-norm problem

min
G
‖G‖2 subject to �G = 1, (1.7)

satisfies the normal equations of the second kind

��) I = 1, G = �) I. (1.8)

If A0=:(�) = <, then ��) is nonsingular and the solution to (1.8) is unique. The
solution is G = �†1, where �† = �) (��))−1 is the pseudoinverse.

As originally proposed in (Bartels, Golub and Saunders 1970), the normal
equations (1.4) are equivalent to the linear equations A = 1 − �G and �) A = 0.
Together these can be written as the (< + =) × (< + =) augmented system

(
I

G

)
=

(
1

2

)
with =

(
� �

�) 0

)
, (1.9)

with I = A and 2 = 0. The symmetric indefinite matrix is non singular if and
only if A0=:(�) = =.

Lemma 1.4. If A0=:(�) = = then the augmented system (1.9) has a unique
solution that solves the primal and dual least squares and least-norm problems

min
G∈R=

(
1
2
‖1 − �G‖22 + 2) G

)

Sparse Linear Least Squares Problems 7

and

min
I∈R<

1
2
‖I − 1‖22 subject to �) I = 2.

Our interest is in the case that � is large and sparse, that is, many of its entries are
zero and these zeros need to be exploited in the solution process. Indeed, unless the
sparsity is exploited, the size of problems that can be tackled is severely limited,
even when using modern computers with large memories. The sparsity pattern
S{�} of � = {08 9} is defined to be the set of nonzeros, that is,

S{�} = {(8, 9) | 08 9 ≠ 0, 1 ≤ 8 ≤ <, 1 ≤ 9 ≤ =}.

Although Lemma 1.1 shows theoretically that the pseudoinverse based on the
SVD gives the least-norm least squares solution, our discussions avoid the SVD
as it is impractical for large sparse �. Many of the approaches we consider target
� ∈ R<×= with < > = and A0=:(�) = =. But similarities between this and
the underdetermined least squares problem (< < =), where the least-norm least
solution is described in Lemma 1.3, enable techniques applied to the normal matrix
�) � to be applied to the matrix of the normal equations of the second kind (1.8).
Moreover, as will be seen in Section 1.7, regularizing the underdetermined problem
leads to an overdetermined problem of full rank.

1.3. An introduction to sparse linear solvers

The normal equations (1.4) and the augmented system (1.9) are both sparse square
linear systems of equations; solving either yields the solution of the linear least
squares problem. Consider the generic large sparse linear system of equations

�H = 3, (1.10)

where � ∈ R=×= and 3 ∈ R=. Assuming � is of full rank, there are many methods
for computing the solution H ∈ R=; see, for example, the recent books (Duff,
Erisman and Reid 2017, Scott and Tůma 2023) and the review article (Davis,
Rajamanickam and Sid-Lakhdar 2016), and the comprehensive bibliographies that
they include. For least squares problems, we are interested in the symmetric case
(� = �)).

Themajority of algorithms for solving (1.10) fall into twomain categories: direct
methods and iterative methods (with hybrid methods combining techniques from
both classes). Direct methods transform � using a finite sequence of elementary
transformations into a product of simpler sparse matrices in such a way that solving
linear systems of equations with these factor matrices is comparatively easy and
inexpensive. For the SPD normal matrix �) �, we can compute a Cholesky
factorization �) � = !!) , where the factor ! is a lower triangular matrix, while
for the augmented system we can compute a factorization = !�!) , where
! is a unit lower triangular matrix and � is block diagonal with the blocks on
the diagonal of size 1 and 2. Alternatively, symmetry can be ignored and a

8 J. Scott and M. Tůma

factorization of the form = !* computed, where ! and * are lower and upper
triangular matrices, respectively. Solving linear systems with a triangular matrix is
muchmore straightforward than for a general matrix and historically has beenmuch
less expensive than the cost of the factorization. As the use of parallel algorithms
on modern computer architectures has substantially reduced the cost of matrix
factorizations, triangular solves have become relatively more expensive because
of their inherently serial nature, but see the progress in parallel triangular solves
discussed in (Jin, Pei, Wang and Qi 2021) and the references therein. Moreover, in
general, ! has more nonzero entries than � and if the amount of fill-in is high, then
(some of) the advantage of having a triangular matrix will be lost. An important
question is whether the system can be preordered to reduce the fill-in in the factors;
this is discussed in Section 2.3. For an LDLT or LU factorization of an indefinite
matrix, further permutations are generally required during the factorization to
ensure numerical stability.
For the linear least squares problem, rather than factorize the normal matrix or

the augmented system matrix, the QR factorization

� = &

(
'

0

)
= (&1 &2)

(
'

0

)
= &1', &1 ∈ R<×=, (1.11)

can be computed (Francis 1961). Here & = (&1 &2) ∈ R<×< is an orthogonal
matrix and ' ∈ R=×= is an upper triangular matrix. Because multiplication by
orthogonal matrices does not change the Euclidean norm, it follows that

‖1 − �G‖22 =
&) (1 − �G)

2
2 =

&)1 1 − 'G2
2 +

&)2 12
2 .

The solution of the least squares problem and the residual can be computed by
solving

'G = 31, A = &

(
0
32

)
, where &) 1 =

(
&)1 1
&)2 1

)
=

(
31
32

)
.

&) 1 can formally be obtained by applying the QR factorization to
(
� 1

)
. This

enables storing & to be avoided. Note that

�) � = (&1'))&1' = '
) (&)1 &1)' = ') ', (1.12)

and thus the ' factor is mathematically equivalent to the transpose of the ! factor
of the Cholesky factorization of the normal matrix. The normal equations can be
rewritten as

') 'G = �) 1. (1.13)

These are called the semi-normal equations (SNE). They offer an advantage if a QR
factorization has been computed but the orthogonal factor & has not been stored
and a problem with a new right-hand side 1 must be solved.

Direct methods built on matrix factorizations are designed to be robust so that,
properly implemented, they can be confidently used as block-box solvers for com-

Sparse Linear Least Squares Problems 9

puting solutions with predictable accuracy. However, they can be expensive, re-
quiring large amounts of memory, which can increase rapidly with the size of the
system matrix �, and they may compute solutions to an accuracy that is either
not needed or not warranted by the supplied data. In large-scale applications,
the matrix �, even though it is sparse, may be too large to be held explicitly. In
such instances, solution methods are needed that use subroutines or functions to
compute multiplications with � and �) in a matrix-free fashion, often exploiting
graphics processing units (GPUs) or other hardware accelerators. Iterativemethods
for solving the linear system (1.10) compute a sequence of approximations

H(1), H(2), H(3), . . .

that (hopefully) converge to the solution H of the linear system in an acceptable
number of iterations. The number of iterations depends on the initial guess H(1),
the matrix � and right-hand side vector 3 as well as the accuracy that is wanted
in H. Iterative methods use � indirectly, through matrix-vector products, and their
memory requirements are limited to a (small) number of vectors of length the size
of �. They can be terminated as soon as the required accuracy in the computed
solution is achieved. Unfortunately, frequently convergence does not happen or
the number of iterations is unacceptably large; in such cases, preconditioning is
needed. The aim of preconditioning is to speed up convergence by transforming
the given linear system into an equivalent system (or one from which it is easy
to recover the solution of the original system) that has nicer numerical properties.
For example, for the consistent underdetermined least squares problem min ‖G‖2
subject to �G = 1, with the non singular preconditioner"! , the left-preconditioned
problem is

min
G∈R=
‖G‖2 subject to "−1

! �G = "−1
! 1.

For the overdetermined least squares problem, using right preconditioning, the
problem becomes

min
I∈R=
‖1 − �"−1

' I‖2, G = "−1
' I. (1.14)

Observe that in this case, left preconditioning changes the objective function. Right
preconditioning corresponds to symmetric (or split) preconditioning of the normal
equations

"−)' �) �"−1
' I = "

−)
' �) 1, "'G = I.

Here " = "'"
)
'
is the normal matrix preconditioner in factored form. Choos-

ing a suitable preconditioner is a challenging task. Multiple factors influence the
preconditioner effectiveness, including features of the sparse matrix, the computa-
tional architecture, and the data structures employed. Possible preconditioners for
least squares problems are discussed in Section 6.

10 J. Scott and M. Tůma

1.4. The condition number of least squares problems

When solving least squares problems, we need to be more aware of rank deficiency
than for linear systems of equations. While the latter often come from applications
for which there are guarantees on the nonsingularity and possibly also on condi-
tioning of the system matrix, this may not be the case for least squares problems.
The condition number of a problem quantifies its sensitivity to perturbations to
the data. If � is square and of full rank then its normwise condition number
is ^2(�) = ‖�‖2‖�−1‖2. For an arbitrary rectangular matrix, this generalises to
^2(�) = ‖�‖2‖�†‖2. If � has rank A: then ^2(�) is equal to the ratio of the largest
to the smallest nonzero singular values, that is,

^2(�) = f<0G(�)/fA :(�). (1.15)

A matrix with a large condition number is said to be ill conditioned, otherwise it is
well conditioned. In particular, if ^2(�) > n−1, where n is the machine precision,
then � is said to be numerically rank deficient. If the columns of � are orthonormal,
then ^2(�) = 1, indicating a perfectly conditioned matrix. More generally, if � is
of full rank and ' is its QR factor then

^2(�) = ^2(') = (^2(�) �))1/2. (1.16)

In many practical applications, ill conditioning and possible rank deficiency is
a common problem that is often not observable in � before its factorization is
attempted. In regression problems, the columns of � correspond to explanatory
factors. As a simple example, we may want to use height, weight, and age to
explain the probability of some disease. In this case, ill conditioning occurs when
these factors are correlated (for instance, in the sample population, height and age
may be good predictors of weight).
Unlike for square linear systems, the sensitivity of a least squares problem

depends on the vector 1 as well as on thematrix �. The normwise condition number
^!((�, 1) that expresses sensitivity to perturbations in � is given by (Hansen,
Pereyra and Scherer 2013)

^!((�, 1) = ^2(�)
(

1 + ^2(�)
‖A ‖2

| |�| |2 | |G | |2

)
, A = 1 − �G.

We refer also to (Björck 2024, Demmel 1997, Golub and Van Loan 1996, Wedin
1973). This definition can be interpreted as saying that the sensitivity of the
least squares problem is measured by ^2(�) when the residual of the least squares
solution is small or zero, and by ^2(�)2 otherwise (that is, the accuracy of the
computed solution depends on the square of the condition number of �).

Error bounds for the least squares solution combine expressions for the sensitivity
with expressions for the perturbations within the solution method. There are two
potential problems of using the normal equations. Firstly, information may be lost
when the inner products to compute the entries of the normal matrix �) � are

Sparse Linear Least Squares Problems 11

accumulated (Björck 2024). Even if the inner products are accumulated in double
precision arithmetic, a serious loss of information can occur when the computed
�) � is stored in the working precision. In general, whenever ^2(�) ≥ n−1/2 we can
expect the computed normal matrix to be singular (or indefinite), in which case a
Cholesky factorizationwill break down. Secondly, althoughCholesky factorization
algorithms are backward stable, solution methods that explicitly form the normal
equations are not backward stable because it can be shown that the best backward
error bound contains a factor ^2(�); this is discussed in (Higham 2002). Using the
normal equations is attractive if the problem is well conditioned or if only modest
accuracy is required; see (Higham and Stewart 1987) for a discussion on why the
use of the normal equations can be justified.
Using aQR factorization is oftenmore stable because it is always backward stable

and the relative error in the solution can be bound using ^!((�, 1). However, if
^2(�) and the norm of the residual are large, the QR method can also return an
inaccurate solution. In practice, sparse QR factorization methods (which will be
discussed in Section 4) are significantly more expensive than sparse Cholesky
factorizations (see Section 3), making them impractical for very large problems
that require real-time solutions. Furthermore, most algebraic preconditioners are
for the normal equation formulation (see Section 6). Thus, although as stated in
(Higham 2002, Higham and Pranesh 2021), solving the normal equations is often
deprecated by numerical analysts, in practice, the normal equations are widely used.
For example, in many statistical applications, the entries of � can be contaminated
by measurement errors that are large relative to the roundoff level; the effects of
rounding errors are then likely to be insignificant compared with the effects of the
measurement errors, justifying the use of the normal equations. Furthermore, many
iterative algorithms avoid explicitly forming and storing the normal equations.
Using the semi-normal equations (1.13) also avoids forming �) � and, as '

is determined by using a stable QR factorization, it might be expected that this
approach would offer a stable alternative to solving the normal equations. However,
the forward error (that is, the norm of the difference between the exact and computed
solutions) is bound by a term involving ^2(�)2 (Björck 1987, Björck and Paige
1994).
For the weighted least squares problem, if the weighting matrix , is diagonal

then the errors in the data are uncorrelated but they can vary in their accuracy (for
example, the most recent observations may be more accurate than older ones). If
the ratio of the largest to the smallest weight is large then, is ill conditioned and
the least squares problem is said to be stiff (by analogy to the terminology used
in the field of differential equations). Stiff problems can arise in many application
areas, including in barrier and interior point methods for optimization and electrical
networks. For stiff problems the condition number ^2(,−1/2�) is large. An upper
bound is given by

^2(,−1/2�) ≤ ^2(,−1/2)^2(�) = max
8

(,−1/2)88/min
8

(,−1/2)88 ^2(�).

12 J. Scott and M. Tůma

Whilst in many cases it may be possible to solve a weighted problem via the
ordinary least squares problem

min
G
‖1̂ − �̂G‖2, 1̂ = ,−1/21, �̂ = ,−1/2�,

if the problem is stiff then this will not generally be a numerically stable approach.

1.5. Numerical rank

�may have full rank mathematically but if one or more of its singular values is very
small then, for computational purposes, � is rank deficient. In some applications,
such as discrete inverse problems, there can be a large gap in the sequence of the
singular values; in this case, � is again said to be rank deficient (Hansen 2010).
Conversely, if A0=:(�) < = and some entries of � are perturbed then the rank may
change. The numerical rank of � depends on a tolerance that reflects the level of
errors in �. To determine the numerical rank in terms of the singular values of �,
we can use the following result that presents sensitivity bounds.

Lemma 1.5. (Hansen et al. 2013). Let the singular values of � ∈ R<×= be
f1 ≥ f2 ≥ . . . ≥ f=. Then the singular values f̃1 ≥ f̃2 ≥ . . . ≥ f̃= of the
perturbed matrix � + � satisfy

|f8 − f̃8 | ≤ ‖� ‖2 and
=∑
8=1
|f8 − f̃8 |2 ≤ ‖� ‖2� .

Given a tolerance n > 0, the numerical n-rank of � (considered here in theEuclidean
norm) is A: n if

A: n = min{A0=:(�) | ‖� − � ‖2 ≤ n}.

Using the above lemma, it can be shown that � has numerical n-rank A: n if and
only if

f1 ≥ f2 ≥ . . . ≥ fA :n > n ≥ fA :n +1 ≥ . . . ≥ f=.

The tolerance should be chosen to be consistent with the machine precision and the
general level of relative errors in the data.

1.6. Scaling least squares problems

Scaling can be used to improve the conditioning of the problem. Row scaling
involves left multiplication of � and 1 by a diagonal matrix. This is not allowed
as it is equivalent to the use of weights and so changes the least squares objective
function and its solution. Column scaling involves multiplication of � on the right
by a diagonal matrix (. That is,

min
I∈R=
‖1 − �(I‖2 , G = (I,

Sparse Linear Least Squares Problems 13

This corresponds to a two-sided symmetric scaling (�()) �(of the normal matrix
and right preconditioning (recall (1.14) with "−1 = (). If � is of full rank, the
unique least squares solution is obtained correctly from the computed I. However,
if � is rank deficient, although the correct set of residual-minimizing vectors
is obtained, the least-norm vector is chosen to minimize ‖(−1G‖2, not ‖G‖2 and
therefore the computed solution does not correspond to the correct least-norm
solution.
The following result shows how to choose (to reduce ^2(�().

Lemma 1.6. (Van der Sluis 1969). Let � be a SPD matrix of order = with all its
diagonal elements equal. Then

^2(�) ≤ =min{^2(() �() | (is a diagonal matrix}.

When applied to the normal matrix �) �, this result states that, in the full-rank
case, if (is constructed to make each column of �(of unit Euclidean norm - so
that all the diagonal entries of �) � are 1 – then ^2(�() is within a factor

√
= of

the optimum. Observe that because column scaling affects the singular values, a
scheme to determine the numerical rank may not return the same estimates when
applied to � and �(.

1.7. Regularized linear least squares problems

When � has singular values that are close to the origin, any error that is present in
1 will be amplified, sometimes so much as to make the computed solution useless.
The idea of regularization is to extract the linearly independent information from
the matrix and the noisy right-hand side. One of the most popular methods is
Tikhonov regularization. For the unweighted problem, it considers

min
G∈R=

F(G) = ‖1 − �G‖22 + W2 ‖G‖22 , (1.17)

where the regularization parameter W > 0 controls the trade-off betweenminimizing
the residual norm and minimizing the norm of the solution. Problem (1.17) is
equivalent to the regularized (or damped) linear least squares problem

min
G∈R=

(10) − (�

W �

)
G

2
. (1.18)

Observe that, even if the original problem is underdetermined, this is an overde-
termined least squares problem of size (< + =) × =. Moreover, the regularized

matrix
(
�

W �

)
involves only = additional entries compared to the original � and,

as it is of full rank, (1.18) has a unique solution. If W > f<8=(�), the condition
number of the corresponding normal matrix satisfies

^2(�) � + W2�) ≈ (‖�‖2/W)2 (1.19)

14 J. Scott and M. Tůma

(Saunders 1995). An important issue is how to choose W: too little regularization
(“small” W) can lead to the solution method having numerical difficulties or not
being able to find a useful solution because of the level of noise in the data
while for excessive regularization (“large” W), the computed objective value may
be unacceptably different from the optimum for the original problem. W is not
known a priori and has to be selected based on the problem data. Finding a
good regularization parameter can be difficult, especially for large-scale problems
(Hansen 1998).

The regularized least-norm problem is

min
G,H

(G
H

)
2

subject to (� W�)
(
G

H

)
= 1. (1.20)

The linear system �G + W H = 1 is consistent for all W > 0 with solution G = �) I,
H = WI, where I is the solution of the normal equations of the second kind

(� W�)
(
�)

W �

)
I = (��) + W2 �)I = 1.

From (1.20), WH = 1 − �G = A . Using this to eliminate H, it follows that for �
of arbitrary dimensions, both (1.17) and (1.20) are equivalent to the regularized
augmented system (

� �

�) −W2�

)(
A

G

)
=

(
1

0

)
,

or, equivalently,

 W

(
B

G

)
=

(
1

0

)
, W =

(
W� �

�) −W�

)
, A = WB. (1.21)

For W > f<8=(�), the condition number satisfies ^2(W) ≈ ‖�‖2/W, which implies
solving (1.21) is a feasible approach provided W is not very small. Note also that
small W could mean ‖B‖2 > ‖G‖2 and may not imply a good accuracy in G (Saunders
1995, Hansen 1998).

In some applications, prior information regarding the smoothness of the solution
may be known and instead of using ‖G‖2 as the penalty term, it may be preferable
to use ‖�G‖2, where � is a ? × = matrix. If A0=:(�) = = then ‖�G‖2 is a norm,
otherwise � has a non-trivial null space and ‖�G‖2 is a semi norm; in the latter
case, the Tikhonov solution is unique ifN (�)∩N (�) = ∅. Possible choices for �
include finite-difference approximations to the first or second derivatives of G. The
regularized weighted least squares problem becomes

min
G∈R=

(,−11
0

)
−
(
,−1�
W �

)
G

2
. (1.22)

The change of variables �̄ = ��−1, Ḡ = �G, transforms (1.22) to the standard form

Sparse Linear Least Squares Problems 15

min
G∈R=

,−1(1 − �̄Ḡ)
2

2 + W
2 ‖Ḡ‖22 . (1.23)

In Bayesian statistics, this transformation is sometimes referred to as priorcondi-
tioning (see, for example, (Calvetti and Somersalo 2005)).
The regularized augmented system is

 ,

(
A

G

)
=

(
1

0

)
with , =

(
, �

�) −W2�) �

)
. (1.24)

Provided , and �) � are SPD matrices, the system matrix , is a symmetric
quasi-definite (SQD) matrix. It has < positive and = negative eigenvalues, is
non singular and its inverse is also SQD (Vanderbei 1995). A SQD matrix is
strongly factorizable, i.e., for any permutation matrix %, there exists a nonsingular
diagonal matrix � with positive and negative entries on the diagonal and a unit
lower triangular matrix ! such that

% , %
) = !�!) .

This is known as a signed Cholesky factorization. Note that although this factoriz-
ation always exists, numerical stability is not guaranteed for all %. The connections
between various symmetric indefinite and SQD linear systems, and the solution of
linear least squares problems are given in (Orban and Arioli 2017). The signed
Cholesky factorization is computationally attractive but stability analysis shows the
relative error in the solution is bounded by an expression in which the standard
condition number is replaced by the effective condition number for , , which is
not smaller than the standard condition number. But the Cholesky-based approach
may be still preferable if the factors are sufficiently sparse and the original problem
is well-scaled (Gill, Saunders and Shinnerl 1996, Saunders 1996).

1.8. The nonlinear least squares problem

We end this section by briefly discussing the nonlinear least squares problem

min
G∈R=

F(G) = ‖A(G)‖22 .

Here A(G) = (A1(G), A2(G), . . . , A<(G))) is a smooth vector of nonlinear residual
functions. A popular approach is the Gauss-Newton method. This iterative method
avoids the use of the Hessian matrix that is required by the standard Newton’s
method. It is based on the first order approximation of the residual function in a
neighbourhood of the current iterate G(9), that is,

A(G) ≈ A(G(9)) + J (G(9))(G − G(9)),

16 J. Scott and M. Tůma

where J (G(9)) denotes the Jacobian of A(G) at G(9). A necessary condition for G to
be a local minimum of A(G) is

J (G(9)))
(
A(G(9)) + J (G(9))(G − G(9))

)
= 0.

The next iterate is taken to be G(9+1) = G(9) + B(9), where B(9) is the solution of the
linear least squares problem

min
B(9)∈R=

‖A(G(9)) + J (G(9))B(9)‖2. (1.25)

B(9) can be determined by solving the normal equations but any approach for
solving a sequence of linear least squares problems can be used. More generally,
the regularized weighted nonlinear problem is

min
G∈R=

F(G) = ‖A(G)‖2
, −1 + W2 ‖G‖22 , W > 0,

where, is a SPD matrix. The linear subproblem to be solved is then

min
B(9)∈R=

�(9)(B(9)) =
A(G(9)) + J (G(9))B(9)2

, −1 + W2 B(9) + G(9)2
2 .

and the equivalent normal equations are(
J (G(9))),−1J (G(9)) + W2�

)
B(9) = −J (G(9))),−1A(G(9)). (1.26)

Sufficient conditions for the convergence of theGauss-Newtonmethod are known
in the case where the normal equations for the linearized least squares problem are
solved exactly at each iteration. In large-scale applications, this may be impractical.
A common approach is to solve the linearized problem approximately using an
“inner” iteration method that is truncated before full accuracy is reached. This is
known as the Truncated Gauss-Newton method. A discussion is given in (Gratton,
Lawless and Nichols 2007).

2. Sparse matrices, their graphs and ordering algorithms
For any symmetric positive definite matrix � there exists a unique lower triangular
matrix ! with positive diagonal entries called the Cholesky factor such that

� = !!) . (2.1)

TheCholesky factorizationwas invented byAndré-Louis Cholesky for least squares
problems arising in geodesy, sometime before 1914, while he was working for the
French Geographic Service; it was posthumously published by Benoit (Benoit
1924). Algorithms for computing sparse Cholesky factorizations start with a
symbolic factorization (or analyse phase) that uses the sparsity pattern S{�} to
determine the nonzero structure of ! and other important properties (such as the
number of entries in each row and column of !) without computing the numerical
values of the nonzeros. This is then used to set up data structures for the subsequent

Sparse Linear Least Squares Problems 17

numerical factorization. Tools from graph theory are a key ingredient of the
symbolic factorization.

2.1. Introduction to undirected graphs

A graph G = (V , E) is a finite set V of vertices (or nodes), and a set E of edges
defined as pairs of distinct vertices. When there is no distinction between the pairs
of vertices (D, E) and (E, D) the edges are represented by unordered pairs and the
graph is undirected. In this section, we assume G is undirected. A labelling (or
ordering) of a graph G with = vertices is a bijection of {1, 2, . . . , =} onto V . The
integer 8 (1 ≤ 8 ≤ =) assigned to a vertex in V is called the label (or simply the
number) of that vertex. The standard choice of vertices is V = {1, . . . , =} so that
the vertices are directly identified by their labels.
Vertices 8 and 9 in V are adjacent (or neighbours) if 4 = (8, 9) ∈ E . The notation

(8 ←→ 9) is also used for an edge (or (8 G←−−→ E) to emphasise the edge belongs
to the graph G). The degree 346(8) of 8 ∈ V is the number of 9 ∈ V that are
adjacent to 8, and the adjacency set 039{8} is the set of adjacent vertices (thus
|039{8}| = 346(8)). A subgraph is a clique when every pair of vertices is adjacent.
Adjacency graphs provide a link between sparse matrices and graphs. Let � =

�) � be the normalmatrix of order = then an adjacency graphG(�) = (V(�)), E(�))
with vertices V(�) = {1, . . . , =} can be associated with it. The edge set is

E(�) =
{
(8, 9) | (�) �)8 9 ≠ 0, 8 ≠ 9

}
.

When using graphs to capture sparsity structures ofmatrices it is standard to assume
that the result of adding, subtracting or multiplying two nonzero entries is nonzero.
This is the non-cancellation assumption.
The normal matrix can be expressed as a sum of < matrices of rank one

� = �) � =

<∑
8=1

080
)
8 ,

where 08 is column 8 of �. By the non-cancellation assumption, S(�) is the
binary sum of the sparsity patterns S(080)8), 8 = 1, . . . , <. This is unchanged by
discarding any row of � whose sparsity structure is a subset of that of another row
and hence G(�) �) is the sum of the < graphs G(080)8), 8 = 1, . . . , <. Observe
that each G(080)8) is a clique and an alternative characterization of G(�) �) is that
(�) �) 9: ≠ 0 if and only if the sparsity patterns of columns 9 and : have an entry
in common, i.e., if 08 9 ≠ 0 and 08: ≠ 0, for some 8 = 1, . . . , <. Because of this,
G(�) �) is also termed the column intersection graph of �.

A sequence of : edges in the graphG given by 80 ←→ 81 ←→ . . .←→ 8:−1 ←→
8: is called a walk of length : . The walk is closed if 80 = 8: ; a closed walk is called
a cycle. Graphs that do not contain cycles are acyclic. A path is a walk in which all
the vertices (and therefore also all the edges) are distinct. G is connected if every

18 J. Scott and M. Tůma

pair of (distinct) vertices is connected by a path. If G is connected then U ⊂ V is a
separator if G becomes disconnected when the vertices U are removed.

2.2. Elimination graphs

Graphs can be used to symbolically compute the Cholesky factors of a symmetric
positive definite matrix �. Assume the elimination order is E1, E2, Then, start-
ing with G1 ≡ G(�), a sequence of graphs is generated recursively using Parter’s
rule (Parter 1961):

To obtain the elimination graph G:+1 from G: , delete vertex E: and all its incid-
ent edges, and add all possible edges between vertices that are adjacent to vertex
E: in G: .

In terms of graph theory, Parter’s rule says that when E: is eliminated, 039(E:)
becomes a clique of size equal to the number of off-diagonal entries in the matrix
corresponding to G: . Thus, the symbolic interpretation of Gaussian elimination
is that it systematically generates cliques. As the elimination process progresses,
cliques grow or more than one clique join together to form larger cliques, a process
known as clique amalgamation.

An implementation difficulty is that, because edges are added with each elim-
ination, the space required to represent the elimination graph G:+1 is potentially
greater than for G: . For large matrices, creating and explicitly storing the edges in
the sequence of elimination graphs is impractical and a more compact and efficient
representation is needed. In place of standard elimination graphs, special quotient
graphs are used that do not delete the vertices implied by Parter’s rule. Rather the
eliminated vertices are kept and are distinguished from the remaining vertices by
assigning them a special flag. Each quotient graph in such a representation can be
interpreted as a collection of cliques, including the original graph G, which can be
regarded as having |E | cliques, each with two vertices (or, equivalently, one edge).
Let {V1,V2, . . . ,V@} be the set of cliques for G: and {VB1 ,VB2 , . . . ,VBC } be the
subset of cliques to which the vertex E: to be eliminated belongs. Two steps are
then required.

1 Remove the cliques {VB1 ,VB2 , . . . ,VBC } from {V1,V2, . . . ,V@}.
2 Add the new clique VE = {VB1 ∪ . . . ∪ VBC } \ {E: } into the set of cliques.

Hence the degree of the eliminated vertex E: in the quotient graph satisfies

346(E:) = |VE: | <
C∑
8=1
|VB8 |,

and because {VB1 ,VB2 , . . . ,VBC } can now be discarded, the storage required for the
representation of the sequence of these quotient graphs never exceeds that needed
for G(�). The index of the eliminated vertex can be used as the index of the new

Sparse Linear Least Squares Problems 19

clique. This is called an element or enode, to distinguish it from an uneliminated
vertex, which is termed an snode.
While Parter’s rule describes how fill-in in ! develops locally, fill-in can also be

described more globally using fill-paths. Assume there is a path between distinct
vertices 8 and 9 in the undirected graph G. If all intermediate vertices on the path
are less than min{8, 9} then the path is called a fill-path. It is well-known that an
off-diagonal entry ;8 9 (8 > 9) in the Cholesky ! of � is nonzero if and only if there
is a fill-path in G(�) between 8 and 9 (Rose, Tarjan and Lueker 1976).

2.3. Sparse matrix orderings

The number of operations needed to perform a sparse Cholesky factorization is
$(

∑=
9=1 | !:, 9 |2) where | !:, 9 | is the number entries in column 9 of !. Thus fill-in

in ! can render a direct method infeasible and so the symbolic factorization of a
direct solver typically starts by finding a symmetric permutation (ordering) of the
rows and columns of � to limit fill-in.

The problem of minimizing the fill-in in ! is NP complete. Instead, heuristics
are used, with no one approach resulting in the best ordering for every problem.
Note that the ordering of the rows of � has no effect on the normal matrix or its
Cholesky factor and, because ! is equal to the factor ' in the QR factorization of �,
the same column ordering can be used for the Cholesky and the QR factorizations.
% is permutation matrix if it is a square matrix with exactly one entry equal to

unity in each row and column, and all remaining entries are zeros (that is, it is a
permutation of the identity matrix). Premultiplying a matrix by a permutation %A
reorders the rows and postmultiplying by a permutation %2 reorders the columns.
If the matrix is symmetric, setting %)2 = %A = % preserves symmetry and the graph
of the symmetrically permuted matrix is unchanged, only the labelling (that is,
the ordering) of the vertices changes. Thus, for the normal matrix, we can either
relabel G(�) �) or permute the columns of �.

Twomain classes of methods are commonly used to compute orderings that limit
factor fill-in.

Local orderings use a greedy approach in an attempt to limit fill-in by repeated
local decisions based on G(�) �) or G(�).

Global orderings consider the whole of S{�) �} and seek to find a % using a
divide-and-conquer approach, often in conjunction with a local ordering, as
the latter generally works well for matrices that are not really large.

In the following, it is convenient to assume that G(�) �) has a single component,
that is, �) � is irreducible. Otherwise, the ordering algorithms are applied to
each component of G(�) �) (in particular, any rows/columns with a single entry
are removed and ordered first). We also assume here that � has no rows that
are (almost) dense. If it does, a simple strategy is to remove such rows before
applying the ordering algorithm to the remaining rows. Afterwards, the variables

20 J. Scott and M. Tůma

corresponding to the dense rows can be appended to the end of the computed
ordering to give the final ordering.

2.4. Minimum fill-in and minimum degree

Oneway to reduce fill-in is to use a local minimum fill-in criterion that, at each step,
selects as the next variable in the ordering one that will introduce the least fill-in
in the factor at that step (Markowitz 1957); see also (Reißig 2007, Rothberg and
Eisenstat 1998). This can produce good orderings but the cost is often considered
prohibitive because the updated sparsity pattern and the fill-in associated with the
possible candidates must be determined.
The minimum degree (MD) and approximate minimum degree (AMD) al-

gorithms are the best-known and most widely-used greedy heuristics for limiting
fill-in. The minimum degree approach seeks to find a permutation such that at
each step of the factorization the number of entries in the corresponding column
of the factor is minimized. It does this by selecting a vertex of minimum degree
in the current elimination graph. The approach is derived from a method proposed
in 1957 (Markowitz 1957) for non-symmetric linear systems; a symmetric variant
was published 10 years later (Tinney and Walker 1967). A graph theoretic version
in which the factorization is only simulated was subsequently presented; it was
termed the minimum degree algorithm (Rose 1972). Efficient implementations
employ elimination graphs and cliques.
The number of updates to the vertex degrees can be decreased using indis-

tinguishable vertices. Mutually adjacent vertices VA = {E1, . . . , EA } are termed
indistinguishable if they have the same neighbours, that is,

039(E8) ∪ E8 = 039(E 9) ∪ E 9 , 1 ≤ 8, 9 ≤ A.

The set VA can be represented by a single vertex, called a supervariable. If E ∈ VA
is eliminated then the degree of each remaining vertex in VA will reduce by one and
they are all of minimum degree. Thus the vertices in VA can be eliminated together
and the graph transformation and vertex update only needs to be performed once.
The idea behind the popular AMD variant is to inexpensively compute an upper

bound on a vertex degree in place of the degree, and to use this when selecting
vertices within the MD algorithm (Amestoy, Davis and Duff 1996a). Even though
vertex degrees are not determined exactly, the quality of the resulting ordering is
competitive with using the MD algorithm and, on some problems, it can be better.
Importantly, the AMD runtime is typically significantly less than that of the MD.

2.5. Column version of minimum degree

Applying the minimum degree approach to the normal matrix �) � requires the
sparsity pattern S(�) �). Even if � is sparse, S(�) �) may contain significantly
more entries than S(�). Thus, to potentially save time and storage, an attractive
alternative is to order the columns of � using only G(�). The structure of each row

Sparse Linear Least Squares Problems 21

of � corresponds to a clique in G(�) �) and �) � can be represented as a sequence
of cliques. This allows the minimum degree algorithm for �) � to be implemented
in a way that bypasses forming S(�) �), leading to savings in work and storage.
This approach is known as COLAMD (Davis, Gilbert, Larimore and Ng 2004a).

To illustrate the COLAMD and AMD orderings, consider the following 7 × 6
matrix, together with the corresponding normal matrix and its Cholesky factor
(with the entries in ! that have filled in denoted by 5)

� =

∗ ∗
∗

∗ ∗
∗ ∗
∗ ∗

∗ ∗
∗ ∗

, �) � =

∗ ∗ ∗ ∗
∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗

∗ ∗

 , ! =

∗
∗ ∗
∗ 5 ∗

∗ ∗
∗ 5 ∗

∗ 5 5 5 5 ∗

 .

The COLAMD ordering of � is 2, 4, 5, 3, 1, 6. The column permuted matrix
�%2 , the normal matrix (�%2)) �%2 and its Cholesky factor !2 are given by

�%2 =

∗ ∗
∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗
∗ ∗

, (�%2)) �%2 =

∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗

 , !2 =

∗
∗
∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗

 .

The AMD ordering of the normal matrix �) � is 5, 4, 6, 3, 2, 1. Symmetrically
permuting �) �, we obtain the following matrix and its Cholesky factor

%��
) �%)� =

∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗
∗ ∗

∗ ∗ ∗ ∗

 , !� =

∗
∗
∗

∗ ∗ ∗
∗

∗ ∗ ∗ ∗

 .

In this example, there is no fill-in in the Cholesky factor following the COLAMD
and the AMD reorderings (although the sparsity pattern is different). In general,
this is not the case but it is not possible to determine a priori which approach will
result in the sparsest factor.

22 J. Scott and M. Tůma

2.6. Profile-reducing orderings

An alternative way of limiting the fill-in locally is to add another criterion to the
relabelling of the vertices, such as restricting the nonzeros of the permuted matrix
to specific positions. The most popular approach is to force them to lie close to
the main diagonal, that is, to reduce the profile or envelope of �. The envelope is
the set of index pairs that lie between the first nonzero entry in each row and the
diagonal, that is,

4=E(�) = {(8, 9) | 0 < 8 − 9 ≤ V8(�)},

where V8(�) = 8 − min{ 9 | 1 ≤ 9 ≤ 8 with 28 9 ≠ 0}, 1 ≤ 8 ≤ =. The profile
of � is |4=E(�)| (the envelope size) plus =2. During a Cholesky factorization, all
fill-in takes place between the first nonzero entry in a row and the diagonal so that
4=E(�) = 4=E(!).
The most well-known method for reducing the profile of a symmetrically struc-

tured matrix is the Reverse Cuthill-McKee (RCM) algorithm (Cuthill and McKee
1969), outlined here as Algorithm 2.1. Note that Line 9 reverses the ordering. This
can reduce (but not increase) the profile of the permuted matrix. The quality of the
ordering is highly dependent on the choice of the starting vertex B. The diameter
of G is the maximum distance between any pair of its vertices. The endpoints of a
diameter provide good starting vertices. In practice, finding a diameter is expensive
and an endpoint of a pseudo-diameter is used (a pseudo-diameter is defined by a
pair of vertices whose distance apart in G is close to the diameter). The GPS
approach for finding such vertices is based on constructing level sets (Gibbs, Poole
and Stockmeyer 1976), where for a given vertex A (the root) vertices within the
same level set have the same distance to A . Modifications to the original algorithm
have been made to improve efficiency but the use of level sets remains key.

Algorithm 2.1. RCM algorithm for band and profile reduction
Input: Graph G of a symmetrically structured matrix and a starting vertex B.
Output: Permutation vectors ?2< and ?A2< that define new labellings of the
vertices of G.

1: ;014;(1 : =) = 5 0;B4

2: Compute 039{D} and 346(D) for all D ∈ V(G)
3: : = 1, E1 = B, ?2<(1) = E1, ;014;(E1) = CAD4
4: for 8 = 1 : = − 1 do
5: for F ∈ 039{E8} with ;014;(F) = 5 0;B4 in order of increasing degree do
6: : = : + 1, E: = F, ?2<(:) = E: , ;014;(E:) = CAD4
7: end for
8: end for

2 Sometimes in the literature the profile is defined to be the envelope size.

Sparse Linear Least Squares Problems 23

9: Set ?A2<(8) = ?2<(= − 8 + 1), 8 = 1, 2, . . . , =.

Over the years, a large number of profile reduction algorithms have been pro-
posed, many of which have their origins in the Cuthill-McKee and GPS algorithms.
A widely-used two-stage variant is the Sloan algorithm (Sloan 1986); see (Reid
and Scott 1999) for details of an efficient implementation. Spectral methods offer
an alternative approach (Barnard, Pothen and Simon 1995). A crucial difference
between profile reduction ordering algorithms and minimum degree strategies is
that the former is based solely on G: the costly construction of quotient graphs is
not needed. However, unless the profile after reordering is very small, there can be
significantly more fill-in in the factor.

2.7. Nested dissection

Nested dissection, which was first introduced in the early 1970s (George 1973),
is a global ordering strategy for matrices with a symmetric sparsity pattern; it is
particularly effective for very large sparse problems (and problems with an under-
lying grid structure but this is not the case for least squares problems). Subsequent
research gave theoretical guarantees for linear solvers (Lipton, Rose and Tarjan
1979) and provided an important framework for graph partitioning, hierarchical
solvers and many related tasks (see, for example, (Cambier, Chen, Boman, Ra-
jamanickam, Tuminaro and Darve 2020, Spielman and Teng 2014) and the survey
of graph partitioning (Bichot and Siarry 2011)). Given a symmetric matrix �,
nested dissection works with the adjacency graph G and proceeds by identifying a
small separator VS that if removed separates the graph into two disjoint subgraphs
described by the vertex subsets B and W (commonly called “black” and “white”,
respectively). The rows and columns belonging to B are labelled first, then those
belonging toW and finally those in VS . The reordered matrix has the form �B,B 0 �B,VS

0 �W ,W �W ,VS
�)B,VS

�)W ,VS
�VS ,VS

 .

This is illustrated in Figure 2.13. Provided the variables are eliminated in
the permuted order, no fill occurs within the zero off-diagonal blocks. If |VS |
is small and |B | ≈ |W |, these zero blocks account for approximately half the
possible entries in the matrix. The reordering can be applied recursively to the
submatrices �B,B and �W ,W until the vertex subsets are of size less than a chosen
threshold. At this stage, a local ordering technique (such as AMD) is normally
more effective than nested dissection, and so a switch is made (Liu 1989) (see
also more general combination that involves hypergraphs in (Çatalyürek, Aykanat
and Kayaaslan 2011)). The approach is summarised in Algorithm 2.2. Here
PartitionAlg specifies the algorithm used in determining the partitioning of the

3 Figure is taken from (Scott and Tůma 2023)

24 J. Scott and M. Tůma

1
2
3
4
5
6
7
8
9
10
11
12
13

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

1

2

3

4

5

6

7

8

9

10

11

12

13

B VS W

1
2
3
4
5
9
10
11
12
13
6
7
8

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

Figure 2.1. A simple example to illustrate nested dissection. The pattern of
the original matrix (top), the partitioned graph (centre) and the corresponding
symmetrically permuted matrix (bottom) are given.

Sparse Linear Least Squares Problems 25

vertices. Most current approaches use multilevel techniques that create a hierarchy
of graphs, each representing the original graph, but with a successively smaller
dimension (Davis, Hager, Kolodziej and Yeralan 2020, Karypis and Kumar 1998).
The smallest (that is, the coarsest) graph is partitioned and this is then propagated
back through the sequence of graphs, while being periodically refined.

Algorithm 2.2. Nested dissection algorithm
Input: Graph G of a symmetric matrix� and a partitioning algorithm PartitionAlg.
Output: A permutation vector ? that defines a new labelling of the vertices of G.

1: recursive function (? = nested_dissection(�, PartitionAlg))
2: if dissection has terminated then ⊲ Vertex subsets are sufficiently small
3: ? = AMD(V , E) ⊲ Compute an AMD ordering
4: else
5: Use PartitionAlg(V , E) to obtain the vertex partitioning (B,W ,V()
6: ?B = nested_dissection(�B,B, PartitionAlg)
7: ?W = nested_dissection(�W ,W , PartitionAlg)
8: ?V(

is an ordering of V(

9: Set ? =

 ?B
?W
?V(

10: end if
11: end recursive function

2.8. Software for ordering sparse matrices

Sparse direct solvers typically offer users a number of ordering algorithms. These
may call external packages or be built into the solver. COLAMD and AMD
are published as Algorithms 836 and 837, respectively, in ACM Transactions on
Mathematical Software (Amestoy, Davis and Duff 2004, Davis, Gilbert, Larimore
and Ng 2004b). The package HSL_MC68 from the HSL Mathematical Software
Library4 offers implementations of MD and AMD algorithms. MC61 is an ef-
ficient implementation of the Sloan profile reduction algorithm and HSL_MC73
has entries to compute multilevel variants of Sloan’s algorithm and spectral order-
ing. SuiteSparse5 offers a number of sparse matrix ordering algorithms, including
COLAMD and AMD; these also appear in MATLAB as functions colamd and
amd. A Julia version of AMD is available6. The most well-known and widely
used nested dissection ordering package is METIS7; ParMETIS is an MPI-based

4 https://www.hsl.rl.ac.uk/
5 https://people.engr.tamu.edu/davis/suitesparse.html
6 https://github.com/JuliaSmoothOptimizers/AMD.jl
7 https://github.com/KarypisLab/METIS

https://www.hsl.rl.ac.uk/
https://people.engr.tamu.edu/davis/suitesparse.html
https://github.com/JuliaSmoothOptimizers/AMD.jl
https://github.com/KarypisLab/METIS

26 J. Scott and M. Tůma

parallel version8. The Scotch library9 offers variants of approximate minimum
degree ordering, approximate minimum fill-in ordering and nested dissection.

3. Sparse Cholesky factorizations
It is convenient to introduce the following matrix notation. For any square matrix
� = {18 9}, let �8: 9 ,::; be the submatrix comprising rows 8 to 9 , columns : to ;, and
let �8: 9 ,: denote the submatrix comprising rows 8 to 9 , column : .

We again assume that the matrix � = {28 9} ∈ R=×= is sparse and symmetric
positive definite (SPD) and irreducible. If � is not reducible, it can be permuted to
a nontrivial block diagonal form and the Cholesky factorization of each block on
the diagonal computed independently.

3.1. Column replication in sparse Cholesky factorizations

The Cholesky factorization of � can be written as a recursive sequence of Schur
complements. The first step is

� =

(
211 �)2:=,1
�2:=,1 �2:=,2:=

)
=

(
2

1/2
11

�2:=,12
−1/2
11 �

)(
1

((2)

)(
2

1/2
11 2

−1/2
11 �)2:=,1

�

)
,

(3.1)
where the (= − 1) × (= − 1) submatrix

((2) = �2:=,2:= − �2:=,12
−1
11�

)
2:=,1 = �2:=,2:= − !2:=,1!

)
2:=,1

is the Schur complement of � with respect to 211. If � is SPD then so too is ((2),
allowing the process to be repeated to give

((1) = �, ((9+1) = (
(9)
2:=− 9+1,2:=− 9+1 − ! 9+1:=, 9!

)
9+1:=, 9 , 9 = 1, 2, . . . , = − 1,

where ((9+1) is of order = − 9 . Equivalently, the Schur complement can be written
using an outer product as

((9+1) = � 9+1:=, 9+1:= −
9∑
:=1

; 9+1,:...
;=:

(; 9+1,: . . . ;=:
)
. (3.2)

In the sparse case, many entries of ! are zero. Let the first nonzero subdiagonal
entry in column : of ! be in row :1 > : . Then the first column of the Schur
complement to be updated by column : is :1. Determining the sparsity structure
S(!) can therefore be described as the recursive replication of nonzeros in the
columns of ! with a key role played by the leading subdiagonal nonzeros in the
columns of !. This is illustrated in Figure 3.1. The replication of the pattern of

8 https://github.com/KarypisLab/ParMETIS
9 https://gitlab.inria.fr/scotch/

https://github.com/KarypisLab/ParMETIS
https://gitlab.inria.fr/scotch/

Sparse Linear Least Squares Problems 27

1 2 3 4 5 6 7 8
1 ∗
2 ∗
3 ∗ ∗
4 ∗ ∗ ∗
5 ∗
6 ∗ ∗ ∗ ∗
7 ∗ ∗
8 ∗ ∗ ∗ ∗

1 2 3 4 5 6 7 8
1 ∗
2 ∗
3 ∗ ∗
4 ∗ ∗ ∗
5 ∗
6 ∗ ∗ 5 ∗ ∗
7 ∗ 5 ∗
8 ∗ ∗ ∗ ∗

1 2 3 4 5 6 7 8
1 ∗
2 ∗
3 ∗ ∗
4 ∗ ∗ ∗
5 ∗
6 ∗ ∗ 5 ∗ ∗
7 ∗ 5 5 5 ∗
8 ∗ ∗ ∗ ∗

Figure 3.1. An illustration of column replication. On the left are the entries in
! before the start of the Cholesky factorization (that is, the entries in the lower
triangular part of �); in the centre we show the replication of the nonzeros from
column 1 in the pattern of column 3 (entries denoted by 5); on the right, we show
the situation after the two remaining replications in the pattern of columns 4 and
6.

column : of ! (rows 8 to =) in the pattern of column 8 > : of ! is called the
column replication principle, that is, for any 8 > : ≥ 1 such that ;8: ≠ 0 the sparsity
patterns of columns 8 and : of ! satisfy S{!8:=,: } ⊆ S{!8:=,8}.

3.2. Elimination trees

Undirected graphs were discussed in Section 2.1. We now introduce trees, directed
graphs and DAGs, which we use to discuss the elimination trees that are key
to developing fast memory efficient algorithms for the symbolic phase of sparse
Cholesky factorizations.
An undirected graph is connected if every pair of vertices is connected by a path.

A connected acyclic graph is called a tree, that is, a tree is an undirected graph in
which any two vertices are connected by exactly one path. Every tree has at least
two vertices of degree 1. Such vertices are leaf vertices. Leaf vertices have no
children.
In a directed graph (or digraph) G, the pairs of vertices that define the edges

are ordered. The notation (D → E) indicates the direction of the edge from D

to E. Any undirected tree T = (V , E) can be converted to a directed rooted tree
T ′ = (V , E ′) by specifying a root vertex EA . Note that EA can be chosen arbitrarily:
any choice gives a directed rooted tree. An edge (D, E) ∈ E becomes a directed
edge (D → E) ∈ E ′ if there is a path from D to EA such that the first edge of this
path is from D to E. Given EA , this directed path is unique. E is called the parent of
D if the directed edge (D → E) ∈ E ′; D is said to be a child of E. A rooted tree is
a special case of a directed acyclic graph (DAG). A topological ordering of G is a
labelling of its vertices such that for every edge (8 → 9), vertex 8 precedes vertex 9
(i.e., 8 < 9). It can be shown that a topological ordering is possible if and only if G
a DAG.
Provided the matrix � is irreducible, each column of its Cholesky factor !

(except the final one) contains at least one nonzero subdiagonal entry (Liu 1986a).
If, as before, the first such entry in column : is in row :1 (or, equivalently, the first

28 J. Scott and M. Tůma

nonzero entry in row : of !) is in column :1), then the elimination tree T (�) (or
simply T) is defined to be the directed graph that is obtained by removing from the
directed graph G(!)) all edges (: → 8) for which 8 > :1. It is straightforward to
see that T (�) is a DAG and the ordering of its vertices is a topological ordering.
Note that because of the non-cancellation rule, (!))8: ≠ 0 is equivalent to stating
that (: → 8) is an edge of G(!)).

The elimination tree for the matrix � from Figure 3.1 is in Figure 3.2. The root
vertex is 8. Following conventional notation, directional arrows are omitted from
T (�) because an edge (:, 8) is always directed from : to 8 with 8 > : .

1

23

4

5

6

7

8

Figure 3.2. The elimination tree T (�) for the matrix from Figure 3.1.

The time complexity for constructing T (�) is $(=I(�) 6(=I(�), =)) (Liu 1990,
Tarjan 1975), where =I(�) is the number of entries in � and 6(=I(�), =) is a very
slowly increasing function called the functional inverse of Ackermann’s function.
This means that, in practice, the elimination tree can be efficiently constructed in
time that is essentially linear in =I(�) (which is generally much smaller than =I(!)).

The importance of T (�) is that it allows key characteristics of the Cholesky
factor ! to be computed symbolically. These include its row and column counts, the
maximum intermediate memory required during the factorization, and the sparsity
pattern S{!}. The algorithms for doing this can depend on the ordering of T (�).
A topological ordering of T (�) defines a labelling of its vertices corresponding to
a symmetric permutation of � that does not affect the amount of fill-in in ! (Liu
1990). An important class of topological orderings is obtained using a depth-first
search starting at the root vertex. Once vertex 8 has been visited, all the vertices
of the subtree rooted at 8 and denoted by T (8) are visited immediately after 8
and 8 is labelled as the last vertex of T (8). A topological ordering of T (�) is a
postordering if and only if the set of vertex labels of any subtree T (8), 1 ≤ 8 ≤ =,
is a contiguous sublist of 1, . . . , =. Unless additional rules on how vertices are
selected are imposed, a postordering is usually not unique.

Sparse Linear Least Squares Problems 29

Note that although the ordering algorithms discussed in Section 2.3 mainly target
the reduction of fill-in (and thus =I(!)) and the number of operations required to
compute !, the ordering also has a significant impact on the shape of the elimination
tree and this subsequently effects the potential to exploit parallelism within the
factorization algorithm.

3.3. Supervariables

The performance of most algorithms used in the symbolic phase of a sparse
Cholesky factoriztion can be enhanced by employing supervariables (recall Sec-
tion 2.4). Let the vertex set V of the graph G(�) be partitioned into =BD? ≥ 1
non-empty disjoint subsets of indistinguishable vertices

V = V1 ∪ V2 ∪ . . . ∪ V=BD? . (3.3)

If the vertices belonging to each subset V1, . . . ,V=BD? are numbered consecutively,
with those in V8 preceding those in V8+1 (1 ≤ 8 < =BD?) and if % is the permutation
matrix corresponding to this ordering then the permuted matrix %�%) has a block
structure in which the blocks are dense; the dimensions of the blocks are equal
to the sizes of the indistinguishable sets. The matrix %�%) can be condensed
to a matrix of order equal to =BD?; the corresponding graph is the supervariable
graph. If the average number of variables in each supervariable is ;, using the
supervariable graph will reduce the amount of integer data that is handled during
the symbolic phase by a factor of about ;2. Algorithms for finding supervariables
are discussed in (Hogg and Scott 2013a); see also (Ashcraft 1995, Saad 2003a).

To illustrate supervariables, consider the following example. For the given
matrix �, we cannot immediately see sets of indistinguishable vertices. But by
symmetrically permuting the matrix, we obtain the matrix on the right. The
permutation matrix % corresponds to the new labelling of the rows and columns. It
is now clear that there are three sets of indistinguishable vertices {(2, 4), (1, 5), (3)}.

� =

1 2 3 4 5
1 ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗

, %�%) =

2 4 1 5 3
2 ∗ ∗ ∗
4 ∗ ∗ ∗
1 ∗ ∗ ∗
5 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗ ∗

.

3.4. Basic left- and right-looking sparse Cholesky factorizations

There are several classes of algorithms that implement sparse Cholesky factor-
izations. Their major differences relate to how they schedule the computations.
This affects the use of dense linear algebra kernels, memory requirements during
the factorization and the potential for parallel implementations. Given the factor
sparsity pattern S{!}, define { 9_A} to be the set of subdiagonal row indices of the

30 J. Scott and M. Tůma

nonzero entries in column 9 of !, that is,

{ 9_A} = {8 > 9 | ;8 9 ≠ 0}.

Thus, ! { 9_A }, 9 denotes the nonzero subdiagonal entries in column 9 of ! and, for
any : > 9 , ! { 9_A },: denotes the nonzero entries in column : of ! with row indices
belonging to { 9_A}. Algorithms 3.1 and 3.2 use this notation to outline simplified
left- and right-looking variants of the sparse Cholesky factorization. In the left-
looking version, update operations are not applied immediately to the remaining
columns. Instead, at the start of major step 9 , all updates from columns 1 to 9 − 1
are applied together to column 9 (Lines 3 to 7 of Algorithm 3.1) and then it is
factorized (Lines 8 to 11). In the right-looking approach, outer product updates are
applied to the part of the matrix that is still to be factorized as they are generated
(Lines 7 to 11 of Algorithms 3.2).

Algorithm 3.1. Simplified sparse left-looking Cholesky factorization
Input: SPD matrix � and sparsity pattern S{!}.
Output: Cholesky factor ! such that � = !!) .

1: for 9 = 1 : = do ⊲ Start of major step 9
2: ; 9 9 = 0 9 9 , ! { 9_A }, 9 = �{ 9_A }, 9
3: for : ∈ {: < 9 | ; 9: ≠ 0} do ⊲ Apply updates from previous columns
4: ; 9 9 = ; 9 9 − ; 9: ; 9: ⊲ Update diagonal entry
5: ! { 9_A }, 9 = ! { 9_A }, 9 − ! { 9_A },: ; 9: ⊲ Update subdiagonal entries
6: end for
7: ; 9 9 = (; 9 9)1/2

8: ! { 9_A }, 9 = ! { 9_A }, 9/ ; 9 9 ⊲ Scale current column by the pivot
9: end for

Algorithm 3.2. Simplified sparse right-looking Cholesky factorization
Input: SPD matrix � and sparsity pattern S{!}.
Output: Cholesky factor ! such that � = !!) .

1: for 9 = 1 : = do
2: ; 9 9 = 0 9 9 , ! { 9_A }, 9 = �{ 9_A }, 9
3: end for
4: for 9 = 1 : = do ⊲ Start of major step 9
5: ; 9 9 = (; 9 9)1/2

6: ! { 9_A }, 9 = ! { 9_A }, 9/ ; 9 9 ⊲ Scale current column by the pivot
7: for : ∈ {: > 9 | ;: 9 ≠ 0} do ⊲ Update remaining columns
8: ;:: = ;:: − ; 9: ; 9: ⊲ Update diagonal entry in column :
9: ! {:_A },: = ! {:_A },: − ! {:_A }, 9 ; 9: ⊲ Update subdiagonal in column :

Sparse Linear Least Squares Problems 31

10: end for
11: end for

3.5. Supernodes and the assembly tree

The simplified schemes above form the basis of more sophisticated algorithms. For
efficiency, it is essential to take advantage of dense blocks within the factorization;
these are able to exploit Level 3 BLAS routines. Column replication leads to the
columns of ! becoming denser as the factorization proceeds. Furthermore, fill
reducing orderings (such as the minimum fill and minimum degree algorithms)
seek to choose vertices of G(�) that, at each stage, add a small number of new
nonzeros to !, which contributes to the early columns of ! being significantly
sparser than those towards the end of factorization. Exploiting density within
! can significantly reduce the computation time and memory of the numerical
factorization. In particular, columns of ! with the same sparsity structure can
be grouped and the resulting block treated as a dense matrix for storage and
computation purposes. Let 1 ≤ 8, 9 ≤ = with 8 + 9 − 1 ≤ =. A set of contiguously
numbered columns of ! with indices V! = {8, 8 + 1, . . . , 8 + 9 − 1} is defined to be
a supernode of ! if

S{!:,8} ∪ {8} = S{!:,8+ 9−1} ∪ V! ,

and V! cannot be extended for 8 > 1 by adding 8 − 1 or for 8 + 9 − 1 < = by adding
8 + 9 . In graph terminology, a supernode is a maximal clique of contiguous vertices
of G(! + !)). A supernode is stored as a dense trapezoidal matrix (only the lower
triangular part of the block on the diagonal is needed), with rows of zeros in the
columns of the supernode are not held. This is termed a nodal matrix. This is
illustrated in Figure 3.3.
Supernodes can be small (that is, they may contain very few columns or even

just a single column), in which case the costs associated with identifying them may
not be offset by the increase in performance resulting from the potential for block
operations. Thus, it can be advantageous to merge supernodes that have similar
(but not exactly the same) nonzero patterns. This process is termed supernode
amalgamation, and the resultant nodes are referred to as relaxed supernodes (Ash-
craft and Grimes 1989). Using relaxed supernodes increases the number of entries
in ! and the floating-point operations needed to compute it and use it but this is
outweighed by the benefits of better use of Level 3 BLAS.
The supernodal elimination tree, which is also commonly called the assembly

tree, is the reduction of the elimination tree that contains only supernodes. Each
vertex of the elimination tree is associated with one elimination and a single integer
(the index of its parent) is needed. Associated with each vertex of the assembly tree
is an index list of the row indices of the nonzeros in the columns of the supernode.
These implicitly define the sparsity pattern S{!}.

32 J. Scott and M. Tůma

Figure 3.3. An illustration of a supernode (left), the corresponding nodal matrix
(centre), and the nodal matrix with two panels (right). The shaded lower triangular
part of the block on the diagonal and the shaded block rows are treated as dense
(the white row blocks are not stored).

3.6. Supernodal and DAG-based factorization

Assume ! has =B ≤ = supernodes and let 9 B and :B denote two of these supernodes.
Generalising the notation of Section 3.4, we denote by { 9 B_2} the set of columns
in 9 B and by { 9 B_A} the set of row indices of the non null subdiagonal row blocks
belonging to 9 B (1 ≤ 9 B ≤ =B). Then ! { 9B_2 }, { 9B_2 } and ! { 9B_A }, { 9B_2 } denote the
block on the diagonal and the non null subdiagonal row blocks in supernode 9 B,
and ! { 9B_2 }, {:B_2 } and ! { 9B_A }, {:B_2 } respectively denote the blocks with columns
belonging to supernode :B and row indices belonging to { 9 B_2} and { 9 B_A}. Using
this notation, Algorithm 3.3 outlines a left-looking supernodal factorization. The
for loop at Line 3 applies updates from previous supernodes. At Lines 4 and 7,
only the lower triangular part of the block ! { 9B_2 }, { 9B_2 } on the diagonal is used.
At Line 4 it is updated and then at Line 7 it is overwritten by its dense Cholesky
factor. At Line 8, a dense triangular solve is used to scale the columns in 9 B. This
supernodal left-looking approach is discussed in (Ng and Peyton 1993a,b).

Algorithm 3.3. Supernodal left-looking Cholesky factorization
Input: Sparse SPD matrix � and sparsity pattern S{!} with =B supernodes.
Output: Cholesky factor ! such that � = !!) .

1: for 9 B = 1 : =B do
2: ! { 9B_2 }, { 9B_2 } = �{ 9B_2 }, { 9B_2 }, ! { 9B_A }, { 9B_2 } = �{ 9B_A }, { 9B_2 }

3: for :B ∈ {:B < 9 B | ! { 9B_2 }, {:B_2 } ≠ 0} do
4: ! { 9B_2 }, { 9B_2 } = ! { 9B_2 }, { 9B_2 } − ! { 9B_2 }, {:B_2 } !){ 9B_2 }, {:B_2 }
5: ! { 9B_A }, { 9B_2 } = ! { 9B_A }, { 9B_2 } − ! { 9B_A }, {:B_2 } !){ 9B_2 }, {:B_2 }

Sparse Linear Least Squares Problems 33

6: end for
7: ! { 9B_2 }, { 9B_2 } = ! { 9B_2 }, { 9B_2 }!

)
{ 9B_2 }, { 9B_2 }

8: ! { 9B_A }, { 9B_2 } = ! { 9B_A }, { 9B_2 } !
−)
{ 9B_2 }, { 9B_2 }

9: end for

Let us denote the tasks at Lines 4 and 5 byD?30C4(9 B_A, :B) andD?30C4(9 B_2, :B),
and those at Lines 7 and 8 by 5 02C>A8I4(9 B) and B>;E4(9 B), respectively. The fac-
torization is then comprised of a set of tasks connected by dependencies that can be
expressed in the form of a task DAG. For example, all update tasks for which :B ∈
{:B < 9 B | ! { 9B_2 }, {:B_2 } ≠ 0} must be performed before the task 5 02C>A8I4(9 B)
can be carried out. That is, theDAGcontains edgesD?30C4(9 B_A, :B)→ 5 02C>A8I4(9 B)
and D?30C4(9 B_2, :B)→ 5 02C>A8I4(9 B). Compared to a left- or right-looking al-
gorithm, a DAG-driven factorization allows greater freedom in the order in which
the tasks are carried out, improving the scope for exploiting parallelism.
It can be beneficial in terms of the runtime to increase the number of tasks

(that is, replace “large” tasks by a number of smaller tasks). This can be done by
splitting the nodal matrix into a number of panels (Hogg, Reid and Scott 2010)
(see Figure 3.3).

3.7. The multifrontal method

Another approach that has proved very successful is the multifrontal method. It
was introduced in the 1980s (Duff and Reid 1983) (but see also the earlier work
(Speelpenning 1978)). It uses a postordering of the assembly tree and organizes
the operations that take place during the factorization in such a way that the entire
factorization is performed through the partial factorizations of a sequence of dense
submatrices.
To assist in describing the multifrontal method, observe that the single step of

a Cholesky factorization given in (3.1) can be generalised to 9 ≥ 1 steps (block
elimination), that is,

� =

(
�11 �)

9+1:=,1: 9
� 9+1:=,1: 9 � 9+1:=, 9+1:=

)
=

(
!1

� 9+1:=,1: 9!
−)
1 �

)(
1

((9+1)

)(
!)1 !−1

1 �
)
9+1:=,1: 9
�

)
.

Here �11 = !1!
)
1 is the 9 × 9 Cholesky factorization of the (1, 1) block of � and

the Schur complement

((9+1) = � 9+1:=, 9+1:= − � 9+1:=,1: 9�
−1
11�

)
9+1:=,1: 9

is the part of thematrix that is still to be factorized. The term� 9+1:=,1: 9�
−1
11�

)
9+1:=,1: 9

represents the update contributions from the first 9 rows and columns to the (2, 2)
block � 9+1:=, 9+1:=. It can also be expressed in the outer product form (3.2) and
this is the basis of the multifrontal method, which can be viewed as providing an
effective management of the outer-product updates when � is sparse.
For each supernode 9 B, the multifrontal algorithm creates a matrix �(9 B) called

34 J. Scott and M. Tůma

a frontal matrix. This is a small symmetric dense matrix with columns and rows
corresponding to the groups of columns to be eliminated and all the rows in which
these columns have nonzeros. At the leaf vertices, �(9 B) is assembled by adding
into it the entries in the corresponding rows and columns of the matrix �. At each
stage, �(9 B) is permuted to have a 2 × 2 block structure

�(9 B) =
(
�11 �)21
�21 �22

)
,

in which all variables in the (1,1) block can be eliminated (i.e., they are fully
summed) but the remaining variables cannot be eliminated until later in the fac-
torization because further contributions are still to be added (assembled). At leaf
vertices, �22 = 0. The Schur complement formed by the elimination of the fully
summed variables within �(9 B) is called the contribution block +(9 B) (it is also
sometimes referred to an the generated element or update matrix). Because of
symmetry, only the lower triangular parts of �(9 B) and+(9 B) need to be computed.

After the partial factorization of �(9 B), the factor columns that have been com-
puted are added into the factor ! and +(9 B) is stored. When all the children of a
parent :B have been eliminated, the parent retrieves the contribution blocks of its
children, and assembles them (together with the rows and columns of the matrix �
corresponding to :B) into its own frontal matrix �(:B). Variables at :B are fully
summed (and ready for elimination) if all descendants of the corresponding vertex
in the assembly tree have been eliminated. The process of performing a partial
factorization and then storing the contribution block is repeated until the root vertex
is reached. At the root, all the variables are fully summed and so can be eliminated
to complete the factorization. The approach is summarized as Algorithm 3.4.

Algorithm 3.4. Multifrontal Cholesky factorization
Input: Sparse SPD matrix � and its postordered assembly tree.
Output: Cholesky factor ! such that � = !!) .

1: for 9 B = 1 : =B do ⊲ Follow the postordering of the tree
2: Assemble frontal matrix �(9 B) using rows/columns of � and contribution

blocks from children of 9 B
3: Permute and then partially factorize �(9 B) ⊲ Results in a block column of
! and contribution block +(9 B)

4: Push +(9 B) onto the stack. ⊲ +(9 B) will be popped from the stack when
assembling �(?0A4=C(9 B))

5: end for

At each stage 9 B (except the root), the contribution block+(9 B) must be stored until
:B = ?0A4=C(9 B) is processed. It is convenient to use a stack for this. It is easy to
see that for any subtree T (9 B) of the postordered assembly tree, 9 B is the last vertex

Sparse Linear Least Squares Problems 35

in T (9 B) to be processed and the contribution blocks from its children are those on
the top of the stack. Thus, they can be popped from the stack when assembling
�(9 B).
Figure 3.4 illustrates themultifrontal method applied to the 8×8matrix from Fig-

ure 3.1. It has two nontrivial supernodes (3, 4) and (6, 7, 8) and the corresponding
assembly tree has 5 vertices.

6, 7, 8

3, 4

1 2

5

266 + E(3)
66

E
(3)
76 277 + E(3)

77
286 287 288 + E(5)

88

;66
;76 ;77
;86 ;87 ;88

233 + E(1)
33

243 244 + E(2)
44

E
(1)
63 264 + E(2)

64 E
(1)
66 + E

(2)
66

E
(1)
73 E

(1)
76 E

(1)
77

;33

;43 ;44

;63 ;64 E
(3)
66

;73 ;74 E
(3)
76 E

(3)
77

211
231 0
261 0 0
271 0 0 0

;11

;31 E
(1)
33

;61 E
(1)
63 E

(1)
66

;71 E
(1)
73 E

(1)
76 E

(1)
77

222
242 0
262 0 0

;22

;42 E
(2)
44

;62 E
(2)
64 E

(2)
66

255
285 0

;55
;85 E

(5)
88

Figure 3.4. The multifrontal method applied to the matrix � = {28 9} from Fig-
ure 3.1. The assembly tree is shown. Each vertex shows the transformation from
its frontal matrix to the computed entries of ! and contribution block that is passed
from child to parent. To illustrate the method, global indices are used for the
entries of the contribution blocks; superscripts are used to indicate the supernode
the contribution comes from.

The contributions to the frontal matrix vary in size, so careful attention must
be paid to the indices and the mapping between global and local indices. The
assembly operation is called extend-add (Liu 1992). The “Achilles heel” of sparse
direct methods is the need for indirect addressing. The multifrontal method cannot
avoid this but it only occurs during the assembly operations while all the arithmetic
is performed using direct addressing in the dense frontal matrices.
Implementations of the multifrontal method may include an option to reduce the

main memory requirements by using disk storage, thus enabling larger problems
to be solved (this option was very necessary when computers had limited main
memories). An out-of-core method writes the columns of ! to disk as they are

36 J. Scott and M. Tůma

computed and may also hold the original matrix, the stack (and possibly the frontal
matrix) in files on disk. During the subsequent triangular solves, the factor data
must be read back in, which adds to the overall solution cost. The efficient use of
disk storage is discussed in (Reid and Scott 2009).
An important aspect of the postordered assembly tree is that it only partially

defines an ordering of the factorization tasks. This is because it is only necessary
for the elimination operations at a child vertex to be completed before those at
its parent can be performed. This freedom enables tree level parallelism to be
exploited (Amestoy, Duff and L’Excellent 2000). In addition, advantage can be
taken of parallelism within the partial factorizations of the dense frontal matrices;
this is referred to as node level parallelism. This is key for good performance,
particularly at the large vertices that are at (or close too) the root vertex.

3.8. Numerical rank deficiency in the Cholesky factorization

So far in our discussion of Cholesky factorizations we have assumed that � is of full
column rank. As observed in Section 1.5, when solving least squares problems, we
need to be more aware of rank deficiency than when solving general linear systems
of equations. Formally, the Cholesky factorization of �) � does not break down if

2 =3/2 n ^2(�) �) ≤ 1,

where 2 is a small constant (Golub and Van Loan 1996, Wilkinson 1968). If � is
potentially ill conditioned or if �) � is positive semidefinite, diagonal pivoting can
be incorporated into the factorization. At each step, the largest diagonal entry in the
Schur complement is selected as the next pivot (that is, the next to be eliminated). It
is permuted to be the leading entry of the Schur complement and thus the Cholesky
factorization of (�%)) �%, for some permutation matrix %, is computed. The rank
A: of �) � is revealed by the factorization

%) �) �% = !!) , ! =

(
!11 0
!21 0

)
, (3.4)

where !11 ∈ RA :×A : is lower triangular. Such a factorization exists (Higham
1990), although incorporating pivoting adds significantly to the complexity of
sparse factorization algorithms. Once the factorization is obtained, the least squares
solution can be computed from the relations(

11
12

)
= %) �) 1, !11I = 11, !)11H1 = I − !)21H2, G = %

(
H)1 H)2

))
,

where 11, H1, I ∈ RA : and H2 ∈ R=−A : is an arbitrary vector. The fact that H2 can
be chosen arbitrarily follows from the singularity of �) �. If �) � is close to being
positive definite, the numerical rank is better revealed using a QR factorization
(Section 4.5).

Sparse Linear Least Squares Problems 37

3.9. Software for sparse Cholesky factorizations

Since the 1970s, software packages that implement algorithms for sparse Cholesky
factorizations have been developed. One of the earliest and perhaps the most
well-known serial multifrontal solver is MA27 (Duff and Reid 1983). It solves
sparse symmetric linear systems that are not necessarily positive definite. It was
written for inclusion in the HSL library10 (prior to 2000, it was known as the
Harwell Subroutine Library (Scott 2023)) and, although later HSL codes have
been designed and developed with the intention of superseding it, MA27 remains
in use11. CHOLMOD12 is a supernodal Cholesky solver for sparse SPD linear
systems (Chen, Davis, Hager and Rajamanickam 2008); it offers CUDA GPU
acceleration. CHOLMOD is used by backslash within MATLAB. PaStiX13

also has a parallel supernodal Cholesky factorization solver (Hénon, Ramet and
Roman 2002). HSL_MA87 implements a sparseDAG-basedCholesky factorization
for shared memory architectures (Hogg et al. 2010). The package HSL_MA85 is
specifically designed to use sparse direct methods to solve large-scale diagonally-
weighted linear least squares problems; it calls HSL_MA87 if the user chooses
to use the normal matrix formulation. Within the cuSolver library14, cuSolverSP
includes a sparse Cholesky code.
In addition to MA27, there are a number of important packages that are de-

signed for general sparse symmetric systems and consider positive definite systems
as a special case. Pardiso15 implements a left-right looking sparse Cholesky al-
gorithm; the Intel oneAPI Math Kernel Library (oneMKL) includes a variant of
this solver. TheMUMPS package16 andWSMP17 both provide distributed memory
general-purpose multifrontal solvers. The current HSL library includes a number
of multifrontal codes. From the early 2000s, MA57 (Duff 2004) remains very
popular; it only exploits parallelism through the use of Level 3 BLAS during the
factorization of the frontal matrices. A more recent package is the shared memory
solver HSL_MA97 (Hogg and Scott 2013b). It has the attractive feature that, al-
though it is a parallel solver, it computes bit-compatible solutions, which can be
important for some applications. HSL_MA77 (Reid and Scott 2009) is designed
to minimize memory requirements, thereby potentially enabling larger matrices to
be factorized. The user can choose to allow the factors and the multifrontal stack

10 https://www.hsl.rl.ac.uk/
11 https://www.hsl.rl.ac.uk/archive/
12 https://people.engr.tamu.edu/davis/suitesparse.html
13 https://solverstack.gitlabpages.inria.fr/pastix/
14 https://docs.nvidia.com/cuda/cusolver/
15 https://panua.ch/pardiso/
16 http://mumps.enseeiht.fr/
17 http://researcher.watson.ibm.com/researcher/view_group.php?id=
1426

https://www.hsl.rl.ac.uk/
https://www.hsl.rl.ac.uk/archive/
https://people.engr.tamu.edu/davis/suitesparse.html
https://solverstack.gitlabpages.inria.fr/pastix/
https://docs.nvidia.com/cuda/cusolver/
https://panua.ch/pardiso/
http://mumps.enseeiht.fr/
http://researcher.watson.ibm.com/researcher/view_group.php?id=1426
http://researcher.watson.ibm.com/researcher/view_group.php?id=1426

38 J. Scott and M. Tůma

to be efficiently held outside of main memory (an option that is also offered by
MUMPS).

4. Sparse QR factorizations
4.1. Introduction to QR factorizations

Let us again assume that � ∈ R<×= (< > =) is of full column rank. Then the QR
factorization (1.11) of � is unique if the diagonal entries of thematrix ' are positive.
Approaches for computing a QR factorization can be based on Givens rotations,
Householder reflectors or Gram-Schmidt orthogonalization. They often differ
significantly in their numerical properties as well as in their efficiency, memory
demands and computational output, particularly when � is sparse.

4.1.1. Givens rotations
Givens method is based on elementary orthogonal transformations that represent
rotations in a plane spanned by two coordinate axes. Consider a counterclockwise
rotation of a nonzero vector F = (F1 F2)) ∈ R2 through an angle \ such that the
second entry of the rotated vector H = (H1 H2)) is zero. The rotation can be written
as the matrix transformation(

2 −B
B 2

)(
F1
F2

)
=

(
H1
H2

)
=

(
3

0

)
, where B = F2/3, 2 = −F1/3, 3 = ‖F‖2.

This transformation can be expressed as a plane rotation in the extended space
R<×<. If the two axes correspond to row indices 8 and 9 of � then the<×< matrix
�(8, 9) given by

�(8, 9) =

8 9

1 . . . 0 . . . 0 . . . 0
...

. . .
...

...
...

8 0 . . . 2 . . . B . . . 0
...

...
. . .

...
...

9 0 . . . −B . . . 2 . . . 0
...

...
...

. . .
...

0 . . . 0 . . . 0 . . . 1

,

with 1’s on the diagonal except rows 8 and 9 , is an orthogonal transformation that
when applied to � effects only the entries in rows 8 and 9 . This is a Givens rotation,
named after the pioneering work of Wallace Givens (Givens 1953) (although it
was used even earlier by Jacobi (Golub and Meurant 1997, Jacobi 1845)). Explicit
calculation of the angle \ is rarely necessary or desirable. Instead, the scalars 2
and B, which correspond to cos(\) and sin(\), respectively, are computed.
Givens rotations can be used to systematically eliminate individual subdiagonal

entries of � by applying them one-by-one to pairs of rows. In particular, applying

Sparse Linear Least Squares Problems 39

them in the following order produces the QR factorization

�(=, <) . . . �(2, <) . . . �(2, 3) . . . �(1, <) . . . �(1, 2)� = ', (4.1)

where the & factor is the transpose of the product of the Givens rotations. When �
is sparse, it is sufficient to eliminate only the nonzero entries. But, as the process of
elimination of nonzero entries in � continues, new nonzero fill-in entries typically
arise (this is termed intermediate fill-in) and they must also be eliminated. The
order in which the rotations are applied must satisfy some rules. A basic rotation-
based strategy by columns in (4.1) eliminates the subdiagonals in column 1 of �,
followed by those in columns 2, and so on. Significant research has been devoted to
developing row-ordering schemes, sometimes combined with column reordering
schemes, to minimize intermediate fill-in; see, for example, (George, Liu and Ng
1986) and the references therein.
Givens rotations provided the first technique for computing the QR factorization

of a sparse matrix and their sophisticated use resulted in an efficient computational
framework for solving linear least squares problems (George and Heath 1980).

4.1.2. Householder reflectors
An alternative to Givens rotations is to use Householder reflectors, the name
recognising the pioneering work of Alston Householder (Householder 1958). A
Householder reflector (also known as aHouseholder transformation orHouseholder
matrix) is a symmetric orthogonal matrix of the form

� = � − VFF) ,

where V is a scalar and F is a nonzero vector chosen such that if H = �G then
|H1 | = | |G | |2 and all other entries are zero (Golub and Van Loan 1996). The vector
F is called aHouseholder vector. The application of an<×<Householder reflector
�(1) to the matrix � with 01 as its first column can be written as

�(1)� = �(1) (01 �1:<,2:=
)
= (� − V1F

(1)(F(1))))
(
01 �1:<,2:=

)
=

(
'1,1 '1,2:=

0 �(1)

)
.

(4.2)

The elimination of subdiagonal nonzero entries can be continued by applying an
(< − 1) × (< − 1) Householder reflector �2 = � − V2F

(2)(F(2))) to �(1) such that
its (1, 1) entry becomes zero. �2 can be extended to an < × < matrix by setting

�(2) =

(
1

�2

)
.

Setting �(0) = �, the iteration formula is

�(9) = �(9)�(9−1). (4.3)

40 J. Scott and M. Tůma

Repeating the process yields the factorization

�(=) . . . �(2)�(1)� = �(=),

from which the QR factorization is obtained by setting & = �(1)�(2) . . . �(=) and
' = �(=). In the dense case, compared with using Givens rotations, Householder
reflectors reduce the floating point operation count by a third.
If the& factor is required to be retained then it can be held explicitly as the product

of the Householder reflectors �(1)�(2) . . . �(=), or implicitly as the sequence of
Householder vectors F(1), F(2) For sparse �, the latter generally requires
significantly less memory because the F(8) are typically sparse. Storing blocks of
Householder vectors allows the use of Level 3 BLAS (Schreiber and Van Loan
1989); see also (Amestoy, Duff and Puglisi 1996b, Davis 2011).

4.1.3. Gram-Schmidt QR factorization
TheGram−Schmidt process computes vectors @1, @2, . . . , @= such that each column
0: , : = 1, . . . , =, of � can be expressed as a linear combination

0: = A1:@1 + A2:@2 + . . . A=:@=, A:: ≠ 0,

with 〈@8 , @8〉 = 1 and 〈@8 , @ 9〉 = 0 for 8 ≠ 9 , where 〈· , ·〉 denotes the inner product.
This can be written as the QR factorization (1.11) with the orthonormal matrix
&1 = (@1, @2, . . . , @=) ∈ R=×=. Unlike the Householder QR factorization, in which
orthogonal transformations are applied to reduce � to upper triangular form ' and
& is (implicitly) defined as the product of the Householder reflectors, &1 is held
explicitly as linear combinations of the columns of �.

The classical Gram-Schmidt (CGS) process generates @: by orthonormalising
0: against &:−1 = (@1, @2, . . . , @:−1), that is, it computes the vector

0 = 0: −&:−1&
)
:−10:

and then sets A:: = ‖0‖2 and @: = 0/A:: . CGS is suited to parallel computation (the
mainwork can be performed asmatrix-vectormultiplications), but it often produces
a non-orthogonal set of vectors because of cancellations in the subtractions.
In the modified Gram-Schmidt (MGS) algorithm, @: is obtained by first pro-

jecting column 0: onto the subspace orthogonal to @1, then the resulting vector is
projected onto the subspace orthogonal to B?0={@1, @2}, up to the projection onto
the subspace orthogonal to B?0={@1, @2, . . . , @:−1}. This limits the amplification
of the rounding errors affecting the orthogonality of @: with respect to the previ-
ously computed vectors. In finite-precision arithmetic, MGS is not equivalent to
CGS. The loss of orthogonality is proportional to the condition number ^2(�) for
MGS and to ^2(�)2 for a variant of CGS (Björck 1967b, ?).

Some applications require the computed vectors are orthogonal to machine pre-
cision. In this case, it may be necessary to reapply the orthogonalization. This
can be done at each step or selectively if the computed @: is not acceptable. At
step : , @: is accepted if ‖@: ‖2 > U‖0: ‖2 for some chosen parameter U. Other-

Sparse Linear Least Squares Problems 41

wise, @: is reorthogonalized against &:−1. U ∈ (0.1, 1/
√

2) is typically used. If
reorthogonalization of CGS is applied once at each step then there is no significant
difference between this approach and MGS. Fast Gram-Schmidt algorithms use a
block approach. A recent overview of such algorithms and their stability properties
is given in (Carson, Lund, Rozložník and Thomas 2022).

4.2. Symbolic QR factorization

Contemporary sparse QR algorithms typically start with a symbolic preprocessing
phase. This first orders the columns of � to limit fill-in in the ' factor using, for
example, a column variant of the minimum degree algorithm (Section 2.5). Further
symbolic steps may provide the size of ' or its sparsity pattern and, possibly, that
of &. If Householder reflectors are used, the size or sparsity pattern of the matrix
of Householder vectors can be predicted in advance.
A Givens rotation �(8, 9) applied to the row vectors �8,8:= and � 9 ,8:= of � can be

written as (
2 −B
B 2

)(
�8,8:=
� 9 ,8:=

)
=

(
�′
8,8:=

�′
9 ,8:=

)
,

where 2 and B are chosen to eliminate � 9 ,8 (that is, �′9 ,8 = 0). Consider the following
simple example (

�8,8:=
� 9 ,8:=

)
=

(
∗ ∗ ∗ ∗ ∗
∗ ∗

)
.

Applying �(8, 9) gives(
2 −B
B 2

)(
�8,8:=
� 9 ,8:=

)
=

(
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

)
=

(
�′
8,8:=

�′
9 ,8:=

)
.

Observe that the (1, 1) entry �′
8,8

remains nonzero (it is the Euclidean norm of the
vector (�88 � 98))) and the sparsity patterns of columns 2 to = satisfy

S(�′8,8+1:=) = S(�8,8+1:=) ∪ S(� 9 ,8+1:=), 1 ≤ 8 ≤ = − 1.

This local merge rule provides a symbolic rule for the sparsity patterns of row
vectors to which a Givens rotation is applied. It appears reasonable because, for a
nonzero vector (D E)) transformed by an arbitrary Givens rotation(

2 −B
B 2

)(
D

E

)
=

(
2D − BE
BD + 2E

)
=

(
D′

E′

)
,

both entries D′ and E′ are generally nonzero (unless \ is a multiple of a right angle)
(George and Heath 1980). However, the fill-in can be over estimated. This is
illustrated using the next example in which 0, 1 ≠ 0 (Gentleman 1976)∗ 0 1

∗ ∗ ∗
∗ ∗ ∗

→
∗ 2′20 2′21

B0 B1 ∗ ∗
B′20 B′21 ∗ ∗

→
∗ 0 1

2′′B0 − B′′B′20 2′′B1 − B′′B′21 ∗ ∗
B′′B0 + 2′′B′20 B′′B1 + 2′′B′21 ∗ ∗

 .

42 J. Scott and M. Tůma

The central matrix is obtained from the one on the left by applying �(2, 1) with
2, B chosen to eliminate the (2, 1) entry. The subsequent Givens rotation �(1, 3)
with parameters 2′, B′ is applied to the result to eliminate the (3, 1) entry. Then,
applying the rotation with parameters 2′′, B′′ to eliminate the intermediate fill-in at
position (3, 2) to the matrix in the centre gives the matrix on right, in which we
should have B′′B0 + 2′′B′20 = 0. But this entry is just a nonzero multiple of the
entry B′′B1 + 2′′B′21 at (3, 3), independently of the values of 0 and 1. In this case,
the row merge rule is not able to predict that the (3, 3) entry also always becomes
zero.

Next, consider aHouseholder reflector applied as in (4.2). Because its application
has the form of an outer product of sparse row and column vectors, the sparsity

pattern of a row of
(
'1,2:=
�(1)

)
can be obtained as

S(A>F) = S('1,2:=)
⋃
:

S(�(1)
:,1:=−1).

This can be regarded as an extension of the row merge rule for Householder
reflectors. That is, S(A>F) unifies the sparsity patterns of all the rows involved in
the outer product update (George, Liu and Ng 1988, George and Ng 1983). But,
as in the case of Givens rotations, the extended row merge rule may over estimate
the actual fill in.

It is potentially possible to predict fill-in in ' using the sparsity pattern of �) �
and the relations (1.12). Uniqueness of the Cholesky factorization implies an
estimate of the sparsity pattern of the Cholesky factor of �) � can be used to
predict S('). However, this can again lead to an overestimate. Consider the matrix
given by

� =

∗ ∗ ∗
∗
∗
∗

 . (4.4)

In this case, �) � is dense and consequentlyS(!) is predicted to be dense. However,
the QR factorization of � simply requires the elimination of the (4, 3) entry and this
can be done by an orthogonal transformation that changes only the last two rows of
�. Consequently, S(') is equal to the sparsity pattern of the first three rows of �.
The relationship between the different predictions is summarised by the following

result (Coleman, Edenbrandt and Gilbert 1986, George and Heath 1980), which is
independent of the numerical values of the nonzero entries of �.

Lemma 4.1. S(') ⊆ {prediction ofS(') based on rowmerge rule } ⊆ {prediction
of S(') based on �) �}.

Sparse Linear Least Squares Problems 43

4.2.1. The Dulmage-Mendelsohn decomposition
The strong Hall property, which is based solely on the structure of �, can be used
to examine when the row merge rule and the prediction based on �) � do not give
overestimates. An < × = matrix � with < ≥ = is said to be a Hall matrix (or to
have the Hall property) if every set of : columns has nonzeros in at least : rows
(1 ≤ : ≤ =). Note that a full-rank matrix must have the Hall property. � is a
strong Hall matrix (or to have the strong Hall property) if every set of : columns
(1 ≤ : < =) has nonzeros in at least : + 1 rows. The matrix in (4.4) does not have
the strong Hall property because its first column has a single entry.
It can be shown that if � has the strong Hall property then S(') is exactly

predicted by the local merge rule and the Cholesky factorization of �) � (Coleman
et al. 1986). Furthermore, exact predictions for & and for the matrix , whose
columns are the Householder vectors are possible (Hare, Johnson, Olesky and
van den Driessche 1993, Ng and Peyton 1992); see (Pothen 1993) for a discussion
on exact predictions of sparsity patterns (even if � does not have the strong Hall
property).
The strong Hall property can be exploited by using the Dulmage-Mendelsohn

decomposition of � (Pothen and Fan 1990). This decomposition, which is obtained
usingmaximummatching algorithms, provides a precise structural characterization
of rectangular matrices. For an overdetermined matrix, the Dulmage-Mendelsohn
decomposition comprises row and column permutations %1 and %2 such that

%1�%2 =

(
�1 �2
0 �3

)
.

Here �1 is an<1×<1 matrix and �3 is an<3×=3 overdetermined matrix (<3 > =3
or<3 = =3 = 0) with the strongHall property. If the permutations are chosen so that
�1 is additionally block upper triangular then the square blocks on the diagonal of
�1 also have the strong Hall property; this is termed the fine Dulmage-Mendelsohn
decomposition. A simple example illustrating this is

%1�%2 =

∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗ ∗

∗ ∗
∗

∗

.

If the QR factorizations of the blocks on the diagonal of �1 and the overdetermined
matrix �3 are computed then, because they have the strong Hall property, the
sparsity patterns of their respective factors can be exactly predicted. Note that,
despite this, the Dulmage-Mendelsohn decomposition is not always recommended.

44 J. Scott and M. Tůma

If � is ill conditioned or close to rank deficient then it may not be sufficient to
factorize only the blocks with the strong Hall property (Pothen 1993).

4.2.2. Row-ordering algorithms
Although the computed ' factor does not depend on the order of the rows of �,
the row ordering can significantly affect the intermediate fill and the work needed
to compute the factorization. This is illustrated by the following matrix.

� =

∗ ∗ ∗
∗
∗
∗
∗
∗

 , %� =

∗
∗
∗
∗ ∗ ∗
∗
∗

 .

Eliminating the (2, 1) and (3, 1) entries using Givens rotations �(1, 2) and �(1, 3),
there is intermediate fill-in in all remaining columns but if rows 1 and 4 of � are
exchanged then this fill in does not occur when applying the same rotations to %�.
Heuristic algorithms have been proposed, including the simple approach outlined
in Algorithm 4.1. Ties at Step 3 can be resolved by ordering the rows in ascending
order of the number of new nonzero entries that are created.

Algorithm 4.1. Row ordering of � for QR algorithm
Input: The column indices 58(�) and ;8(�) of the first and last nonzero entries in
row 8 of �.
Output: Row permutation of �.

1: Order the rows by increasing 58(�).
2: for : = 1 : max8 58(�) do
3: Order all rows with 58(�) = : by increasing ;8(�).
4: end for

An alternative strategy is to order the rows in ascending order of the column
index ;8(�) of the last entry in the row. When row 0)

8
is processed, because all

previous rows have entries only in columns with index at most ;8(�), there is no fill
in 0)

8
in columns ;8+1(�) to =.

4.3. Numerical sparse QR factorization

A significant step in the development of efficient QR factorizations was the intro-
duction of the row merge tree (Liu 1986b). This generalises Givens rotations to
so-called submatrix rotations that merge triangular submatrices and makes them
more efficient. At the same time, the approach shows the elimination tree T (�) �)
(recall Section 3.2) can be used to control the order in which the triangular sub-

Sparse Linear Least Squares Problems 45

matrices are merged. To illustrate the basic principle, consider the sparse matrix

� =

1 2 3 4
1 ∗ ∗
2 ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗
7 ∗ ∗

.

Let �1 be the submatrix comprising rows 1, 2, 3 and columns 1, 3, 4 of � and �2
be the submatrix comprising rows 4, 5, 6 and columns 2, 3, 4. Perform the QR
factorizations �1 = &

′
1'
′
1 and �2 = &

′
2'
′
2. These can be computed independently

(and different orthogonalization techniques can be used). If &1 and &2 denote the
orthogonal matrices corresponding to extending & ′1 and &

′
2 to 7 × 7 matrices then

we obtain a partial orthogonal transformation of �

� = &1&2

∗ ∗ ∗
∗ ∗
∗

∗ ∗ ∗
∗ ∗
∗

∗ ∗

.

Here, the last row �7,1:4 is unchanged. The next step is to permute the rows of the
partial transformation corresponding to the first row of '′1 and the first row of '′2
to be rows 1 and 2 of the final factor ' of �. This gives

1 2 3 4
1 ∗ ∗ ∗
4 ∗ ∗ ∗
2 ∗ ∗
3 ∗
5 ∗ ∗
6 ∗
7 ∗ ∗

.

The remaining rows of each of the upper trapezoidal matrices are called the QR
contribution blocks. In the example, they correspond to rows 3 and 4 and rows 5
and 6 of the permuted partially transformed matrix. To minimize the intermediate
fill-in, the rows of the submatrix coming from the two contribution blocks and row

46 J. Scott and M. Tůma

7 of � are ordered using Algorithm 4.1 to give

1 2 3 4
1 ∗ ∗ ∗
4 ∗ ∗ ∗
2 ∗ ∗
5 ∗ ∗
7 ∗ ∗
3 ∗
6 ∗

.

A third orthogonalization transformation is applied to the rows 3 to 7 of this
permuted matrix to yield the final QR factorization.
This approach can be generalised to more than two blocks. The blocks that are

independently orthogonalized corresponded to sets of rows of � that have the first
nonzero in the same column. The key observation that implies the precedence rela-
tions among the computed triangular factors of such blocks of rows is determined
by S(R). Namely, before performing a factorization of a block of rows with the
first nonzero in column : , all block factorizations that result in upper triangular
factors with a nonzero in column : must already have been performed. This order
is determined by precedence relations given by the elimination tree T (�) �).

4.4. Multifrontal QR factorization

Significant advances in efficient implementations of QR factorizations of sparse
problems have come from numerous contributions over many years, including
(Amestoy et al. 1996b, Edlund 2002, Matstoms 1994, Pierce and Lewis 1997).
The seminal approach of (Davis 2011) encompasses many previous ideas and adds
new ones, such as simulating the factorization symbolically to predetermine the
work needed. The enormous progress in the development of computational facil-
ities motivated GPU implementations that can factorize multiple frontal matrices
at the same time (Yeralan, Davis, Sid-Lakhdar and Ranka 2017), fine-grained mul-
tithreading (Buttari 2013), and exploitation of DAG-based parallelism (Agullo,
Buttari, Guermouche and Lopez 2016). A summary of other contributions can be
found in the review (Davis et al. 2016), while contemporary progress in hierarch-
ical QR factorizations for solving least squares problems is given in (Gnanasekaran
and Darve 2022). Here we present a short introduction to the multifrontal QR
algorithm, which shares many ideas and concepts with the multifrontal Cholesky
factorization. In practice, the columns of � are preordered to preserve sparsity,
using S(�) �); the permutation is omitted here to simplify the notation.

Supernodes (or, for efficiency, relaxed supernodes) and the postordered assembly
tree for �) � (which can be computed without explicitly forming �) � (Gilbert,
Li, Ng and Peyton 2001)) are exploited. For each supernode 9 B, a small dense
rectangular matrix �(9 B), called a QR frontal matrix, is created. It comprises the

Sparse Linear Least Squares Problems 47

rows of � for which the index of the first nonzero entry belongs to 9 B together with
the contribution blocks from the children of 9 B in the postordered assembly tree.
The contribution block '(:B) from child :B is the upper triangular factor obtained
by the QR factorization of �(:B). It is not necessary to complete the factorization
of a QR frontal matrix to transform it to an upper triangular matrix. For �(9 B),
it is sufficient to perform | 9 B | steps to compute | 9 B | rows of ' (where | 9 B | is the
number of columns in supernode 9 B). However, computing its QR factorization
fully can significantly reduce workspace requirements (Amestoy et al. 1996b).
The multifrontal QR approach is summarized as Algorithm 4.2. Note that the
orthogonal transformations computed in the algorithm must always be extended to
be of order equal to the row dimension of �.

Algorithm 4.2. Multifrontal QR factorization
Input: Matrix � of full column rank and the postordered assembly tree of �) �.
Output: Upper triangular factor ' of the QR factorization, orthogonal transform-
ations used to transform � stored implicitly or as their product &.

1: for 9 B = 1 : =B do ⊲ Follow the postordering of the tree
2: Assemble �(9 B) using rows of � for which the index of the first nonzero

entry belongs to 9 B and QR contribution blocks from children of 9 B
3: Compute QR factorization of �(9 B) ⊲ Results in block row of ' and

contribution block '(9 B)
4: Push '(9 B) onto the stack. ⊲ '(9 B) will be popped from the stack when

assembling �(?0A4=C(9 B))
5: end for

Figure 4.1 illustrates the QR multifrontal method applied to a matrix with the
following sparsity pattern.

� =

1 2 3 4 5 6 7 8
1 ∗ ∗
2 ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗
7 ∗ ∗
8 ∗ ∗
9 ∗ ∗
10 ∗ ∗

(4.5)

S(�) �) is the same as the sparsity pattern of the matrix � in Figure 3.1 that was
used to demonstrate the multifrontal Cholesky factorization and so the assembly
tree is as in Figure 3.2. Entries belonging to the QR contribution blocks are
indicated using superscripts. We do not show the transformations that can be
composed to obtain the & factor or how to store it implicitly.

48 J. Scott and M. Tůma

6, 7, 8

3, 4

1 2

5

086 088
097 098

A
(3)
36 A

(3)
37
A

(3)
47

A66 A67 A68
A77 A78

A88

010,3 010,4

054 056

A
(1)
23 A

(1)
26 A

(1)
27

A
(1)
66 A

(1)
67

A
(2)
44 A

(2)
46

A33 A34 A36 A37

A44 A46 A47

A
(3)
36 A

(3)
37

A
(3)
47

011 013
021 027
061 066

A11 A13 A16 A17
A

(1)
23 A

(1)
26 A

(1)
27

A
(1)
66 A

(1)
67

032 034 036
042 046

A22 A24 A26

A
(2)
44 A

(2)
46

075 078 A55 A58

Figure 4.1. The QR multifrontal method applied to the matrix � = {08 9} from
(4.5). Each vertex shows the transformation from its QR frontal matrix �(9 B) to
the entries of the upper triangular factor ' = {A8 9} of the QR factorization and the
QR contribution block '(9 B) that is passed from child to parent. To illustrate the
method, global indices are used for the entries of the QR contribution blocks; the
superscripts indicate which supernode the QR contribution comes from.

4.5. QR factorization when � is rank deficient

The QR factorization is backward stable but if � is (close to) rank deficient then
the computed ' factor is ill conditioned. This usually leads to the computed least
squares solution having a very large norm. If A0=:(�) = A: < = then theoretically
there is a column permutation matrix % (which is not necessarily unique) and an
orthogonal matrix & such that

�% = &

(
'11 '12
0 0

)
,

where '11 ∈ RA :×A : is upper triangular with positive diagonal entries. This is
column-pivoted QR (CPQR). In place of (4.3), the iteration formula becomes

�(9) = �(9)�(9−1)%(9),

where %(9) is the permutation matrix that swaps column 9 of �(9−1) with the column
: ≥ 9 that has the largest 2-norm. The column : is called the pivot column. The
computed factorization is

�(=) . . . �(2)�(1)�% = �(=) = ', % = %(1)%(2) . . . %(=).

Sparse Linear Least Squares Problems 49

The first A: columns of �% are linearly independent and the least squares solution
G can be obtained from

'11H1 = 31 − '12H2, G = %)
(
H)1 H)2

))
,

where (
31
32

)
= &)

(
11
12

)
, 11, 31 ∈ RA : ,

and H2 ∈ R=−A : is an arbitrary vector (Björck 2024, Golub 1965). In finite precision
arithmetic, the ' factor generally does not have zeros on its diagonal, even if � is
rank deficient. Instead, the computed factorization is of the form

�% = &

(
'11 '12
0 '22

)
.

Although the rank may be revealed by the presence of small diagonal entries, this
does not imply that the rest of the rows are negligible. A diagonal entry AA :+1,A :+1
of large absolute value computed after A: steps of the QR factorizationmay hide the
fact that the rank of � is A: . Handling rank deficiency is an important component
of approaches based on orthogonal factorizations for solving sparse least squares
problems (Davis 2011, Heath 1982, Ng 1991).
Let the singular valuesf8(�) of � be ordered in decreasing order and letfA :('11)

be the smallest singular value of the first A: columns of �% and f1('22) be the
largest singular value of '22. Then the factorization is said to be a rank-revealing
QR (RRQR) factorization if

fA :('11) ≥ fA :(�)/2 and f1('22) ≤ 2 fA :+1(�),

where 2 = 2(:, =) > 0 is bounded by a low-degree polynomial in A: and = (Björck
2024). RRQR algorithms can be classified by whether they seek to find fA :('11) ≈
fA :(�) or f1('22) ≈ fA :+1(�) (Chandrasekaran and Ipsen 1994). There has been
significant research into theory and algorithms for RRQR factorizations. This
includes seeking to detect columns that can be considered as redundant (linearly
dependent on the others) (Foster 1986, Pierce and Lewis 1997), postprocessing the
computed QR factorization (Chan 1987), improving the bounds on the quality of
RRQR factorizations (Hong and Pan 1992), and communication avoiding RRQR
factorizations (Demmel, Grigori, Gu and Xiang 2015).

4.6. Techniques for column-pivoted QR

Making classical QR factorization algorithms efficient on modern hardware is
challenging and incorporating pivoting typically incurs significant overheads. The
problem is that it involves a sequence of =−1 rank-1 updates (BLAS 2 operations),
making it communication intensive. In principle, this can be resolved by blocking.
Let =1 denote a chosen block size. In a blocked Householder QR algorithm, =1
pivot columns are chosen and =1 Householder reflectors are computed, allowing

50 J. Scott and M. Tůma

updates to the remainder of the matrix to be performed using BLAS 3 operations.
Many techniques for blocking Householder QR have been proposed including, for
example, (Bischof and Hansen 1991, 1992).
Randomized sampling can be used to overcome the problem of determining

subsets of pivot columns. The key observation is that a measure of the quality for
a subset of pivot columns is its spanning volume in R< (defined as the product of
the singular values of the matrix defined by these columns); this volume should be
maximal (Çivril and Magdon-Ismail 2009). This criterion is closely related to how
well the subset of columns represents the column space of �, which is a problem
that is well suited to randomized sampling. Consider the task of identifying a subset
of =1 pivot columns in the first step of the blocked QR process. Start by choosing a
small oversampling parameter ? (typically ? = 10). Then draw a Gaussian random
matrix Ω of size (=1 + ?)×<, and form a sampling matrix . = Ω�. Next, perform
classical CPQR on the columns of . , which is inexpensive because . is small
and fits into fast memory. This determines %(1). The process is then repeated.
To maximize performance, it is possible to update the sample matrix used in the
first step, which obviates the need to draw a new random matrix at each stage
and renders the overhead cost induced by randomization almost negligible. The
resulting algorithm is Householder QRwith Randomization for Pivoting (HQRRP)
(Martinsson, Quintana-Ortí, Heavner and Van De Geijn 2017). The use of random
sampling to obtain rank-revealing matrix factorizations is discussed in (Duersch
and Gu 2020) and (Martinsson and Tropp 2020) provides a survey of randomized
methods in numerical linear algebra.

4.7. QR for strongly overdetermined systems

The least squares problem with � ∈ R<×= is said to be strongly overdetermined if
< � =. Matrices that have many more rows than columns are often referred to as
tall-and-skinny (TS). They commonly arise in big data applications with billions of
data points and only a few hundred descriptors. TSQR algorithms (Benson, Gleich
andDemmel 2013, Demmel, Grigori, Hoemmen andLangou 2012) are numerically
stable, efficient, communication-avoiding parallel approaches to computing the QR
factorization of TS matrices. They can be used as panel factorizations within a
square QR factorization. The first stage partitions the rows of the TS matrix into
(non-overlapping) blocks �8 and then computes the QR factorization of each row
block, that is, �8 = &8'8 , 8 = 1, 2, . . . , # . Subsequent stages merge the resulting
upper triangular matrices in a divide-and-conquer fashion until a single factor ' is
obtained. This requires about log2 # stages. To illustrate this, let # = 4. After the
first stage,

� =

�1
�2
�3
�4

 =

&1

&2
&3

&4

'1
'2
'3
'4

 .

Sparse Linear Least Squares Problems 51

The second steps stacks the upper triangular factors in pairs and computes #/2
factorizations

(
'1
'2

)
(
'3
'4

)
 =

(
&1,2

&3,4

)(
'1,2
'2,3

)
.

Finally, (
'1,2
'2,3

)
= &1,2,3,4 '.

In general, the combination process informs a tree in which the �8 are the leaf
vertices and the final ' is the root. Combining in pairs as in the example corresponds
to a binary tree. More generally, the tree can be chosen to minimize communication
between processors or the volume of memory traffic between the main memory and
the cache memory of each processor. Note that the row blocks �8 are generally not
sparse and TSQR algorithms target large strongly overdetermined dense matrices.
Furthermore, while the TSQR approach is more communication efficient than the
standard Householder algorithm for the QR factorization of highly overdetermined
matrices, it produces a different representation of the orthogonal factor and this
requires additional software development (Ballard, Demmel, Grigori, Jacquelin,
Knight and Nguyen 2015).

Another communication-avoidingQR algorithm for TSmatrices is the Cholesky-
QR algorithm. If �) � = ') ' is the Cholesky factorization of the normal matrix
then the Cholesky-QR algorithm computes &1 = �'

−1 by block forward substitu-
tion giving � = &1'. This is attractive in terms of high performance computing
as it requires only one global reduction between parallel processing units and
most of the computational work can be performed using matrix-matrix operations.
However, the method is rarely used in practice because the loss of orthogonality
‖� − &)1 &1‖� is O(n^2(�)2) and breakdown can occur even when A has full nu-
merical rank. To overcome this, the modified Cholesky-QR2 algorithm refines the
' and &1 factors. The matrix &)1 &1 is formed and then its Cholesky factorization
&)1 &1 = (

) (computed. The refined factorization is taken to be � = &̂'̂ , where
&̂ = &1(

−1 and '̂ = ('. Provided the initial Cholesky factorization does not break
down, this approach can be shown to have good stability properties (Yamamoto,
Nakatsukasa, Yanagisawa and Fukaya 2015). For ill-conditioned matrices, a pos-
sible strategy is to use the LU factors of � to precondition before computing a
Cholesky factorization (Terao, Ozaki and Ogita 2020). Recently, a new approach
that combines randomized preconditioning, column pivoting and Cholesky-QR
has been proposed (Melnichenko, Balabanov, Murray, Demmel, Mahoney and
Luszczek 2024).

52 J. Scott and M. Tůma

4.8. Software for sparse QR factorizations

There are many challenges to address in designing and developing efficient and
robust QR software for sparse matrices but a number of library-quality packages
that implement the QR multifrontal method are available. The serial QR package
MA49 was developed in the 1990s (Amestoy et al. 1996b) and is part of the HSL
library. More recently, there are the parallel solvers SuiteSparseQR (Davis 2011,
Yeralan et al. 2017)18,19, qr_mumps (Buttari 2013)20 and the Intel Math Kernel
Library Sparse QR. These are general-purpose codes that incorporate numerical
pivoting. The RRQR approach used in SuiteSparseQR sets to zero the whole row
of ' if the diagonal entry is less than some tolerance. While this may not determine
the rank of � exactly, it is efficient because the changes in the precomputed sparsity
pattern of ' are straightforward. SuiteSparseQR offers an option to compute
minimum norm solutions to full-rank underdetermined least squares problems (but
not rank-deficient problems).

Within the cuSolver library21, cuSolverSP provides routines for sparse QR factor-
izations. For matrices whose sparsity pattern is not good for exploiting parallelism,
there is a CPU option; for those with abundant parallelism potential, the GPU
option delivers higher performance. cuSolver also offers a refactorization package
cuSolverRF. This can give good performance when solving a sequence of problems
where the coefficients of � change but the sparsity pattern remains the same.
Limited implementations of TSQR are available. In MATLAB, the parallel

dataflow programming and execution framework MapReduce22 (Constantine and
Gleich 2011) can be used to compute a TSQR factorization of highly overde-
termined matrices. SLEPc23 is a software library for the solution of large scale
sparse eigenvalue problems on parallel computers; it includes TSQR.

5. Direct methods for the augmented system formulation
Recall from (1.9) that the linear least squares problem is mathematically equivalent
to the non singular symmetric indefinite linear system

(
A

G

)
=

(
1

0

)
, with =

(
� �

�) 0

)
, A = 1 − �G. (5.1)

Introducing a scaling parameter V > 0, this system is equivalent to

 V

(
V−1A
G

)
=

(
1

0

)
, with V =

(
V� �

�) 0

)
, (5.2)

18 https://faculty.cse.tamu.edu/davis/suitesparse.html
19 https://github.com/DrTimothyAldenDavis/SuiteSparse
20 https://gitlab.com/qr_mumps/qr_mumps
21 https://docs.nvidia.com/cuda/cusolver/
22 https://github.com/arbenson/mrtsqr
23 https://slepc.upv.es/

https://faculty.cse.tamu.edu/davis/suitesparse.html
https://github.com/DrTimothyAldenDavis/SuiteSparse
https://gitlab.com/qr_mumps/qr_mumps
https://docs.nvidia.com/cuda/cusolver/
https://github.com/arbenson/mrtsqr
https://slepc.upv.es/

Sparse Linear Least Squares Problems 53

and so solving this augmented system also gives the solution to the original least
squares problem. It was shown (Björck 1967a) that if the singular values of � are
f8 (1 ≤ 8 ≤ =) then the < + = eigenvalues of V are

_ =

{
V

2 ±
√
V2

4 + f2
8
, 8 = 1, . . . , =,

V, otherwise.

If f= > 0 then minV ^2(V) ≈
√

2^2(�) is attained when V = f=/
√

2. If A0=:(�) =
A: ≤ =, then the eigenvalue V has multiplicity < − A: , and 0 is an eigenvalue of
multiplicity = − A: . The conditioning of V varies significantly with V: V can
be larger than ^2

2(�) or smaller than 2^2(�). With an appropriate choice of V, the
conditioning of V is much better than for the normal matrix (Björck 1967a). An
automatic technique for selecting V is proposed in (Arioli, Duff and de Rijk 1989),
where it was demonstrated that the use of a direct method applied to the augmented
system formulation is an accurate and efficient approach to solving sparse least
squares problems.
In addition to the conditioning, there are a number of other reasons for opting to

solve the augmented system. Themost obvious is to avoid the difficulties associated
with using the normal matrix. In particular, � = �) � can be much denser than �
(and hence) and so a sparse Cholesky factorization may be impractical (sparse-
dense problems are discussed further in Section 8). Even if � is not explicitly
formed, a solution approach based on factorizing � can still be expensive because
� is used implicitly (with entries computed as they are needed). Moreover, iterative
refinement with the Cholesky factors of � may not recover full precision in the
least squares solution (Section 7 considers iterative refinement).
There exist sophisticated approaches to compute LDLT factorizations of sym-

metric indefinite matrices that incorporate pivoting for numerical stability. Note
also that the reduction of to the normal equations corresponds to the explicit
elimination of the (1,1) block, that is, choosing the < diagonal entries of this block
as the first < pivots in the factorization of . It follows that systematic pivoting at
all steps of an LDLT factorization (based only on the sparsity pattern) will generally
lead to the fill-in being less than in the Cholesky factor (Tůma 2002).

5.1. LDLT factorizations using threshold pivoting

In this section, the focus is on the factorization of general sparse symmetric in-
definite matrices. Factorizing such matrices is challenging because of the need to
maintain numerical stability. The Cholesky factorization of a symmetric positive
definite matrix takes the pivots in order from the main diagonal and the fill in the
computed factor is as predicted from the sparsity pattern of the matrix. This is
not the case for indefinite matrices. Modifications to the pivot order are needed
and this generally leads to extra fill in the factors. Moreover, incorporating pivot-
ing strategies can limit the potential for parallelism and can be associated with
significant data movement that hinders the scalability of the methods.

54 J. Scott and M. Tůma

Let � be a general sparse symmetric indefinite matrix and, to simplify the
notation, we assume that it has been prescaled for numerical stability and preordered
using a fill-reducing ordering. The ordering algorithm normally assumes that all
the diagonal entries 188 of � are nonzero, that is, the sparsity pattern S(� + �) is
used and the same ordering algorithms as for symmetric positive definite matrices
are employed (Section 2). Let �(:) denote the :-th partially eliminated matrix (that
is, the matrix after the first : − 1 elimination operations). If the diagonal entry 1(:)

::

is zero then it cannot be chosen as the next pivot. Further more, if |1(:)
::
| is small

(relative to the other entries below the diagonal in column : of �(:)) then using it
as a pivot will lead to large entries in the factor, that is, numerical instability. The
growth factor d6A>FCℎ is defined to be

d6A>FCℎ = max
8, 9 ,:

(|1(:)
8 9
| / |18 9 |).

If rows within �(:) are permuted to bring a non zero off-diagonal entry onto the
diagonal then symmetry is destroyed, which means an LU factorization must be
performed. This is often not attractive because it essentially doubles the factoriza-
tion cost in terms of both the storage requirements and operation counts. Extending
the notion of a pivot to 2 × 2 blocks allows symmetry to be preserved. Consider
the following matrix

� =

(
X 1
1 0

)
.

If X = 0, an LDLT factorization in which � is a diagonal matrix does not exist.
Furthermore, if X � 1 then an LDLT factorization with � diagonal is not stable
because d6A>FCℎ = 1/X. However, if the LDLT factorization is generalised to allow
� to be a block diagonal matrix with 1×1 and 2×2 blocks then a factorization can
be computed that preserves symmetry and is nearly as stable as an LU factorization.
This is illustrated by the factorization of the following 3 × 3 symmetric indefinite
matrix

� =

1 1 0
1 1 1
0 1 0

 =

1 0 0
1 1 0
0 0 1

1 0 0
0 0 1
0 1 0

1 1 0
0 1 1
0 0 1

 = !�!) .

Here � has one 1 × 1 block and one 2 × 2 block.

For sparse matrices, it is necessary to balance pivoting for stability with limiting
the amount of fill-in in the factors. The compromise strategy that seeks to achieve
this is called threshold partial pivoting (TPP). Let g > 0 be a chosen threshold
parameter. Typical values used for factorizing a suitably scaled matrix are 0.1 or
0.01. Limiting the size of the entries of ! so that

|;8 9 | ≤ g−1 (5.3)

for all 8, 9 , together with a backward stable scheme for solving 2× 2 linear systems,

Sparse Linear Least Squares Problems 55

suffices to show backward stability for the entire solution process. The stability
test for a 1 × 1 pivot in column C of the active submatrix at stage : is the standard
threshold test

max
8≠C , 8≥:

|1(:)
8C
| ≤ g−1 |1(:)

CC |. (5.4)

For a 2 × 2 pivot in rows and columns B and C of �(:) the corresponding test is������
(
1

(:)
BB 1

(:)
BC

1
(:)
BC 1

(:)
CC

)−1������
(

max8≠B,C;8≥: |1(:)
8B
|

max8≠B,C;8≥: |1(:)
8C
|

)
≤ g−1

(
1
1

)
, (5.5)

where the absolute value of the matrix is interpreted element-wise (Duff, Gould,
Reid, Scott and Turner 1991). If 1(:)

CC is accepted as a 1 × 1 pivot, it becomes the
next diagonal entry of � and row and column C are permuted (if necessary) to
the pivotal position : . The corresponding diagonal entry of ! is 1 and from the
inequality (5.4), the off-diagonal entries of column : of ! are bounded in absolute

value by g−1. If

(
1

(:)
BB 1

(:)
BC

1
(:)
BC 1

(:)
CC

)
is accepted as a 2 × 2 pivot, it becomes the next

diagonal block of � and rows and columns B and C are permuted (if necessary) to
the next two pivotal positions, : and : + 1. The corresponding diagonal block of !
is the identity matrix of order 2 and inequality (5.5) ensures that the off-diagonal
entries of these columns of ! are bounded in absolute value by g−1.
In addition to bounding the size of the entries in !, the ability to stably apply the

inverse of � to a vector is required. This is trivially the case for 1 × 1 pivots, but
for 2 × 2 pivots it is necessary to check that the determinant |1(:)

BB 1
(:)
CC − 1

(:)
BC 1

(:)
BC |

is sufficiently large and cancellation does not occur during the application of the
inverse.
A major difficulty when TPP tests are incorporated into a sparse matrix factoriz-

ation algorithm is that, at a particular stage, a pivot satisfying the stability criteria
may not exist. As in the Cholesky case, the assembly tree is constructed during
the analyse phase of the solver using the sparsity pattern on the matrix (with the
diagonal entries assumed to be present). If no stable 1×1 or 2×2 pivot is available
within a supernode, then pivot candidates that have not been selected are passed up
the assembly tree and eliminated later at an ancestor in the tree. These are known
as delayed pivots. Provided g ≤ 0.5, it can be shown that a complete set of pivots
can be chosen at the root vertex. Delaying a pivot candidate results in additional
fill-in, more work (in the factorization and solve phases of the solver) and, very
importantly, hinders the exploitation of parallelism and so is undesirable.

5.2. Avoiding delayed pivots

A number of strategies have been proposed that seek to limit the occurrence of
delayed pivots. One possibility if entry 188 is small is to symmetrically permute �
before the numerical factorization commences to put a large off-diagonal entry 18 9

56 J. Scott and M. Tůma

onto the subdiagonal to give a 2 × 2 block
(
188 18 9
18 9 1 9 9

)
that is potentially a good

2 × 2 candidate pivot. This can be achieved using a symmetric matching-based
ordering and scaling algorithm (Duff and Pralet 2005, Schenk andGärtner 2006). A
reordering %1, based on a symmetrized maximumweight matching of � is followed
by a fill-reducing reordering %2 that maintains the diagonal block structure. The
matrix can also be scaled by a symmetric scaling (that is also obtained through
the weighted matching algorithm. Thus, the factorization algorithm is applied to
the matrix �̂ = %2%1(�(

) %)1 %
)
2 . Disadvantages are that computing the matching

can be expensive and as the numerical values of the entries of � are used, if a
series of matrices with the same sparsity pattern but different numerical values
need to be factorized (such as in a nonlinear least squares problem) then the whole
procedure may have to be rerun for each matrix, potentially adding significantly
to the total solution time. Furthermore, the computed ordering may lead to the
analyse phase of the direct solver applied to S{�̂} predicting more entries in the
factors than for an ordering computed using nested dissection or minimum degree
applied directly to S{�}. This can result in the runtime of the factorization and
subsequent triangular solves being significantly increased over a standard ordering
if little or no pivoting is actually needed. However, for “tough” indefinite problems
for which standard orderings lead to large numbers of delayed pivots, combining
a matching-based approach with a numerically aware nested dissection ordering
can deliver a significantly lower operation count while also limiting the number of
delayed pivots (Hogg, Scott and Thorne 2017).

Static (or restricted) pivoting schemes respect the data structures obtained by the
analyse phase (symbolic factorization) that precedes the numerical factorization.
The aim is to (closely) follow the pivot order selected in the analyse phase to
limit fill-in in the factors and the factorization time at the potential cost of reduced
accuracy in the factorization. During the factorization when a forecast pivot is
too small, a prescribed perturbation is added to maintain numerical stability. The
computed factors are for a perturbed matrix that is “close” to the original matrix
(Duff and Pralet 2007, Schenk and Gärtner 2006). Relaxed pivoting, in which the
threshold parameter g is increased to allow pivots to be chosen, is another possible
strategy. These ideas are reviewed in (Hogg and Scott 2013c, Davis et al. 2016).
Because such strategies weaken the stability tests, the factorization and hence the
computed solution may be less accurate, and it may be necessary to try and improve
the solution using iterative refinement (see Section 7) or by employing the factors
as a preconditioner for a Krylov subspace solver. This often works well but for
some very ill conditioned systems, this may not be enough to obtain an accurate
solution so awareness of the potential issues is important.
More recently, a posteriori threshold pivoting (APTP) has been proposed (Duff,

Hogg and Lopez 2020). APTP involves a fail-in-place approach that keeps the
failed columns in place, updates them during the factorization and then handles
them at the end of the factorization. Additionally, it uses speculative execution

Sparse Linear Least Squares Problems 57

speculatively runs a task assuming that no numerical issues have occurred in other
tasks that might affect the current one. The overhead is the need for a backup
of entries and implementing a backtracking strategy if numerical instability is
detected.

5.3. Refactorization for sequences of linear least squares problems

Solving a nonlinear least squares problem involves solving a sequence of linear least
squares problems (1.25). For each problem, the least squares matrix � = J (G(9))
has the same sparsity pattern but different values. Thus it is only necessary to
perform the symbolic analysis for the first augmented system. The numerical
factorization with pivoting is also performed for the first system. Then for each
subsequent system, if the values of the entries of the matrix have not changed sub-
stantially, only the numerical factorization is performed, reusing both the symbolic
analysis and, importantly, the pivot sequence obtained for the first system. This
reuse of the pivot sequence within the numerical factorization is referred to as
refactorization and is possible because sparse solvers normally offer separate calls
to the analyse and factorization phases. Iterative refinement can be employed to
improve the accuracy of the computed solution (Section 7.2). Periodically, it may
be necessary to recompute the numerical factorization with pivoting to obtain a
new pivot sequence.

5.4. Software for sparse augmented systems

Since the 1980s, significant effort has gone into developing robust LDLT solvers
for symmetric indefinite systems. The HSLmathematical software library includes
a number of packages that are designed for symmetric indefinite systems, most
notably the multifrontal codes MA57 and HSL_MA97, and the supernodal DAG-
based code HSL_MA86 ((Hogg and Scott 2013b)). These codes all include the
threshold partial pivoting described in Section 5.1. The sparse linear least squares
package HSL_MA85 calls HSL_MA97 for (weighted) and optionally regularized
least square problems. It also handles the case that � contains a small number
of dense rows (see Section 8). Other well-known parallel sparse direct solvers
that support symmetric indefinite systems include MUMPS, Pardiso and WSMP
(see Section 3.9). Pardiso combines dense Bunch-Kaufman pivoting (Bunch and
Kaufman 1977) with a static pivoting strategy and for augmented systems the
use of a matching-based preordering is recommended. The APTP algorithm is
implemented within the SSIDS sparse symmetric indefinite direct solver, which
is part of the Sparse Parallel Robust Algorithms Library (SPRAL)24. SSIDS is a
multifrontal solver that is able to exploit GPU devices on heterogeneous CPU-GPU
architectures. As with HSL_MA97, when used with a bit-compatible BLAS library,
SSIDS guarantees bit-compatibility results.

24 https://www.numerical.rl.ac.uk/spral/

https://www.numerical.rl.ac.uk/spral/

58 J. Scott and M. Tůma

There are standalone routines for computing maximum weighted matchings and
scalings. The most well-known is the HSL package MC64 (and the later Version
HSL_MC64). HSL_MC80 combines a matching algorithm with a fill-reducing
ordering algorithm to compute an elimination order that is suitable for use with a
sparse direct solver for general symmetric indefinite systems.

6. Iterative solvers and algebraic preconditioners
6.1. Stationary iterative methods

The earliest mention of using an iterative method to solve a linear system of
equations is attributed to the original work of Gauss in the mid 1820s. A brief
history of developments in the nineteenth and twentieth centuries is given in (Saad
and Van Der Vorst 2000). Let us assume that the normal system of equations is
to be solved. The basic idea behind stationary iterative methods is to split the
system matrix so that at each iteration we only have to solve a simple linear system.
Specifically, the normal matrix is split into

�) � = " − #,

where " is nonsingular and easy to invert. Starting with an initial guess G(1), the
iterations are then given by

"G(:+1) = #G(:) + �) 1, : = 1, 2, . . . (6.1)

This can be rewritten as

G(:+1) = G(:) + "−1�) (1 − �G(:)) = G(:) + "−1�) A (:), : = 1, 2, . . . , (6.2)

where A (:) is the residual vector that corresponds to the approximation solution G(:).
Observe that by substituting 1 = A (:) + �G(:) into G = (�) �)−1 �) 1, we obtain

G = (�) �)−1�) (A (:) + �G(:)) = G(:) + (�) �)−1�) A (:),

and if " is used to approximate �) �, we again get the iteration (6.2). From (6.2),

A (:+1) = 1−�(G(:)+"−1�) A (:)) = (�−�"−1�)) A (:) = . . . = (�−�"−1�)): A (1).

The matrix � = � − "−1�) � = "−1# is called the iteration matrix.

Lemma 6.1. For any initial vector G(1) and vector 1, the iteration (6.1) converges
if and only if the spectral radius of the iteration matrix � = "−1# is less than
unity.

In general, it is impractical to compute the spectral radius and sufficient condi-
tions that guarantee convergence are used. Because d(�) ≤ ‖�‖ for any square
matrix and any consistent matrix norm, a sufficient condition is ‖�‖ < 1. A
small spectral radius leads to rapid convergence and the closer the eigenvalues of
"−1�) � are to unity, the faster the convergence. However, the eigenvalue distribu-
tion (not just the spectral radius) is important in evaluating the rate of convergence.

Sparse Linear Least Squares Problems 59

Often it is desirable for the iteration matrix to have real eigenvalues. This is the
case if the iterative method is symmetrizable, that is, if there exists a nonsingular
matrix . such that ."−1�) �.−1 = . (� − �).−1is symmetric positive definite.

Several standard stationary methods are obtained from the splitting

� = �) � = �� + !� +*� ,

where �� is a diagonal matrix that represents the diagonal part of �, and !� and
*� are the strictly lower and upper triangular parts of �, respectively. If l > 0 is
a scalar parameter, classical methods include:

• Relaxed Richardson method: " = l−1�,
• Jacobi and damped Jacobi methods: " = �� and " = l−1�� ,
• Gauss-Seidel and SOR methods: " = �� + !� and " = l−1�� + !� .

These can be implemented without forming the normal matrix. The Jacobi method
is symmetrizable but the Gauss-Seidel method is not. However, there exists a
symmetrizable variant of the SOR method called SSOR and the Gauss-Seidel
method, as a special case of the SOR method, can also be symmetrized. Com-
pared to Gauss-Seidel, the Jacobi method can be more readily adapted to parallel
computation. Both methods can be generalised to block matrices (Elfving 1980).
For Richardson’s method, from (6.1), if G(1) ∈ R(AT) then G(:) ∈ R(AT) for all

: > 1. It follows that if � is rank-deficient then Richardson’s method converges to
the pseudoinverse solution G = �†1. However, in practice rounding errors result in
a small error component in N (A) that grows linearly with : . This is also the case
for many other iterative methods for solving the normal equations.

An approach that is related to Richardson’s method and has received attention in
recent years is the (block) Cimminomethod (Benzi 2004). It is potentially attractive
because the main computational effort involves independent subproblems, defined
by a partitioning of the system matrix into blocks of rows or blocks of columns.
These can be solved efficiently in parallel using existing software. Variants of
the approach have been proposed but the method generally lacks robustness (Duff,
Guivarch, Ruiz and Zenadi 2015, Dumitraşc, Leleux, Popa, Ruiz and Torun 2018).
Recently, extending the augmented blockCimminomethod to full rank least squares
problems has been proposed (Dumitraşc, Leleux, Popa, Ruede and Ruiz 2021)

The concept of splitting can be applied directly to rectangular matrices �,
avoiding the use of the normal equations and its poorer conditioning. Suppose
� = "� − #�. For the splitting to be valid it must be a so-called proper splitting,
that is, the range and null spaces of � and "�must be equal. For a proper splitting,
it can be shown that the iteration

G(:+1) = "†
�

(#�G(:) + 1)

converges to the pseudoinverse solution G = �†1 for every G(1) if and only if the
spectral radius of the iteration matrix is less than unity, that is, d("†

�
#�) < 1

(Berman and Plemmons 1974, Climent and Perea 2003).

60 J. Scott and M. Tůma

6.2. Krylov subspace methods

Let � ∈ R=×=. Given E ∈ R= (E ≠ 0), the sequence of vectors E, �E, �2E, �3E, . . .
is called a Krylov sequence and the subspace spanned by the first : vectors is a
Krylov subspace, denoted by

K(:)(�, E) = B?0={E, �E, . . . , �:−1 E}.

Krylov subspace-based methods provide powerful tools for solving linear systems
of equations; they form the most widely-used class of preconditioned iterative
methods. Importantly for very large problems, they do not need the matrix � to be
stored; instead, each iteration requires products with � (and, in the general case,
with �)). Because Krylov subspacemethods build a basis, convergence is achieved
in exact arithmetic in at most = iterations. In the presence of rounding errors, this
is not guaranteed. If = is large, it is impractical to perform $(=) iterations; the
hope is that the process returns a sufficiently accurate solution far earlier. Indeed,
in some practical applications, it may only be feasible to perform a very limited
number of iterations.
For SPD linear systems, the Krylov subspace method of choice is the classical

conjugate gradient (CG) method. It can be shown that the approximate solution
H(:) at iteration : computed using the CG method satisfies

‖H − H(:)‖� ≤ 2
(√

^2(�) − 1
√
^2(�) + 1

):
‖H − H(0)‖�, (6.3)

where ‖ · ‖� is the �-norm, and ^2(�) = _<0G/_<8= is the spectral condition
number (_<0G and _<8= are the largest and smallest eigenvalues of �). Clearly,
there is good (fast) convergence when ^2(�) is small but poor (slow) convergence
can occur if ^2(�) � 1 (_<8= is close to zero). The error bound (6.3) is often
highly pessimistic. It does not show the potential for the CG method to converge
superlinearly or that the rate of convergence depends on the distribution of all the
eigenvalues of �. In practice, it is not normally possible to obtain detailed spectral
information for �.

For nonsingular indefinite matrices, possible methods are the short-term recur-
rence methods SYMMLQ andMINRES (MINimal RESidual) (Paige and Saunders
1975). When using preconditioning, the preconditioned system matrix also needs
to be symmetric and this generally requires that the preconditioner is SPD. If no
good SPD preconditioner is available, or if there is a very good nonsymmetric
preconditioner, the potential advantage of the symmetry of � is lost and it may
be necessary to use a solver for nonsymmetric matrices. In this case, the most
widely used Krylov subspace is GMRES (Generalised Minimal RESidual) (Saad
and Schultz 1986). GMRES has the disadvantage of not being a short-term recur-
rence method and it may be necessary to incorporate a restarting strategy to limit
the number of vectors that must be held and the work involved in each iteration.
Krylov subspaces with � = �) � or � = ��) play a fundamental role in non-

Sparse Linear Least Squares Problems 61

stationary iterative methods for solving large-scale least squares problems. If � is
ill conditioned then the CG method applied naively to the normal equations will
generally perform poorly. CGLS (Hestenes and Stiefel 1952), which is derived by a
slight algebraic rearrangement of the CG method, has better numerical properties,
at the expense of a small amount of additional storage and work per iteration.
Specifically, CGLS avoids explicit formation of the normal matrix and the residual
A = 1 − �G is recurred (rather than the residual �) A of the normal equations); at
each iteration ‖A ‖2 is minimized. The method is outlined in Algorithm 6.1. Each
iteration requires one matrix-vector multiplication with � and one with �) .

Algorithm 6.1. CGLS (Conjugate Gradients for Least Squares)
Input: Matrix � ∈ R<×=, right-hand side vector 1, initial approximation G(1).
Output: Least squares solution G.

1: A (1) = 1 − �G(1), I(1) = ?(1) = �) A (1), W(1) = ‖I(1)‖22
2: for 9 = 1, 2, . . . D=C8; convergence do
3: @(9) = �?(9)

4: U(9) = W(9)/‖@(9)‖22
5: G(9+1) = G(9) + U(9)?(9)

6: A (9+1) = A (9) − U(9)@(9)

7: I(9+1) = �) A 9+1
8: W(9+1) = ‖I(9+1)‖22
9: V(9) = W(9+1)/W(9)

10: ?(9+1) = I(9+1) + V(9)?(9)

11: end for

Recall that if A0=:(�) < = the least squares solution is not unique. However, it
is straightforward to verify that if G(1) ∈ R(AT) (e.g., G(1) = 0) then G(9) ∈ R(AT),
9 = 0, 1, Hence, in exact arithmetic, CGLS converges to the pseudoinverse
solution G = �†1 ∈ R(AT) and, in theory, CGLS can be employed to solve least
squares problems of any rank, either overdetermined or underdetermined.
LSQR (Paige and Saunders 1982) is also algebraically equivalent to applying

CG to the normal equations. It is popular because it should be more reliable for
ill-conditioned problems, again at the cost of extra storage and work per iteration
(although as with CGLS, each iteration requires one multiplication with � and
one with �) and these are frequently the dominant cost). LSQR is based on
the Golub-Kahan (GK) bidiagonalization of � (sometimes called Golub-Kahan-
Lanczos bidiagonalization). Again, let G(1) be an initial approximation to the
solution with initial residual A (1) = 1 − �G(1). Generically, : � min(<, =) steps
of GK bidiagonalization determine orthonormal bases {@(1), @(2), . . . , @(:)} and
{?(1), ?(2), . . . , ?(:)} for the Krylov subspaces

K(:)(��) , @(1)) = B?0={@(1), ��) @(1), . . . , (��)):−1 @(1)}

62 J. Scott and M. Tůma

K(:)(�) �, ?(1)) = B?0={?(1), �) � ?(1), . . . , (�) �):−1 ?(1)},

respectively, with initial vectors @(1) = A (1)/‖A (1)‖2 and ?(1) = �) @(1)/‖�) @(1)‖2.
With G(1) = 0, the :-step GK bidiagonalization procedure is given in Algorithm 6.2.

Algorithm 6.2. :-step GK bidiagonalization (for LSQR)
Input: � ∈ R<×= and 1 ∈ R<.
Output: Orthonormal bases {@(1), @(2), . . . , @(:)} and {?(1), ?(2), . . . , ?(:)} for
K(:)(��) , @(1)) and K(:)(�) �, ?(1)), respectively.

1: V(1) = ‖1‖2, @(1) = 1/V(1), W(1) = ‖�) @(1)‖2, ?(1) = �) @(1)/W(1)

2: for 9 = 1, 2, . . . , : do
3: B(9) = �?(9) − W(9)@(9)

4: V(9+1) = ‖B(9)‖2
5: @(9+1) = B(9)/V(9+1)

6: A (9) = �) @(9+1) − V(9+1)?(9)

7: W(9+1) = ‖A (9)‖2
8: ?(9+1) = A (9)/W(9+1)

9: end for

In exact arithmetic, if �(:) is the lower bidiagonal matrix with W(1), W(2), . . . , W(:)

on the diagonal and V(2), V(3), . . . , V(:+1) on the subdiagonal, the bidiagonalization
can be written in matrix form as

&(:+1)V(1)41 = 1,

�%(:) = &(:+1)�(:),

�)&(:+1) = %(:)(�(:))) + W(:+1)?(:+1)4):+1,

where the columns of%(:) and&(:+1) are {?(1), ?(2), . . . , ?(:)} and {@(1), @(2), . . . , @(:+1)},
respectively. It follows that

min
G=%(:)H

‖1 − �G‖2 = min
H∈R:
‖V(1)41 − �(:)H‖2,

and the :-step LSQR solution is

G(:) = %(:)H(:), H(:) = arg min
H∈R:
‖V(1)41 − �(:)H‖2 = (�(:))+V(1)41.

Practical implementations use a recursive formula to obtain G(:+1) from G(:), avoid-
ing solving the projected least squares problems at each iteration.
For least squares problems with a well-conditioned matrix �, LSQR often con-

verges quickly, yielding an approximation to the solution with the desired accuracy
long before linear dependence is encountered in the Krylov subspaces. However,
when � is ill conditioned, LSQR (and CGLS) can require prohibitively many it-

Sparse Linear Least Squares Problems 63

erations. A contributing reason is that in finite precision arithmetic, storing and
using only a few basis vectors at a time cannot maintain orthogonality among all
previously non-stored basis vectors. This can be overcome by keeping previously
computed basis vectors and reorthogonalizing. However, for large : , this can be too
computationally expensive and require too much storage to be practical. Solutions
include partial reorthogonalization and implicit restarting (Baglama and Richmond
2014), or it can be sufficient to orthogonalize only one set of the column vectors
(Barlow 2013).
BothCGLSandLSQRcompute an approximate solution byminimizing ‖A (:)‖2 =
‖1 − �G(:)‖2 for G(:) ∈ G(1) + K(:)(�) �, ?(1)). The associated residual vector
A (:) = 1 − �G(:) lies in K(:)(��) , @(1)) and the norm ‖A (:)‖2 reduces monotonic-
ally. For underdetermined systems, LSQR solves the problem min ‖G‖2 subject to
�G = 1. More generally, it solves min ‖G‖2 subject to �) �G = �) 1, where � may
have any shape or rank.
For underdetermined systems, CGNE (or Craig’s method (Craig 1955)) is the

CG method implicitly applied to the problem ��) I = 1 with G = �) I. The error
‖G − G(:)‖2 decreases monotonically but the residual ‖A (:)‖2 can oscillate. Because
the stopping criterion for consistent systems is usually based on the size of ‖A (:)‖2,
it may be preferable to use CGLS for underdetermined systems. However, for
ill-conditioned noisy problems, CGLS can behave poorly (Hnětynková, Kubínová
and Plešinger 2017).
Within CGLS and LSQR, the residuals ‖A (:)‖2 decrease monotonically but,

in general, the normal equation residuals ‖�) A (:)‖2 oscillate. When � is ill
conditioned, the oscillations can be large. This behaviour is undesirable, because
practical stopping criteria for least squares problems use ‖�) A (:)‖2. Specifically,
the iterations may be terminated when

‖�) A (:)‖2 ≤ [(‖�‖2 ‖A (:)‖2), (6.4)

where [> 0 is a prescribed small tolerance. Quantities within the Krylov method
are used for this test. The criterion (6.4) is sufficient to obtain a backward stable
solution, but it is not necessary. An alternative based on estimation of the error
norm is described in (Papež and Tichý 2023); see also references therein.

The LSMR algorithm (Fong and Saunders 2011) is also based on GK bidiagon-
alization. It is mathematically equivalent to the MINRES method applied to the
normal equations, with ‖A (:)‖2 and ‖�) A (:)‖2 decreasing monotonically. This may
allow LSMR to follow the convergence more easily and terminate after fewer itera-
tions than CGLS and LSQR. But while CGLS and LSQR are based on minimizing
the norm of the residual ‖A (:)‖2, at each iteration LSMR minimizes ‖�) A (:)‖2.

Iterative methods exhibit semi-convergence on least squares problems originat-
ing from discretised ill-posed problems, with the scaled errors ‖G − G(:)‖2/‖G‖2
decreasing initially but at some point they begin to increase. Terminating the itera-
tions before divergence occurs is an important challenge; see, (Reichel, Sadok and
Zhang 2020).

64 J. Scott and M. Tůma

6.3. Introduction to algebraic preconditioners

The rate of convergence of the methods of the last section depends on the condition
number of � and on the distribution of its singular values. Convergence may be
slow when � has unfavourably distributed singular values and a preconditioner
may be needed to try and accelerate convergence. Recall (1.14). The nonsingular
preconditioner " should be chosen so that
• ^2(�"−1) = f<0G(�"−1)/f<8=(�"−1) is small (clustered singular values)
and less than ^2(�),
• matrix-vector products with "−1 and "−) can be performed efficiently.

Consider the stopping criteria (6.4). When preconditioning is used, if the unpre-
conditioned residual is not available then terminating when

‖(�"−1)) A (:)‖2 ≤ [(‖�"−1‖2 ‖A (:)‖2),

is an option. In this case, the stopping criteria is based on the preconditioned
problem, not the original one.

The choice of preconditioner is influenced by many factors, including the order
of the matrix, its eigenvalues, its conditioning, its sparsity pattern, density, and
positive definiteness. Finding good preconditioners for least squares problems is
often difficult because they come from a wide range of applications with different
characteristics that require different preconditioners (there is no “one size fits all”
preconditioner). The choice can be delicate if we are to avoid accelerating the
convergence of those components dominated by amplified errors. Often it is down
to user experience, availability of the preconditioner in an accessible form, or even
trial-and-error. For least squares problems, � usually lacks the properties that
make preconditioning techniques for linear systems arising from partial differential
equations successful. This means that algebraic preconditioners that do not require
knowledge of the provenance of the system.

Compared with other classes of linear systems, the development of precondition-
ers for sparse least squares problems may be regarded as still being in its infancy.
Most algebraic preconditioners are least squares adaptations of approaches for
square linear systems (Bru, Marín, Mas and Tůma 2014, Gould and Scott 2017).
In general, it is desirable to avoid explicitly computing the normal matrix and, in
some applications, a preconditioner that can work in a matrix-free environment is
needed. In this case, the construction of the preconditioner should only involve
matrix-vector products with � and �) and, ideally, only a small number of such
products should be performed. In some large-scale applications where limiting
the time for computing the solution is critical (for example, in numerical weather
forecasting), products with � represent the dominant cost and practical algorithms
must restrict the number of such products.
An obvious idea is to approximate � by "' and then employ " = "'"

)
'

as a split preconditioner for the normal matrix. However, although the singular
values of �"−1

'
may be favourably distributed and "' may provide an excellent

Sparse Linear Least Squares Problems 65

preconditioner for �, the eigenvalues of the symmetrically preconditioned system
"−)
'
�) �"−1

'
can have an adverse distribution and " can be arbitrarily poor as a

preconditioner for �) �. This was noted in (Braess and Peisker 1986) and recently
discussed and illustrated in (Gratton, Gürol, Simon and Toint 2018, Wathen 2022);
see also notes on eigenvalues clustering in (Liesen and Strakoš 2013).
Recall (1.14). Applying an iterative method such as CGLS, LSQR or LSMR to

the right preconditioned problem

min
I∈R=
‖1 − �"−1

' I‖2, G = "−1
' I, " = "'"

)
' ,

can be performed by replacing matrix-vector products with � and �) by products
with �"−1

'
and "−)

'
�) (that is, the matrix and preconditioner factor are applied

together). The overhead per iteration is one solve with "' and one with ")
'
. This

approach is commonly used if the factors of " are available; other possibilities
for incorporating preconditioners into Krylov subspace methods are discussed in
classical monographs such as (Saad 2003b). Factorization-free preconditioned
LSQR and LSMR algorithms are presented in (Arridge, Betcke and Harhanen
2014) and (Cerdán, Guerrero, Marín and Mas 2020), respectively. Combining
preconditioning with iterative solvers for augmented systems that are quasi definite
is described in (Orban and Arioli 2017), including flexible preconditioning of
GMRES (the FGMRES approach) that allows the preconditioner to change within
the solver. The development of new sophisticated iterative strategies for least
squares problems still continues (Estrin, Orban and Saunders 2019).

Finally, an interesting alternative approach is given by the AB- and BA-GMRES
iterative methods (Hayami, Yin and Ito 2010). AB-GMRES solves minH∈R< ‖1 −
��H‖2, G = �H, with � ∈ R=×< as a right preconditioner while BA-GMRES solves
minG∈R= ‖�1 − ��G‖2, with � ∈ R=×< as a left preconditioner. IfR(�) = R(�))
then AB-GMRES computes the least squares solution G for all 1 ∈ R< if and only
if RT (�) = R(�)). If � = �) then AB-GMRES is mathematically equivalent
to LSQR and CGLS. It can also be shown that the problems minG ‖1 − �G‖2 and
minG ‖�1 − ��G‖2 are mathematically equivalent for all 1 ∈ R< if and only if
R(�) ��) = R(�), e.g., if R(�)) = R(�). If � = �) then BA-GMRES is
mathematically equivalent to LSMR. In X-ray computed tomography (CT), � is
the forward projector and �) represents the so-called back projector. For large-
scale instances, it is common to use different discretization techniques for the
forward and back projectors. This means that if � ∈ R=×< represents the back
projector then � is typically not equal to the transpose �) of the forward projector;
� is termed an unmatched back projector or an unmatched transpose. As a result,
instead of the normal equations, the so-called unmatched normal equations in one
of the forms

��H = 1, G = �H, or ��G = �1, with � ≈ �) ,

are solved. AB-GMRES or BA-GMRES can still be used but applying LSQR or

66 J. Scott and M. Tůma

LSMR is potentially problematic because �� is neither symmetric nor positive
semi-definite (Hansen, Hayami and Morikuni 2022).
In the following subsections, we discuss some possible algebraic preconditioners

for Krylov subspace methods for solving large sparse least squares problems.

6.4. Diagonal preconditioning

As observed in Section 1.6, the simplest form of preconditioning is diagonal pre-
conditioning, that is,

min
I∈R=
‖1 − �(I‖2, G = (I,

where (is a diagonal matrix that scales the columns of � to give each unit 2-norm.
This requires only the diagonal entries of the normal matrix �) � to be computed
or, equivalently, the squares of the 2-norms of the columns of �. Theoretical
results show diagonal scaling is important because it reduces the condition number
(Van der Sluis 1969), but it is also important because it can be trivially applied in
parallel. It is generally advantageous to first apply diagonal scaling and then, if
convergence of the iterative solver is unacceptably slow, to try one or more of the
methods outlined in the following sections, applied to the scaled problem. In many
situations, block diagonal preconditioners (Elfving 1980) corresponding to block
scaling are another efficient way achieving good parallelism.

6.5. Incomplete Cholesky factorization preconditioners

Incomplete Cholesky (IC) factorizations approximate the exact Cholesky factoriz-
ation of a given SPD matrix � by disallowing some of the entries that occur in a
complete factorization. Thus � ≈ !̃ !̃) , where the incomplete factor !̃ is sparse
and lower triangular. The split preconditioned normal equations are

!̃−1�) �!̃−) H = !̃−1�) 1, G = !̃−) H.

IC factorizations were first introduced for model PDE problems (Buleev 1959)
but soon after were considered as a class of general algebraic procedures (Varga
1960). The simplest sparsity pattern allows no entries in !̃ outside the sparsity
pattern of �, that is, S{!̃ + !̃) } = S{�}. The resulting factorization is called an
��(0) (or no-fill) factorization. We always assume that S{!̃} contains the positions
of diagonal entries. Motivation for considering S{!̃} that is a superset of S{�} is
given by the following straightforward but important result.

Lemma 6.2. (Chan and van der Vorst 1997, van der Vorst 2003). Consider the
incomplete Cholesky factorization � + � = !̃ !̃) with sparsity pattern S{!̃ + !̃) }.
The entries of the error matrix � are zero at positions (8, 9) ∈ S{!̃ + !̃) }.

In practice, sophisticated and systematic ways of extending S{!̃} are necessary to
obtain robust high quality preconditioners. An early choice for banded�, motivated
by the simple discretization of a PDE on a rectangular grid, allows S{!̃ + !̃) } to

Sparse Linear Least Squares Problems 67

include fill-in along a few additional diagonals within the band. This can be
extended to more general systems using the concept of levels (Watts-III 1981).
Entries of !̃ that correspond to nonzero entries of � are assigned the level 0 while
each potential filled entry in position (8, 9) is assigned a level as follows:

;4E4;(8, 9) = min
1≤:<min{8, 9 }

(;4E4;(8, :) + ;4E4;(:, 9) + 1). (6.5)

Given ℓ ≥ 0, during the factorization a filled entry is permitted at position (8, 9)
provided ;4E4;(8, 9) ≤ ℓ. It can be shown that using levels can be interpreted
as allowing fill-paths of limited length (Hysom and Pothen 2002). In particular,
;4E4;(8, 9) = : for some : ≤ ℓ if and only if there is a shortest fill path between
8 and 9 of length : + 1 in the adjacency graph G(�). A weakness of the resulting
��(ℓ) preconditioner is that the number of entries in the incomplete factor can grow
quickly with ℓ and only small values of ℓ are practical.

Threshold-based incomplete factorizations determine the locations of permiss-
ible fill-in in conjunction with the numerical factorization of �. Entries of !̃ of
absolute value smaller than a prescribed threshold g > 0 are dropped as they are
computed. Obtaining a good preconditioner is highly sensitive to the choice of g,
and this is problem dependent and influenced by the scaling of �. Memory-based
methods prescribe the amount of memory available for the incomplete factoriza-
tion and only the largest entries in each row (or column) are retained. A practical
implementation of this kind is in (Jones and Plassmann 1995). Many refinements,
variants and hybrids of the different approaches have been proposed (see, for ex-
ample, (Scott and Tůma 2011) for a brief historical overview).
A more sophisticated class of schemes employs additional memory during the

construction of the incomplete factors that is then discarded. The aim is to obtain
a high quality preconditioner while maintaining sparsity and allowing the user
to control how much memory is used (Scott and Tůma 2014b). Consider the
decomposition

� = (!̃ +)̃) (!̃ +)̃)) − �, (6.6)

where the incomplete factor !̃ is a lower triangular matrix with positive diagonal
entries,)̃ is a strictly lower triangular matrix and the error matrix is � =)̃)̃) . At
each step, the next column of !̃ and of)̃ is computed and then the remaining Schur
complement is modified. On step 9 , the first column of the Schur complement is
split into the sum !̃ 9:=, 9 +)̃9:=, 9 , where !̃ 9:=, 9 contains the entries that are retained
in column 9 of the final incomplete factor,)̃9 9 = 0 and)̃9+1:=, 9 contains the entries
that are not included in !̃. In a complete factorization, the Schur complement
would be updated by subtracting

(!̃ 9+1:=, 9 +)̃9+1:=, 9) (!̃ 9+1:=, 9 +)̃9+1:=, 9)) .

However, the incomplete factorization discards the term

� (9) =)̃9+1:=, 9)̃
)
9+1:=, 9

68 J. Scott and M. Tůma

that would be subtracted in complete factorization. Thus, the matrix � (9) is impli-
citly added to � and because � (9) is positive semidefinite, the approach does not
break down.
An obvious choice is for the largest entries in the column to be retained in !̃.

Figure 6.1 depicts the first step 9 = 1. In the first row and column, ∗ and X denote
the entries of !̃1:=,1 and)̃1:=,1, respectively. Because a standard sparsification
scheme does not store the smallest entries, using such a scheme gives no fill-in in
the rows and columns corresponding to the discarded entries; this is shown on the
left. The fill-in in the factorization that uses intermediate memory is depicted on
the right. Clearly, more fill entries are used in constructing ! than in the standard

∗ ∗ ∗ X X

∗ 5 5

∗ 5 5

X

X

∗ ∗ ∗ X X

∗ 5 5 5 5

∗ 5 5 5 5

X 5 5

X 5 5

Figure 6.1. An illustration of the fill-in in a standard sparsification-based incomplete
factorization (left) and in the approach that uses intermediate memory (right) after
one step of the factorization. Entries with small absolute value in row and column
1 are denoted by X. The filled entries are denoted by 5 .

factorization and the structure of the complete factorization can be followed more
closely. This is illustrated in Figure 6.2. If the small entries at positions (1, 3) and
(3, 1) are not discarded then there is a fill entry in position (3, 2) and this allows
the incomplete factorization using intermediate memory to involve the (large) off-
diagonal entries in positions (5, 2) and (6, 2) in the second step of the incomplete
factorization.

∗ ∗ X

∗ ∗ ∗ ∗
X ∗ ∗

∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗
∗ ∗

∗
∗ ∗

∗ ∗
∗ ∗ ∗

∗
∗ ∗
X 5 ∗

∗ ∗
∗ ∗
∗ ∗ ∗

Figure 6.2. On the left is a SPD matrix with an entry of small absolute value
in positions (1, 3) and (3, 1). In the centre is S{!̃} computed using a standard
incomplete factorization that drops the small entry X at position (3, 1) (there are no
filled entries in this case). On the right is the partially computed S{!̃ +)̃} after
the first step of the incomplete factorization using intermediate memory. The filled
entry is denoted by 5 .

The columns of)̃ must be held until the end of the factorization, independently

Sparse Linear Least Squares Problems 69

of the order of operations used by the implementation. A practical solution to
decrease the computational complexity and reduce the memory costs is to sacrifice
the breakdown-free property and combine the factorization with the threshold-
based approach, dropping entries of small absolute value from !̃ and)̃ . In addition,
a limit on the number of entries allowed in each column of !̃ and)̃ can be fixed in
advance. Algorithm 6.3 describes a left-looking memory-limited IC factorization.
In practice, � should be symmetrically scaled before the factorization commences.
It can be beneficial to preorder� but no single approachworks best for all problems.
The advantages of reordering are typically less than for a complete factorization of
a sparse matrix because if the maximum number of entries in each column of !̃
and)̃ are held constant, the amount of fill in the incomplete factors is essentially
independent of the ordering of � that is used. AMD or nested dissection can be
used (recall Sections 2.4 and 2.7). Alternatively, orderings based on reducing the
profile of � can sometimes be more effective (Section sec:profile reduction).

Algorithm 6.3. Left-looking memory-limited IC factorization
Input: SPD matrix � ∈ R=×= and ;B8I4 > 0 (maximum number of entries in a
column of !̃) and CB8I4 ≥ 0 (maximum number of entries in a column of)̃)
Output: Incomplete Cholesky factorization � ≈ !̃ !̃) .

1: F8 = 0, 1 ≤ 8 ≤ =
2: for 9 = 1 : = do
3: for 8 ∈ {8 ≥ 9 | (8, 9) ∈ S{�}} do
4: F8 = 28 9

5: end for
6: for : ∈ {: < 9 | ;̃ 9: ≠ 0} do
7: for 8 ∈ {8 ≥ 9 | ;̃8: ≠ 0} do
8: F8 = F8 − ;̃8: ;̃ 9:
9: end for
10: for 8 ∈ {8 ≥ 9 | C̃8: ≠ 0} do
11: F8 = F8 − C̃8: ;̃ 9:
12: end for
13: end for
14: for : ∈ {: < 9 | C̃ 9: ≠ 0} do
15: for 8 ∈ {8 ≥ 9 | ;̃8: ≠ 0} do
16: F8 = F8 − ;̃8: C̃ 9:
17: end for
18: end for
19: Copy the ;B8I4 entries of F of largest absolute value into !̃ 9:=, 9
20: Copy the next largest CB8I4 entries of F into)̃9+1:=, 9 .

70 J. Scott and M. Tůma

21: Scale ;̃ 9 9 = (F 9)1/2, !̃ 9+1:=, 9 = !̃ 9+1:=, 9 /;̃ 9 9 ,)̃9+1:=, 9 =)̃9+1:=, 9 /;̃ 9 9
22: Reset F to zero.
23: end for

When implementing an incomplete Cholesky factorization algorithm it is essen-
tial to handle the possibility of breakdown, which occurs if a very small or non
positive pivot is encountered (Line 21 in Algorithm 6.3); this cannot normally be
determined a priori. A simple remedy is to perturb a diagonal value if it is found
to be too small (Kershaw 1978). Another possible approach is to modify both the
diagonal and off-diagonal entries (Ajiz and Jennings 1984). An alternative and
generally more successful strategy is to terminate the factorization when break-
down is detected and to compute the incomplete factorization of a globally shifted
matrix � + U�, where U > 0 is a scalar parameter. Choosing U is discussed in (Lin
and Moré 1999, Scott and Tůma 2014a); see also (Higham and Mary 2022). Al-
gorithm 6.4 incorporates scaling of the normal matrix and uses a simple doubling
strategy to increase the shift until the factorization is successful. More sophist-
icated strategies aim to limit the number of restarts and, if a sequence of related
problems are to be solved, the initial shift may take advantage of knowledge of a
suitable shift for the previous problem.

Algorithm 6.4. Shifted incomplete IC factorization
Input: SPD matrix �, diagonal scaling matrix (and initial shift U(> 0
Output: Shift U ≥ 0 and incomplete Cholesky factorization (−1�(−1+U� ≈ !!) .

1: �̂ = (−1�(−1 ⊲ Symmetrically scale �
2: U0 = 0
3: for : = 0, 1, 2, . . . do
4: �̂ + U: � ≈ !!) ⊲ Algorithm 6.3 can be used
5: If successful then set U = U: and return
6: U:+1 = max(2U: , U()
7: end for
When the least squares matrix � is rank deficient the normal matrix for the

(unweighted) regularized problem is

�W = �
) � + W�,

where W > 0 is the regularization parameter. If W is chosen large enough then
the IC factorization is breakdown free. But, because the intention is to use the
incomplete factors as a preconditioner for the original (unregularized) system, W
should be chosen to be small. Both requirements can make it difficult to choose
appropriate W. One possibility is to select W to be sufficiently large and then to
update the preconditioner to obtain a better approximation of the original problem
(Cerdán et al. 2020).

Sparse Linear Least Squares Problems 71

6.6. Incomplete QR factorization preconditioners

Over the years, various incomplete orthogonal factorizations of the least squares
matrix � have been proposed but few have survived the test of time. They can
be divided into two classes: those that give a factorization � = &̃'̃ in which &̃
not necessarily orthogonal, and those that produce � ≈ &̃'̃ with &̃ orthogonal.
The factor '̃ can be used to obtain a preconditioner. Computing an incomplete
QR (IQR) factorization normally involves more work than an incomplete Cholesky
factorization but the hope is that it will lead to a higher quality preconditioner.
Unfortunately, without dropping, the QR factorization often suffers significant fill-
in and this makes finding effective sparse incomplete variants inherently difficult.
One possibility is to employ an incomplete modified Gram–Schmidt process

(IMGS) (Jennings and Ajiz 1984). Dropping is restricted to off-diagonal entries
of the '̃ factor and column 9 of &̃ is computed after dropping in the 9-th column
of '̃. That is, @̃ 9 is computed using a linear combination of previously computed
columns of &̃ and the 9-the column 0 9 of � as

@̃ 9 = @/‖@‖2, where @ = 0 9 −
∑

:< 9,Ã: 9≠0
Ã: 9 @̃: .

Provided � has full column rank, this process does not break down because 0 9
cannot be expressed as a linear combination of less than 9 previously computed
@̃8 , 8 < 9 . But dropping entries in '̃ results in the computed columns of &̃ not
being orthogonal. Incorporating dropping within the computation of &̃ can make
the incomplete factorization less expensive but there is then no guarantee that the
factorization will not suffer break down.
An interesting connection between the IMGS factorization of � and the in-

complete Cholesky factorization of �) � (both without dropping) is the following
result.

Lemma 6.3. (Wang, Gallivan and Bramley 1997). Assume � has full column
rank and that an incomplete QR factorization � ≈ &̃'̃ is computed using the IMGS
approach. Then, in exact arithmetic, '̃ is the same as the incomplete Cholesky
factor !̃) of� = �) � computed using the decomposition (6.6) using the prescribed
pattern S(!̃) = S('̃)).

There have been attempts to compute IQR factorizations using Givens rotations
or Householder reflections. An early use of Givens rotations is in (Ajiz and Jen-
nings 1984) (see also (Bai and Yin 2009, Papadopoulos, Duff and Wathen 2005)).
However, the modification and compensation strategies within these approaches
are still not well understood and this remains an important open problem.
An alternative direction is to use QR factorizations within a hierarchical ap-

proach. An example of this is themultilevel incomplete Gram-Schmidt QR (MIQR)
factorization (Li and Saad 2006). When � is sparse, many of its columns are likely
to be orthogonal because of their structure. These structurally orthogonal columns

72 J. Scott and M. Tůma

form an independent set (2 . Once (2 is found, its columns are normalised and
permuted to be the leading columns. The remaining columns of � are then or-
thogonalized against the first set. Because the matrix of remaining columns will,
in general, still be sparse, it is natural to recursively repeat the process until the
number of columns is small enough to orthogonalize with standard methods, or a
prescribed number of reductions (levels) has been reached, or the matrix cannot be
reduced further. This gives a QR factorization of a column-permuted � and forms
the basis of the MIQR factorization. In practice, because the QR factorization
causes significant fill-in, sparsity is retained by relaxing the orthogonality and in-
corporating dropping strategies. The approach avoids computing the normalmatrix
�) � explicitly as only one row of �) � is needed at any given time. Moreover,
because �) � is symmetric, only its upper triangular part (i.e., the inner products
between the 8-th column of � and columns 8 to =) is needed.
A recent hierarchical sparse approximate QR factorization (spaQR) is built on

top of a nested dissection-based multifrontal QR approach (Gnanasekaran and
Darve 2022). Low-rank approximations of the frontal matrices are used to sparsify
vertex separators at every level in the elimination tree. A two-step sparsification
scheme reduces the number of columns and maintain the ratio of rows to columns
in each front without introducing additional fill-in. The resulting approximate
QR factorization is stored as a sequence of sparse orthogonal and upper-triangular
factors, which are straightforward to apply/solve with a vector. The approach
avoids the problems associated with dropping strategies within traditional IQR
approaches. Moreover, there is greater potential for exploiting parallelism than
within a complete QR factorization.

6.7. RIF preconditioner

The Robust Incomplete Factorization (RIF) algorithm (Benzi and Tůma 2003a,b)
computes a Cholesky factorization of the normal matrix � without forming any
entries of �, working only with �. It is based on �−orthogonalization, that is,
orthogonalization with respect to the �−inner product defined for all G, H ∈ R= by

< G, H >� := G)�H = (�G)) (�H). (6.7)

Given the = linearly independent vectors 41, 42, . . . , 4= (48 is the 8-th unit basis
vector), a �−orthogonal set of vectors I1, I2, . . . , I= is built using a Gram-Schmidt
process with respect to (6.7). This can be written in the form

/)�/ = �, � = !) /,

where / = [I1, I2, ..., I=] is upper triangular with positive diagonal entries. In
exact arithmetic, !) is the transposed Cholesky factor of � and / is its inverse.
The relationship between ! and / can be found, for example, in (Hestenes and
Stiefel 1952). It can be shown that ! can be obtained as a by-product of the
�−orthogonalization process at no extra cost.

Sparse Linear Least Squares Problems 73

Twodifferent preconditioners can be obtained by carrying out the�−orthogonalization
process incompletely. The first drops small entries from the computed vectors as
the �−orthogonalization proceeds, resulting in a sparse matrix /̃ ≈ !−) ; that is,
an incomplete inverse factorization of the form

�−1 ≈ /̃ /̃) ,

where /̃ has positive diagonal entries, is computed. This factored sparse approxim-
ate inverse can be used as a preconditioner and is generally known as the stabilized
approximate inverse (SAINV) preconditioner. It is guaranteed to be positive defin-
ite and can be applied in parallel because its application requires only matrix-vector
products.
The second approach is the RIF preconditioner, which is obtained by discarding

the computed sparsified vector Ĩ8 as soon as it has been used to form the corres-
ponding parts of !̃. This gives an algorithm for computing an incomplete Cholesky
factorization � ≈ !̃ !̃) . Again, the preconditioner is positive definite, and (in ex-
act arithmetic) breakdown during its computation is not possible. An important
feature of the RIF preconditioner is that it incurs only modest intermediate storage
costs, although implementing the algorithm to exploit the sparsity of � within the
preconditioner construction is far from straightforward (Scott and Tůma 2016).

6.8. LU-based factorization approaches

Standard algorithms for solving square linear systems of equations are usually based
on an LU factorization of the system matrix. For least squares problems in which
the system matrix is nearly square (the number of equations is not much more than
the number of unknowns), using an LU factorization to obtain a preconditioner is a
possible approach. This is also potentially useful for the (nearly square) weighted
least squares problem, even if the weighting matrix , is highly ill conditioned.
The Peters-Wilkinson method (Peters and Wilkinson 1970) for linear least squares
problems starts by computing an LU factorization of � (or,−1/2�), usingGaussian
elimination with row and column interchanges, that is,

%1�%2 = !�*,

where the permutation matrices %1 and %2 are chosen to preserve sparsity and so
that for 8 > 9 , |;8 9 | ≤ g for some modest threshold parameter g > 0; this is likely to
keep ! well conditioned (although less sparse than �) and any ill conditioning in �
will usually be seen in �. For the weighted problem with, diagonal, the weights
are reflected in �. If � is of rank : ≤ =, the factors can be written in the form

! =

(
!1 0
!2 0

)
, � =

(
�1 0
0 0

)
, * =

(
*1 *2
0 �

)
,

where !1 is an : × : unit lower triangular matrix, !2 is of order (< − :)× : , �1 is
an : × : diagonal matrix, *1 is an : × : unit upper triangular matrix and *2 is of

74 J. Scott and M. Tůma

order : × (= − :). The least squares problem becomes

min
H
‖%11 − !H‖2, H = �*%)2 G,

and the corresponding normal equations, known as the !-normal equations, are

�!H = !
) %11, �! = !

) !.

If H and %11 are conformally partitioned so that

H =

(
H1
H2

)
, %11 =

(
11
12

)
,

with H1 ∈ R: , H2 ∈ R=−: , 11 ∈ R: and 12 ∈ R<−: , then H1 is the solution of the
: × : system

�! H1 = !
)
1 11 + !)2 12,

and we can set H2 = 0. Thus I = (I1 I2)) with I1 ∈ R: is found by back
substitution

�1*1I1 = H1 and I2 = 0.

Setting G = %2 I gives the least squares solution. If the !-normal equations are
sufficiently well conditioned, employing (e.g.) CGLS to solve them can require
fewer iterations than when solving the standard normal equations (Howell and
Baboulin 2016).
The �* factor can be used as a right preconditioner within an iterative solver

(Björck 1976, Saunders 1979). Use of the operator �(�*)−1 involves scaling
with �−1, back substitutions with * and multiplications with � (! need not be
stored). An important limitation is that the method is not robust when � has near
zero entries. The near singularity of � is often undetected until the expensive LU
factorization has been attempted.
An alternative strategy is to permute and partition � so that

%� =

(
�1
�2

)
,

with �1 of order = × = and non-singular, and then employ �1 as a right precon-
ditioner. Its application requires a sparse LU (or QR) factorization of �1. The
original idea was introduced for dense problems in the early 1960s (Läuchli 1961)
and there has been work in recent years focusing on how to determine % so as to
preserve significant information from � in �1; see, for example, the concept of
maximum volume in pseudoskeleton approximations (de Hoog and Hegland 2023,
Goreinov, Tyrtyshnikov and Zamarashkin 1997, Osinsky and Zamarashkin 2018).

6.9. Partial Cholesky factorizations

Partial Cholesky factorizations have been used in the area of large-scale optim-
ization in which a sequence of weighted linear least squares problems arising

Sparse Linear Least Squares Problems 75

from a nonlinear problem must be solved (Bellavia, Gondzio and Morini 2013).
The approach attempts to identify the largest eigenvalues of the normal matrix
� = �),� and to ensure the spectral radius of the preconditioned matrix satisfies
^2("−1�) < ^2(�) by constructing a partial factorization that is terminated once
the first : columns of the factor have been found. Omitting the permutation matrix
that brings the largest : diagonal entries of � to the front of the matrix, ready for
use as pivots, a partial factorization of the form

� = !�!) =

(
!1
!2 �

)(
�1

(

)(
!)1 !)2

�

)
is computed. Here !1 is an : × : unit lower triangular matrix and (is the Schur
complement after : eliminations. Approximating (by its diagonal, gives the
preconditioner

" =

(
!1
!2 �

)(
�1

�2

)(
!)1 !)2

�

)
.

The factorization can be computed using an implicit process in which � and
its Schur complements are not fully formulated: only the diagonal and selected
columns of the Schur complements are calculated. In the applications of interest,
� can be accessed by rows and this makes computing " relatively straightforward
and inexpensive compared to the cost of the matrix-vector products performed
within the preconditioned iterative solver. The choice of : is dependent on the
memory available for holding the first : columns of !.
While ^2("−1�) is generally significantly smaller than ^2(�), the smallest ei-

genvalues of � typically either remain unchanged or move towards the origin. If
necessary, these small eigenvalues are handled by combining the partial factoriz-
ation preconditioner with the deflated-CGLS algorithm (Saad, Yeung, Erhel and
Guyomarch 2000). This requires using a Rayleigh–Ritz procedure to approximate
the eigenvectors corresponding to some of the smallest eigenvalues of "−1� . This
comes at a non negligible cost, and a reduction in the total solution time is not
guaranteed.

6.10. Algebraic domain decomposition preconditioners

For extremely large problems, it can be infeasible (in terms of time and possibly
memory requirements) to construct the factorization-based preconditioners dis-
cussed in the previous sections. The need for robust algebraic preconditioners that
can be implemented efficiently in parallel recently led to the development of a two-
level additive Schwarz preconditioner for the normal equations (Al Daas, Jolivet
and Scott 2022). Multilevel domain decomposition preconditioners are a popular
divide and conquer approach for solving challenging linear systems arising from
discretizing PDEs. A fully algebraic approach for non-PDE problems is theoretic-
ally possible but, so far, it has been found to be prohibitively expensive for general
linear systems (Al Daas and Grigori 2019). However, for least squares problems,

76 J. Scott and M. Tůma

the similarity between the structure of the normal matrix and that of the weak
formulation of PDEs can be exploited to develop new effective preconditioners.
Start by considering any = × = SPD matrix �. A graph partitioning algorithm

such as nested dissection (Section 2.7) is employed to partition the graph G(�) into
2 ≤ # � = non overlapping subdomains; this splits the vertices 1, 2, . . . , = into #
disjoint subsets Ω� 8 of size =� 8 (1 ≤ 8 ≤ #). To obtain overlapping subdomains,
let ΩΓ8 be the subset of vertices that are distance one in G(�) from the vertices in
Ω� 8; let its size be =Γ8 . The overlapping subdomain is then Ω8 = Ω� 8 ∪ ΩΓ8 , of
size =8 = =� 8 + =Γ8 . Associated with Ω8 is a restriction matrix Π8 that maps from
the global domain to the subdomain; a prolongation matrix is given by Π)

8
. A

two-level additive Schwarz preconditioner is given by

"−1 =

#∑
8=0
Π)8 �

−1
8 Π8 , �8 = �(Ω8 ,Ω8), �0 = Π0�Π

)
0 ,

whereΠ0 is of full rank and is constructed so that the preconditioned system is well
conditioned. For anyΠ0 it is possible to cheaply obtain upper bounds on the largest
eigenvalue of the preconditioned system, independently of = and # . However,
bounding the smallest eigenvalue is highly dependent on Π0. Thus, this choice
is key to building efficient two-level Schwarz preconditioners. Other two-level
variants exist that can yield better convergence behaviour.
For least squares problems, the normal matrix � is not a general SPD matrix but

is the product �) �. Practical two-level Schwarz preconditioners can be derived by
exploiting this structure (Al Daas et al. 2022). The main work in building the pre-
conditioner is, for each # , computing the Cholesky factors of two local matrices of
order =8; these factorizations can be performed in parallel. In addition, Π0 must be
constructed and then the Cholesky factorization of�0 = (�Π)0)) (�Π)0) computed.
It can be shown that the spectral condition number of the preconditioned normal
matrix is bounded from above independently of the number of the subdomains and
the size of the problem. Moreover, this upper bound depends on a single parameter
that can be chosen to decrease (respectively, increase) the upper bound with the
costs of setting up the preconditioner being larger (respectively, smaller).

6.11. Two-level limited memory preconditioners

Consider the SPD normal equations and assume that a preconditioner is available
that clusters most of the eigenvalues of the preconditioned normal matrix at +1
with relatively few outliers. Provided the outlying eigenvalues are small, the con-
vergence of the preconditioned iterative method is typically not adversely effected
by this, but if they belong to the right-hand end of the spectrum, convergence
can be significantly delayed (Liesen and Strakoš 2013). It may be possible to
improve the performance of this first level preconditioner by adding a second level
preconditioner. For example, consider the normal equations (1.26) for the linear
subproblem that comes from linearising a nonlinear least squares problem. The

Sparse Linear Least Squares Problems 77

structure of the normal matrix � = ,−1
2 + �

)
9
,−1

1 � 9 suggests a natural candidate
for a preconditioner is ,−1

2 and the symmetrically preconditioned system is then
of the form

�̂B = ,
1/2
2 �,

1/2
2 B = (� + -)B = 1̂, - = ,

1/2
2 �)9 ,

−1
1 � 9,

1/2
2 .

Here, the preconditioned normal matrix �̂ is the sum of the identity matrix and a
symmetric positive semidefinite matrix - of rank @ � =. Hence, �̂ is SPD and
has a cluster of =− @ eigenvalues at +1 and @ eigenvalues that are greater than one;
its spectral condition number is equal to _<0G(�̂). Second-level preconditioning
seeks to reduce the condition number while preserving the cluster of eigenvalues
at +1. More generally, the aim is to capture the directions that have been left out by
the first level preconditioner and slow down the convergence of the Krylov solver.

A class of limited memory preconditioners (LMPs) has been proposed with
this two-level structure in mind. These preconditioners are based on the explicit
knowledge of a full rankmatrix / with : � = columns and on the product of / with
�̂. Specifically, let � be a SPD matrix of order = and "1 a SPD preconditioner
for � (the first level preconditioner). Assume that / is any = × : matrix with
A0=:(/) = : � =. The symmetric matrix

" = (� − "2�)"−1
1 (� − �"2) + "2, "2 = /�

−1/) , � = /)�/, (6.8)

is called a LMP, e.g., (Daužickaitė, Lawless, Scott and Van Leeuwen 2021, Grat-
ton, Sartenaer and Tshimanga 2011). In domain decomposition, it is known as a
balancing preconditioner (Mandel 1993); see also (Tang, Nabben, Vuik and Er-
langga 2009, Zhao 2016) for an analysis of subspace enhanced preconditioners.
If "1 = ,2, �̂ = ,

1/2
2 �,

1/2
2 and /̂ = ,

−1/2
2 / then from (6.8) we obtain the

preconditioner

"̂ = ,
−1/2
2 ",

−1/2
2 = (�−"̂2�̂)(�−�̂"̂2)+"̂2, "̂2 := /̂ �̂−1 /̂) , �̂ := /̂) �̂ /̂ .

(6.9)
Assume �̂ is available in factored form, that is, �̂ /̂ = .). , where. is : × : . Then
(6.9) can be factorized as "̂ = ")

3 "3, where

"3 = � − /̂.−1.−) /̂) �̂ + /̂.−1.

A potential problem for practical applications is the need for expensive mat-
rix–matrix products with �̂. Simpler formulations are obtained by imposing more
conditions on the columns I1, . . . I: of /̂ . Two approaches used, for example, in
ocean data assimilation are the spectral-LMP and Ritz-LMP.

Let I1, . . . , I= be orthonormal eigenvectors of �̂ with corresponding eigenvalues
_1, . . . , _=: . Set Λ = 3806(_1, . . . , _=) and let the columns of /̂ be I1, . . . , I=,
so that �̂ /̂ = /̂Λ and /̂) /̂ = �. Substituting into (6.9) and simplifying, the

78 J. Scott and M. Tůma

spectral-LMP (or deflation preconditioner (Giraud and Gratton 2006)) is given by

"B? = � −
=∑
8=1

(1 − _−1
8)I8I)8 .

"B? moves the eigenvalues _8 , 8 = 1, . . . , : to +1 and leaves the rest of the spectrum
unchanged. In factored form, "B? = "

B?

3 ("B?

3)) with

"
B?

3 =

=∏
8=1

(
� −
(

1 − (
√
_8)−1

)
I8I

)
8

)
.

In most applications, exact eigenpairs are not available, and so Ritz values
and vectors, are used. Setting I1, . . . , I= to be orthogonal Ritz vectors and Θ =

3806(\1, . . . , \=) to be the corresponding Ritz values, the Ritz-LMP is given by

"'C = (� − /̂Θ−1 /̂) �̂)(� − �̂ /̂Θ−1 /̂)) + /̂Θ−1 /̂) . (6.10)

Each application of"'C requires amatrix-matrix product with �̂. But if a sequence
of problems needs to be solved and if the Ritz vectors are obtained by a Lanczos
process then (6.10) can be simplified and matrix-matrix products with �̂ avoided
(Gratton et al. 2011). In practice, both spectral-LMP andRitz-LMPuseRitz vectors
and values to construct the LMPs. Only approximations to the largest eigenvalues
and corresponding eigenvectors are required. Randomized algorithms can be used.
These are explored for problems arising in data assimilation in (Daužickaitė et al.
2021) (see also (Scotto di Perrotolo 2022)). In practice, these problems can be
extremely large and products involving � are very expensive, so much so that only
a few iterations of an iterative solver can be performed (the solver is typically run
for a fixed number of iterations, not to convergence). In such situations, having a
good quality preconditioner that is cheap to compute and apply is important and
challenging.

6.12. Sketch-and-precondition

As observed above, randomized methods can be used in constructing LMPs. More
generally, in recent years there has been significant growth in the development
and employment of randomized techniques for tackling very large problems within
numerical linear algebra; see, for example, the review (Drineas andMahoney 2016)
and the survey article (Martinsson and Tropp 2020). Sketch-and-precondition
algorithms for least squares problems use sketching to construct a preconditioner
to be used in an iterative solver. Matrix sketching is a data compression technique
that is characterized by the property of preservingmost of the linear information that
is present in the data. Algorithm 6.5 outlines the classical sketch-and-precondition
approach for highly overdetermined least squares problems (Meng, Saunders and
Mahoney 2014). Here, an SVD factorization of the sketched matrix is computed,
but a QR factorization could be used (Avron, Ng and Toledo 2009); see also (Ipsen
and Wentworth 2014) for related theoretical aspects of uniform samplings.

Sparse Linear Least Squares Problems 79

Algorithm 6.5. A sketch-and-precondition least squares solver (overdetermined
case)
Input: � ∈ R<×= of rank A: , < � = and 1 ∈ R<
Output: Least squares solution G

1: Choose an oversampling factor W > 1 and set B = [W=] ⊲ e.g., W = 2
2: Draw a Gaussian random matrix Ω ∈ RB×<

3: Form the sketch . = Ω� ∈ RB×= ⊲ Row sampling.
4: Compute the compact SVD factorization . = *Σ+) , where * ∈ RB×A : ,
Σ ∈ RA :×A : , + ∈ R=×A :

5: Set "−1 = +Σ−1 and compute least-norm solution of minI∈RA: ‖1− �"−1I‖2.
6: Return G = "−1I

The approach can easily be extended to handle Tikhonov regularization and a
similarly structured algorithm works for strongly underdetermined systems. Note
that � is used only for matrix-vector and matrix-matrix operations and so it can be
sparse or dense or a linear operator. The preconditioned system is well conditioned
and, when LSQR is used in Line 5, the algorithm can be shown to have a fully
predictable run-time performance, just like direct solvers, and it scales well in
parallel environments.
More recent sketch-and-precondition based-methods for regularized problems

are given in (Ozaslan, Pilanci and Arikan 2023, Meier and Nakatsukasa 2022).
One uses a Cholesky-based sketch-and-precondition technique while another is
very efficient for matrices with a small statistical dimension B3W(�) = CA(�(�) � +
W�=)−1�) , where W is the regularization parameter in (1.17). Unfortunately, the
sketch-and-precondition approach in its most commonly used form can be numer-
ically unstable for ill-conditioned problems. This has recently led to investigations
into variants that seek to ensure improved stability properties (Epperly 2024,Meier,
Nakatsukasa, Townsend and Webb 2024).

6.13. Preconditioning the augmented system formulation

There has been a wealth of research devoted to developing preconditioners for
symmetric indefinite linear systems of the form(

� �

�) −�

)(
H

I

)
=

(
5

6

)
, (6.11)

where � and � are square symmetric matrices. These so-called saddle-point
systems arise in a wide range of practical applications that lead to blocks having
different properties. The augmented system formulation of linear least squares
problems is just one important area. There are a number of extensive survey
articles on preconditioning saddle-point problems that include discussions relevant

80 J. Scott and M. Tůma

to sparse least squares problems, most notably (Benzi, Golub and Liesen 2005,
Pearson and Pestana 2020, Wathen 2015).
An interesting result is that every preconditioner for the normal equations yields

an equivalent preconditioner for the augmented system but the converse is not
true (Oliveira and Sorensen 2005). Thus working with the augmented system
potentially provides greater opportunities to find effective preconditioners. Many
approaches for constructing preconditioners exploit the block structure in (6.11).
For the augmented system obtained from a (regularized) least squares problem the
blocks are very special. In particular, if the matrix of weights , is diagonal then
� is diagonal. Thus, in contrast to the augmented systems coming from PDE
problems, most of the complexity lies in the off-diagonal blocks and this influences
which approaches are potentially appropriate.

Block-based preconditioners with the same 2 × 2 structure as the saddle-point
system are used inmany application areas. The basic block diagonal preconditioner
for the least squares augmented system (5.1) with a zero (2, 2) block is

" =

(
�

−(̃

)
,

where (̃ approximates the Schur complement (= −�) �. A straightforward choice
is (̃ = −'̃) '̃, where '̃ is the factor of an incomplete QR factorization of �

(&̃1 &̃2)
(
'̃

0

)
= &̃1'̃. (6.12)

This yields the positive definite preconditioner

" =

(
� 0
0 '̃) '̃

)
=

(
� 0
0 '̃)

)(
� 0
0 '̃

)
= "1"

)
1 .

Two-sided application of this preconditioner gives

"−1
1 "−)1 = "−1

1

(
� �

�) 0

)
"−)1 =

(
� �'̃−1

'̃−) �) 0

)
=

(
� &̃1
&̃)1 0

)
Constraint preconditioners are an important alternative family of block precon-

ditioners. These are (possibly indefinite) preconditioners in which the off diagonal
blocks (the constraints) are as in the saddle-point matrix and the (1, 1) and (2, 2)
blocks are approximated (for instance, by their diagonal entries); see (di Serafino
and Orban 2021). For the augmented systems in least squares problems, approx-
imating these blocks is unnecessary (assuming the matrix of weights is the identity
or diagonal). Instead, the off-diagonal blocks are approximated, resulting in inex-
act constraint preconditioners (Coleman and Verma 2001, Zilli and Bergamaschi
2022). In the special case of the augmented system with the exact constraint pre-
conditioner in which the right-hand side is of the form (1) 0))) , preconditioned
CG can be used to solve the indefinite preconditioned system (Lukšan and Vlček

Sparse Linear Least Squares Problems 81

1998); see also (Benzi et al. 2005). Given the inexact QR factorization (6.12), a
natural inexact constraint preconditioner is

" =

(
� &̃1'̃

'̃) &̃)1 0

)
.

If a complete QR factorization of � is available, it is not necessary to use
the augmented formulation because the factors can be used to solve the normal
equations directly. However, if the complete factorization is performed using lower
precision arithmetic (for example, single precision might be used with the possible
objective of speeding up the computation or saving memory) then the computed
factors can be used within block-based preconditioners to try and recover full
(double) precision accuracy in the least squares solution. This is analysed in
(Carson, Higham and Pranesh 2020).

6.14. Approximate factorizations of the augmented matrix

Another possibility for preconditioning the augmented system formulation is a
signed IC factorization that exploits the block structure. Specifically, compute a
signed incomplete factorization of the form

((+
(
U1�

−U2�

)
≈ !̃�̃ !̃) , (6.13)

where (is a diagonal scaling matrix, !̃ is a unit lower triangular matrix, and �̃
is a diagonal matrix with positive and negative entries (Scott and Tůma 2014c).
The two non-negative shifts U1 and U2 are chosen to prevent breakdown of the
factorization. Such a shifting strategy is closely connected to the regularization
techniques used by the numerical optimization community. The shifts can always
be chosen such that a signed IC factorization exists. If a pivot is found to be
too small then if it corresponds to an entry in the (1, 1) block (respectively, (2, 2)
block) then the factorization is terminated and restarted with a larger value of U1
(respectively, U2). In practice, is generally preordered. A key attraction of this
approach is that it avoids the need for numerical pivoting. It is straightforward to
modify the memory-limited IC approach of Algorithm 6.3 to obtain the incomplete
factorization (6.13).
The computed incomplete factors can be used as preconditioners for the SQMR

method (Freund 1997) or GMRES. The SYMMLQ and MINRES methods are not
directly applicable as they require positive definite preconditioners. However, they
can be used on the symmetrically-preconditioned system

|�̃ |−1/2 !̃−1((!−) |�̃ |−1/2
(
B

H

)
= |�̃ |−1/2 !̃−1

(
1

0

)
,

(
A

G

)
= !−) |�̃ |−1/2

(
B

H

)
,

where the entries of |�̃ | are the absolute values of the entries of �̃. Results

82 J. Scott and M. Tůma

given in (Gould and Scott 2017) demonstrate that this approach with MINRES can
outperform using GMRES with (6.13).
A related strategy is to exploit the fact that the system matrix , for the regu-

larized weighted least squares problem matrix (1.24) is symmetric quasi-definite
(SQD) (recall Section 1.7). Consequently, if ! and � are its exact factors, the
preconditioned operator

|� |−1/2!−1 , !
−) |� |−1/2 = |� |−1�,

possesses only two distinct eigenvalues: +1 and -1. The hope is therefore that
incomplete factors have the potential to yield a preconditioned system with favor-
able spectral structure while keeping the computational effort reasonable. When
!̃ and �̃ are limited-memory factors of , , the corresponding preconditioned
operator remains symmetric and indefinite so that it is possible to use MINRES or
SYMMLQ. This is explored in (Orban 2015).

6.15. Incomplete factorizations of symmetric indefinite matrices

In comparison with research into incomplete factorization preconditioners for SPD
systems, work on reliable incomplete factorization techniques for general sym-
metric indefinite problems is limited. It is significantly more challenging because
numerical pivoting must often be incorporated to limit growth in the sizes of the
factor entries. The Bunch-Kaufman partial pivoting strategy is widely employed for
factorizing dense symmetric indefinite matrices using 1×1 and 2×2 pivots (Bunch
and Kaufman 1977). It is also often used in the factorization of dense blocks within
sparse factorizations and has been integrated within incomplete factorizations for
sparse symmetric indefinite matrices (Greif, He and Liu 2017, Li and Saad 2005).

For sparse problems, the need for pivoting may be reduced by preprocessing
the matrix. The use of a matching-based ordering and scaling algorithm was
discussed in Section 5.2 for complete factorizations but it can also be applied
to avoid dynamic pivoting in incomplete factorizations (Hagemann and Schenk
2006, Chen, Huang and Li 2012, Scott and Tůma 2017a). The matching-based
ordering is used to a priori symmetrically permute large entries to the subdiagonal
positions. Tridiagonal pivoting then restricts the search for pivots to the diagonal
and subdiagonal. If a 1 × 1 pivot candidate is found to be too small and pairing it
with the subdiagonal entry in its row does not give a suitable a 2 × 2 pivot, then
breakdown can be prevented by replacing the pivot candidate by a small predefined
quantity. Details of how to do this while guaranteeing backward stability are given
in (Chen et al. 2012). Combined with dropping the smallest entries as each column
of the factor is computed, the result is an incomplete factorization that is potentially
efficient to compute (because the search for pivot candidates is limited) as well as
more straightforward than more sophisticated approaches to selecting stable pivots.
For instance, strategies that monitor growth in the factors and incorporate pivot

Sparse Linear Least Squares Problems 83

modifications when potential instability is observed have been proposed within a
limited-memory incomplete factorization algorithm (Scott and Tůma 2017a).

6.16. Software for algebraic preconditioners

Despite the interest in preconditioning large-scale linear least squares problems,
there is limited high-quality software available that is specifically designed for such
problems and is fully documented and supported. A study comparing the perform-
ance of software for sparse problems is given in (Gould and Scott 2017). The
sequential package HSL_MI35 from the HSL library25 implements Algorithm 6.3,
incorporating global shifts to handle potential breakdown. This software avoids
forming the normal matrix explicitly and uses it in the implicit form of � only; it
is based on (Scott and Tůma 2014a). BA-GMRES software is available26 but this
does not appear to be actively maintained.
Prototype codes for left- and right-looking implementations of RIF have been

written27 but they have not developed into library-quality software. The multilevel
QR factorization described in Subsection 6.6 is available within the 2005 package
MIQR 28.
A parallel implementation of the the two-level additive Schwarz preconditioner

discussed in Section 6.10 is available in PCHPDDM29, which is a part of PETSc30.
PETSc also offers a wide range of algebraic preconditioners aimed primarily at
solving sparse linear systems (rather than specifically for least squares problems).
To employ an incomplete Cholesky factorization with the PETSc implementation
of left preconditioned LSQR, the normal matrix must be formed.
The HSL package HSL_MC81 uses randomized algorithms to compute low-

rank approximations of a given matrix. These can be used to construct the LMPs
introduced in Section 6.11.
If � is dense and of full rank then a well-known sketching-based solver is

Blendenpik31. It uses a QR factorization of the sketch (rather than an SVD factor-
ization). For sparse (and possibly rank deficient) �, the sequential code LSRN32

implements Algorithm 6.5. A comparison of sketch-and-precondition techniques
(including Blendenpik and LSRN) is given in (Ozaslan et al. 2023). More re-
cent software is the sketching for least squares package Ski-LLS33 (Cartis, Fiala
and Shao 2021). However, this appears to be research code that is not being

25 https://www.hsl.rl.ac.uk/
26 https://github.com/morikuni-keiichi
27 https://www.karlin.mff.cuni.cz/~mirektuma/sparslab.html
28 https://www-users.cse.umn.edu/~saad/software/MIQR.tar.gz
29 https://petsc.org/main/manualpages/PC/PCHPDDM/
30 https://petsc.org/release/
31 https://github.com/haimav/Blendenpik
32 https://web.stanford.edu/group/SOL/software/lsrn/
33 https://github.com/numericalalgorithmsgroup/Ski-LLS

https://www.hsl.rl.ac.uk/
https://github.com/morikuni-keiichi
https://www.karlin.mff.cuni.cz/~mirektuma/sparslab.html
https://www-users.cse.umn.edu/~saad/software/MIQR.tar.gz
https://petsc.org/main/manualpages/PC/PCHPDDM/
https://petsc.org/release/
https://github.com/haimav/Blendenpik
https://web.stanford.edu/group/SOL/software/lsrn/
https://github.com/numericalalgorithmsgroup/Ski-LLS

84 J. Scott and M. Tůma

actively maintained. The monograph (Murray, Demmel, Mahoney, Erichson, Mel-
nichenko, Malik, Grigori, Luszczek, Dereziński, Lopes, Liang, Luo and Dongarra
2023) discusses the development of standard libraries for randomised numerical
linear algebra, including least squares.
There is little robust software for computing sparse incomplete LDLT factoriz-

ations of the augmented system matrix. The package HSL_MI30 implements a
memory-limited signed IC algorithm for solving saddle point systems that can be
used for the augmented system formulation combined with either preconditioned
GMRES or preconditioned MINRES (Scott and Tůma 2014c). sym-ildl34 com-
putes incomplete factorizations of general symmetric indefinite matrices. It builds
upon ideas proposed in (Li, Saad and Chow 2003, Li and Saad 2005), and incorpor-
ates scaling, preordering and Bunch Kaufman pivoting (Greif et al. 2017). As the
memory-limiting parameter increases, the incomplete factors converge to the exact
factors. This software also does not appear to be currently maintained. LLDL35

is a modification of the limited-memory Cholesky factorization code ICFS from
1999 for symmetric positive definite matrices described in (Lin and Moré 1999).
It implements a similar scheme for symmetric indefinite matrices that possess a
LDLT factorization with � diagonal. This includes SQD matrices.
Pardiso36 is primarily a package of direct solvers but it also offers a precondi-

tioning approach for general symmetric indefinite linear systems based on using
maximumweighted matching orderings and algebraic multilevel incomplete LDLT
factorizations. ILUPACK37 includes routines for incomplete Cholesky, LDLT and
ILU factorizations as well as corresponding iterative methods that exploit reli-
able (inverse-based) diagonal pivoting and multilevel framework. Comparisons
between ILUPACK and other related incomplete and complete factorizations for
solving mainly nonsymmetric systems, but also symmetric indefinite systems, can
be found in (Chen, Ghai and Jiao 2019). A recent strategy that exploits numerical
rank deficiency of the off-diagonal blocks of the incomplete Cholesky factor has
been compared with ILUPACK (Napov 2023).

7. Iterative refinement for least squares problems
Direct linear solvers theoretically provide exact solutions, but if the problem is ill
conditioned then in finite floating-point precision, rounding errorsmay significantly
degrade the accuracy of the computed solution. Unfortunately, this can pass
unnoticed because the associated residual can be relatively small. The method
of iterative refinement seeks to improve accuracy of the computed approximate
solution. For the square linear system �H = 3, the computed solution H(1) is refined
by computing the residual vector A (1) (possibly using a higher precision) and solving

34 https://github.com/where-is-paul/matrix-factor
35 https://github.com/optimizers/lldl
36 https://panua.ch/pardiso/
37 http://ilupack.tu-bs.de/

https://github.com/where-is-paul/matrix-factor
https://github.com/optimizers/lldl
https://panua.ch/pardiso/
http://ilupack.tu-bs.de/

Sparse Linear Least Squares Problems 85

the linear system �XH(1) = A (1) with the residual as the right-hand side vector to
obtain a correction XH(1) to the solution. The process may be repeated until the
solution is sufficiently accurate or stagnation occurs using the following steps: (0)
compute the residual A (8) = 3−�H(8); (1) solve �XH(8) = A (8) for the correction XH(8);
(2) update the solution H(8+1) = H(8) + XH(8). A comprehensive summary of rounding
error analysis for iterative refinement for linear systems is given in (Carson and
Higham 2018).
For least squares problems, various iterative refinement strategies have been

proposed. This case is more challenging than solving square linear systems. In
particular, because the least squares residual A = 1 − �G may be non-zero, some
of the convergence guarantees that are available for linear systems are not valid.
Moreover, the least squares matrix � can be so ill conditioned that the computed
solution has few, if any, correct digits. If the overdetermined system is nearly
consistent (i.e., there exists G for which the residual norm ‖A ‖2 = ‖1 − �G‖2 is
close to zero) then the straightforward Algorithm 7.1 can be used; this is analogous
to iterative refinement for linear systems (Businger and Golub 1965, Golub 1965).
The approach used to compute the initial approximate solution G(1) can be reapplied
to solve for the each correction XG(8). In particular, if a QR factorization of � is
computed or a Cholesky factorization of the normal matrix then the factors can
be reused, thereby limiting the cost of each refinement step. Alternatively, if a
preconditioned iterative solver is used, then the same preconditioner can be used
for each solve.

Algorithm 7.1. Solve the LS problem using basic iterative refinement in two
precisions.
Input: Overdetermined full rankmatrix �, vector 1 and precisions Dℎ and D, where
Dℎ ≤ D2.
Output: Least squares solution G and least squares residual A .

1: Compute an initial approximate least squares solution G(1)

2: for 8 = 1, 2, . . . do
3: Compute the residual vector A (8) = 1 − �G(8) in precision Dℎ
4: If converged then return G = G(8) , A = A (8) and stop
5: Solve minXG(8) ‖A (8) − � XG(8)‖2 in precision D ⊲ Correction equation
6: Update the solution G(8+1) = G(8) + XG(8) in precision D
7: end for

A limitation of Algorithm 7.1 is that it is shown in (Golub and Wilkinson 1966)
that when theHouseholderQR factorization is used to solve the correction equation,
the least squares solution may not be found unless the system is nearly consistent.
Regardless of the precision used, there will be vectors 1 for which it will fail to
give solutions that are correct to working accuracy. Furthermore, the approach can
be sensitive to the quality of the initial solution G(1).

86 J. Scott and M. Tůma

7.1. Refinement using the semi-normal equations

An alternative idea mentioned in (Golub and Wilkinson 1966) is to employ the
semi-normal equations (1.13). Algorithm 7.2 uses the QR factorization of � and,
at each refinement step, the semi-normal equations are solved for the correction.
The initial solution G(1) can be computed using any appropriate approach. If it
is obtained using the semi-normal equations and a single correction is computed,
then Algorithm 7.2 is the method of corrected semi-normal equations (CSNE). In
general, unless the problem is well conditioned, several refinement steps may be
required. The numerical properties of this type of iterative refinement and different
variations of the semi-normal equations are discussed in (Björck 1987, Rozložník,
Smoktunowicz and Kopal 2014).

Algorithm 7.2. Solve the LS problem using the semi-normal equations and
iterative refinement.
Input: Overdetermined full rank matrix � and its ' factor and vector 1.
Output: Least squares solution G and least squares residual A.

1: Compute an initial approximate least squares solution G(1)

2: for 8 = 1, 2, . . . do
3: Compute the residual vector A (8) = 1 − �G(8)

4: If converged then return G = G(8) , A = A (8) and stop
5: Solve ') ' XG(8) = �) A (8) ⊲ Semi-normal equations
6: Update the solution G(8+1) = G(8) + XG(8)

7: end for

7.2. Refinement using the augmented system

A generalisation of iterative refinement that can be effective whether or not the
system is close to being consistent employs the augmented system (5.1). The
approach outlined in Algorithm 7.3 simultaneously refines the computed solution
and the corresponding residual (Björck 1967a).

Algorithm 7.3. Solve the LS problem using the augmented formulation and
iterative refinement.
Input: Overdetermined full rank � and vector 1.
Output: Least squares solution G and least squares residual A.

1: Compute an initial approximate least squares solution G(1) and residual A (1)

2: for 8 = 1, 2, . . . do

Sparse Linear Least Squares Problems 87

3: Compute the residual vector for the augmented system(
5 (8)

6(8)

)
=

(
1

0

)
−
(
� �

�) 0

)(
A (8)

G(8)

)
=

(
1 − A (8) − �G(8)

−�) A (8)

)
4: If converged then return G = G(8) , A = A (8) and stop.

5: Solve

(
� �

�) 0

)(
XA (8)

XG(8)

)
=

(
5 (8)

6(8)

)
⊲ Correction equation

6: Update

(
A (8+1)

G(8+1)

)
=

(
XA (8)

XG(8)

)
+
(
A (8)

G(8)

)
7: end for

If the QR factorization of � has been computed then the corrections can be
obtained by reusing the factors. Consider the augmented system(

� �

�) 0

)(
D

E

)
=

(
F

C

)
. (7.1)

Using the QR factorization(
�% 1

)
= &

(
' 2

0 3

)
and &&) =

(
� 0
0 �

)
∈ R<×<,

we have(
� �%

%) �) 0

)(
D

%) E

)
=

(
&

�

) � 0 '

0 � 0
') 0 0

(&)
�

)(
D

%) E

)
=

(
F

%) C

)
,

so that � 0 '

0 � 0
') 0 0

 4

5

%) E

 =

 2

3

%) C

 ,

where (
2

3

)
= &)F and D = &

(
4

5

)
= &

(
4

3

)
.

The component 4 is found by solving

%') 4 = C,

and finally E is the solution of

'%) E = 2 − 4.

Hence each refinement step requires a solvewith ' andwith ') plus amatrix-vector
product with & and &) .

Without roundoff errors, the process would converge to the correct solution in

88 J. Scott and M. Tůma

a single iteration. In practice, after a few iterations stagnation occurs (i.e., a point
is reached after which little further accuracy is achieved). Thus, the refinement
is terminated when either the correction is sufficiently small, or it stagnates, or
a prescribed maximum number of iterations is reached. While the computed
solution initially improves with each iteration, this is usually not reflected in a
corresponding decrease in the norm of the residual, which typically stays about the
same. Convergence analysis is given by (Björck 1967a). Note that in the iterative
refinement of Algorithm 7.3, the solver choice in Line 5 for obtaining the correction
is crucial and the system can be regularized; see (1.7).

7.3. Mixed precision refinement

There are a number of variants of iterative refinement that involve using different
precisions for all or part of the computation. In fixed precision refinement, the same
precision is used throughout. In mixed precision iterative refinement, the most ex-
pensive operations (the matrix factorization and solving the correction equation)
are performed in the working precision D and the residual computation performed
in a higher precision Dℎ < D by accumulating the matrix-vector product using
precision Dℎ. This has been used since the 1960s (Björck 1967a, Businger and
Golub 1965) (see, for example, Algorithm 7.1). If D and Dℎ are single and double
precision, respectively, employing mixed precision can be attractive because single
precision arithmetic is often significantly faster than double precision. Moreover,
holding the factors in single precision substantially reduces memory requirements
and the amount of data movement. Alternatively, for highly ill-conditioned prob-
lems, it may be necessary to select D to be double precision and Dℎ to be quad
(double-double) precision (Demmel, Hida, Riedy and Li 2009).
Most recently, there has been interest in using half precision (16 bit) for the

working precision because it can be very fast, it reduces memory requirements
and data movement, and can thereby potentially yield significant savings in energy
consumption and enable larger problems to be solved (Carson et al. 2020, Scott
and Tůma 2022a). The initial work in this area builds on the GMRES-IR method
(Carson and Higham 2017, 2018), which is a mixed precision variant of iterative
refinement for linear systems. At each iteration, the correction equation is solved
using GMRES applied to the normal equations preconditioned using the factors
of the system matrix. Observe that if the working precision is chosen to be a low
precision then the notion of what is an ill-conditioned problem changes accordingly.
For example, if ^2(�) ≈ 103, and the working precision is double precision then
the problem may not be regarded as being ill conditioned. However, if D is IEEE
half precision then � is ill conditioned in the working precision.

For least squares problems, if � is well conditioned, then GMRES-IR with
Cholesky preconditioning can be applied to the normal equations (Higham and
Pranesh 2021). More generally, the QR factorization of � can be computed using
low precision arithmetic and then the augmented system solved using GMRES

Sparse Linear Least Squares Problems 89

preconditioned by a matrix based on the low precision QR factors to obtain the
LS solution to working precision (Carson et al. 2020); see Algorithm 7.4. It
can be shown under reasonable assumptions that, with an appropriate choice of
preconditioner, this approach yields a forward least squares error, and a backward
error for the augmented system, of the order of the working precision.

Algorithm 7.4. Solve the LS problem using GMRES-based iterative refine-
ment with precisions D 5 ≥ D ≥ DA .
Input: Overdetermined full rank matrix �, vector 1.
Output: Least squares solution G and least squares residual A .

1: Compute QR factorization of � using precision D 5 .
2: Store the ' factor using precision D 5 .
3: Compute an initial solution G(1) and residual A (1) using precision D

4: Set H(1) =

(
A (1)

G(1)

)
.

5: for 8 = 1, 2, . . . do

6: Compute B(8) =

(
1

0

)
−
(
� �

�) 0

)
H(8) ≡

(
1

0

)
− H(8) in precision DA .

7: Store B(8) in precision D.
8: Apply preconditioned GMRES to correction equation XH(8) = B(8) using

precision D, with matrix-vector products computed using precision DA .
9: Compute H(8+1) = H(8) + XH(8) using precision D.

10: If converged then return G = G(8+1), A = A (8+1) and stop.
11: end for

A recent study (Carson and Daužickaitė 2024) discusses the theoretical and
practical aspects of three two-precision iterative refinement methods and proposes
a new approach that is based on the augmented system and involves solving three
least squares problems at each refinement iteration to obtain the corrections.

8. Updating techniques and sparse-dense problems
In some applications, it may be convenient to split the rows of the system matrix
� into disjoint sets. A practical example in which the rows are naturally split is
the addition of rows as a result of incorporating new data into the least squares
estimation of parameters in a linear model (or, conversely, the removal of rows
because variables are removed from the problem). Updating procedures seek to
handle such instances by updating the solution of the original problem, rather
than recomputing the factorization or updating the factorization to incorporate the
effects of the extra rows. The history of updating algorithms for adjusting a least

90 J. Scott and M. Tůma

squares solution when new equations are added dates back to Gauss; see the book
(Gauss and Stewart 1995) and recent discussion in (Magnus 2022).
Another example of splitting the rows of � that is often faced in practice is when

some rows contain significantly more nonzeros than the other rows. The latter
are referred to as sparse rows and the former as dense rows (although they may
contain far fewer than = entries). Dense rows need to be handled carefully. If �
contains just a single dense row then the normal matrix �) � suffers catastrophic
fill-in and if = is large, it may not be possible to store or factorize it using a direct
solver. Furthermore, it may be difficult (as well as computationally expensive) to
construct an IC factorization. Clearly, an IC factorization with sparsity pattern-
based dropping that includes the lower triangular part of S(�) �) in the prescribed
pattern is not feasible if �) � is close to dense. Furthermore, threshold-based
dropping is a poor strategy if there many nonzero entries that have to be discarded.
The error in the factorization can be so large as to prohibit its effectiveness as a
preconditioner. A discussion of the interplay of structure-based and threshold-
based dropping is given in (Scott and Tůma 2011).
Other modifications to least squares problems are possible. For example, �

may be modified by matrices of low rank, adding new columns to � or remov-
ing columns. The book (Björck 2024) provides a general reference for classical
modification approaches (see also (Marín, Mas, Guerrero and Hayami 2017)).
Assume � has <3 rows that are either to be treated as dense or they correspond

to new added (or removed) sparse rows, and let us suppose that these rows have
been permuted to be the last rows of �. The remaining rows are all assumed to
be sparse. With a conformal partitioning of the vector 1 (and omitting the row
permutation matrix for simplicity of notation) we have

� =

(
�B
�3

)
, �B ∈ R<B×=, �3 ∈ R<3×=, 1 =

(
1B
13

)
, 1B ∈ R<B , 13 ∈ R<3 ,

(8.1)
where < = <B + <3 , <B ≥ = and <3 � <B. The linear least squares problem is
then

min
G
‖1 − �G‖2 = min

G

(1B13) − (�B�3) G2
. (8.2)

It can be shown that if � is of full rank then �B = �)B �B is positive definite on
the null space of �3 (Scott and Tůma 2022b). Note that ordering the rows so that
�3 forms the last rows can be always assumed because the least squares solution
(but not necessarily the solution approaches) is independent of the row reordering.
For convenience, in the remainder of this section, we refer to problems of the form
(8.1)-(8.2) as sparse-dense least squares problems (although �3 is not necessarily
fully dense).
The simplest way to deal with �3 is to drop it before factorizing the remaining

matrix �B and then employing the computed factors as a preconditioner for an
iterative solver applied to the original problem. This was discussed in the case of

Sparse Linear Least Squares Problems 91

QR factorizations in (Avron et al. 2009), with the conclusion that if adding (or even
dropping) a small number of rows is considered as a perturbation of �B, the ' factor
from theQR factorization of �B can provide an effective least squares preconditioner
for �. The targeted sophisticated approaches we discuss here attempt to either avoid
the need for an iterative solver and/or seek to obtain higher quality preconditioners
by taking the rows of �3 into account in their construction. They also address the
common case that on dropping �3 , the remaining matrix contains null columns.
This situation occurs when the rows of �3 are dense or when �3 corresponds to
added rows that contain new components of the least squares solution G.

8.1. Updating a Cholesky factorization

Updating a Cholesky factorization is an efficient approach if �3 corresponds to
added sparse rows. Consider the case where �B = �)B �B is SPD and the sparse
Cholesky factorization of �B has been computed before additional sparse rows are
appended to �B to give problem (8.2). The normal equations for (8.2) are given by

�G = (�B + �)3 �3) G = 2, 2 = �)B 1B + �)3 13 .

Computing the Cholesky factorization of� involves a rank-<3 update and a sparse
Cholesky factorization update algorithm can be used (Davis and Hager 2001).
This exploits and modifies the elimination tree T (�B) of the normal matrix of �B.
Suppose �3 comprises a single sparse row, 0) (<3 = 1), and let 8 be the index
of the first nonzero in 0) . A rank-1 update to �B modifies all columns along the
path from 8 to the root of T (�B). If the sparsity pattern changes, the path in the
new tree is followed. The entire algorithm (finding the path, modifying both S(!B)
and the values of !B, and modifying T (�B)) takes time proportional to the number
of entries in !B that change. This can be extended to an asymptotically optimal
rank-<3 update that modifies a set of <3 paths in the tree. A state-of-the-art
implementation is available in the software package CHOLMOD38 (Chen et al.
2008). It uses the concept of dynamically defined supernodes. It also includes
downdating a Cholesky factorization in which rows are removed, rather than added.

8.2. Updating a QR factorization

Using a QR factorization involves the factorization of the sparse row block �B and
not the factorization of the normal matrix, and so the rows of �3 can be either
sparse or dense. Assume that �B is of full rank and that its QR factorization with
column permutation and formal embedding of the right-hand side vector 1B is as
follows (

�B%B 1B
)
= &B

(
'B 2B
0 3B

)
, (8.3)

38 https://people.engr.tamu.edu/davis/suitesparse.html

https://people.engr.tamu.edu/davis/suitesparse.html

92 J. Scott and M. Tůma

where %B ∈ R=×= represents the column permutation of �B, &B ∈ R<B×<B is an
orthogonal matrix and 'B ∈ R<B×<B is an upper triangular matrix. Furthermore,
let H ∈ R= be the solution of the sparse least squares problem

min
H
‖1B − �BH‖2 . (8.4)

The solution G of (8.2) can be computed usingAlgorithm8.1 (Heath 1982). Observe
that the least squares minimum norm problem in Line 3 is the same as the following
least squares problem of size (<3 + =) × <3

min
D

(0
A3

)
−
(
 3
�

)
E

2
, D =)3 E,

with normal equations (� + 3)3)E = A3 . The solution can be efficiently computed
using dense linear algebra (for example, the LAPACK routine _getsls).

Algorithm 8.1. Updating QR for solving problem (8.2)
Input: � and 1 of the form (8.1), the factorization (8.3) and the solution H of (8.4).
Output: Least squares solution G.

1: Solve %B')B)3 = �
)
3
for 3 . ⊲ Triangular solve

2: Solve 'B%)B H = 2B for H and form A3 = 13 − �3H. ⊲ Triangular solve and
residual computation

3: Compute least squares minimum norm solution of ⊲ Use dense linear algebra(
 3 �

)(
D

E

)
= A3 .

4: Solve 'B%)B I = D for I and set G = H + I. ⊲ Triangular solve

If �B is close to being rank deficient then Algorithm 8.1 is not stable. In this
case, QR updates can be applied using the techniques of Section 4.5 that handle the
QR factorization of rank-deficient problems. Once the factorization is computed,
the conditioning of ' should be checked, and, if necessary, further rows added and
rotated into ' usingGivens rotations. Thewell-conditioned ' factor of the extended
matrix can be employed as a preconditioner. In exact arithmetic, the number of
appended rows bounds the number of LSQR iterations (Avron et al. 2009). For
sparse problems, an alternative approach for updating or downdating the ' factor is
to apply update/downdate procedures to the sparse Cholesky factorization of �) �
(Chen et al. 2008).
For strongly overdetermined problems (< � =), a Gram-Schmidt based QR

factorization that generates ' and only the first = columns of & (rather than the
whole of &) may be a more suitable approach, which can also be easily updated.

Sparse Linear Least Squares Problems 93

8.3. Handling null columns in �B

As already observed, it frequently happens that �3 contains a few columns that
correspond to new solution components that are not represented in �B. That is, �B,
after being combined with �3 to give �, has one or more null columns and these
cause Algorithm 8.1 to break down. The problem can be solved as follows. Assume
A0=:(�) = = and �B has =2 null columns with =2 � =. If these are permuted to be
the final columns and G is partitioned conformally then we have

� =
(
�1 �2

)
=

(
�B1 0
�31 �32

)
, G =

(
G1
G2

)
, (8.5)

where A0=:(�1) = =1, �31 ∈ R<3×=1 and �32 ∈ R<3×=2 are obtained from column
split of �3 , and G1 ∈ R=1 , G2 ∈ R=2 with =1 + =2 = =. Let I ∈ R=1 and / ∈ R=1×=2

be the solutions to the problems

min
I
‖1 − �1I‖2 and min

,
‖�2 − �1/ ‖� , (8.6)

respectively, where ‖ · ‖� denotes the Frobenius norm. It can be shown (Scott and
Tůma 2017b) that the solution to the least squares problem (8.1) is given by(

G1
G2

)
=

(
I − /G2
G2

)
,

where G2 is the solution of the least squares problem

min
G2
‖(1 − �1I) − (�2 − �1/)G2‖2 .

Because =2 is small, this can be solved using dense linear algebra. The partial
solutions I and / can be computed by employing Algorithm 8.1 with �1 replacing
� and =2 + 1 right-hand sides.

8.4. Updating by complete or approximate solution of an SQD system

The solution of the linear least squares problem expressed in the form (8.2) can
be computed by solving the equivalent (= + <3) × (= + <3) symmetric indefinite
system(

�B �)
3

�3 −�

)(
G

�3G

)
=

(
2

0

)
, �B = �

)
B �B, 2 = �)B 1B + �)3 13 . (8.7)

Provided �B has full column rank, this is a symmetric quasi-definite system. If !B
denotes the Cholesky factor of �B, then the signed Cholesky factorization is(

�B �)
3

�3 −�

)
=

(
!B
�3 !3

)(
�

−�

)(
!)B �)

3

!)
3

)
, (8.8)

where !B�)3 = �
)
3
and (3 = � + �3�)3 = !3!

)
3
. Here !3 is the (dense) Cholesky

factor of the <3 ×<3 Schur complement (3 . Algorithm 8.2 summarizes the steps

94 J. Scott and M. Tůma

to compute the least squares solution once !B, �3 , and !3 have been computed. If
�3 represents a set of rows that have been appended to the original matrix �B then
this algorithm can be viewed as an updating procedure in which the normal matrix
factorization remains fixed and Steps 2-4 represent the additional work involved.
As in the previous section, if �B contains null columns then (8.5) and (8.6) can be
used with Algorithm 8.2.

Algorithm 8.2. Block factorization approach for sparse-dense problems
Input: �3 , the Cholesky factors !B and !3 , and 2 = �)B 1B + �)3 13 .
Output: Least squares solution G.

1: Solve !BDB = 2. ⊲ Sparse triangular solve
2: Compute F3 = �3DB.
3: Solve !3D3 = F3 and then !)3 H3 = D3 . ⊲ Dense triangular solves
4: Form FB = DB − �)3 H3 .
5: Solve !)B G = FB. ⊲ Sparse triangular solve

Another possibility is compute an approximate solution of the SQD system. It is
straightforward to verify that the normal matrix satisfies the following relationship

(�B + �)3 �3)−1 =
(
� 0

)(�B �)
3

�3 −�

)−1(
�

0

)
.

This implies that the inverse of the updated normal matrix applied to a given vector
I ∈ R= to obtain the solution vector H ∈ R= as H = (�B+�)3 �3)−1I can be computed
from the solution of the system(

�B �)
3

�3 −�

)(
H

F

)
=

(
I

0

)
. (8.9)

If �B ≈ !̃B !̃
)
B is an IC factorization then an incomplete version of (8.8) can

be employed to give a preconditioner for use with an iterative solver. If �B is
rank deficient (including the case that it has some null rows and columns) then
a global shift U > 0 can be used and the factorization of �B + U� computed (see
Section 6.5). Exploiting (8.9), each application of the preconditioner involves using
a modified version of Algorithm 8.2 in which the complete factors are replaced by
the incomplete ones. Alternatively, the techniques discussed in Sections 6.13 to
6.15 can also be used for solving the SQD system.
Because the matrix in (8.7) is symmetric indefinite, an obvious approach is to

employ an existing sparse direct solver to compute an LDLT factorization (see
Section 5). The major advantage of this is that it is straightforward: all the work of
ordering the matrix to limit fill in the factors (including exploiting any zero entries
within the rows of �3) and ensuring numerical stability is handled by the solver.
However, the 2 × 2 block structure of the matrix is ignored and the factorization
cannot be easily updated if different row blocks �3 are appended to �B (but see

Sparse Linear Least Squares Problems 95

some early work on rank-one updates (Sorensen 1977) and a recent strategy for a
sequence of saddle-point systems with the same sparsity pattern (Kuřátko 2019)).

8.5. Updating by solving a SQD system with an embedded QR factorization of �B

The problem of updating can be also formulated via the solution of an augmented
system in which the QR factorization of �B is embedded. This can be useful, for
example, for iterative refinement that was discussed in Section 7.2 and which we
extend here to problems with split �.
Consider the following (<B +<3 + =)× (<B +<3 + =) augmented system formu-

lation of the least squares problem used in the correction equation of the iterative
refinement given in (7.1). Assume � is of the form (8.1) and that we have a
conformal partitioning of D and F so that � �B

� �3
�)B �)

3
0

DBD3
E

 =

FBF3
C

 , (8.10)

Using the QR factorization(
�B%B FB

)
= &B

(
'B 2B
0 3B

)
,

yields
� 'B

� 0
� �3%B

')B 0 %)B �
)
3

0

4B
5B
D3
%)B E

 =

2B
3B
F3
%)B C

 ,

where (
2B
3B

)
= &)B FB and DB = &B

(
4B
5B

)
= &B

(
4B
3B

)
. (8.11)

Setting I = 'B%)B E and %B')B)3 = �
)
3
, we have� �

� 3
�)

3
0

4BD3
I

 =

 2B
F3
?

 ,

where %B')B ? = C. The first block gives I = 2B − 4B and eliminating 4B from the
above equation gives (

� 3
)
3
−�

)(
D3
I

)
=

(
F3
? − 2B

)
.

This is another SQD system and to solve it we can use techniques from Section 8.4
with �B replaced by �. Eliminating I, we can also use the transformed normal

96 J. Scott and M. Tůma

equations
(� + 3)3)D3 = F3 + 3(? − 2B).

Once D3 has been computed, E is found by forming 4B = ? −)3 D3 then solving
'B%

)
B E = 2B − 4B, and finally computing DB from (8.11).

Observe that 3 is independent of the right-hand side vector in (8.10) and so it
can be reused, limiting the amount of work needed to perform iterative refinement.
For small <3 , it is clear that the work per iteration for the sparse-dense case is
essentially the same as for � with no dense rows.

If we simply need to solve the least squares problems with extra rows �3 (and
not the correction equations); this can be done by setting C = 0 in (8.10), which
implies ? = 0.

8.6. Updating using the Woodbury formula

A standard tool when the factors of �B are known and one or more rows �3 is
appended is the Woodbury formula; see the classical papers (Woodbury 1949,
1950) and the review article (Hager 1989). Assume �B is of full column rank
and is well conditioned. Then this formula, which is sometimes referred to as
the Sherman-Morrison-Woodbury formula, expresses the inverse of the extended
normal matrix � = �) � in the compact form

�−1 = (�B + �)3 �3)−1 = �−1
B − �−1

B �)3 (� + �3�−1
B �)3)−1�3�

−1
B . (8.12)

The least squares solution may be explicitly expressed as

G = GB + �−1
B �)3 (� + �3�−1

B �)3)−1(13 − �3GB) with GB = �
−1
B �)B 1B .

It is straightforward to show that, in exact arithmetic, Algorithm 8.2 is equivalent
to the Woodbury formula.
The formula (8.12) leads to a direct method for updating the least squares

solution. Alternatively, if an IC factorization �B ≈ !̃B !̃
)
B is computed, then

� + �3�−1
B �3 ≈ � + (�3 !̃−1

B)(�3 !̃−1
B)) = !̃3 !̃)3 . The approximate inverse of the

updated normal matrix expressed via the Woodbury formula using two incomplete
factorizations provides a preconditioner for the conjugate gradient method (Scott
and Tůma 2017b). Recently, a preconditioning strategy that is derived from an
alternating splitting scheme and combined with (8.12) has been proposed and suc-
cessfully applied to solve sparse-dense least squares problems (Benzi and Faccio
2024).

8.7. Matrix stretching

Matrix stretching targets the casewhen �3 is composed of rows that are significantly
denser than the rest of the rows of �. It aims to split each dense row into a number of
sparser rows and to formulate a (larger) modified problem from which the solution
to the original least squares problem can be derived (Adlers and Björck 2000).

Sparse Linear Least Squares Problems 97

Suppose �3 represents a single dense row, 0) . Stretching starts by splitting 0)
into two 0) = (0)1 0)2). Assume a conformal splitting of the sparse row block �B
and the solution G. Then, introducing a linking variable B, the G component of the
solution of the extended least squares problem

min
(G) B))

�B1 �B2 0
0)1 0)2 0
0)1 −0)2

√
2

G0G1
B

 −
1B13

0

2

,

is the solution of (8.1). Next, an orthogonal transformation is applied to replace
0)2 in the second block row and 0)1 in the third block row by zeros. Orthogonal
invariance of the norm leads to the equivalent stretched problem

min
I
‖ �̂I − 1̂‖2 with �̂ =

 �B0 �B1 0√
2 0)1 0 1
0

√
2 0)2 −1

 , I =

G0G1
B

 , 1̂ =

 1B

13/
√

2
13/
√

2

 .

The approach can be generalised by splitting the dense row into : > 1 parts,
resulting in a stretched problem in which �̂ and the normal matrix �̂) �̂ are the
form

�̂ =

(
�B
�) (

)
and �̂ = �̂) �̂ =

(
�)B �B + ��) �(

() �) () (

)
,

where �) ∈ R:×= and the : × (: − 1) linking matrix (has 1’s on the diagonal and
-1’s on the first subdiagonal (and all other entries are 0). If <3 > 1 then each dense
row can be stretched independently.
Stretching replaces the effect of adding S{�)

3
�3} to S{�)B �B} to obtain the

sparsity pattern of �) � by adding the sparsity pattern of (�) ()) (�) () toS{�)B �B}
to get the sparsity pattern of �̂, while seeking to have |S{�̂}| much smaller than
|S{�}|. Standard stretching splits �3 into sets of (almost) equal contiguous seg-
ments without any reference to �B. This is a simple approach but it can result in
significant fill in �̂. A more sophisticated sparse stretching strategy considers the
pattern of �)B �B and, for each row in �3 , chooses the subsets of row indices in the
splitting such that S(��)) ⊆ S(�)B �B), thereby limiting the number of entries in
�̂ (Scott and Tůma 2019). Finding the subsets of row indices can be formulated as
a bipartite graph matching problem.

In some cases, �̂ can be much larger than the original � (particularly if �B
is highly sparse) and the cost of solving the stretched problem (in terms of time
and memory) may still be prohibitive. Another potential problem is that stretching
increases condition number of the normal equations (Adlers and Björck 2000, Scott
and Tůma 2019). A compromise is partial stretching (Scott and Tůma 2021). This
selects a small subset of the rows of �3 that contain nonzero entries at column
positions that are null in the rows of �B. Sparse stretching is applied to each row in
this subset. The stretched rows are sparse so they are added to an enlarged sparse

98 J. Scott and M. Tůma

row block �̂B that has no null columns, while the remaining dense rows are moved
to a dense block �̂3 that has fewer rows than �3 . The rows in �̂3 can be handled
by applying Algorithm 8.1 to the partially stretched problem.

9. Equality constrained least squares problems
Least squares problems with equality constraints (LSE problems) arise in a variety
of fields, including constrained optimization, scattered data approximation, fitting
curves to data, surface fitting, and in various tasks of control and communication.
For instance, when fitting curves to data, equality constraints may arise from the
need to interpolate some data or from a requirement for adjacent fitted curves to
match with continuity. In applications such as beam-forming or spatial filtering it
is necessary to solve a sequence of LSE problems in which the equality constraints
change. Moreover, solving least squares problems with more general inequality
constraints can sometimes be reduced to solving sequences of LSE problems (for
example, (Dehghani, Lambe and Orban 2020)). Motivations for LSE problems to-
gether with solution strategies are summarized in the research monographs (Björck
2024, Lawson and Hanson 1995); see also (Scott and Tůma 2022c) for sparse-dense
LSE problems and numerical results comparing different approaches.
We assume that � ∈ R<×= is sparse and that � ∈ R?×=, with < > = � ?,

represents a few linear constraints (which may be sparse or dense). Given 1 ∈ R<
and 3 ∈ R?, the LSE problem is

min
G∈R=
‖1 − �G‖2 (9.1)

such that �G = 3. (9.2)

If � has full row rank then (9.2) is consistent for any 3. A solution to the LSE
problem exists if and only if (9.2) is consistent. It is unique if and only if N (�) ∩
N (�) = {0}. This is equivalent to the extended matrix

(
�

�

)
having full column

rank. In the case of non-uniqueness, there is a unique minimum-norm solution. In
the following, we assume that � is of full row rank.

9.1. The use of weighting

The simplest approach to solving the LSE problem is to solve the full rank weighted
least squares problem

min
Gl ∈R=

(l31) − (l��) Gl
2
, (9.3)

with l � 1. Because liml→∞ Gl = G, the weighted problem can be used to
approximately solve the LSE problem. If � is sparse then an obvious strategy is to

Sparse Linear Least Squares Problems 99

either compute a QR factorization of
(
l�

�

)
or to solve the normal equations

�lGl =
(
l�) �)

)(l�
�

)
Gl = (�) � + l2�) �) Gl = �) 1 + l2�) 3.

The appeal is that no special methods are required. However, a very large weight
may be needed for the constraints to be tightly satisfied, even for well-conditioned
problems. With a largel, the problem is stiff (recall Section 1.4),�l is dominated
by the l2�) � term and information in � can potentially be lost.
A smaller l can be successfully used by employing an iterative procedure; this

is outlined in Algorithm 9.1. An appropriate weight is l ≈ n−1/2 (Van Loan 1985).
The approach can be used even if � is not full rank.

Algorithm 9.1. The LSE problem with � sparse
Input: �, �, 1 and 3 defining the LSE problem (9.1)–(9.2) and weight l > 0.
Output: LSE solution G.

1: Solve the sparse weighted LS problem (9.3)
2: Set G(1) = Gl

3: for i = 1, 2, . . . do
4: Set B(8) = 3 − �G(8) ⊲ B(8) is the residual of the constraints.
5: If converged then return G = G(8)

6: Solve min

(
B(8)

0

)
−
(
l�

�

)
XG(8)

2

⊲ The factors computed in Step 1 can

be reused
7: Set G(8+1) = G(8) + XG(8)

8: end for

In practice, the constraint matrix � often contains one or more dense rows. For
such problems, one possibility is to introduce a regularization parameter W > 0 and
solve the (< + ? + =) × (< + ? + =) augmented system W� 0 �

0 W� l�

�) l�) −W�

 HB
H2
Gl

 =

 1

l 3

0

 .

This 3-block system is structurally similar to the system (8.10) and can be solved
by embedding a QR factorization of � and modifying the approaches proposed in
Section 8.5. Alternatively, the block structure can be ignored and a numerically

100 J. Scott and M. Tůma

stable LDLT factorization computed using a sparse symmetric indefinite direct
solver. Or, eliminating HB and choosing the parameters such that W l = 1, yields

(
−�W �)

� W2�

)(
Gl
H2

)
=

(
−�) 1
3

)
, �W =

(
�) W�

)(�
W�

)
= �) � + W2 � .

(9.4)
This system is similar to that discussed in Section 8.4. A sparse QR factorization of(
�

W�

)
can be computed and employed in the solution of this augmented system. If

more than one problem with the same � but different constraints � are to be solved,
an attractive approach may be to compute a block signed (incomplete) Cholesky
factorization of the augmented matrix (9.4) and employ it as a preconditioner. In
particular, if �W ≈ !̃W !̃)W then the right-preconditioned system is(

−�W �)

� W2�

)
"−1

(
FW
F2

)
=

(
−�) 1
3

)
, "

(
Gl
H2

)
=

(
FW
F2

)
,

with the preconditioner in factored form given by

" =

(
!̃W

�W �

)(−�
(W

)(
!̃)W �)W

�

)
,

with
!̃W �

)
W = −�) and (W = W

2� + �W �)W .

As the preconditioner is indefinite, it needs to be used with a general nonsymmetric
iterative method based on full recurrences such as GMRES. A positive definite
preconditioner for use with MINRES can be obtained by replacing −� by �.

9.2. The null-space approach

There are two standard ways to derive an unconstrained linear least squares problem
of lower dimension that is equivalent to the LSE problem: the null-space approach
(Hanson and Lawson 1969, Lawson and Hanson 1995) and the method of direct
elimination (Björck and Golub 1967). When suitably implemented, both offer
good numerical stability but retaining sparsity is challenging and may compromise
stability.
The null-space approach is based on constructing a matrix / ∈ R=×(=−?) whose

columns form a basis for N (�). Any G ∈ R= satisfying the constraints can be
written in the form

G = G1 + /G2,

where G1 ∈ R= is a particular solution of the underdetermined system (9.2). Sub-

Sparse Linear Least Squares Problems 101

stituting into (9.1) yields the reduced least squares problem

min
G2∈R=−?

‖(1 − �G1) − �/G2‖2 . (9.5)

An overview of the use of the null-space approach for solving large-scale saddle-
point systems is given in (Rees and Scott 2018). Using null-space methods leads to
the problem of how to compute null-space bases that preserve sparsity and lead to
a stable transformed system. Significant attention has been devoted to developing
approaches to find a sparse null-space basis of a sparse matrix; a brief historical
review is given in (Scott and Tůma 2022b).
For the LSE problem, � ∈ R?×= with ? � =, so that � is a wide matrix. One

possibility is to compute the QR factorization of �) , that is,

�) = (&1 &2)
(
'�
0

)
.

Here &1 ∈ R=×? and &2 ∈ R=×(=−?) gives an orthogonal basis for N (�) and we
can choose / = &2. If � is of full rank, the upper triangular matrix '� ∈ R?×?
is non singular and hence G1 = &1'

−)
�
3. Unfortunately, this / is typically dense

and �/ is much denser than � and, if = is large, solving (9.5) is challenging. In
particular, forming and factorizing the potentially ill-conditioned normal matrix
/) �) �/ may be impractical. If a preconditioned iterative solver is used, forming
/) �) �/ can be avoided and because / only needs to be applied implicitly, the
need for sparsity can be relaxed. However, finding a good and sufficiently general
robust preconditioner for this system remains an open problem.
Another option is to construct a banded / by exploiting the fact that each

column of � that is linearly dependent on previous columns can be written as a
linear combination of at most ? of these columns. Consider the following wide
2 × 7 matrix and its null-space basis /

� =

(
1 2 3 4 5 1 6
3 4 7 10 11 1 12

)
, / =

1 1
1 1
−1 1 1

−1 −1
−1 1 1

−1 1
−1

.

Here column 5 of � is the sum of columns 2 and 3. This linear dependence can
be expressed by a vector in R7 that has nonzero entries in positions 2, 3 and 5
only. More generally, expressing each linearly dependent column 9 of � as a linear
combination of previous columns whose column indices 8 are as close to 9 as
possible results in / with a band structure. The dependencies can be determined
stably using QR factorizations of submatrices of �; the incorporation of pivoting
can be used to balance stability of the factorization with limiting the bandwidth.

102 J. Scott and M. Tůma

This is discussed in (Scott and Tůma 2022b); recent work on solving LSE problems
based on this approach is presented in (Scott and Tůma 2022c). While this strategy
can be useful, in general the columns of the computed / are not orthogonal and, in
some cases, the norm of the constraints residual may be larger than is desirable.

9.3. The method of direct elimination

The basic idea is to express the dependency of ? selected components of the
solution vector G on the remaining = − ? components and to substitute this into the
LS problem (9.1). The ? components need to be chosen to retain sparsity in the
transformed problem. The method starts by permuting and splitting so that

�G = �%H =
(
�1 �2

)(H1
H2

)
= 3,

where the permutation % ∈ R=×= is chosen to ensure �1 ∈ R?×? is nonsingular.
Let �% = (�1 �2) be a conformal partitioning of �. Substituting the expression

H1 = �
−1
1 (3 − �2 H2) ∈ R?

into (9.1) gives the transformed LS problem

min
H2

(1 − �1�
−1
1 3) − �) H2

2 , �) = �2 − �1�

−1
1 �2 ∈ R<×(=−?). (9.6)

for the remaining (= − ?) solution components.
Note that if �1 is irreducible, the transformation combines all the rows of �2.

If both � and � are sparse then �) is sparse but if � contains dense rows then
�) has more dense rows than � and (9.6) is a sparse-dense least squares problem.
This is illustrated by the following example in which < = 9, ? = 3, = = 7. The
matrices (from the left) represent the transformation �) = �2 − �1�

−1
1 �2; the

matrix �−1
1 �2 ∈ R?×= is depicted as fully dense. In this instance, �) has four

dense rows.

∗
∗ ∗

∗
∗
∗ ∗

∗
∗ ∗

∗ ∗ ∗ ∗
∗ ∗

−

∗
∗

∗

∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

 −→

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗

∗
∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

.

The permuting and splitting of � cannot be separated from consideration of S(�)
because the splitting also determines �1 and �2. Thus there needs to be a balance
between ensuring there is a sufficiently well-conditioned factorization of �1 while
limiting the number of dense rows in �) (Scott and Tůma 2022c).

Sparse Linear Least Squares Problems 103

9.4. Lagrange multiplier approach

Complementary approaches for solving the LSE problem are based on substitution
from the unconstrained least squares problem into the constraints. The Lagrangian
for (9.1)–(9.2) is

L(G, _) = ‖1 − �G‖22 + 2_) (3 − �G),

where _ ∈ R? is the vector of Lagrange multipliers. Setting the partial derivatives
to zero gives the first order optimality condition

�) (1 − �G) + �) _ = 0 and 3 − �G = 0.

Combining with the residual equation A = 1 − �G yields a 3-block augmented
system 0 �) �)

� � 0
� 0 0

GA
_

 =

0
1

3

 . (9.7)

The G component of the solution is the solution of the LSE problem. Again, the
system (9.7) can be solved using an LDLT factorization. Alternatively, eliminating
A we have a 2-block system(

�) � �)

� 0

)(
G

_

)
=

(
�) 1

3

)
,

Algorithm 9.2 is a straightforward updating scheme for computing G that can be
used whether or not the rows of � are dense. Any appropriate direct or iterative
method can be used for Step 1, which is usually the most expensive part of the
computation. The method used to solve the system with a block of ? right-hand
sides in Step 2 may be chosen to exploit Step 1 (for example, a complete or
incomplete Cholesky factorization of the normal matrix �) � can be reused). Step
3 involves a small dense system.

Algorithm 9.2. Straightforward updating approach based on Lagrangemul-
tipliers for the LSE problem with � having full row rank
Input: �, �, 1 and 3 defining the LSE problem (9.1)–(9.2).
Output: LSE solution G.

1: Solve the sparse unconstrained LS problem minH ‖1 − �H‖2

2: Solve �) �� = �) for � ∈ R=×?
3: Set . = �� and solve ._ = �H − 3 ⊲ . ∈ R?×? is SPD.
4: Set G = H − �_

A numerically superior but more expensive method that avoids both forming
the normal matrix and computing the multipliers _ can be derived using a QR
factorization of � and modifying the updating approach of Section 8.2.

104 J. Scott and M. Tůma

10. Summary and outlook
In this article, we have sought to provide an overview of modern approaches for
solving large-scale linear least squares problems. In particular, having briefly
introduced important tools used in sparse matrix technology, we have addressed
the following topics.

• Sparse direct methods for (i) the symmetric positive definite but possibly
highly ill-conditioned normal equations (ii) the mathematically equivalent
symmetric indefinite augmented system (iii) the QR factorization of the least
squares matrix.
• The development of algebraic preconditioners for use with Krylov subspace
methods for least squares problems.
• The use of iterative refinement for least squares problems.
• Updating techniques, including methods for solving sparse-dense problems
that arise in many practical applications.
• Linear least squares problems with equality constraints.

We are conscious that it is not possible to cover all aspects of such a wide field
in one paper and so we have aimed to provide a self-contained introduction to the
fundamental ideas and concepts, along with useful references where the underlying
theory can be found, and pointers to the available software. To cite all the relevant
publications would increase the bibliography to thousands of items; an extensive
bibliography of over 1,100 historical and recent references is included within the
new book (Björck 2024). We have chosen in the main to reference key papers,
books, research monographs, and survey articles that themselves include many
other useful references, as well as citing recent publications related to algorithms
and theory for solving least squares problems that are not yet so well known.
We have included basic outline algorithmic descriptions using pseudocode that

is independent of any programming language together with simple examples to
provide an insight into sophisticated sparse factorization techniques. The complex
implementation details that are needed in the development of high-quality soph-
isticated (parallel) production software are outside the scope of the paper. Indeed,
the design and development of general-purpose high quality software for efficiently
solving sparse least squares problems usingmodern computer architectures remains
a challenge.
Despite the fact that solving linear least squares problems is a mature scientific

field that is employed in many practical applications, there remain significant theor-
etical as well as computational challenges. One such challenge is the development
of robust preconditioners, with underlying theory and efficient implementations. In
the case of general-purpose Cholesky factorization methods, novel regularization
techniques seamlessly combined with shifting strategies may be needed. QR-based
preconditioners are even less well developed. We have mentioned their relation to
memory-limited incomplete Cholesky factorizations; this relationship may lead to

Sparse Linear Least Squares Problems 105

better understanding and new insights and developments. The techniques for solv-
ing large-scale sparse-dense problems may potentially be extended to more general
problems where the interaction of partially sparse structures in the matrix of the
normal equations may lead to efficient preconditioners (Scott and Tůma 2021).
The use of mixed precision arithmetic in the development of preconditioners and
their use in iterative solvers has only recently started to be considered but may offer
significant future potential (Carson et al. 2020, Higham and Pranesh 2021, Scott
and Tůma 2022a).
While much research has been devoted to robust stopping criteria for precondi-

tioned iterative solvers (Chang, Paige and Titley-Peloquin 2009), for least squares
problems originating from discretised ill-posed problems, an excessive number of
iterations can lead to overfitting and thus useless approximations (Hansen 1998).
In some practical applications (such as the extremely large problems that arise in
weather forecasting), early stopping (possibly after a fixed number of iterations) is
essential because of real time constraints. It may be possible to resolve the cru-
cial task of determining early stopping by exploiting a priori information, such as
statistical properties of noise and solution smoothness (Havelková and Hnětynková
2023). However, further work is needed to better understand the interplay between
stopping criteria and other parameters.
Finally, many challenges are connected to embedding linear least squares solvers

into more general problems, including nonlinear least squares problems, least
squares problemswith inequality constraints, and the efficient solution of sequences
of least squares problems.

Acknowledgements
We would like to thank Petr Tichý for comments on iterative methods used to solve
least squares problems and Iveta Hnětynková for reading a draft manuscript.
Jennifer Scott is grateful for funding over many years from the Engineering

and Physical Sciences Research Council, the Science and Technology Facilities
Research Council, and the University of Reading, and would like to thank both
former and current collaborators at the Rutherford Appleton Laboratory.
MiroslavTůma thanks his colleagues for the stimulating atmosphere at his current

workplace, the Faculty of Mathematics and Physics of Charles University.

106 J. Scott and M. Tůma

References
M. Adlers and Å. Björck (2000), Matrix stretching for sparse least squares problems,

Numer. Linear Algebra Appl. 7(2), 51–65.
E. Agullo, A. Buttari, A. Guermouche and F. Lopez (2016), Implementing multifrontal

sparse solvers for multicore architectures with sequential task flow runtime systems,
ACM Trans. Math. Softw. 43(2), Art. 13, 1–22.

M. A. Ajiz and A. Jennings (1984), A robust incomplete Choleski-conjugate gradient
algorithm, Int. J. Numer. Method Engrg. 20(5), 949–966.

H. Al Daas and L. Grigori (2019), A class of efficient locally constructed preconditioners
based on coarse spaces, SIAM J. Matrix Anal. Appl. 40(1), 66–91.

H. Al Daas, P. Jolivet and J. A. Scott (2022), A robust algebraic domain decomposition
preconditioner for sparse normal equations, SIAM J. Sci. Comput. 44, A1047–A1068.

P. R. Amestoy, T. A. Davis and I. S. Duff (1996a), An approximate minimum degree
ordering algorithm, SIAM J. Matrix Anal. Appl. 17(4), 886–905.

P. R. Amestoy, T. A. Davis and I. S. Duff (2004), Algorithm 837: AMD, an approximate
minimum degree ordering algorithm, ACM Trans. Math. Softw. 30(3), 381–388.

P. R. Amestoy, I. S. Duff and J.-Y. L’Excellent (2000), Multifrontal parallel distributed
symmetric and unsymmetric solvers, Comp. Meth. Appl. Mech. Engrg. 184(2-4), 501–
520.

P. R. Amestoy, I. S. Duff and C. Puglisi (1996b), Multifrontal QR factorization in a
multiprocessor environment, Numer. Linear Algebra Appl. 3(4), 275–300.

M. Arioli, I. S. Duff and P. P. M. de Rijk (1989), On the augmented system approach to
sparse least-squares problems, Numer. Math. 55(6), 667–684.

S. R. Arridge, M. M. Betcke and L. Harhanen (2014), Iterated preconditioned LSQR
method for inverse problems on unstructured grids, Inverse Problems 30(7), 075009,
27.

C. Ashcraft (1995), Compressed graphs and the minimum degree algorithm, SIAM J. Sci.
Comput. 16(6), 1404–1411.

C. Ashcraft and R. Grimes (1989), The influence of relaxed supernode partitions on the
multifrontal method, ACM Trans. Math. Softw. 15(4), 291–309.

H. Avron, E. Ng and S. Toledo (2009), Using perturbed &' factorizations to solve linear
least-squares problems, SIAM J. Matrix Anal. Appl. 31(2), 674–693.

J. Baglama and D. J. Richmond (2014), Implicitly restarting the LSQR algorithm, Elect.
Trans. Numer. Anal. 42, 85–105.

Z.-Z. Bai and J.-F. Yin (2009), Modified incomplete orthogonal factorization methods
using Givens rotations, Computing 86(1), 53–69.

G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, N. Knight and H. D. Nguyen (2015),
Reconstructing Householder vectors from tall-skinny QR, J. Parallel and Distributed
Comput. 85, 3–31.

J. L. Barlow (2013), Reorthogonalization for the Golub-Kahan-Lanczos bidiagonal reduc-
tion, Numer. Math. 124(2), 237–278.

S. T. Barnard, A. Pothen and H. D. Simon (1995), A spectral algorithm for envelope
reduction of sparse matrices, Numer. Linear Algebra Appl. 2(4), 317–334.

R. H. Bartels, G. H. Golub and M. A. Saunders (1970), Numerical techniques in math-
ematical programming, in Nonlinear Programming (Proc. Sympos., Univ. of Wisconsin,
Madison), Academic Press, New York-London, pp. 123–176.

Sparse Linear Least Squares Problems 107

S. Bellavia, J. Gondzio and B. Morini (2013), A matrix-free preconditioner for sparse
symmetric positive definite systems and least-squares problems, SIAM J. Sci. Comput.
35(1), A192–A211.

C. Benoit (1924), Note sur une méthode de résolution des équations normales provenant de
l’application de la méthode des moindres carrés a un systeme d’équations linéaires en
nombre inférieur a celui des inconnues. application de la méthode a la résolution d’un
systeme défini d’équations linéaires., Bulletin Géodésique 2, 5–77.

A. R. Benson, D. F. Gleich and J. Demmel (2013), Direct QR factorizations for tall-and-
skinny matrices in MapReduce architectures, in 2013 IEEE International Conference
on Big Data, IEEE, pp. 264–272.

M. Benzi (2004), Gianfranco Cimmino’s contributions to numerical mathematics, Atti
del Seminario di Analisi Matematica, Dipartimento di Matematica dell’Universita di
Bologna. Volume Speciale: Ciclo di Conferenze in Ricordo di Gianfranco Cimmino
pp. 87–109.

M. Benzi and C. Faccio (2024), Solving linear systems of the form (� + W**))G = 1 by
preconditioned iterative methods, SIAM J. Sci. Comput. 46(2), S51–S70.

M. Benzi and M. Tůma (2003a), A robust incomplete factorization preconditioner for
positive definite matrices, Numer. Linear Algebra Appl. 10(5-6), 385–400.

M. Benzi and M. Tůma (2003b), A robust preconditioner with low memory requirements
for large sparse least squares problems, SIAM J. Sci. Comput. 25(2), 499–512.

M. Benzi, G. Golub and J. Liesen (2005), Numerical solution of saddle point problems,
Acta Numer. 14, 1–137.

A. Berman and R. J. Plemmons (1974), Cones and iterative methods for best least squares
solutions of linear systems, SIAM J. Numer. Anal. 11, 145–154.

C.-E. Bichot and P. Siarry, eds (2011), Graph Partitioning, ISTE, London; John Wiley &
Sons, Inc., Hoboken, NJ.

C. H. Bischof and P. C. Hansen (1991), Structure-preserving and rank-revealing &'-
factorizations, SIAM J. Sci. Comput. 12(6), 1332–1350.

C. H. Bischof and P. C. Hansen (1992), A block algorithm for computing rank-revealing
&' factorizations, Numer. Algors. 2(3-4), 371–391.

Å. Björck (1967a), Iterative refinement of linear least squares solutions I, BIT 7(4), 257–
278.

Å. Björck (1967b), Solving linear least squares problems by Gram-Schmidt orthogonaliz-
ation, BIT 7(1), 1–21.

Å. Björck (1976), Methods for sparse least squares problems, in Sparse Matrix Computa-
tions (J. R. Bunch and D. J. Rose, eds), Academic Press, New York, pp. 177–199.

Å. Björck (1987), Stability analysis of the method of seminormal equations for linear least
squares problems, Linear Algebra Appl. 88, 31–48.

Å. Björck (2024), Numerical Methods for Least Squares Problems, second edition, SIAM,
Philadelphia, PA.

A. . Björck and C. C. Paige (1994), Solution of augmented linear systems using orthogonal
factorizations, BIT 34(1), 1–24.

Å. Björck and G. Golub (1967), ALGOL Programming, Contribution No. 22: Iterative
refinement of linear least square solutions by Householder transformation, BIT 7, 322–
337.

D. Braess and P. Peisker (1986), On the numerical solution of the biharmonic equation and
the role of squaring matrices for preconditioning, IMA J. Numer. Anal. 6(4), 393–404.

108 J. Scott and M. Tůma

R. Bru, J. Marín, J. Mas and M. Tůma (2014), Preconditioned iterative methods for solving
linear least squares problems, SIAM J. Sci. Comput. 36(4), A2002–A2022.

N. I. Buleev (1959), A numerical method for solving two-dimensional diffusion equations
(in Russian), Atomnaja Energija 6, 338–340.

J. R. Bunch and L. Kaufman (1977), Some stable methods for calculating inertia and
solving symmetric linear systems, Math. Comp. 31, 162–179.

P. Businger and G. H. Golub (1965), Linear least squares solutions by Householder trans-
formations, Numer. Math. 7, 269–276.

A. Buttari (2013), Fine-grained multithreading for the multifrontal &' factorization of
sparse matrices, SIAM J. Sci. Comput. 35(4), C323–C345.

D. Calvetti and E. Somersalo (2005), Priorconditioners for linear systems, Inverse problems
21(4), 1397.

L. Cambier, C. Chen, E. G. Boman, S. Rajamanickam, R. S. Tuminaro and E. Darve (2020),
An algebraic sparsified nested dissection algorithm using low-rank approximations,
SIAM J. Matrix Anal. Appl. 41(2), 715–746.

E. Carson and I. Daužickaitė (2024), A comparison of mixed precision iterative refinement
approaches for least-squares problems, Preprint arXiv:2405.18363.

E. Carson and N. J. Higham (2017), A new analysis of iterative refinement and its applica-
tion to accurate solution of ill-conditioned sparse linear systems, SIAM J. Sci. Comput.
39(6), A2834–A2856.

E. Carson and N. J. Higham (2018), Accelerating the solution of linear systems by iterative
refinement in three precisions, SIAM J. Sci. Comput. 40(2), A817–A847.

E. Carson, N. J. Higham and S. Pranesh (2020), Three-precision GMRES-based iterative
refinement for least squares problems, SIAM J. Sci. Comput. 42(6), A4063–A4083.

E. Carson, K. Lund, M. Rozložník and S. Thomas (2022), Block Gram-Schmidt algorithms
and their stability properties, Linear Algebra Appl. 638, 150–195.

C. Cartis, J. Fiala and Z. Shao (2021), Hashing embeddings of optimal dimension, with
applications to linear least squares, Preprint arXiv:2105.11815.

U. V. Çatalyürek, C. Aykanat and E. Kayaaslan (2011), Hypergraph partitioning-based
fill-reducing ordering for symmetric matrices, SIAM J. Sci. Comput. 33(4), 1996–2023.

A. Çivril and M. Magdon-Ismail (2009), On selecting a maximum volume sub-matrix of a
matrix and related problems, Theoret. Comput. Sci. 410(47-49), 4801–4811.

J. Cerdán, D. Guerrero, J. Marín and J. Mas (2020), Preconditioners for rank deficient least
squares problems, J. Comput. Appl. Math. 372, 112621.

T. F. Chan (1987), Rank revealing &' factorizations, Linear Algebra Appl. 88/89, 67–82.
T. F. Chan and H. A. van der Vorst (1997), Approximate and incomplete factorizations, in

Parallel Numerical Algorithms (A. S. D.E. Keyes and V. Venkatakrishnan, eds), Kluver
Academic Publishers, Dordrecht, pp. 167–202.

S. Chandrasekaran and I. C. F. Ipsen (1994), On rank-revealing factorisations, SIAM J.
Matrix Anal. Appl. 15(2), 592–622.

X.-W. Chang, C. C. Paige and D. Titley-Peloquin (2009), Stopping criteria for the iterative
solution of linear least squares problems, SIAM J. Matrix Anal. Appl. 31(2), 831–852.

D. Chen, T.-Z. Huang and L. Li (2012), An algorithm for symmetric indefinite linear
systems, J. Comp. Anal. Applics 14(4), 767–784.

Q. Chen, A. Ghai and X. Jiao (2019), ‘Hilucsi: Simple, robust, and fast multilevel ilu with
mixed symmetric and unsymmetric processing’.

Sparse Linear Least Squares Problems 109

Y. Chen, T. A. Davis, W. W. Hager and S. Rajamanickam (2008), Algorithm 887:
CHOLMOD, supernodal sparse Cholesky factorization and update/downdate, ACM
Trans. Math. Softw. 35(3), 1–14.

J.-J. Climent and C. Perea (2003), Iterative methods for least-square problems based on
proper splittings, J. Comput. Appl. Math. 158(1), 43–48.

T. F. Coleman and A. Verma (2001), A preconditioned conjugate gradient approach to
linear equality constrained minimization, Comput. Opt. Appl. 20(1), 61–72.

T. F. Coleman, A. Edenbrandt and J. R. Gilbert (1986), Predicting fill for sparse orthogonal
factorization, J. Assoc. Comput. Mach. 33(3), 517–532.

P. G. Constantine and D. F. Gleich (2011), Tall and skinny qr factorizations in mapreduce
architectures, in Proceedings of the Second International Workshop on MapReduce and
Its Applications, MapReduce ’11, Association for Computing Machinery, New York,
p. 43–50.

E. J. Craig (1955), The N-step iteration procedures, J. Math. Phys. 34(1-4), 64–73.
E. H. Cuthill and J. McKee (1969), Reducing the bandwidth of sparse symmetric matrices,

in Proceedings 24Cℎ National Conference of the ACM, ACM Press, pp. 157–172.
I. Daužickaitė, A. S. Lawless, J. A. Scott and P. J. Van Leeuwen (2021), Randomised

preconditioning for the forcing formulation of weak-constraint 4D-Var, Quarterly J.
Royal Met. Soc. 147(740), 3719–3734.

T. A. Davis (2011), Algorithm 915, SuiteSparseQR: multifrontal multithreaded rank-
revealing sparse QR factorization, ACM Trans. Math. Softw. 38(1), Art. 8, 1–22.

T. A. Davis and W. W. Hager (2001), Multiple-rank modifications of a sparse Cholesky
factorization, SIAM J. Matrix Anal. Appl. 22(4), 997–1013.

T. A. Davis, J. R. Gilbert, S. I. Larimore and E. G. Ng (2004a), Algorithm 836: Colamd,
a column approximate minimum degree ordering algorithm, ACM Trans. Math. Softw.
30(3), 377–380.

T. A. Davis, J. R. Gilbert, S. I. Larimore and E. G. Ng (2004b), A column approximate
minimum degree ordering algorithm, ACM Trans. Math. Softw. 30(3), 353–376.

T. A. Davis, W. W. Hager, S. P. Kolodziej and S. N. Yeralan (2020), Algorithm 1003:
Mongoose, a graph coarsening and partitioning library, ACM Trans. Math. Softw. 46(1),
Art. 7, 1–18.

T. A. Davis, S. Rajamanickam and W. M. Sid-Lakhdar (2016), A survey of direct methods
for sparse linear systems, Acta Numer. 25, 383–566.

F. de Hoog and M. Hegland (2023), A note on error bounds for pseudo skeleton approx-
imations of matrices, Linear Algebra Appl. 669, 102–117.

M. Dehghani, A. Lambe and D. Orban (2020), A regularized interior-point method for
constrained linear least squares, INFOR: Inf. Syst. Oper. Res. 58(2), 202–224.

J. Demmel, L. Grigori, M. Hoemmen and J. Langou (2012), Communication-optimal
parallel and sequential QR and LU factorizations, SIAM J. Sci. Comput. 34(1), A206–
A239.

J. W. Demmel (1997), Applied Numerical Linear Algebra, SIAM, Philadelphia, PA.
J. W. Demmel, L. Grigori, M. Gu and H. Xiang (2015), Communication avoiding rank

revealing QR factorization with column pivoting, SIAM J. Matrix Anal. Appl. 36(1),
55–89.

J. W. Demmel, Y. Hida, J. E. Riedy and X. S. Li (2009), Extra-precise iterative refinement
for overdetermined least squares problems, ACM Trans. Math. Softw. 35(4), 1–32.

110 J. Scott and M. Tůma

D. di Serafino and D. Orban (2021), Constraint-preconditioned Krylov solvers for regular-
ized saddle-point systems, SIAM J. Sci. Comput. 43(2), A1001–A1026.

P. Drineas and M. W. Mahoney (2016), RandNLA: randomized numerical linear algebra,
Communications of the ACM 59(6), 80–90.

J. A. Duersch and M. Gu (2020), Randomized projection for rank-revealing matrix factor-
izations and low-rank approximations, SIAM Rev. 62(3), 661–682.

I. Duff, J. Hogg and F. Lopez (2020), A new sparse LDLˆT solver using a posteriori
threshold pivoting, SIAM J. Sci. Comput. 42(2), C23–C42.

I. S. Duff (2004), MA57—a code for the solution of sparse symmetric definite and indefinite
systems, ACM Trans. Math. Softw. 30(2), 118–154.

I. S. Duff and S. Pralet (2005), Strategies for scaling and pivoting for sparse symmetric
indefinite problems, SIAM J. Matrix Anal. Appl. 27(2), 313–340.

I. S. Duff and S. Pralet (2007), Towards stable mixed pivoting strategies for the sequential
and parallel solution of sparse symmetric indefinite systems, SIAM J. Matrix Anal. Appl.
29(3), 1007–1024.

I. S. Duff and J. K. Reid (1983), The multifrontal solution of indefinite sparse symmetric
linear, ACM Trans. Math. Softw. 9(3), 302–325.

I. S. Duff, A. M. Erisman and J. K. Reid (2017), Direct Methods for Sparse Matrices,
second edition, Oxford University Press, Oxford.

I. S. Duff, N. I. M. Gould, J. K. Reid, J. A. Scott and K. Turner (1991), The factorization
of sparse symmetric indefinite matrices, IMA J. Numer. Anal. 11(2), 181–204.

I. S. Duff, R. Guivarch, D. Ruiz and M. Zenadi (2015), The augmented block Cimmino
distributed method, SIAM J. Sci. Comput. 37(3), A1248–A1269.

A. Dumitraşc, P. Leleux, C. Popa, U. Ruede and D. Ruiz (2021), Extensions of the
augmented block Cimmino method to the solution of full rank rectangular systems,
SIAM J. Sci. Comput. 43(5), S516–S539.

A. Dumitraşc, P. Leleux, C. Popa, D. Ruiz and S. Torun (2018), The augmented block
Cimmino algorithm revisited, Preprint arXiv:1805.11487.

O. Edlund (2002), A software package for sparse orthogonal factorization and updating,
ACM Trans. Math. Softw. 28(4), 448–482.

T. Elfving (1980), Block-iterative methods for consistent and inconsistent linear equations,
Numer. Math. 35(1), 1–12.

E.N. Epperly (2024), Fast and forward stable randomized algorithms for linear least-squares
problems, Preprint arXiv:2311.04362.

R. Estrin, D. Orban and M. A. Saunders (2019), LSLQ: an iterative method for linear
least-squares with an error minimization property, SIAM J. Matrix Anal. Appl. 40(1),
254–275.

D. C.-L. Fong and M. Saunders (2011), LSMR: An iterative algorithm for sparse least-
squares problems, SIAM J. Sci. Comput. 33(5), 2950–2971.

L. V. Foster (1986), Rank and null space calculations using matrix decomposition without
column interchanges, Linear Algebra Appl. 74, 47–71.

J. G. F. Francis (1961), The QR transformation a unitary analogue to the LR transformation
- Part 1, The Computer Journal 4(3), 265–271.

R. W. Freund (1997), Preconditioning of symmetric, but highly indefinite linear systems,
in 15th IMACS World Congress on Scientific Computation, Modelling and Applied
Mathematics, Vol. 2, pp. 551–556.

Sparse Linear Least Squares Problems 111

C. F. Gauss (1809), Theoria motus corporum coelestium in sectionibus conicis solem
ambientium, Cambridge Library Collection, Cambridge University Press, Cambridge.
2011 reprint of the 1809 original.

C. F. Gauss and G. W. Stewart (1995), Theory of the combination of observations least
subject to errors, Part One, Part Two, Supplement, SIAM, Philadelphia, PA.

W. M. Gentleman (1976), Row elimination for solving sparse linear systems and least
squares problems, Lecture Notes in Math. 506, 122–133.

A. George (1973), Nested dissection of a regular finite element mesh, SIAM J. Numer.
Anal. 10, 345–363.

A. George and M. T. Heath (1980), Solution of sparse linear least squares problems using
Givens rotations, Linear Algebra Appl. 34, 69–83.

A. George and E. Ng (1983), On row and column orderings for sparse least squares
problems, SIAM J. Numer. Anal. 20(2), 326–344.

A. George, J. Liu and E. Ng (1986), Row-ordering schemes for sparse Givens transforma-
tions. III. Analyses for a model problem, Linear Algebra Appl. 75, 225–240.

A. George, J. Liu and E. Ng (1988), A data structure for sparse QR and LU factorizations,
SIAM J. Sci. Comput. 9(1), 100–121.

N. E. Gibbs, W. G. J. Poole and P. K. Stockmeyer (1976), An algorithm for reducing the
bandwidth and profile of a sparse matrix, SIAM J. Numer. Anal. 13(2), 236–250.

J. R. Gilbert, X. S. Li, E. G. Ng and B. W. Peyton (2001), Computing row and column
counts for sparse &' and !* factorization, BIT 41(4), 693–710.

P. E. Gill, M. A. Saunders and J. R. Shinnerl (1996), On the stability of Cholesky factoriz-
ation for symmetric quasidefinite systems, SIAM J. Matrix Anal. Appl. 17(1), 35–46.

L. Giraud and S. Gratton (2006), On the sensitivity of some spectral preconditioners, SIAM
J. Matrix Anal. Appl. 27(4), 1089–1105.

W. Givens (1953), A method of computing eigenvalues and eigenvectors suggested by clas-
sical results on symmetric matrices, in Simultaneous linear equations and the determin-
ation of eigenvalues, Vol. No. 29 of National Bureau of Standards Applied Mathematics
Series, U.S. Govt. Printing Office, Washington, DC, pp. 117–122.

A. Gnanasekaran and E. Darve (2022), Hierarchical orthogonal factorization: sparse least
squares problems, J. Sci. Comput. 91(2), Paper No. 50, 24.

G. H. Golub (1965), Numerical methods for solving linear least squares problems, Numer.
Math. 7, 206–216.

G. H. Golub and G. Meurant (1997), Matrices, moments and quadrature. II. How to
compute the norm of the error in iterative methods, BIT 37(3), 687–705.

G. H. Golub and C. F. Van Loan (1996), Matrix Computations, fourth edition, The Johns
Hopkins University Press, Baltimore and London.

G. H. Golub and J. H. Wilkinson (1966), Note on the iterative refinement of least squares
solution, Numer. Math. 9, 139–148.

S. A. Goreinov, E. E. Tyrtyshnikov and N. L. Zamarashkin (1997), A theory of pseudo-
skeleton approximations, Linear Algebra Appl. 261, 1–21.

N. I. M. Gould and J. A. Scott (2017), The state-of-the-art of preconditioners for sparse
linear least-squares problems, ACM Trans. Math. Softw. 43(4), Art. 36, 1–35.

S. Gratton, S. Gürol, E. Simon and P. L. Toint (2018), A note on preconditioning weighted
linear least-squares, with consequences for weakly constrained variational data assimil-
ation, Quarterly J. Royal Met. Soc. 144(712), 934–940.

112 J. Scott and M. Tůma

S. Gratton, A. S. Lawless and N. K. Nichols (2007), Approximate Gauss–Newton methods
for nonlinear least squares problems, SIAM J. Opt. 18(1), 106–132.

S. Gratton, A. Sartenaer and J. Tshimanga (2011), On a class of limited memory precondi-
tioners for large scale linear systems with multiple right-hand sides, SIAM J. Opt. 21(3),
912–935.

C. Greif, S. He and P. Liu (2017), SYM-ILDL: incomplete !�!) factorization of sym-
metric indefinite and skew-symmetric matrices, ACM Trans. Math. Softw. 44(1), Art. 1,
1–21.

M. Hagemann and O. Schenk (2006), Weighted matchings for preconditioning symmetric
indefinite linear systems, SIAM J. Sci. Comput. 28(2), 403–420.

W. W. Hager (1989), Updating the inverse of a matrix, SIAM Review 31(2), 221–239.
P. C. Hansen (1998), Rank-deficient and discrete ill-posed problems: numerical aspects of

linear inversion, SIAM, Philadelphia, PA.
P. C. Hansen (2010), Discrete inverse problems, Vol. 7 of Fundamentals of Algorithms,

Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA. Insight and
algorithms.

P. C. Hansen, K. Hayami and K. Morikuni (2022), GMRES methods for tomographic
reconstruction with an unmatched back projector, J. Comput. Appl. Math. 413, Art.
114352, 1–20.

P. C. Hansen, V. Pereyra andG. Scherer (2013), Least squares data fitting with applications,
Johns Hopkins University Press, Baltimore, MD.

R. J. Hanson and C. L. Lawson (1969), Extensions and applications of the Householder
algorithm for solving linear least squares problems, Math. Comp. 23, 787–812.

D. R. Hare, C. R. Johnson, D. D. Olesky and P. van den Driessche (1993), Sparsity analysis
of the &' factorization, SIAM J. Matrix Anal. Appl. 14(3), 655–669.

E. Havelková and I. Hnětynková (2023), Iterative hybrid regularization for extremely noisy
full models in single particle analysis, Linear Algebra Appl. 656, 131–157.

K. Hayami, J.-F. Yin and T. Ito (2010), GMRES methods for least squares problems, SIAM
J. Matrix Anal. Appl. 31(5), 2400–2430.

M. T. Heath (1982), Some extensions of an algorithm for sparse linear least squares
problems, SIAM J. Sci. Stat. Comput. 3(2), 223–237.

P. Hénon, P. Ramet and J. Roman (2002), PaStiX: a high-performance parallel direct solver
for sparse symmetric positive definite systems, Parallel Comput. 28(2), 301–321.

M. R. Hestenes and E. Stiefel (1952), Methods of conjugate gradients for solving linear
systems, J. Research of the National Bureau of Standards 49(6), 409–436.

N. J. Higham (1990), Analysis of the Cholesky decomposition of a semi-definite matrix,
in Reliable Numerical Commputation, Oxford University Press.

N. J. Higham (2002), Accuracy and Stability of Numerical Algorithms, second edition,
SIAM, Philadelphia, PA.

N. J. Higham and T. Mary (2022), Mixed precision algorithms in numerical linear algebra,
Acta Numer. 31, 347–414.

N. J. Higham and S. Pranesh (2021), Exploiting lower precision arithmetic in solving
symmetric positive definite linear systems and least squares problems, SIAM J. Sci.
Comput. 43(1), A258–A277.

N. J. Higham and G. W. Stewart (1987), Numerical linear algebra in statistical computing,
in The State of the Art in Numerical Analysis (I. Iserles andM. J. D. Powell, eds), Oxford
University Press.

Sparse Linear Least Squares Problems 113

I. Hnětynková, M. Kubínová and M. Plešinger (2017), Noise representation in residuals of
LSQR, LSMR, and CRAIG regularization, Linear Algebra Appl. 533, 357–379.

J. D. Hogg and J. A. Scott (2013a), An efficient analyse phase for element problems,Numer.
Linear Algebra Appl. 20(3), 397–412.

J. D. Hogg and J. A. Scott (2013b), New parallel sparse direct solvers for multicore
archiectures, Algorithms 6(4), 702–725.

J. D. Hogg and J. A. Scott (2013c), Pivoting strategies for tough sparse indefinite systems,
ACM Trans. Math. Softw. 40(1), Art. 4, 1–19.

J. D. Hogg, J. K. Reid and J. A. Scott (2010), Design of a multicore sparse Cholesky
factorization using DAGs, SIAM J. Sci. Comput. 32(6), 3627–3649.

J. D. Hogg, J. A. Scott and S. Thorne (2017), Numerically aware orderings for sparse
symmetric indefinite linear systems, ACM Trans. Math. Softw. 44(2), Art. 13, 1–22.

Y. P. Hong and C.-T. Pan (1992), Rank-revealing &' factorizations and the singular value
decomposition, Math. Comp. 58(197), 213–232.

A. S. Householder (1958), Unitary triangularization of a nonsymmetric matrix, J. Assoc.
Comput. Mach. 5, 339–342.

G.W. Howell andM. Baboulin (2016), LU preconditioning for overdetermined sparse least
squares problems, in Parallel processing and applied mathematics. Part I, Vol. 9573 of
Lecture Notes in Comput. Sci., Springer, [Cham], pp. 128–137.

D. Hysom and A. Pothen (2002), Level-based incomplete lu factorization: Graph model
and algorithms, Technical Report UCRL-JC-150789, Lawrence Livermore National
Laboratory, California, USA.

I. C. F. Ipsen and T. Wentworth (2014), The effect of coherence on sampling from matrices
with orthonormal columns, and preconditioned least squares problems, SIAM J. Matrix
Anal. Appl. 35(4), 1490–1520.

C. G. J. Jacobi (1845), Über eine neue Auflösungsart der bei der Methode der kleinsten
Quadrate vorkommenden lineären Gleichungen, Astronomische Nachrichten.

A. Jennings and M. A. Ajiz (1984), Incomplete methods for solving �) �G = 1, SIAM J.
Sci. Stat. Comput. 5(4), 978–987.

S. Jin, S. Pei, Y. Wang and Y. Qi (2021), A parallel sparse triangular solve algorithm based
on dependency elimination of the solution vector, Cluster Computing 24(2), 1317–1330.

M. T. Jones and P. E. Plassmann (1995), An improved incomplete Cholesky factorization,
ACM Trans. Math. Softw. 21(1), 5–17.

G. Karypis and V. Kumar (1998), A fast and high quality multilevel scheme for partitioning
irregular graphs, SIAM J. Sci. Comput. 20(1), 359–392.

D. S. Kershaw (1978), The incomplete Cholesky-conjugate gradientmethod for the iterative
solution of systems of linear equations, J. Comput. Phys. 26, 43–65.

J. Kuřátko (2019), Factorization of saddle-point matrices in dynamical systems
optimization—reusing pivots, Linear Algebra Appl. 566, 61–85.

A. J. Laub (2005), Matrix Analysis for Scientists & Engineers, SIAM, Philadelphia, PA.
P. Läuchli (1961), Jordan-Elimination undAusgleichung nach kleinsten Quadraten,Numer.

Math. 3, 226–240.
C. L. Lawson and R. J. Hanson (1995), Solving Least Squares Problems, Vol. 15 of Classics

in Applied Mathematics, SIAM, Philadelphia, PA. Revised reprint of the 1974 original.
A. M. Legendre (1805), Nouvelles Méthodes pour la Détermination des Orbites des

Comètes, number 116 in ‘Libraire pour les Mathématiques, la Marine, l’Architecture’,
Firmin Didot.

114 J. Scott and M. Tůma

N. Li and Y. Saad (2005), Crout versions of ILU factorization with pivoting for sparse
symmetric matrices, Elect. Trans. Numer. Anal. 20, 75–85.

N. Li and Y. Saad (2006), Miqr: A multilevel incomplete qr preconditioner for large sparse
least-squares problems, SIAM J. Matrix Anal. Appl. 28(2), 524–550.

N. Li, Y. Saad and E. Chow (2003), Crout versions of ILU for general sparse matrices,
SISC 25(2), 716–728.

J. Liesen and Z. Strakoš (2013), Krylov Subspace Methods, Numerical Mathematics and
Scientific Computation, Oxford University Press, Oxford. Principles and analysis.

C.-J. Lin and J. J. Moré (1999), Incomplete Cholesky factorizations with limited memory,
SIAM J. Sci. Comput. 21(1), 24–45.

R. J. Lipton, D. J. Rose and R. E. Tarjan (1979), Generalized nested dissection, SIAM J.
Numer. Anal. 16(2), 346–358.

J. H. W. Liu (1989), The minimum degree ordering with constraints, SIAM J. Sci. Comput.
10(6), 1136–1145.

J.W. H. Liu (1986a), A compact row storage scheme for Cholesky factors using elimination
trees, ACM Trans. Math. Softw. 12(2), 127–148.

J. W. H. Liu (1986b), On general row merging schemes for sparse Givens transformations,
SIAM J. Sci. Comput. 7(4), 1190–1211.

J. W. H. Liu (1990), The role of elimination trees in sparse factorizations, SIAM J. Matrix
Anal. Appl. 11(1), 134–172.

J. W. H. Liu (1992), The multifrontal method for sparse matrix solution: theory and
practice, SIAM Rev. 34(1), 82–109.

L. Lukšan and J. Vlček (1998), Indefinitely preconditioned inexact Newtonmethod for large
sparse equality constrained non-linear programming problems, Numer. Linear Algebra
Appl. 5(3), 219–247.

J. R. Magnus (2022), Gauss on least-squares and maximum-likelihood estimation, Arch.
Hist. Exact Sci. 76(4), 425–430.

J. Mandel (1993), Balancing domain decomposition, Comm. Numer. Methods Engrg. 9(3),
233–241.

J.Marín, J.Mas, D. Guerrero andK.Hayami (2017), Updating preconditioners formodified
least squares problems, Numer. Algors. 75, 491–508.

H. M. Markowitz (1957), The elimination form of the inverse and its application to linear
programming, Management Science 3, 255–269.

P.-G. Martinsson and J. A. Tropp (2020), Randomized numerical linear algebra: founda-
tions and algorithms, Acta Numer. 29, 403–572.

P.-G. Martinsson, G. Quintana-Ortí, N. Heavner and R. Van De Geijn (2017), House-
holder QR factorization with randomization for column pivoting (HQRRP), SIAM J.
Sci. Comput. 39(2), C96–C115.

P. Matstoms (1994), Sparse QR Factorization with Applications to Linear Least Squares
Problems, Vol. 337 of Linköping Studies in Science and Technology. Dissertations,
Linköping University, Department of Mathematics.

M. Meier and Y. Nakatsukasa (2022), Randomized algorithms for Tikhonov regularization
in linear least squares, Preprint arXiv:2203.07329.

M.Meier, Y. Nakatsukasa, A. Townsend andM.Webb (2024), Are sketch-and-precondition
least squares solvers numerically stable?, SIAM J. Matrix Anal. Appl. 45(2), 905–929.

M. Melnichenko, O. Balabanov, R. Murray, J. Demmel, M. W. Mahoney and P. Luszczek
(2024), CholeskyQRwith randomization and pivoting for tall matrices (cqrrpt), Preprint
arXiv:2311.08316.

Sparse Linear Least Squares Problems 115

X. Meng, M. A. Saunders and M. W. Mahoney (2014), LSRN: A parallel iterative solver
for strongly over-or underdetermined systems, SIAM J. Sci. Comput. 36(2), C95–C118.

R. Murray, J. Demmel, M. W. Mahoney, N. B. Erichson, M. Melnichenko, O. A. Malik,
L. Grigori, P. Luszczek, M. Dereziński, M. E. Lopes, T. Liang, H. Luo and J. Dongarra
(2023), Randomized numerical linear algebra: A perspective on the field with an eye to
software, Preprint arXiv:2302.11474.

A. Napov (2023), An incomplete Cholesky preconditioner based on orthogonal approxim-
ations, SIAM J. Sci. Comput. 45(2), A729–A752.

E. Ng (1991), A scheme for handling rank-deficiency in the solution of sparse linear least
squares problems, SIAM J. Sci. Comput. 12(5), 1173–1183.

E. G. Ng and B. W. Peyton (1992), A tight and explicit representation of Q in sparse
QR factorization, Technical Report ORNL/TM–12059, Oak Ridge National Laboratory,
Tennessee, USA.

E. G. Ng and B. W. Peyton (1993a), Block sparse Cholesky algorithms on advanced
uniprocessor computers, SIAM J. Sci. Comput. 14(5), 1034–1056.

E. G. Ng and B. W. Peyton (1993b), A supernodal Cholesky factorization algorithm for
shared-memory multiprocessors, SIAM J. Sci. Comput. 14(4), 761–769.

A. R. L. Oliveira and D. C. Sorensen (2005), A new class of preconditioners for large-scale
linear systems from interior point methods for linear programming, Linear Algebra Appl.
394, 1–24.

D. Orban (2015), Limited-memory LDLT factorization of symmetric quasi-definite
matrices with application to constrained optimization, Numer. Algors. 70(1), 9–41.

D. Orban and M. Arioli (2017), Iterative Solution of Symmetric Quasi-Definite Linear
Systems, SIAM, Philadelphia, PA.

A. I. Osinsky and N. L. Zamarashkin (2018), Pseudo-skeleton approximations with better
accuracy estimates, Linear Algebra Appl. 537, 221–249.

I. K. Ozaslan, M. Pilanci and O. Arikan (2023), M-IHS: an accelerated randomized
preconditioning method avoiding costly matrix decompositions, Linear Algebra Appl.
678, 57–91.

C. C. Paige and M. A. Saunders (1975), Solution of sparse indefinite systems of linear
equations, SIAM J. Numer. Anal. 12(4), 617–629.

C. C. Paige and M. A. Saunders (1982), LSQR: An algorithm for sparse linear equations
and sparse least squares, ACM Trans. Math. Softw. 8(1), 43–71.

A. T. Papadopoulos, I. S. Duff and A. J. Wathen (2005), A class of incomplete orthogonal
factorization methods. II. Implementation and results, BIT 45(1), 159–179.

J. Papež and P. Tichý (2023), Estimating error norms inCG-like algorithms for least-squares
and least-norm problems, Numer. Algors.

S. Parter (1961), The use of linear graphs in Gaussian elimination, SIAM Rev. 3, 119–130,
364–369.

J. W. Pearson and J. Pestana (2020), Preconditioners for Krylov subspace methods: An
overview, GAMM-Mitteilungen 43(4), e202000015.

G. Peters and J. H. Wilkinson (1970), The least squares problem and pseudo-inverse, The
Computer Journal 131, 309–316.

D. J. Pierce and J. G. Lewis (1997), Sparse multifrontal rank revealing &' factorization,
SIAM J. Matrix Anal. Appl. 18(1), 159–180.

A. Pothen (1993), Predicting the structure of sparse orthogonal factors, Linear Algebra
Appl. 194, 183–203.

116 J. Scott and M. Tůma

A. Pothen and C. J. Fan (1990), Computing the block triangular form of a sparse matrix,
ACM Trans. Math. Softw. 16(4), 303–324.

T. Rees and J. A. Scott (2018), A comparative study of null-space factorizations for sparse
symmetric saddle point systems, Numer. Linear Algebra Appl. 25(1), e2103, 17.

L. Reichel, H. Sadok and W.-H. Zhang (2020), Simple stopping criteria for the LSQR
method applied to discrete ill-posed problems, Numer. Algors. 84, 1381–1395.

J. K. Reid and J. A. Scott (1999), Ordering symmetric sparse matrices for small profile and
wavefront, Int. J. Numer. Method Engrg. 45(12), 1737–1755.

J. K. Reid and J. A. Scott (2009), An out-of-core sparse Cholesky solver., ACM Trans.
Math. Softw. 36(2), Art. 9, 1–33.

G. Reißig (2007), Local fill reduction techniques for sparse symmetric linear systems,
Electrical Engng. 89(8), 639–652.

D. J. Rose (1972), A graph-theoretic study of the numerical solution of sparse positive
definite systems of linear equations, in Graph Theory and Computing (Read, R., ed.),
Academic Press, pp. 183–217.

D. J. Rose, R. E. Tarjan and G. S. Lueker (1976), Algorithmic aspects of vertex elimination
on graphs, SIAM J. Comput. 5(2), 266–283.

E. Rothberg and S. Eisenstat (1998), Node selection strategies for bottom-up sparse matrix
ordering, SIAM J. Matrix Anal. Appl. 19(3), 682–695.

M. Rozložník, A. Smoktunowicz and J. Kopal (2014), A note on iterative refinement for
seminormal equations, Appl. Numer. Math. 75, 167–174.

Y. Saad (2003a), Finding exact and approximate block structures for ILU preconditioning,
SIAM J. Sci. Comput. 24(4), 1107–1123.

Y. Saad (2003b), Iterative Methods for Sparse Linear Systems, second edition, SIAM,
Philadelphia, PA.

Y. Saad and M. H. Schultz (1986), GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems, SIAM J. Sci. Comput. 7(3), 856–869.

Y. Saad and H. A. Van Der Vorst (2000), Iterative solution of linear systems in the 20th
century, J. Comput. Appl. Math. 123(1-2), 1–33.

Y. Saad, M. Yeung, J. Erhel and F. Guyomarch (2000), A deflated version of the conjugate
gradient algorithm, SIAM J. Sci. Comput. 21(5), 1909–1926.

M.A. Saunders (1979), Sparse least squares problems by conjugate gradients: a comparison
of preconditioning methods, in Proceedings of Computer Science and Statistics: Twelfth
Annual Conference on the Interface, Waterloo, Canada.

M. A. Saunders (1995), Solution of sparse rectangular systems using LSQR and Craig, BIT
35(4), 588–604.

M. A. Saunders (1996), Cholesky-based methods for sparse least squares: the benefits of
regularization, inLinear andNonlinearConjugateGradient-RelatedMethods (L. Adams
and J. L. Nazareth, eds), SIAM, Philadelphia, PA, pp. 92–100.

O. Schenk and K. Gärtner (2006), On fast factorization pivoting methods for symmetric
indefinite systems, Elect. Trans. Numer. Anal. 23, 158–179.

R. Schreiber and C. Van Loan (1989), A storage-efficient WY representation for products
of Householder transformations, SIAM J. Sci. Comput. 10(1), 53–57.

J. A. Scott (2023), HSL@60: a brief history of the HSL mathematical software library,
Technical Report STFC-TR-2023-002, Science and Technology Facilities Council, Did-
cot, UK.

Sparse Linear Least Squares Problems 117

J. A. Scott and M. Tůma (2011), The importance of structure in incomplete factorization
preconditioners, BIT 51(2), 385–404.

J. A. Scott and M. Tůma (2014a), HSL_MI28: an efficient and robust limited-memory
incomplete Cholesky factorization code, ACM Trans. Math. Softw. 40(4), Art. 24, 1–19.

J. A. Scott and M. Tůma (2014b), On positive semidefinite modification schemes for
incomplete Cholesky factorization, SIAM J. Sci. Comput. 36(2), A609–A633.

J. A. Scott and M. Tůma (2014c), On signed incomplete Cholesky factorization precondi-
tioners for saddle-point systems, SIAM J. Sci. Comput. 36(6), A2984–A3010.

J. A. Scott andM.Tůma (2016), Preconditioning of linear least squares by robust incomplete
factorization for implicitly held normal equations, SIAM J. Sci. Comput. 38(6), C603–
C623.

J. A. Scott and M. Tůma (2017a), Improving the stability and robustness of incomplete
symmetric indefinite factorization preconditioners, Numer. Linear Algebra Appl. 24(5),
e2099.

J. A. Scott andM. Tůma (2017b), Solvingmixed sparse-dense linear least-squares problems
by preconditioned iterative methods, SIAM J. Sci. Comput. 39(6), A2422–A2437.

J. A. Scott and M. Tůma (2019), Sparse stretching for solving sparse-dense linear least-
squares problems, SIAM J. Sci. Comput. 41, A1604–A1625.

J. A. Scott and M. Tůma (2021), Strengths and limitations of stretching for least-squares
problems with some dense rows, ACM Trans. Math. Softw. 47(1), Art. 1, 1–25.

J. A. Scott and M. Tůma (2022a), A computational study of using black-box QR solvers for
large-scale sparse-dense linear least squares problems, ACM Trans. Math. Softw. 48(1),
Art. 5, 1–24.

J. A. Scott and M. Tůma (2022b), A null-space approach for large-scale symmetric saddle
point systems with a small and non zero (2, 2) block, Numer. Algors. 90(4), 1639–1667.

J. A. Scott and M. Tůma (2022c), Solving large linear least squares problems with linear
equality constraints, BIT 62(4), 1765–1787.

J. A. Scott and M. Tůma (2023), Algorithms for Sparse Linear Systems, Nečas Center
Series, Birkhäuser/Springer, Cham.

A. Scotto di Perrotolo (2022), Randomized numerical linear algebra methods with applica-
tion to data assimilation, PhD thesis, Institut Superieur de l’Aeronautique et de l’Espace,
Toulouse.

S. W. Sloan (1986), An algorithm for profile and wavefront reduction of sparse matrices,
Int. J. Numer. Method Engrg. 23(2), 239–251.

D. C. Sorensen (1977), Updating the symmetric indefinite factorization with applications
in a modified Newton’s method, PhD thesis, University of California, San Diego.

B. Speelpenning (1978), Generalized elementmethod, Technical report, Dept. of Computer
Science, Illinois Univ., Urbana, USA.

D. A. Spielman and S.-H. Teng (2014), Nearly linear time algorithms for preconditioning
and solving symmetric, diagonally dominant linear systems, SIAM J. Matrix Anal. Appl.
35(3), 835–885.

J. M. Tang, R. Nabben, C. Vuik and Y. A. Erlangga (2009), Comparison of two-level
preconditioners derived from deflation, domain decomposition and multigrid methods,
J. Sci. Comput. 39, 340–370.

R. E. Tarjan (1975), Efficiency of a good but not linear set union algorithm, J. Assoc.
Comput. Mach. 22, 215–225.

118 J. Scott and M. Tůma

T. Terao, K. Ozaki and T. Ogita (2020), LU-Cholesky QR algorithms for thin QR decom-
position, Parallel Comput. 92, 102571.

W. F. Tinney and J. W. Walker (1967), Direct solutions of sparse network equations
by optimally ordered triangular factorization, in Proceeedings of the IEEE, Vol. 55,
pp. 1801–1809.

M. Tůma (2002), A note on the LDLT decomposition of matrices from saddle-point
problems, SIAM J. Matrix Anal. Appl. 23(4), 903–925.

A. Van der Sluis (1969), Condition numbers and equilibration of matrices, Numer. Math.
14(1), 14–23.

H. A. van der Vorst (2003), Iterative Krylov methods for Large Linear Systems, Cambridge
Monographs on Applied and Computational Mathematics, Cambridge University Press,
Cambridge.

C. Van Loan (1985), On the method of weighting for equality-constrained least-squares
problems, SIAM J. Numer. Anal. 22(5), 851–864.

R. J. Vanderbei (1995), Symmetric quasidefinite matrices, SIAM J. Opt. 5(1), 100–113.
R. S. Varga (1960), Factorizations and normalized iterativemethods, inBoundary Problems

in Differential Equations, University of Wisconsin Press, Madison, WI, pp. 121–142.
X. Wang, K. A. Gallivan and R. Bramley (1997), CIMGS: an incomplete orthogonal

factorization preconditioner, SIAM J. Sci. Comput. 18(2), 516–536.
A. J. Wathen (2015), Preconditioning, Acta Numer. 24, 329–376.
A. J. Wathen (2022), Some comments on preconditioning for normal equations and least

squares, SIAM Rev. 64(3), 640–649.
J. W. Watts-III (1981), A conjugate gradient truncated direct method for the iterative

solution of the reservoir simulation pressure equation, Soc. Petroleum Engrg. J. 21,
345–353.

P. Wedin (1973), Perturbation theory for pseudo-inverses, BIT 13, 217–232.
J. H. Wilkinson (1968), A priori error analysis of algebraic processes, in Proc. Internat.

Congr. Math. (Moscow, 1966), Izdat. “Mir”, Moscow, pp. 629–640.
M. A. Woodbury (1949), The Stability of Out-Input Matrices, Chicago, Ill.
M. A. Woodbury (1950), Inverting Modified Matrices, Statistical Research Group, Memo.

Rep. no. 42, Princeton University, Princeton, N. J.
Y. Yamamoto, Y. Nakatsukasa, Y. Yanagisawa and T. Fukaya (2015), Roundoff error

analysis of the CholeskyQR2 algorithm, Elect. Trans. Numer. Anal. 44(01), 306–326.
S. N. Yeralan, T. A. Davis, W.M. Sid-Lakhdar and S. Ranka (2017), Algorithm 980: sparse

QR factorization on the GPU, ACM Trans. Math. Softw. 44(2), Art. 17, 1–29.
T. Zhao (2016), A spectral analysis of subspace enhanced preconditioners, J. Sci. Comput.

66(1), 435–457.
G. Zilli and L. Bergamaschi (2022), Block preconditioners for linear systems in interior

point methods for convex constrained optimization, Ann. Univ. Ferrara Sez. VII Sci.
Mat. 68(2), 337–368.

	preprint_cover&inner.pdf
	preprint_cover
	STFC-P inner cover

	STFC-P-2024-001 orcid_inner_cover.pdf
	STFC-P-2024-003_preprint.pdf
	Introduction and basic concepts
	Sparse matrices, their graphs and ordering algorithms
	Sparse Cholesky factorizations
	Sparse QR factorizations
	Direct methods for the augmented system formulation
	Iterative solvers and algebraic preconditioners
	Iterative refinement for least squares problems
	Updating techniques and sparse-dense problems
	Equality constrained least squares problems
	Summary and outlook
	References

