Transport and Communication: matter, information and consciousness

Michael Wilson
CLRC Rutherford Appleton Laboratory
m.d.wilson@rl.ac.uk
We transport objects (matter) to communicate information in order to achieve our purposes (consciousness).

What will the technologies of these three be in 2050?
Hypertext: from conception to 10% of UK population using WWW
Technology Lifecycle Activities

- Technological Feasibility
- Application Feasibility
- Political Feasibility
- Demand Feasibility
- Market Creation
- Market Share

Years

- 2000
- 2020
- 2030
- 2040
- 2050
Transportation of Matter
Quantum Teleportation
Today we can transport the state of individual atoms a few kilometres
The transport of molecules can be expected within 20 years
Transportation of complex matter – maybe?
Computing Power

Growth of computing power available for $1000

Current technology extrapolation stops in 2015
Silicon Chip limits

• Current computing processor chips double in power every 18 months.
• This will continue while silicon chip masks can reduce the size of components – otherwise they will overheat.
• Present technology will only do this for another 15 years.
Quantum Computing

• Use the quantum properties of particles to compute
• Use entanglement to transmit the data instantly - faster than the speed of light
• A 3 bit register holds only 1 of 8 numbers at once
• A 3-qubit register holds all 8 simultaneously - superposition
• Particles can be held in ion traps and programmed by pulsed lasers or
• Liquids can be programmed by pulsed Nuclear Magnetic Resonance
Benefits and Limitations

• Modelling the evolution of 40 particles would take:
 – 10^{24} digital operations or 31,709 years on a TOP computer
 – 100 quantum interactions of 40 ions (qubits)
• Coherence - Qubits must interact strongly together,
• Decoherence - but not with the environment (e.g. thermal vibrations of trap)
• The NIST ion trap XOR gate looses coherence after 20 operations, the MIT/IBM liquid XOR gate 1000
• The number of qubits in a liquid is limited to the number of atoms in the molecule employed = 10 for current NMR
Quantum progress

1982 - Richard Feynman speculated on the idea

1985 – David Deutsch at Oxford described a universal quantum computer

1993 – Seth Lloyd at Los Alamos showed many systems could act as quantum computers (e.g. salt)

1994 - Peter Shor at AT&T's Bell Labs devised the first quantum algorithm, to perform efficient factorisation

1998 – Gershenfeld & Chuang at MIT & IBM - loading data and reading out a result from a solution of chloroform molecules at normal temperatures.
Projected Progress in Quantum Computing

- Growth follows Moore’s Law
- 7 Qubits achieved Apr. 2000
- Similar state to digital computing in the 1940’s
Using computers to achieve our intentions, with errors.

User Computer Interaction

- **Intention**
 - Task Goal
 - Action Selection
 - Perform Act

- **Computer**
 - Comprehend
 - Interpret
 - Perceive state

- **Mistakes**
 - False assumptions
 - Misreading

- **Slips**

CLRC

EPSRC

W3C
Today’s UI Research

- We have computers that speak & understand NL
- We have computers which hear, touch, even smell.
- We have computers that understand and express emotion.
Neural Interfaces

- science-fiction movie *Forbidden Planet*, 1956
- Direct interfaces between the human nervous system and the computer could avoid the comprehension and execution errors.
- Non-Invasive neural interfaces
 - Electro-muscular
 - EEG
- Invasive neural interfaces
 - Peripheral Nerves
 - Central Nervous System
• 1970’s - sensors detect muscle impulses through the skin to control prostheses - **electromyographic signal, or EMG**

• 1991- a general-purpose interface between a computer and the body's various electrical signals - **Biomuse**. Hugh Lusted and Benjamin Knapp Stanford Univ.

Useful for control by the handicapped – but won’t scale up to thought recognition, supports development of IO technology
Non-Invasive neural interfaces

- EEG – brain waves
- Aim - assemble a suite of EEG signatures that users can control simultaneously
- Most people can easily learn to manipulate several biosignal signatures one at a time.
- The tricky part is learning to control *multiple* EEG patterns at once
• **Grant McMillan**, Wright-Patterson Air force Base, 1996

• Place two electrodes on either side of the back of the head and attach ground and reference electrodes.

• A differential EEG signal, produced by subtracting a person's left hemisphere signal from that of the right hemisphere

• amplified and displayed to the user, who uses the feedback to help control the amplitude
Multiple Signal EEG Control

• Andrew Junker Cyberlink Mind Systems, Yellow Springs, Ohio, 1998
• break down the EEG spectrum into 10 brainfingers.
• Each finger is a narrow-band filter of the EEG spectrum up to 3,000 Hz.
• three brainfingers in the theta band, three in alpha, and four in beta.
• Could EEG scale up through positional and bandwidth sensitivity to thought recognition - unlikely
Peripheral Nerve Interfaces

- Microprobes inserted into the peripheral nerves can read and write nerve signals – 1995 Danny Banks, Surrey Univ.
- Support for finer prosthesis control, and limb control after spinal break
- Proof of technology, but thought does not go to the Peripheral Nervous System
Connect Motor Cortex to 2 electrode cones.
Electrode cone to a small transmitter-receiver
PC receives signal.
4 Patient users control cursors – horizontal & vertical

Oct ‘98, Philip Kennedy & Roy Bakay, Emory University Atlanta
Thought Recognition

- the ultimate computer interface
- the ultimate communication device
- CNS write as well as read required
- Move from Motor Cortex only to Intention and Consciousness centres required
- Requires brain science research to identify Intention and Consciousness centres and their neural codes – post genome project global research topic
A word of caution – the Josephson Junction

- 1962 - Supercooled superconductors separated by thin insulating layer allows current flow through insulator

- Magnetic and electric fields switch current on/off very fast – Potentially ultrafast logic gates

- Too expensive to cool, speeds too slow, circuits tore apart when cooled in liquid helium –270 C

- They are used as noninvasive medical sensors
Conclusion

- Predicting 50 years ahead is very risky
 - technology development takes a long time
 - intermediate stages in technology require their own justification/markets
- Electrophysiological communication and control of computers is currently possible in very limited cases
- There are markets to justify continuing these developments (e.g. disability) to solve many intermediate technical problems
- The expected change in computing architecture after 2015 justifies research in quantum computing
- Massively parallel computing architectures such as quantum computing may match the massively parallel computing architecture of the brain
- By 2050 direct thought control of quantum computers may be possible
- If not (recall the Josephson junction) these two lines of research will probably each produce something else significant for computing and communication