Lending, Cory

DL/CSE/TMQ3

19 %Y —2os

|Lechnical- memorandum Daresbury Laboratory

A USERS GUIDE TO THE DARESBURY INTERDATA CROSS-LINKER
by

W.H. PURVIS, Daresbury Laboratory

FEBRUARY, 1977

Science Research Council
Daresbury Laboratory

Daresbury, Warrington WA4 4AD

DL/CSE/TM¢3

A USERS GUIDE TO THE DARESBURY INTERDATA CROSS-LINKER
by |

W. H. PURVIS

Daresbury Laboratory

DARESBURY LABORATORY
SCIENCE RESERRCH COUNCIL

1. INTRODUCTEON

The Daresbury Laboratory Interdata cross-linker allows Interdata
users to generate a complete .load module on the 370 from object modules
produced by the CAL cross assembler. Facilities include automatic library
call processing and production of module maps. Input is in Daresbury
Laboratory Interdata object code (see Appendix A). Output is also in
Daresbury Laboratory Interdata object code (loader subset).

2. JCL

The linker needs the following JCL for a batch run:
//UT EXEC PGM=LINKS5,REGION=100K,TIME=(,59),
/7 PARM="UPSI=C0100000,cptions’
//SYSPRINT DD SYSOUT=A
//SYSLIB DD DSN=library,DISP=SHR (1f library is used)
//SYSLIN DD DSN=ohject,DISP=(0OLD,DELETE)
//8¥sUTl DD UNIT=SYSDA,SPACE=(TRK, (10,10))
//SYSPUNCH DD SYSOUT={P,PTAPE} (paper tape output)
//SYSIN DD *
linker control cards
I
SYSLIN is usually the output from a previocus CAL assembly step. If not
required it must be replaced by a DD DUMMY.

SYSIN defines the control card input. In order to process these
cards 1t is necessary to include 'CPT' in the list of options in the parm
field. If this is omitted, a simple linking procedure is followed and
SYSIN may be omitted. Output is via SYSPUNCH and consists of 72 byte
object records. These may be punched on paper tape, cards or mag. tape
as desired. Output may be blocked if your loader can process blockéd
input.

3. CONTROL CARDS

If the 'OPT' keyword is included in the parm field, the linker will

read records from SYSIN and interpret them as linker control cards. Each

card is assumed to contain a single command. Command format is simply:
Commandname Qperands

where commandname may be one of the commands described bhelow and the oper-

ands depend on the command. The following commands are currently avail-

able (a list is given in Appendix B).

INCLUDE item,......

This compand regquests the linker read the object file defined by 'item'.
This may be a sequential data set, in which case 'item' is the DDNAME pro-
vided to access that data set, or a member of a partitioned data set, in
which case either the member name is specified on the DD card and 'item’
is as for sgquential data sets, or 'item' 1s of the forxrm 'ddname {member)'
and a DD card has been included for the data set. 1In this case the

member name need not appear on the DD card.

ENTRY name

This cammand informs the linker that the user wishes the module to be
entered at 'name', 'name' must be an entry point into a mndule that has
already been processed at the time the ENTRY command is read, otherwise
an error message will be output and the command ignored. Note that this
restricts entry points to defined entry points. Other entry points may
be defined by means of the END statement in the CAL source, the linker
taking the first of these as the default entry point if no ENTRY state-
ment 1s supplied.

ALIGN number

This command is needed for modules to be run on Interdata 7/16s. Fullword
alignment may be needed in this case and can be enforced for selected
modules by using the ALIGN command with an cperand of '4' before the
INCLUDE statements that read in those modules. To revert to half word
alignment 'ALIGN 2' may be entered. Note that modules read in from
SYSLIN can only be full word aligned if the keyword 'ALIGN=4' is included
in the PARM field on the EXEC card.

MAP
The MAP command causes the linker to print out a module map, including a
list of unresolved references i1f appropriate. If the linker is being

used interactively, this can then be followed by further INCLUDE commands
to resolve these references and the MAP command re~entered to produce an
updated map. A map of the final module may be produced by including the
keyword 'MAP' in the PARM field.

LET

This command will cause the linker to produce an output module even though
errcrs may have occurred. This may be applicable during program develop-
ment where a part pf the program which has not yet been written may be
omlitted to produce a test version. This will work as long as the refexr-

ences which are missing are not used during the test,

END

This command is provided to terminate processing when the linker is being
used interactively. The linker will terminate without producing any out-
put. Under normal conditions the command processing términates at end of
file and the linker will then produce a load module provided all external
references have been resolved or the 'LET' command or keyword has been

supplied.

OVERLAY name .

This command allows the user to generate overlay segments. When this

command 1s read, anoverlay record is added to the object code and the

'name’ supplied is included as part of this record (see appendix). If the
linker is already processing an overlay segment, the address at which the next
module 1s to be loaded will be reset to be the seme as the previous

segment.

ROOT
This command terminates OVERLAY processing. The address for the next
module is set to he the end of the longest segment processed. This allows

the user to create several overlay areas, each with a number of segments.

4. PARM OPTIONS

There are a number of options which may be entered intoc the PARM
field of the EXEC card. Some of these have already been mentioned ahove,

The following describes each one in turn:

LIST
This keyword causes the linker to print cut each command as it is process-

ed, Useful for batch runs.

MAP

This keyword causes the linker to produce a load mrdule map on the
SYSPRINT file. This will be produced after commands have been processed
and library call resolution has been performed. It is therefore a com-

plete map of the module that is output.

CPT

This keyword requests that SYSIN be read for linker commands, If it is
omitted, the linker will still attempt to open SYSIN but it will not read
from it. If SYSIN is not supplied, the linker will continue normally pro-
vided the OPT keyword has not been specified.

LET
This keyword will cause the linker to produce a load medule despite errors

or missing external references.

NCAL

This keyword suppresses the automatic library call facility. If not
specified, the linker will search SYSLIB for members whose names corres-
pond to missing references. Those members which are found are read in

and the process repeated until either no more members can be found or all
references are satisfied. If NCAL is specified, this processing is by-
passed and the SYSLIB DD card may be omitted. The library call resolution

takes place after all the linker commands have been processed.

ALIGN=4

This command is provided for users of Interdata 7/16é {or equivalents}
where full word alignment is required for some instructions. It will
cause each module to be aligned on a full word, If omitted modules are
aligned on half word boundaries.

ALIGN=2

Is included for completeness, it causes modules to be aligned on half

word boundaries.

Note that the PARM field scanning will ignore unrecognised keywords. The-

linker does produce a list of those keywords it recognises at the head of

the SYSPRINT listing.

5.

ERROR MESSAGES

On detecting an error, the linker will produce an error message.

The error messages are listed below.

Any of these messages will produce

a return code of 8 when the linker terminates., Unresolved references

will produce a return code of 4 provided no cother errcrs have occurred.

invalid object record
invalid external symbol type
multiple entry definition
invalid ESD reference
unable to open SYSUT1
unable to open SYSLIN
unable to open SYSPUNCH
unknown command

invalid symbol name

entry point not defined
dictionary full

unable to open include file
unable to open SYSLIB
invalid member name

too many program sections

system error

6.

input is not DL object code
ditto.
the same name appears in two modules

object module corrupted

" missing DD card probably
© ditto.

ditto.

command not in list given above
must be letters and digits and '.'
must be defined before command
more than 500 names

missing DD card probably

ditto.

must be letters and digits

more than 200 modules

linker bug - inform DL

MISCELLANEQUS POINTS

SYSUT1 is used as a temporary work file during the input processing

phase. It should be large enough to hold the ccmplete module in expanded

form - about 40 per cent larger than total input.

the JCL above should be adequate for most purposes.

SYSPRINT has a record length of 121 bytes with record format FBA.

If desired a BLKSIZE may be specified which is a multiple of 1Z1.

specified a default of 3146 1s written into the linker. Output BLKSIZE

defaults to 72 since mogst loaders do not pérform unblocking. If output

is to be cards or paper tape, it may be feasible to block the output to

some multiple of 72. The record format is FB to allow blocking when

desired.

The overlay facility (OVERLAY and ROOT commands) was added in re-

sponse to user requests but 1s not supported by the noxmal loader.

If no command input is supplied, the basic sequence of actions is: .

1)
2)
3)
4]

read SYSLIN

resolve missing references from SYSLIB

produce a map (if MAP keyword specified)

output a load module (if no errxors or LET keyword specified)

The defaults given in

If not

APPENDIX A
DARESBURY LABORATORY OBJECT CODE FORMAT

Object code consists of a series of 72-byte records in the following

format:
Pos. size descripticon
o 1 X'FO' start of record marker
1 1 length of record
2 1 Checksum. see below
3 . 1 Record type - see below
4 - data porticn - see below

Although records are all 72 bytes long, only the number specified in
the record header are significant. The checksum 1s determined by adding
the significant bytes together then subtracting from 256 (modulo 256).
Thus the record may be checked by adding together-all the bytes including
the checksum. The total (modulo 256) should be zero.

There are 4 different types of records:
record type 1 - External Symbol Descriptors
offset size description
+0 8 symbol name (ISO characters)
+8 1 symbol type:
1 program name
2 entry point (absoclute}
3 entry point (relocatable)
) 4 external reference
+9 2 depends on symbol type:
1 size of relocatable section of program
2 address of entry point
3 address of entry point
4 field absent (only 9 bytes for this entry)
The above format is repeated until the end of record.

RPPENDIX B
SUMMARY OF LINKER COMMANDS

Record type 2 - Object code

offset size description

+0 2 address at which the following data is to be loaded

+2 1 relocation for load address The following is a list of the commands described above.
+3 2 two bytes of data . INCLUDE 'item',...

+5 1 relocation for data ENTRY name

last 3 bytes are repeated up to end of record. ALIGN numher

MAP
Record type 3 - END record. LET
offset size deseription END
+0 8 compiler/assembler name (IS0 characters) OVERLAY name
+8 2 entry point from end card (O if not spec) ROOT
+10 1 relocation of entry peint (0 if not spec)
+11 8 date of compilation/assembly (IS0 characters)

Record type 4 — Overlay header

offset gize description

+0 8 Segment name (ISO characters from OVERLAY commangd)
+8 2 Address of start of segment
+10 1 relocation of segment address (should always be 1)

The relocation byte is O for absclute values, 1 for the current secticn.
Values greater than 1 refer to external symbols which are assigned se-
quence numbexs starting at 2 up to a maximum of 255.

) The object code format was designed to be such that an object module
for a self-contained program should be acceptable to the loader without a
need for linking. This 1s in fact the case since the loader will ignore
all type 1 records, load all type 2 records and stop after reading a
type 3 record. The linker does not output type 1l records and all reloca-
tion is reduced to a binary decision {absolute/relocatable).

9 . 10

NINA 4

