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ABSTRACT

In this paper we will show explicitly that the Witten’s inter-
action 3-vertex is a solution to the comma overlap equations;
hence establishing the equivalence between the conventional
and the “comma” formulation of interacting string theory at

the level of vertices.
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1 Introduction

In the comma approach to string field theory [1], the Witten’s theory of
open-bosonic-string [2] is formulated as a generalized Yang-Mills theory.
In the comma approach instead of choosing the bosonic coordinates X,
of the centre of mass and the coordinates X,, for all other points relative
to it as variables to describe the string, one chooses as an alternative the

coordinates

X(o,7), ifr=1,
x(o,71)=¢ X(r—0,7), ifr=2, (1.1)
o €[0,7/2),

where 7 = 1, 2 refers to the left (L), right (R) parts of the string and x!+*
are restricted by

lim x'(o,7) = lim x*(o,T) (1.2)

o—mwf2 /2
Now the midpoint? varies freely while the variation of the neighboring

points on the string is restricted.

In [3, 4, 5] a Fock space representation of the comma theory was de-
veloped. There one introduces comma operators, b, bff (corresponding to
each half of the string) satisfying the commutation relations®

(BLF, b)) = 6™ bpamon™, (1.3)

analogous to the commutation relations of a# of the full string. The Fock
space corresponding, to each half (comma) of the string was introduced

2 Another approach in which the midpoint plays a central role has been discussed in
ref. [6], although in a different context from refs. [3, 4, 5.
3The space-time indices will be suppressed for the rest of the paper.



in [3, 4, 5] leading to a basis for the Fock space of our string in which
the overall motion of the string is unrestricted but neighboring points on
the string are not permitted to wander far from each other. The change
of basis from the full string to the comma theory is not a simple one .
The explicit transformation relating both of them has been developed in
[3, 4, 5]. The commonly used Witten’s string field theory (WSFT) has of
course the merit of being simple for constructing solutions of the free-string
equation of motion. The comma theory has the advantage of being more
transparent in questions connected with gauge invariance. In [5] we have
addressed the question of equivalence between the conventional and the
comma formulations of interacting string field theory. In [5] we examined
the relationship of the interacting vertex in both theories. In fact we were
able to show directly that the identity vertex (f) , the 2 — Vertezr and the
4 — Vertex in WSFT constructed in {7, 8, 9, 10, 11} are solutions to the
overlap equations in the comma theory, hence establishing the equivalence
(at least) at the level of the vertex for N = 1,2, 4. However, the assumption
that the cubic interaction vertex (which of central importance) also solves
the comma overlaps was verified subjected to the assumption, that V3 =
IV (true in Witten's theory) continue to hold in the comma theory. This
serious shortcoming is now removed by giving a direct proof that the cubic
vertex in WSFT is indeed a solution of the comma overlaps.

The results presented here are obtained in the same was as in [5); the
details, however, are rather more involved, as one might have anticipated.
Although several computational details are relegated to appendices, this
paper is not meant to be self-contained in the sense that we relay on [5]
for notation and indeed for many other details only alluded to below. For
readers interested in the formulation of the comma theory, a cursory read-
ing of refs. [1] should suffice. Other subtleties related to the anomaly
cancellation for the identity vertex, the two vertex, the 3 — vertez and the
4 — vertex are discussed in [5].



2 Comma Vertices

In the comma formulation of string field theory the elements of the theory

are defined by é-function type overlaps. The N interaction vertex is given
by

N /2

VI Xy s Xis 7] = €972 [T T] 80d(0) — x4 (o)ble(e)) - (21)

=l o=

The index i refers to the ith string (it is understood that ¢ = 0 and N
are identified) and 1 , 2 refer to the left and right parts of the string
respectively®. The ghost §-function has the same structure as the coordi-
nates one and Q¥ is the ghost number insertion. The formulation of the
elements of the comma theory in the oscillator Hilbert space is given in
ref. [3, 4, 5] where they are represented as exponentials of quadratic forms.
The cubic interaction vertex is given by

3
VE >= e Tim Mt lin T 10 5L [0 >R . (2.2)

i=1

This vertex has the advantage of being more transparent and it is trivial to
generalize to an arbitrary number of strings which is not true in the case
of the standard formulation of string field theory [7, 8, 9, 10, 11]. In fact
the generalization of the above vertex is simply

N
VG >= e~ Loics ¥1nb" i1 [Tlo>E>E. (2.3)

i=1
In the oscillator Hilbert space of the comma theory [5], the § functions, for
the coordinates®, translate into operator overlap equations, namely

[xF(0) = x21(0)] Vi >=0,0 € [0,7/2), (2.4)

1To avoid confusion we may use the alternative label L{R) to refer to the left {right)
parts of the string respectively.

5The ghost degrees of freedom, in the bosonized representation, have the same struc-
ture apart from some mid-point insertions which will be addressed later.



and i = 1,2, .., N. In addition, conservation of momentum requires

|07 (0) + pfi(a)] [V >=10. (2.5)

These are now the overlaps defining equations for the comma vertices. To
simplify the calculation we introduce a new set of coordinates. Following
Gross and Jevicki [7] we define

Qr(o ZXI , r=1,2 (2.6)

and similar ones for the momenta. The corresponding creation and anni-
hilation operators introduced in [5] are defined similarly and (for N > 3)
satisfy the commutation relations

(Br B | = 66um,  [BrBi,| =0. (2.7)

The advantage of this new set of variables is that it leads to the separation
of degrees of freedom in the overlap equations. In the complex coordinates,
the overlap conditions XL(O') xJt, (o) for the three string vertex, read

Q" (o) = Qo) 0 €[0,7/2), (2.8)

Q3(0) = Q3(0) ,o €[0,1/2), (2.9)

where Q"(c) = Qf(0) = (Q5(0)). For the complex momenta the overlap
conditions pX(c) = —pf (o) translate into

PLo) = —e™™P*PR(0) ,0 €[0,7/2), (2.10)

Pi(o) = —Plo) ,o0 €[0,7/2), (2.11)

where P"(¢) = P{(0) = (Pj{0)). The overlap conditions on Q"(¢) and
PT (o) determine the form of the comma 3—Vertez. The interaction vertex,
in the comma theory is



1 _ 3
V¥ >= exp (—E(Bzmal,) — (BT|’H|B*)) [[I0>0>F,  (212)

i=1
with concrete matrices 7 and H (see ref. [5]).

Now our task is to show that Witten’s cubic vertex constructed in [7,
8, 9, 10, 11] is a solution of the above overlap equations. At this point it is
worth mentioning that it is not a trivial matter to show this; one encounters
various double infinite sums (the second coming from integrating o over the
range [0, 7/2) in formulating the comma theory). Here the double infinite
sums may not converge absolutely and the convergence may depend on
the order of the sums. In fact when performing these sums using the
theory of contour integration one end up with many divergent pieces of
different orders. The amazing thing is that all these infinities of different
magnitudes conspire among them selves to leave us with a finite number!
The case of the full string [7, 8, 9, 10, 11] is different, the expression for
the vertices involve absolutely convergent sums. This ambiguity is not
an accident, we have seen in [3, 4] that Witten’s theory can be viewed
as an infinite dimensional local matrix algebra where the star product
“%" becomes matrix multiplication over infinite dimensional matrices that
does not conserve associativity. In the standard formulation of string field

theory, the Witten’s cubic vertex in oscillator basis (see ref. [7]) is given
by

1 _ 3
V¥ >= eop (5 (AljC1AD) — ANIAN) TTI0 >, (2.13)
i=1
where Cp, = (—)"0pm and Uy,p, is an infinite dimensional matrix con-

structed in [7]. The explicit form of the matrix U is given in appendix A.
With the help of the change of representation formulas (see ref. [5]) we are
able to show that the comma overlaps are satisfied by the cubic vertex®.

6By this we mean to show that the comma overlaps continue to hold in the Oscillator
Hilbert space of the Witten's cubic vertex.



3 Proving the Overlap Equations

Coordinate Overlaps. We first note that the second equation of the coor-

dinates overlaps, (2.9), is the same as the overlap equation for the identity
vertex and therefore the proof follows from the form of the vertex”. Hence
we are only left with (2.8) to verify. The overlap conditions on Q7 (o), eq.
(2.8). imply that their Fourier components satisfy

Q5 — PR | Vs >=0n 20 (3.1)

Using the change of representation (see ref. [5]} the above equation, in the
full string oscillator Hilbert space reads

. W2 & ()
[_“/gg" o Xy 1Q2"“] %" >=0. (32)
|i"'7;\/~§QZn -2 Z BZn2m+1 QZm+1:| I%W = 0. (33)
m=0

Commuting the annihilation operators in (3.2) through the creation op-
-erators in |V)¥ > yields a sum of creation operators acting on |V3¥ >,
hence

=3 [ JALIVE > (3.4)

where the expression in the square bracket is given by

[\ ]
B

2% & (—)"
Uno+6 — > ————=(Un 2 Om 2n41) - 3.5
( 0+ m0)+ﬂ7§](2ﬂ+1)3/2( '2+1+ 2+1) ( )
Since the states A! |[V)¥ > are linearly independent, the expression in
(3.5) must vanish for all values of m. Now there are three cases to consider
m =0, 2k >2,2k+ 12> 1. For m =0, equation (3.5) reduces to

"See ref. [5].



\/5 L
l?(UOO + Z 97’1, +1 3/2 Ug 2n+1:| . (36)

Using the expression for Uy, in ref. [7] (see also appendix A), eq. (3.6)
becomes

[\/g 2 5~ __On } (3.7)

Y Upo+1) = (1 U O _
g (Woot1) = 2(1-loo) 2, 5oy
where a, are the coefficients obtained in the expansion of the function
((1+z)/(1—z))'/3, The sum in the above expression can be found explicitly

using the contour integral representation

1 1 /14 2\3
o= gt tmm (1) (38)

Hence one obtains the following value®

N O2n4i V3 \/_TF1+U00
St LU Sk n3 —4in2 .
Z(2n+1)2 g "3ind—4in2) = ==

This proves that equation (3.7) is identically zero for m = 0 . The next

(3.9)

n=0
case to consider is m = 2k. Now eq. (3.5) becomes

\/_ng o+ 2§ Z ﬁ(fzk 2n+1} : (3.10)

Using the explicit values of the matrix U, the above expression reduces to

V3 Ay 2 (=" =% 0 1/2 1/2
-5 (1= Uoo)ﬁ+ Z En i1 [?(2&:) 2(2n + 1)V

8To perform the sum we notice that in the complex plane we have the cuts along
the lines (1,00) and (—1, c0). Deforming the contours and picking the integrals along
the cuts; then commuting the sum and the integral one sees that the series inside
the integral is easily converted to another integral over a logarithmic function in two
integration variables (say z,y). Performing the change of variable ¢t = Z+1 followed by
the change of variables £ = 1/¢ the whole expression reduces to various forms of special
functions which are easily read from standard tables of integrals.



A2k Bong1 — BarAgny1  AseBant1 + BaxAongt
(2k) + 2n + 1) (2k) — 2n+ 1)

'l’.(]. — Ugo)

Az Aonta ] (3.11)

(2k)172(2n + 1)1/

where A, are the coefficients given by

1 o 1/3 co o0
(1 i_ Zz) = Z A2n$2ﬂ + 1 Z A2n+1$2n+1’ (312)

n=0 n=0

and the corresponding coefficients B,, are obtained in the expansion of
((1 + iz)/(1 — iz))?/3. It is worth mentioning that there is only a sign
deference between them and the analogous coefficients a,, and b, in the
expansion of the functions ((1 +z)/(1 — z))!/2 and ((1 + z)/(1 - z))?/®

An = (=)"?a,, n =2k, (3.13)

A= (=) Pa, n=2%+1, (3.14)

- and likewise for the B’s. All the sums needed in the above expression are
worked out at the end of the paper. Putting the explicit values for all the
sums we see that (3.11) is identically zero®. The last case to consider is

m = 2k + 1 > 1. In this case eq. (3.5) reduces to

V3 2% & (o)
7U2k+1 o+ P ig) W(Uzk-t-l ant1 + O0kn) |, (3.15)
where
Unm = ()" U n, (3.16)
and

9The reason we are skipping details so far is that some of the sums needed to finish
the proof at later stages is more complicated and these which we shall give in detail.



1 /2 +1\"? 20 4+ 1\1/2 — Usier1 0Uo 2m
Uaktiantr = 3 ( ) (BU'+T)E) a1 2041 — 2020204
2 2 2 1 —Usg

(3.17)
In this case it is a tedious job to perform the sums in (3.15) due to the
complicated form of the matrix (E(U’ + U )E). The complication arises
when n = k since in this case the expression for the matrix (E(U’ +
U')E) becomes ill defined and one must consider a limiting procedure (n —
k). The explicit expression of the matrix (E(U’ + U')E) for the diagonal
and off diagonal elements is give in ref. [7]; however we shall replace the
two expressions given in ref. [7] by a single expression valid for both the
diagonal and off diagonal elements (see appendix A). First lets consider
the sum over the matrix U in (3.15). It is clear from (3.17) that this sum
consists of two terms , one over the nonzero elements and one over the
zero elements. We call these two terms ¥, and 3, respectively. Using the
explicit value of (E(U' + U’)E)gkﬂgnﬂ, ¥, reduces to

1 (2k+1\"2 (—) , 2
w5 (557) prrn et m
1 o D1Gont1 — G1bonts 1 (_)k
+(2k T 1) ,,; on + 9 (Zk' + 1)3/27 (318)

where we have made use of the identities!'®

i @2k+102n+1 + b2k+1@2n41 _ 2 (3.19)
= (2k+1)+(2n+1) 2k +1° '
= a2k+1b2n+1 — bakt102n41 1 > b182n+1 — G1bant1
= 3.20
2. (2k+1)—(2n+1) 2k+1Z (2n+1) -1 (320)

n=( n=0

The sum in (3.18) is potentially divergent and must be treated with care.
The term for n = 0 should be understood as the limit of n — 0 which follow

from our definition of the diagonal elements for the matrix (E(U’ + U )E)
(see appendix A). Hence one writes

For the derivation of these identities see appendix B.

10



> b1G2n+1 - G1bzn+1 5102n+1 - 0152n+1 > 5102n+1 - alb2n+1
Z 9 = l%mn-m 2 + Z 2 .
oy 2n 7 = n

(3.21)
The numerical values of the limit and the sum in the above expression are
—1/3 and —2/3 respectively (see appendices A and B). Using this identity
and the fact that 2 = %11"\/5, ¥, reduces to

1 (=) (=)*
Y= §W\/§mazk+1 - W (3.22)

Using the values of the zero elements for the matrix U, Z; reduces to

£ = —%/5(1 + Uso) (3.23)

Y
%aﬂﬁl-

Combining ¥, and ¥; we obtain
g

i =)r 4 Y- S o P
(2n 4 1372 AL T 9TV ok L 12T (9 1 1)372

n=0

RY

’ff (=)
4\/§U00ma’2k+1

Now using the explicit value of Uziyi0 and (3.24) we see that the expres-

(3.24)

sion in the square bracket in (3.15) vanish. This completes the proof of
equation (3.2). It remains to verify equation (3.3). Again commuting the
annihilation operators through the creation part of |V}¥ > we end up with

=3 [ ] ALY >, (3.25)

where now the expression in the squared bracket is given by

2

ﬁ(?
9 2k+1

1/2 00
_) (Um 2n+5m 2-n) —1 Z BZn 2k+1 (

)1/2
(Um 2k+1+0m 2641)-
2n k=0

(3.26)

11



Now we have to show that this expression vanish for all values of m > 0.
The case for m = 0 is a straight forward to demonstrate and there is no
need to give it here. The other two cases (ie, m =2/ >2 2+ 1 > 1),
however, are much harder. For m = 2{ the above expression reduces to

2
2k+1

2

1/2 o0
—) (Usion +010) — 1), Bon iyt (

1/2
" > ) Usispsr.  (3.27)

Substituting the explicit values for the matrices B and U and performing
some of the sums with the help of the following identity**

i B ABlomt1 _ (=) [ 1
o T g 12 1 2nF 2
a(b a(b 1 a(b a(b
(30 - 5) + b (e -], tm, (29)

and using the result in the appendices, the above expression reduces (for

[ #n) to

3 9 1/2 -\ /9] 1/2
% (%) (Usion +6in) + ( ﬂ_) (—) Ay

/2
1 3o 3b) 1 (éb_é b\]_(_)n %1
[21-211, (222" 222’ +2z+2n 222" 222‘) T \2 Bu

1 3 3 i 3 3 Axn Ay
_ > (Sye _Zya)__T _ 2)]\/ 1-U
[23—%(222” 2 ”) 2l+2n(2 2+ 2( °°)2 NGk

(3.29)

where

ad) _ w=  o{b)amy
Hian = mz=o +2n 4+ 2m 41’ (3-30)

11This identity can be verified using the results in appendix A.

12



and we have used the identities

\/g A?n

A2k+l
Z Bon ®HGE T = 5 o (3.31)
a 1 a a
E—2ﬂ = 22211 !EZn - +222n1 (3'32)

which can be verified using the integral representation of the coefficients a’s
and b’'s . All other sums involved above are given in ref. [7] and appendices
A and B. Recalling that

U2l 0 UO 2n

UZl 2n — U, -
2l 2n »
1—Uso

(3.33)

where

1 /21 [2n -
‘31211.:5 E\IT(E(U +U’)E)2l2m (3.34)

we see after some algebra that the expression in (3.29) vanish. To complete
this case we still need to consider n = [. For this case the expression in
(3.5) reduces to

2
2k+1

2

3 /9 1/2 o0
va <—) (Usnan +1) =) Bapogt1 (
k=0

1/2
= ) Usmn (339)

This expression involves many sums of the form E;‘é’,’,, and ‘:}';:(26,1 1(5,)1 has
been considered previously and

e b)‘zm 1
s = 3 9O)zmir .
En T L4 (£2n+ 2m + 1)2 (3-36)

These sums can be found explicitly (see refs. [7]) however, in this case we
need not evaluate them since the ones coming from the expansion of the
second term over U in the above expression cancel against the ones coming
from the Uy, 2, in the first term. Thus if one expands the second term and

13



substitute the explicit values for the U matrix (these are given in appendix
A); then with the help of the identity!?

= A(B)am+1 (=i 1 (5) (b) al(b
Banam = Tel) _ pe®y 52
,2; o+ 2m+1) o« ZQn)( 2’ —E0m) ~ S
(3.37)
the above expression reduces to
\/3 ) 1/2 1 9 1/2 . .
—T (%) agnbgn + g (%) b?n (Ezn - E-—Zn) H (338)
which 1s identically zero, since
. 1, 1M1
Xlgn = _§Ezn = —E\/;Wazm (3.39)

as can easily bee seen. Hence (3.27) vanish for all valuesof m =2{ > 2. It
remains to consider m =2/+12> 1. For m=2[+1 > 1, (3.26) reduces to

V372 1/2 & ) 1/2
5 (%) Ustyr2n—1 kg% Bon 2k1 (m) (Uatg1 2641+ 01 1) (3.40)
The sum involving the U matrix is very delicate when k takes the value {.
We will see how to handle it below. Using the explicit values of U, we get

oo 2 1/2 o 9 1/2
Z B‘Zn 2k+1 (MJ U2l+1 2k+1 — Z BZn 2k+1 (21‘:—_’_1)

k=0 k=0

12+ 1\ 2k +1\"? — Ustet oUo 2%
[E (—2 ) 5 (B(U' + D’)E)2i+1 2h41 — —ztin_o UZ?H

T+ Ty (3.41)

12This identity can be verified using the results of ref. [7].

14



To evaluate the above sums we make use of the following identity®

oo A(B)2m+1 _ =)
mzﬂ Baomi g e @b+ D)~ «
1 Ea(b) _ 1 Ea(b) . 1 — 1
MF@k+1)"  mE(2k+1) " \2mF (2k+1) 2m(2k+1)
(3.42)
where
a(b) . ad a(b)2n+1
Sk(ak) = nzz;) (2n+1) £ (2k + 1) (3:43)
and identities given in (3.19), (3.20) and (3.21). Hence
2A+1\" /3 2n 3
T = (—2—) 77r (azt+1b2n + émbﬂ-l-laZn) - m] Bonatt1s
(3.44)
3\ 1/2 (— )+ Q21+102
Ty = — (_) 10 Hn :
2 2 7 (L= Ueo) (20 + 1)1/2(2n) (3.45)

The values of the matrix U1 2, is given in appendix A. Putting everything
in (3.40) we see that it is identically zero. This completes the proof for the
coordinate overlaps.

Momentum Overlaps

The momentum overlaps in the comma theory are given by (2.10) and
(2.11). The second equation is the same as the overlap equation of the
identity vertex and therefore the proof follows from the form of the vertex.
Now the overlap condition on P"(o), given by eq. (2.10), implies that its
Fourier components satisfy

13The derivation of this identity is quite complicated; it makes use of appendix A
and the identities already derived in appendix B. The complication arises when m takes
the value %, since for this term the expression becomes ill defined. See appendix A for
handling such terms.

15
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[PE +e™ PR Vs >=0 n>0, (3.46)
as well as their complex conjugate. The proof of the case for n = 0 does
not involve new identities other than those used to prove the coordinate
part and therefore there is no need to give it here although we have checked
that the overlap equation for the zero mode is indeed satisfied. However,
for n > 1 the proof requires deriving new identities . Using the change of
representation formulas (see ref. [5]), eq. (3.46) reduces for n > 1 to

1 irss &
§e"'f3 ) I | ALV >, (3.47)
k=0

where the expression in the square bracket is

2n\ /2 e e 2m 4 1\'/2
(?) (—Uk2n+5k2n)_2“/gz an2m+1( p) )

m=0

X (Uk2m+1 - 5k2m+1) . (3-48)

In order for (3.47) to vanish, (3.48) must vanish for all values of k since
the states AL[VY > are all linearly independent. Therefore to prove the
overlap equation (3.46), it is sufficient to show that (3.48) is identically
zero for all values of k. For k = 0, (3.48) is zero as can be easily seen by
explicit substitution (no new identities are needed here). The other two
case, i.e., k = even > 2 and k = odd > 1 need careful treatment since they
involve quantities which are potentially divergent. Setting k = 2 in (3.48)
we obtain

2n

1/2 ) ad 2m+1
— (—) (Uspan — 5zn)—23\/§ Z Banam+1 (
m=0

2

1/2
. ) Ustomst. (3.49)

First let us consider [ # n since it is the easier of the two case to prove.
Then if one substitute the explicit values of the matrix U for ! # n and

make use of the following identity!?

14This identity can easily be derive using the fact m/(n + m) = (1 — n/(n+m))
and the results of appendix A.

16



M (2m -+ 1) (—)n [ a(b) 2n
” o] —————— ] = 2y

.mZ=0B2 2 +12£:h(2m+1)A(B)2 +1 T + i2[+2l—2n
a(b afb 2n afb afb

(after a lengthy, otherwise a straight forward exercise) we see that (3.49)
is indeed zero. The case | = n contains potentially divergent terms and
requires proving new identities involving the sums of the Taylor modes.
Substituting the explicit values of the matrix U in (3.49) and making use
of the identity'®,

— (2m + 1) (=) <ol — Bl i
2 Buntmss g g 1y AB)mes = S |0m)EE F 5540 7 5

(3.51)
we get

2

F4

2n\ /2 v32n R S 2 = 4 -

()7 [+ 5 st e 2ot )]
(3.52)

for | = n. The values of & for n < 0 are related to the values of % for

n > 0 through the following identities (the proof is given in appendix B)

e 1 a 3 aga
B, — 52’"‘ = 2EOSn, (3.53)
b lew  Lowao
£, + 554 = ooish, (3.54)
Hence (3.52) reduces to
9 1/2
2 ( ”) [1 — 2 (banS3 + 0,2,1.5‘2”)] . (3.55)

158pe previous footnote.

17



Now using the identity (see appendix B for derivation)

30 Sgn + 2055, = (3.56)

%:
we see that (3.55) is identically zero. This completes the proof for k = 2{ >
2. Next we consider k = odd = 2l + 1 > 1. For this case (3.48) reduces to

I, 1/2 . 00 Y, +1 1/2
- <—) U2l+12n - 2’1\/5 Z B2n2m+1 ( 5 ) (U2!+12m+1 - 5tm)-

2 o 2
(3.57)
The explicit value of the matrix element Uy, is given in appendix A.
The sum over U has not been considered before and therefore need to be
evaluated. However, in performing the sum over U one has to be extra
careful when m takes the value I, since this term is potentially divergent.
Consider the sum over the matrix U in (3.57) , i.e.,

% 2m + 1\ 1/2 1 {20 +1\'?
ZB2n2m+1( 2 ) U2l+12m+1=1 - Xy

m=0 2

1 (20 +1\"* 1NY? Uniyio
(2 g - (1) s
+2 ( 5 ) 2n 2041 (2 1 = Usg Ir {3.58)
where
Sr= Y. Buam(2m + L)(E(U +T)E)s12mt1, (3.59)
m=0
and
Tir =Y, Binamt1(2m + 1) Upomy1, (3.60)
m=0

Tir can be easily evaluated using the identity

0o
Z BZn2m+1A2m+1 = -

——Aan, 3.61
m=0 2\/5 : ( )
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which can be checked by converting the sum into integral form and then
evaluating it using the theory of special functions {we will not do it here
since this is relatively easy to do). Hence

1\Y% Uparo 1 2 \?
A YL S R ;. (—) AgiAmn. (362
(9) A AL A Y B (3.62)

Next we consider ;. Substituting the explicit values of the matrices B
and U in (3.59) and then making use of the identities (3.19), (3.20) and
(3.61) we get (skipping a rather tedious algebra)

1 /20 4+1\? 1/a+1\" (1 ntlil
E(Tj Zf=§ T ﬁ[("‘) b21+la"2n

2041 T (2041
+7 ( 5 ) Gzz+1banzz+1 2n:| - [ﬁ (T) 52£+10»2n - 1] an21+1} .
(3.63)

E4

Putting everything together and making use of the fact

n Bnm = —m B, (3.64)

we see that (3.57) is indeed zero. This completes the proof of the P over-
laps.

Ghost Overlaps

To complete the proof we have to see if the ghost part of the Witten’s’

cubic vertex satisfies (Violates) the comma overlaps in exactly the same
way as in the standard formulation. The ghost part of the Witten’s vertex
is given by

V@ >= e3i(/2)| 80 (3.65)

where |V#° > has the same form as the orbital part of the vertex. The
ghost factor e2*("/%) corresponding to ghost number 3/2 is the right ghost
number [2]. Expanding the phase factor and commuting the annihilation
operator through the creation part of the vertex results in doubling the

creation part of the insertion. Thus one has
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V¥ >=exp (~/§ 5 (J_ ) Vo > (3.66)

The quadratic part of the vertex | V3 > satisfies the comma overlap equa-
tions since it has the same structure as the orbital part which solves the
comma overlaps as we have already seen. However, when one includes the
ghost insertion this is no longer the case. To see this one first observes that

the comma overlaps for V3 are blind to the phase factor'® (insertion) apart
from

Qfyn = s, n 20, (3.67)

P:f?'n = _P3R2n: n 2 0 (368)

In fact the first of these equations is also blind to the insertion factor, since
it contains only odd modes in the annihilation-creation operator Az which
clearly commute with the even modes in the phase factor. On the other
hand, the second equation contains even modes of the operator Az and
therefore is not satisfied by the vertex due to the insertion. To see this
notice that

B o
P3 2neZP (‘/_Z \/—Agm) ETp (\/_Z V20 32n) [—7(\/2)—,” + P an |
(3.69)
where 7 = 1,2 refers to the left and right parts of the string respectively.

Thus commuting the overlaps through the insertion factor and collecting
terms we obtain

exp (\/_ 3 (\/_ ! ,,n) [—\/ﬁ% +4+PL, =-PR_|.  (3.70)

Now it is clear that the overlaps in the square bracket are not satisfied
by the quadratic part of the ghost vertex because of the presence of a

18The reason for this is that the other overlaps describe different strings in the complex
space as we have already seen.
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¢ — number. This is the same violation seen in the operator formulation
of Witten's string field theory (see ref. [7]). Therefore the comma overlaps
are satisfied (violated) by the Witten’s cubic vertex in exactly the same
way as in the case of the standard formulation[8, 9, 7, 10, 11]. This com-
pletes the proof that the Witten’s cubic vertex is a solution to the comma
overlaps.

4 Conclusion

We have demonstrated that the cubic vertex in Witten’s string field theory,
making use of the operator formalism as developed in ref. [8, 9, 7, 10,
11], solves the comma overlaps. However, as we have seen in [5], there
are still few subtleties which must be understood if one is to get greater
confidence in the comma approach to string field theory. For example,
as pointed out in ref. [5], while in the full string formulation, the K
and the BRST invariances require some specific ghost insertions at the
midpoint of the string for consistency, it does not seem to be the case
in the comma formalism. In the comma theory both the orbital and the
ghost parts of the cubic vertex are invariant separately! Also in the same
ref. We have seen that the associativity anomaly in the star algebra of
the standard formulation of string field theory disappears in the comma
theory. The ) or gauge invariance in the comma representation have only
been mentioned in ref. [5]. However, for a complete discussion, it is useful
to use a fermionic representation of the comma ghost. In the fermionic
representation it is possible to construct the analogous comma (ghost)
cubic vertex and examine other properties of standard string theory in the
comma representation, For consistency, we still have to show that the cubic
ghost vertex in the fermionic representation of Witten string field theory
still solves the comma overlaps of the ghost in the fermionic representation.
This and @ will be given in a separate publication [12].

Appendix A

The coefficients a, and b,,. In the first part of this appendix we give the

properties of the coefficients in the Taylor series expansion of the functions
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(1 + 5)1/3 = i a,z", (A.1)

1—x oy

1 2/3 00
( + “’“) =3 bua™ (A.2)
n=0

l—=z
They are instrumental in the proof of the overlap equation. Most of the

results listed here are derived in ref. [7], or follow from results given there.
The integral form of the coefficients a,, is given by

1 1 71+ 2\
0 = 554 G (l—z) ’ (A-3)

and likewise for the b, with 1/3 — 2/3. This form can be utilized to derive
the various recursion relations satisfied by the Taylor modes. Integrating
(A.3) by parts leads to

2
(n+ Dan41 — 700 — (n—1)ag.; =0, (A.4)
likewise we get for b,
4
(n + l)bn+1 — gbn — (TL — 1)bn_1 = 0. (A5)

Making use of the same integral representation, one could derive the cross-

recursion relations

%an = (=)"[(n+ 1)bpg1 — 2nby + (n — 1)br_1], (A.6)
%bn = (=)"[(n+ Dant1 — 2na, + (n — 1)a,—1]. (A.7)

In the text we meet various sums involving these coefficients. The primary

ones being

>, —= (A8)

R
n4+m=odd n+m

e



si= Y (A.9)

n+m=even n + m

and analogously for @ — b. All these sums are absolutely convergent. All
the sums given above have been evaluated in ref. [7]. Here we merely quote
the results. For the sums labeled by & the results are

1 /1 1
Eg = 5\/;7& E:, = \/;Tra'm 0 - _EE‘?'-’ (AIO)

:_mf = \/;wbn, %5 = %Eﬂ_, (A.11)

where n is a positive integer. The results for the sums labeled by S are are

given by
a 3 3 n-l k anan_k_l
3 3t bpbr—k—1
St = (— In2) )b Y 2nOn—k-1 .
n=lztin + - kX_(j) P (A.13)

for n > 1. For n = 1, the results are given by the same expressions without
- the summations over k. The S and S? satisfy the same recursion relations
as the a, and b, respectively

2
(n+ 1S — 552 —(n—-1)5_,=0, (A.14)
(n+1)S2,., — 35,‘; (n—1)8%_, =0, (A.15)

for » > 1. Another sum involving the Taylor modes which appears in the
text is

hl
f
It

D (A.16)

nt+m=even (‘TL + m)
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and like wise for b with (¢ — b). The values of these sums are given in
ref. [7] and we shall not reproduce them here. However, it is important to
notice that these sums satisfy the following recursion relations

. 9. .

(n+ 1)Era;+1 = 521?; +(n— I)Ezq + E:11+1 — X1 (A.17)
- 4~ .

('”’ + 1)2$1+1 = ngz + ('n, - 1)22—1 + E1b1+1 - Eft—l' (A-IS)

The matrix elements U,,,. We shall first give the explicit values of the ma-

trix elements U, ,, appearing in Witten’s vertex. They have been derived
explicitly in ref. [7]. The matrices U and U’ are related by

Un OUU m

Unm= ! - )
Unm 1—U00

(A.19)

where

Us = 5y 2[5 (B +T) B, (A.20)

and

= Aan n{im an - BnAm
(E(U’+U)E)nm=2(_)n+l( +BA +A ),

n+m n—m
(A.21)
forn+m=-cevenand n,m > 1,
TTF Aan - Bﬂ. m Aan BnAm
(EU' —TUVE)p = -2 ( Am y + ) . (A.22)
n+m n—m
for n 4+ m = odd and n,m > 1. For the zero mode components
I, T Am
(E(U' +TYE)om = —2V2 (?) , m=2k, (A.23)
7 =2 . Am
(B(U' = T)E)om = 122 (F) . om=2%+1. (A.24)
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The diagonal elements, (E(U’ = U )E)y » = 0 while (E(U' + U }E)p n are
given by

(EQU' +T)E)pn = =2 [( ) A"BT’; 1, An] , (A.25)
where
Ao = % - % (_3:/2 (B2 +%2,) Ba— (25— £,) An],  (A26)
and
Bocass = 2 — 23T (50450, ) 4, — (82 - £2,) B].

(A.27)
The symbol £%® has been introduced before. For completeness we also
give the matrix elements of E. They are

EYm= \/gaﬂ -+ B 0B o (A.28)

It is worth observing that expressions for the matrix elements of U for
the off diagonal elements defined by (A.21) for n = odd, m = odd and
the diagonal elements defined by (A.25) for n = odd can be combined
into a single expression. This observation 1s instrumental in making the
evaluation of the sums much easier. To derive a single expression for U we
need the value of A;. Setting n =1 in (A.27) gives

Al_

2\7{5 (Zh+30,) 4 - (S2-52) By (A.29)

The sums in the above expression are easily converted into integrals using

the integral representation of the coefficients a, and b,. For example

2. Gmt 1) 2m+1 - Z: 9m+1)
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> 1 1 1 (l42\/3
o1 e et ()
t 2 (2m+1)22mit o i \1—

m=1

V3 o ptdy [l fz4+y\ y
=1+ Y2 [T [ ¥ |5 _Y
+27r/; a:fo Y 5" T—y z
241\ [p4 1\
{(:c - 1) - (3: - 1) ’ (A-30)

making the change of variables t = (z +1)/(z — 1) followed by the change
variables z = 1/t the above expression reduces to

V3 1/3 —-1/3 ! : :
1425 [ (¥~ ’){(1_5)(1”)‘5(1—@2

/01 %ln (f:((z)):—:‘gg;) ($1/3 _ 3—1/3)} : (A.31)

where a(y) = 1 +y and ¥(y) = 1 — y. Similarly one rewrite all the sums in

integral forms. Converting all the sums in the expression for A; to integrals
and making use of the fact,

1 1 1 !
= A.32
(a + bz)? b (a+b:r:) ' (A4.32)

the expression for A, after performing several integrations (by parts'”),
reduces to

A =3- W - F4/3) - FOH+YCH =5 (A3

Now the value of A; is used to calculate the value of (E(U' + U’)E)u which
is needed as a boundary condition for (E(U’ + U')E)
details, we get

Skipping the

n n=cdd"

17"When inteerating by parts it is crucial that one takes the limits at the end of the
calculation to preserve all the divergent pieces. The divergent pieces will cancel among
them selves rendering the whole thing finite.
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(BU +TVE), = 2=y (

1/2 1/2
+(2) () (434

for n = odd, m = odd which is the case of interest!®. It is clear that for the

A, B, + B,An~ + A, B, — BﬂAm)
n+m n—m

off diagonal elements the above expression reduces to that in {A.21). For
the diagonal elements it is understood that one must consider a limiting
procedure ( m — n ). If one takes the limit (mn — n) one recovers the
expression in (A.25) for n = odd. Below we shall give the relevant limit
needed to recover (A.25) for n = odd. Consider

lim Q2n—1b2m—1 — ban—102m—1
aom (2n— 1) — (2m — 1)

Writing the above expression in integral representation we get

(A.35)

. 2
. {sinm[3\" 1 foo poo 1 1 1 1
21—% ( T ) % fl /1 dzdy ($2m+2e y2m T p2m y2m+2£)

[EOEN

Using the fact

0] o

=2e€ _ ,,—2¢
imE_—Y " (E) , (A.37)

e—0 e

the above expression reduced to

_V3, ]md—xlnx ($+1)1/3+(I+1)~1/3
g L)) pem z—1 z—1

18For n = even, m = even it is more convenient to use the expressions given by
(A.21) and (A.25).
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3 oo 1 2/3 —2/3
+£0'2m—1_/ T (:c—i— ) +(z+1)
27 1 xim r—1 z—1

V3 > dx dz
= _762171.--1 r;] aznj; Z2mtn) —{nz + agm 1 ; bzn£ mlﬂl‘
T )
= = [a2m-1 58y = bama55 4] (A.38)

A particular case of interest is the value of the limit when m = 1. In this
case, eq. {A.38) gives

liy 202n-1 = Giban-1 —? [a:58 — 6,55] = —%. (A.39)

n—0 n

To see this, let us first consider 2. Writing %2 in integral form we obtain

.. 1d
Z1 = _Eﬂl(kv Q)|k=0,q=1/3: (A40)

where

_ 1 k(1+t)q 1 k(l'l't)_q
k)= [t () + [ar (1) . (A4

This integral is easily evaluated using the hypergeometric function

Fla,b;c;2) = #‘j}_b) fo a1 — 1 — )0, (A42)

Using (A.42), and after some algebraic manipulation of the the gamma
functions, eq. (A.40) gives

- 3 1
o % (ln—é + g) . (A.43)
Similar steps give
= 2 3 1
b —_— —_— —_—— —
%= (m o 2) . (A.44)



Substituting (A.43) and (A.44) in the LHS of (A.39) we obtain the desired
result.
Appendix B

Sums involving a,, and b, continue . A particular combination of sums which

appears in the text is

b2‘n+1 (12,1.[.1
a Z I-@n+l) h Z “nt D)’ (B.1)

which when written in integral form becomes

o0 2/3 1/3
2 i_l_j& dz (l+z) _2(1+z) . (B.2)
3 2n2mi Jo 2342 |\l — 2 1-z

Deforming the contour and picking up the integrals along the cuts we

ohtain

°°dz: z? z+1\*3 x4 1\" T+ 1\ r+1
1r\/_ (:1:2—1) [(:1:—1) +(a:~1) _2(:1:—1) _2(33

(B.3)

Employing the change of variables ¢ = (z + 1)/{z — 1) followed by the

change of variables £ = 1/t the whole expression simplifies

(z+1)°

1 1
_11-\/?;-[) (I+1)21n[ e

This expression can be further reduced by integration by parts'®. Doing

] (mz/s 473 _9plf3 _ 23;—1/3) . (B.4)

all that, we end up with

— =[5 - /9 + 26/ - 204/9) + B6/3)] = -5, (B

19When integrating by parts one has to be careful since integration by parts give rise
to many divergent terms as one approaches the branch points. These divergent terms
have different magnitudes and one must keep track of all of them as they conspire at
the end to give a finite number.
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Deriving various identities used in the text. First lets derive the identity
in (3.19). Consider

Ambn + bman
m+n
Now it is not hard to see (by direct substitution) that

Wmﬂ = an = (Bﬁ)

(m+1)Wm+ln_(m—1)Wm_1n+(n+1)Wmn+1 —(n—l)Wmn_l = 0. (B?)

for m +n = odd integer. Letting m — 2m — 1, » — 2n and suming over

m > 1 we get
(2'n + 1)W2n+1 = (27?. - 1)W2n_1, (BS)
where
X\ Gnbam_1 + bnGom 1
Wa=cdd = .
“= 2 em D n (5
From the recursion relation (B.8) it follows that
W,
Won1 = ——, .
T o —1 (B-10)
where
—~ A1bym 1 + br1a2m_y
W, = . .
) ﬂ; o (B.11)

The value of W) can be evaluated using the integral representation of the
Taylor coefficients. The steps involved in calculating W, are similar to the
ones leading to (B.5). Doing so we get W) = 2 and identity {3.19) follows.
Next consider the identity given in (3.20). If we define

Tnm = Tmn = M, (B12)

m-—mn
then it follows that



(TL+ l)Tn+1m — (n — ]-)Tn—lm -+ (m+ 1)Tnm+l — (m - l)Tnm—l = 0, (B13)

for m 4+ n = odd integer. Now lettingm —2m —1>1,n — 2n > 2 and

summing over m we arrive at

(2n + ].) E T2n+1 m—1 = (2??, -_ 1) Z T2n—1 2m—1- (B14)
m=1 m=1

from which (3.20) follows.

To derive (3.56) let n = m in (B.7) and then letting n — 2n —1 > 1,
m — 2m > 2 and summing over m we get

2n (ngsgn + bznsgn) - (2n - 2) (0'211—2531;—2 + 6271—2'9;11—2)

2
~ o, [a2n-1 + b2n—1 — G2n—2b2n3]. (B.15)

The expression inside the square bracket is most easily evaluated using the
integral representation of the Taylor coefficients. The resulting integrals
are easily evaluated and yield zero. Hence, (B.15) reduces to .

21 (G2 Sy + bonSn) — (21 = 2) (020255, 5 + b2n2S%, ;) = 0. (B.16)

Solving (B.16) we get

2
an = agnSgn + bznsgn = '2202 (B17)

This solution depends on the value of C; . The value of ), is given by

Cy = @z 5% + 5,52 =1, (B.18)

which can be easily checked using the fact

$W=%qmﬁm+%, (B.19)
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and (3.19). Substituting the value of C, back into (B.17) we arrive at
(3.56).

We conclude this appendix by deriving two more identities which are
needed in the proof of the momentum overlaps. Consider the recursion
relation given in (A.17)

N 9. 5
(n+ 15, = ST+ (0 - 1S5, + 30, - T8, (B.20)

n—1
Letting n — —n in the above expression and subtracting the result from
3% eq. (B.20) and remembering that £2 = —132, we get

- 1- -
(n+ 1) [55 — B2 | — (1= D [3E0 ~ T

3
The above equation is the same as {(A.14) and therefore has a solution
proportional to S%. Hence?®

2 [%Eﬂ — i)in] =0. (B.21)

1- .
52; — 8%, = &S5, (B.22)
This solution depends on one constant, . Setting 7 = 1 in (B.22) it follows

that

" = Si (%i)g -52,). (B.23)
1

Now direct substitution yields

K= —%Eg. (B.24)

Substituting this into (B.22) and rearranging terms we obtain

~ 1. 3
X, = 5'}3?1 + 52852. (B.25)
2%From the integral representation of S, it follows that when n — 0, S, — ¢/n as
required.
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Similarly staring with (A.18) we can easily obtain =% for negative values
of n

1

_—
=3

- 1
o+ 5’235,‘; (B.26)
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