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ABSTRACT

This report discusses design problems incurred by equipping the IRIS
high-resolution inelastic spectrometer at the ISIS pulsed neutron source, UK with a
new 4212 piece pyrolytic graphite crystal analyser array. Of the 4212 graphite pieces
required, approximately 2500 will be newly purchased PG crystals with the
remainder comprising of the currently installed graphite analysers. The quality of
the new analyser pieces, with respect to manufacturing specifications, is assessed, as
is the optimum arrangement of new PG pieces amongst old to circumvent
degradation of the spectrometer’s current angular resolution. Techniques employed
to achieve these criteria include accurate calliper measurements, FORTRAN

programming and statistical analysis.
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|. INTRODUCTION

IRIS is a time of flight (t.0.f} inverted-geometry crystal analyser spectrometer
designed for high-resolution quasi-elastic and low-energy inelastic spectroscopy
(Figure 1). It employs two large analysers (pyrolytic graphite and muscovite mica)
oriented close to back-scattering geomeiry [1]. Using non-back scattering geometry

avoids the loss in intensity caused by a beam modulation chopper when exact back

scatfering is employed.
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Figure 1 The IRIS high-resolution spectrometer on the ISIS pulsed neutron source.

The pyrolytic graphite (PG) analyser is set 0.85 meters from the sample
position in the horizontal scattering plane and covers scattering angles from 15° to
165°. The present analyser consists of 1350 (6 rows by 225 columns) 2mm thick,
cooled (~ 25K [1]) pyrolytic graphite pieces (10mm’) with a mosaic spread (1}) of 0.8°
mounted on a spherically machined aluminium backing plate. The analysed beam is
back scattered through 175° slightly below the horizontal scattering plane, and



detected using a multi-detector composed of 51 scintillator detectors located
approximately 0.6 meters from the analyser. However, while the use of pyrolytic
graphite affords the possibility of two analysing reflections, 002 and 004, with
analysing energies of 1.82meV and 7.28meV and resolution of 15ueV and 50peV
respectively, the analyser itself intercepts only a small percentage (~ 1.5%) [1] of the
total scattered beam. In theory, the count rate of the IRIS spectrometer may be
significantly improved by simply increasing the area of the analyser.

Considering the geometric and physical constraints (shielding etc.) of the
instrument, it is possible to achieve a three fold increase in the area of the graphite
analyser. Consequently, the current pyrolytic graphite analyser bank on IRIS is to be
upgraded from an array 6 rows by 225 colummns (1350 crystals) to one comprised of
4212 graphite pieces (18 rows, 234 columns). In addition, the graphite is to be cooled
close to liquid helium temperature to further reduce thermal diffuse scattering [1]
and thereby significantly improve the sensitivity of the spectrometer. For an
instrument such as IRIS, with its analyser out of exact back-scattering geometry,
optical aberration and variation in the time-of-flight of the analysed neutrons is
introduced as one moves out from the horizontal scattering plane. To minimise such
effects, the cross section profile of the analyser has been redesigned (see [2] or

http:/ /www-dienst.rl.ac.uk /library /1999 / tr /raltr-1999044.pdf).

However, to actualise the specified upgrade, over two and a half thousand
additional pyrolytic graphite pieces are required. In this report, we address the
design problems incurred by equipping the IRIS spectrometer with a new array of
pyrolytic graphite crystal analysers. The quality of the new PG crystals, with respect
to manufacturing specifications, is assessed, as is the optimum arrangement of new
PG pieces among old to circumvent degradation of the spectrometer’s current
angular resolution. Techniques employed to achieve these criteria include accurate

calliper measurements, FORTRAN programming and statistical analysis.



lIl. PYROLYTIC GRAPHITE

In brief, pyrolytic graphite consists of a planar distribution of hexagonally
arranged carbon atoms, the d-spacing between planes being approximately 3.35 A.
Each crystal piece is comprised of micro-crystallites ordered in a similar fashion to
that of a Roman mosaic. Deviations from perfect ordering are common and give rise
to a crystals mosaicity, or mosaic spread; mosaicity being assumed normally
distributed and given in angular units. Indeed, neutron beam diffusion is more

pronounced from crystals exhibiting a high mosaicity.

Of the 4212 pyrolytic graphite crystals required for the new analyser array
approximately 2500 will be newly purchased PG pieces with the remainder
comprising of currently installed crystal analysers. At present, the graphite pieces
mounted on the current analyser bank are 2mm thick. These pieces will therefore be
cleaved to produce 2700 1mm thick crystals. The cleaved crystals will be graded for
thickness and only those whose width falls within the manufacturing specification
for the new graphite pieces (Imm + 0.1mm, see below) will be included for use on
the new analyser. For clarity, new crystals will from now on be referred to as Type 1
while those presently installed will be designated Type 2. The manufacturing

specifications for the newly purchased crystals were as follows:

e Individual pieces of graphite should be flat, square-faced, 10mm + 0.1mm by
10mm = 0.lmm of thickness Imm + 0.lmm. The front and back (10mm’)
surfaces of any individual piece should be parallel to within 0.5°. All face

corners should be square to within 1°

» Each piece should contain 002 crystallographic planes. The normal to the 002
crystallographic plane should be within 0.5° of the front face of each piece.
Neither the surfaces nor the edges should be friable when handled

e The distribution of mosaic blocks in each piece should be gaussian in shape
with a FWHM 1= 0.7 ° + 0.2 ° (measured using X-rays, see Figure 2). No piece
should have a > 1.0 °. The mean value of 1 over all pieces should be less
0.85°. The distribution of 1| over all pieces should not contain multiple peaks.
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Figure 2 The distribution of mosaic blocks in each Type 1 crystal analyser should be gaussian with
a FWHM n1=07"(+0.2°)

IV. INSPECTION

While it was not possible to verify each specification it was important, as will
now be discussed, to a) gauge the overall quality and dimensions of the new
graphite pieces and b) ascertain the distribution of mosaic spread values over all

Type 1 crystals.

4.1. OVERALL CRYSTAL QUALITY

The method of mounting pyrolytic graphite pieces on the presently installed
analyser backing plate is illustrated below in Figure 3; each crystal is held firmly in
position using four brass pins, the pitch distance between pin centers being

10mm * 0.2mm.



Figure 3 The method of ‘pinning” pyrolytic graphite crystals to the presently
installed pyrolytic graphite analyser backing plate.

Since this design method had proven effective, it was also to be used to
mount the new 4212 crystal piece array. However, it was important to gauge
dimensional tolerances for the front face edge lengths of the Type 1 crystals since the
lower tolerance limit ascertained would govern an absolute pitch distance to be
machined between pin centers so as not to reject crystal pieces on the grounds of
being ‘undersize’. Type 1 crystals with one, or both, front face edge lengths greater
than the determined piich distance were to be simply ‘machined’ to fit.

Upon arrival, a visual inspection of all Type 1 crystals was conducted, each
crystal being carefully examined for physical damage and prominent surface
imperfection. In addition, approximate dimensions were determined by comparing
each crystal with a) other crystals and b) with the exact 1.1mm x 1.1mm square holes
in the trays in which the crystals were fransported and stored. Dimensions were
esimated to within +0.5mm, rather than the *0.lmm error defined in the
specification. Crystals were rejected on the grounds of being the wrong size, 'non-
square’, split or having uneven edges. Thirty-three crystals (~ 1.2%) were discounted

in this manner. Examples of rejected crystals are shown below in Figure 4.



Figure 4 Examples of rejected Type I crystals: Top: split. Bottom (left to right): too small,
usable crystal (for comparison), ‘non-square’ and chipped.

To determine dimensional tolerances, the Type 1 crystals were measured on
two adjacent front face edges using digital callipers to an accuracy of + 0.01 mm. Not
all the crystals were measured. Instead, a small sample was tested with the resulting
measurements being used to predict the distribution of front face edge lengths for

the entire Type 1 crystal population.

In brief, the graphite pieces to be measured were selected at random using a
simple FORTRAN program calling a random number generator subroutine; the
thirty-three crystal pieces rejected during the visual inspection being excluded from
this survey. The measured edge lengths were fed into FORTRAN program,
‘Reliability” (Appendix 1), where upon Bayesian probability theory [3] was applied
to the measured data set to determine the said edge length probability distribution.
The probability distribution was updated every ten measurements and measuring
stopped when the shortest 95 % confidence interval lay within 0.1 mm of the mean
(as opposed to within 0.1 mm of 10.00 mmy). One hundred crystals (4% of the entire
Type 1 crystal population) were measured giving a total of two hundred
measurements. The final distribution of crystal front face edge lengths for the entire
Type 1 crystal population is shown below in Figure 5.
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Figure 5 The distribution of Type 1 pyrolytic graphite crystal front face edge length as determined
using Bayesian probability theory{3]

It is clear that the mean front face edge length is approximately 10.05 mm,
indicating a systematic manufacturing error of 0.05 mm. However, the results also
highlight that no Type 1 crystals longer than 10.2mm, or shorter than 9.85mm, are
expected. Since the pitch distance between pin centres has a tolerance of 0.2mm all
Type 1 are expected to fit and no further graphite pieces should need be rejected due

to being ‘undersize’.

4.2. MOSAICITY

Ideally, to maintain the current momentum transfer, or Q, resolution of the
spectrometer, the mosaicity of the additional graphite crystals should match that of
the presently installed PG pieces. However, while the mosaicity of the crystal pieces
used on the current analyser is well defined, the new PG crystals purchased to

complete the new array show a pronounced variation in their mosaic spread values.



The presently installed Type 2 graphite crystals, manufactured by Graphite
Loraine, had their mosaic spread values determined using neutron techniques;
Neutron methods provide a precise measurement of mosaicty since they are bulk
measurement techniques. Consequently, the actual Type 2 crystals used on the
presently installed analyser were selected such that n = 0.8" for all crystals.

In contrast, however, the newly purchased Type 1 crystals, supplied by
Atomgraph Corp. USA, had their mosaic spread values determined using X-ray
diffraction. Being a less penetrating probe, X-rays only measure mosaicity at a
crystal’s surface. Consequently, mosaic spread valves for both the front and back
faces of the Type 1 crystals were determined with the bulk mosaicity for each Type 1
graphite piece being assumed the average of these two values. In addition, and as a
consequence of the surface measurement, X-rays measurements systematically
return a mosaic-spread value approximately 0.1° less than that determined by
neutrons. For ease of manipulation, therefore, all mosaic-spread values were deemed
measured using X-rays. Consequently, all Type 2 crystals, with a known ‘neutron’

mosaicity of 0.8 °, were assumed to have an ‘X-ray’ mosaicity of 0.7 °.

To determine the average mosaicity of the entire Type 1 crystal population
statistical analysis of the X-ray mosaic spread data supplied with each graphite
crystal was performed. Using the front and back face X-ray mosaic spread values,
FORTRAN program ‘Average’ (Appendix II) was used to compute an ‘average’
mosaic spread value for each crystal along with a population mean and standard
deviation. The frequency of each mosaic-spread value was also calculated to verify
that the distribution of mosaic spreads was single peaked. Selected information
about the mosaicity of the Type 1 crystals, determined using program ‘Average’ is
given in Table 1 with the frequency distribution being illustrated in Figure 6.

Average of front faces : 0.7243 +0.0948
Average of back faces : 0.7239 + 0.0937
The mean of two averages : 0.7241 +0.0812

Table 1 Average mosaic spread values determined using statistical analysis program *Average’
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Figure 6 Frequency distribution of the average mosaicity values determined for each Type 1 pyrolytic
graphite crystals using FORTRAN program *Average’. The solid line is the result of modelling the
distribution using the gaussian form.

The results show a single peaked distribution of mosaic spread values over

all Type 1 graphite crystals with a mean value of 1 less than 0.85, as specified.

Vi. OPTIMUM ARRANGEMENT OF THE PYROLYTIC
(GRAPHITE CRYSTALS

The optimum arrangement of Type 1 and Type 2 crystal pieces on the new
analyser backing plate is one which results in little to no variation in Q-resolution
across the face of the analyser as seen from one detector to next. As previously
mentioned, this is most readily achieved if all Type 1 and Type 2 crystals have equal
mosaic spread values since it is the mosaicity of a crystal analyser that contributes
the most to the angular resolution of a back-scattering spectrometer such as IRIS [4].
However, this is not the case. Before the pyrolytic graphite pieces could be mounted
on the analyser backing plate, therefore, it was important to ascertain an

arrangement of the Type 1 and Type 2 crystals that resulted in as little variation in



localised average mosaic spread as possible along the length of the analyser. On
scales of the order of a few centimetres variation in mosaic spread is unavoidable.
However, variations can be minimised on larger length scales. It was decided that
variations in mosaic spread would be more obvious should the arrangement have
structure built into it. For example, should each row of crystals have the same
average mosaic spread, then the columns’ average spread may vary greatly. Instead,
a random pattern of crystals was taken as a starting point after which a Monte Carlo

algorithm approach was assumed.

The optimum arrangement of Type 1 and Type 2 graphite crystals for the
new analyser bank was determined using the FORTRAN program ‘Gridassign’
(Appendix III), the optimisation process being presented in detail in Figure 7. The
program was designed to run until interrupted to allow for as many permutations,
or different Type 1 crystal configurations, as possible; the ‘best” and ‘worst’ crystal
configurations being written to files ‘Finalbest.dat’ and ‘Finalworst.dat’ respectively.
The simplest method of comparing and contrasting the two extremes was to produce
colour maps to detail the variation of mosaicity across the face of the analyser bank.
This was achieved using the plotting package PG PLOT and the results are presented
in Figure 8. The results shown are the ‘best’ and ‘worst’ graphite crystal

configurations generated after 10’ program iterations.

Despite colour representation, however, it is difficult to distinguish the best
arrangement from the worst. To further differentiate between the two results,
therefore, a more mathematical approach was assumed. Program ‘Test’ (Appendix
IV) was written to effectively divide the simulated crystal analyser array into equal
vertical segments, the number of divisions (2" where N= 1 to 6, see Figure 9)
representing the number of times the array was divided into two. Average mosaic
spread values for each division were then determined, subtracted from the overall
analyser bank mean (i.e. mean of all graphite crystals, 0.71) and summed; the results
being plotted against number of divisions in Figure 9. One can see that the so-called
‘best’ arrangement is indeed better since the smaller the magnitude of a column, the
less the variation in mosaicity. Indeed, the largest column { 2° or 64 divisions) is an
approximate representation of the variation in average mosaic spread as would be

‘seen’ by each of the 51 scintillator detectors.
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Figure 9 Comparison of the ‘best’ and “worst’ graphite crystal configurations as ascertained using

FORTRAN program ‘Test’ (Appendix IV), see text.



VI. DISCUSSION

Design problems incurred by equipping the IRIS spectrometer with a new
4212 piece pyrolytic graphite (PG) crystal analyser array have been discussed. Of the
4212 pyrolytic graphite pieces required approximately 2500 will be newly purchased
PG crystals (Type 1) with the remainder comprising of the currently installed
graphite analysers (Type 2). Techniques employed to circumvent these problems
included accurate calliper measurements, FORTRAN programming and statistical
analysis.

The quality of the new PG crystals, with respect to inifial manufacturing
specifications, has been successfully ascertained. All Type 1 graphite pieces, which
passed an initial visual inspection for prominent physical imperfection, appear
suitable for inclusion on the new analyser array.

To limit pronounced variation in mosaicity across the face of the analyser
bank, and hence potential degradation of current instrument angular resolution,
Monte Carlo methods have been used to generate the optimum arrangement of Type
1 and Type 2 graphite crystals. Comparison between the ‘best’ and ‘worst’ crystal
arrangements, generated after 10 million Monte Carlo iterations, show the ‘best’ to
be indeed the better. This arrangement is therefore to be used as a blueprint from

which to assemble the actual pyrolytic graphite crystal array.
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APPENDIX |

PROGRAM RELIABILITY

Bayesian probability distribution program: computes probability
distribution of graphite c¢rystal lengths given twe prior
limits.

REAL XP(1000C)},YP(1000}),XD(1000} ,XYG(41,41),XG(41),YG{41)
DATA NP,ND,NX,NY /400,1000,41, 41/

CALL DATIN(XD,ND,X0,X058IG, SIG0)

CALIL PRIOR(XP,NP,X0,S5IGO0)

WRITE(*,*}’ Thinking ...~

CALL POSTR{XD,ND,X0,X0S8IG,SIG0O,XYG,XG,YG, NX,NY,XP(1),XP(NP))
CALL INFER(XP,NP,XG,YG,XYG,NX,NY, YP)

CALL PGBEGIN(O,"?7,1,1)

CALL PGSCH(1.0)

CALI, PGENV (XP(1) ,XP(NP),0.0,1.07,0C,0)

CALL PGLINE (NP, XP,YP)

CALL, PGLABEL(’'Length \fil\fn (mm)’,'prob(\fil\fn|{data})’,’ ")

CALL PGEND
CALL CONFID(XP,YP,NP)
END

SUBROUTINE DATIN(X,N,X0,X05IG,S5IG0)

REAL X(*}

CHARACTER*60 FILNAM

XSUM=0.0

XXSUM=0.0

WRITE(*,*)

WRITE(*,100)

FORMAT (’ Input> Data filename ? : ',$%)

READ(*,200,ERR=1) FILNAM

FORMAT (A)

OPEN{UNIT=1,FILE=FILNAM, STATUS='0LD’ , FORM='FORMATTED' , READONLY,
ERR=1}

Do 10 I=1,N
READ(1, *, ERR=2,END=2) X(I)
XSUM=XSUM+X{I)
XXSUM=XXSUM+X (I) *X{I)

CONTINUE

CLOSE (UNIT=1)

N=I-1

WRITE(*, *)

WRITE(*,110) N

FORMAT (" No. of data read in = ’,I5)

IF (N.LT.2) STOP Need at least 2 data for sensible calculation!

XNORM=1.0/FLOAT (N}

X0=XSUM*XNORM

SIGO=SQRT { (XXSUM-X0*XSUM) *XNORM)

X0SIG=SIGO*SQRT (XNORM)

WRITE(*, *)

WRITE(*,120) X0,X0SIG



WRITE(*,130) SIGO,X0SIG*0.7071

120 FORMAT(’ Mean = t,F7.3" +/= fL,R7L3 mm’ }
130 FORMAT(’ Standard deviation = RT3 +/—- 0 ,FT7.3° mm')
END

SUBROUTINE PRIOR({X,N,X0,SIG0)

REBL X(*)
*
WRITE(*,*)
1 WRITE(*,100)
100 FORMAT(’' Prior range> Xmin & Xmax ? : ‘,$)

READ(*, *, ERR=1) XMIN, XMAX

IF (XMIN.GE.XMAX) GOTO 1

IF (XMIN.GT.{(X0+10.0*SIG0}) GOTO 1
IF (XMAX.LT. (X0-10.0*3SIG0)) GOTO 1
CALL XINIT(X,XMIN,XMAX,6 N}

END

SUBROUTINE XINIT (X, XMIN,XMAX,N)

REAL X{*)

DX= {XMAX-XMIN) /FLOAT {N-1)
X{1)=XMIN
DO 10 I=2,N
10 X(I)=X({I-1)+DX
END

SUBROUTINE POSTR(XD,ND,X0,X081IG,SIG0,XYG,XG,YG, NX, NY, SMIN, XMAX)

REAL XD({*) ,XYG(NX,NY) ,XG{*) ,YG(*)

XCGMIN=X0-5.0*¥05IG
XGMAX=X0+5.0*X0SIG
IF (XGMIN.LT.XMIN) XCGMIN=XMIN
IF {XGMAX.GT.XMAX) XGMAX=XMAX
YGMIN=SIGO-5.0*0.7071*X0SIG
YGMAX=STGO+5.0%0.7071*X0SIG
IF (YGMIN.LE.1.0E-10) YGMIN=YGMAX/1000.0
CALL XINIT{XG,XGMIN,XGMAX, NX)
CALL XINIT(YG, YGMIN, YGMAX, NY}
ZMIN=1.0E+20
DO 30 J=1,NY
SIG2=1.0/(2.0*YG(J) *¥YG(J)}
SIGLOG=FLOAT (ND)} *LOG (YG (J} )
DO 20 I=1,NX
XGI=XG(I)
SuM=0.0
DO 10 K=1,ND
DIF=XD(K) -XGI
SUM=SUM+DIF*DIF
10 CONTINUE
Z=SUM*SIG2+SIGLOG
XYG(I,J)=2
IF (Z.LT.ZMIN) ZMIN=Z
20 CONTINUE
30 CONTINUE
DO 50 J=1,NY
DO 40 I=1,NX
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PRBLOG=XYG (I, J)-ZMIN
XYG({XI,J)=EXP(-PRBLOG)
CONTINUE
CONTINUE
END

SUBROUTINE INFER (XP,NP,XG,YG,XYG,NX,NY, YP)

REAL XP({*),XYG(NX,NY} ,XG(*) ,YG(*),YP(*)

PMAX=-1.0E+20
bOo 30 K=1,NP
SUM=0.0
DO 20 J=1,NY
SIGNRM=1.0/YG(J)
5IG2=0.5*SIGNRM* STGNRM
DO 10 I=1,NX
DIF=XP(K)-XG(I)
SUM=SUM+XYG(I,J) *EXP (-SIG2*DIF*DIF) *SIGNRM
CONTINUE
CONTINUE
YP (K)=5UM
IF (SUM.GT.PMAX} PMAX=SUM
CONTINUE
PNORM=1.0/PMAX
DO 40 K=1,NFP
YP (K) =YP (K) *PNORM
END

SUBRCOUTINE CONFID(X,Y,N)

REAL X(*),Y(*)
LOGICAL, ANOTHR

YMAX=0.0
YSUM=0.0
DO 10 I=1,N
IF (Y(I).GT.YMAX) THEN
YMAX=Y (TI)
I0=I
ENDIF
YSUM=YSUM+Y (I)
CONTINUE
YNORM=100.0/YSUM
DO 20 I=1,N
Y{I})=Y(I)*YNORM
WRITE(*, *)
WRITE(*,100)
FORMAT(’ Reliability> Confidence level ? (%) : ',$)
READ(*, *, ERR=1) PVAL
IF (PVAL.LT.0.0 .OR. PVAL.GT.100.0) GOTO 1
CALL INTRVL(X,Y,N,IO,PVAL)
WRITE(*, *)

CALL LOGQYN(’ > Try another confidence-interval ?‘,‘'Y’,ANOTHR)}

IF (ANOTHR) GOTO 1
END

SUBROUTINE INTRVL(X,Y,N,IOQ,PVAL)

REAL X(*),Y(*)



DX2=(X{2}-X(1)}/2.0
IMIN=I0
IMAX=I0
P=Y{I0)}
GOTO 2
1 IF (IMIN.EQ.1) THEN
IF (IMAX.EQ.N) GOTO 3
TMAX=TMAX+1
P=P+Y (IMAX)
ELSEIF (IMAX.EQ.N) THEN
IMIN=IMIN-1
P=P+Y ( IMIN)
ELSE
IF (Y(IMIN-1).GT.Y(IMAX+1)) THEN
TMIN=IMIN-1
P=P+Y (IMIN)
ELSE
IMAX=TIMAX+1
P=P+Y ( IMAX)
ENDIF
ENDIF
2 IF (P.LT.PVAL) GOTO 1
3  XMIN=X(IMIN)-DX2
XMAX=x (IMAX) +DX2
IF (XMIN.LT.X(1)} XMIN=X(1)
IF (XMAX.GT.X(N)) XMAX=X(N)

WRITE(*,*)}
WRITE(*,100) PVAL,XMIN, XMAX

100 FORMAT(’ Shortest ',F4.1'% confidence interval = ',F7.2° to ‘,
* F7.2' mm’}

END
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PROGRAM AVERAGE

This program reads in the mosaic spreads (front and back face}
of the graphite c¢rystals from ATOMGRAPH and calculates the
arithmetic mean of the front faces, back faces and average of
the two. The values are stored in a data file called SPREAD.DAT
in single column format: Front mosalc spread, back mosaic
spread etc for each crystal. The order of the crystals follows
their position in the trays in the following way:

11 12 13
21 22 23

31 32 33

For each position their are two values of mosaic spread, front
and back. There are 281 trays, the final tray being one third
full. If we ignore final tray then the total number of crystals
is 2520.

INTEGER

ITRAY (2,3,3.280) ,FOCCUF(60:200),FOCCUB(60:200) ,FOCCUA(60:200}
INTEGER LOOP, IFVAL, IBVAL, IAVAL

REAL FSUM, BSUM, ASUM, FMEAN, BMEAN, AMEAN, FERRSQ, BERRSQ
RFAL. AERR, AERRSQ, FESQSU, BESQSU, AESQSU, FDEV, EBDEV, ADEV
REAL FMIN, BMIN, AVER, AMIN, FMAX, BMAX, AMAX

REAL OCCUF{30:100), OCCUB(30:100), OCCUA({30:100)

REAL*B AVE(3,3,280)

Read data inte four-d array corresponding to real physical
position in tray stack.

OPEN{UNIT=7,FILE='NAMESPREAD.DAT', STATUS="'0LD’)
READ(7,5) (({(ITRAY(I,J.K,L}, I=1,2), J=1,3), K=1,3}, L=1,280)
FORMAT (10X, F5.3)

Initialise SUMS, MINIMUMS and MAXIMUMS
FSUM =

BSUM
ASUM =

n ooo
OO0 OC

OO0 OQOO OO0

—
=
o
[N =Nl il

DO LOCP=60,200
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FQCCUF (LOOP}

FOCCUB (LOOP}

FOCCUA (LOOF)
ENDDO

(I I
[ R B ]

Calculate arithmetic mean and standard deviation for 1)Front
faces, 2)Back faces, 3)Average of front and back faces.

DO L=1,280

DO K=1,3
DO J=1,3
FSUM = FSUM + ITRAY(1,J,K,L)}
BSUM = BSUM + ITRAY{2,J,K,L)
ASUM = ASUM + ((ITRAY(l,J,X,L}+ITRAY(2,J,K,L}}/2.0)
AVE(J,K,L) =((ITRAY(1,J,K,L)+ITRAY(2,J,.K,L})/200.0)
ENDDO
ENDDOC
ENDDO
FMEAN = FSUM/2520
BMEAN = BSUM/2520
AMEAN = ASUM/2520
DO L=1,280
DO K=1,3
Do J=1,3

FERRSQ = (ITRAY(1,J,K,L)-FMEAN}*(ITRAY(1l,J,K,L)-FMEAN)
BERRSQ = (ITRAY(2,J,K,L)~-BMEAN)}*(ITRAY(2,J,K,L)-BMEAN)
AERR = {(ITRAY(1,J,K,L)+ITRAY(2,J,K,L))/2)-AMEAN

AERRSQ = AERR*AERR
FESQSU = FESQSU+FERRSQ
BESQSU = BESQSU+BERRSQ
AESQSU = AESQSU+AERRSQ
ENDDO
ENDDO

ENDDO

FDEV = SQRT (FESQSU/2520)

BDEV = SQORT{BESQSU/2520)

ADEV = SQRT (AESQSU/2520)

Calculate minimum, maximums and modal values

DC TL=1,280
DO K=1,3
Do J=1.,3

IF (ITRAY(1,J,K,L).LT.FMIN) THEN
FMIN = ITRAY(1l,J,K,L)

END IF

IF (ITRAY{(1,J,K,L).GT.FMAX) THEN
FMAX = ITRAY(1,J,K,L)

END IF

IF (ITRAY(2,J,K,L).LT.BMIN) THEN
BMIN = ITRAY(2,J,K,L}

END IF

IF (ITRAY(2,J,K,L).GT.BMAX) THEN
BMAX = ITRAY(2,J,K,L)

END IF

AVER = ((ITRAY(l,J.X,L)+ITRAY(2,J,K,L)}/2.0}
IF (AVER.LT.AMIN} THEN
AMIN = AVER
END IF
IF (AVER.GT.AMAX) THEN
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AMAX = AVER
END IF

ENDDO
ENDDO
ENDDO

Calculate frequencies of occurrence for plotting purposes

DO L=1,280

DO K=1,3
Do J=1,3
IFVAL = ITRAY(1l,J.K,L)
IBVAL = ITRAY{(2,J.K,L)
IAVAL = IFVAL+IBVAL
Don't divide by two yet - keep as an integer for array

subscript. Times by two to obtain same array subscripts for
IFVAL, IBVAL and IAVAL

IFVAL = IFVAL*2
IBVAL = IBVAL*2
FOCCUF {IFVAL) FOCCUF (IFVAL) +1

FCCCUB {IBVAL}
FOCCUA {TAVAL)
ENDDO

FOCCUB{IBVAL}+1
FOCCUA (TAVAL) +1

nun

ENDDO
ENDDO

Write out wvalues:

WRITE(*,*) ‘Average of front faces = *, FMEAN/100
WRITE(*,*) ‘The minimum front face value = *, FMIN/100
WRITE(*,*) ‘The maximum front face walue = *, FMAX/100
WRITE(*,*) 'The front face standard deviation = ‘', FDEV/100
WRITE(*,*) rAverage of back faces = ‘, BMEAN/100

WRITE(*,*)}) ‘The minimum back face value = *, BMIN/100
WRITE(*,*) 'The maximum back face value = *, BMAX/100
WRITE(*,*) 'The back face standard deviation = ‘, BDEV/100
WRITE(*,*) 'The mean of average of two faces = ‘', AMEAN/100
WRITE(*,*) 'The minimum average value = ‘, AMIN/100
WRITE(*,*) 'The maximum average value = ‘, AMAX/100
WRITE(*,*) 'The standard deviation of averages = ', ADEV/100

OPEN{UNIT=9, FILE='FREQUENCIES.DAT', STATUS='NEW’)
WRITE(9,5)
FORMAT {1X, 'MOSAIC',5X, 'FRONT', 5X, 'BACK’ ,3X, 'AVERAGE' )

DO LOOP=60,200

WRITE{S9,15) LOOP/200.0, FOCCUF (LOOP), FOCCUB{LOQP}, FOCCUA (LOOP}
ENDDO

FORMAT (2X,F5.3,5X,I4,5X,T4,5X,14)

OPEN (UNIT=7, FILE="MEANSPREADS.DAT' , STATUS="NEW"' }
N =20

DO L=1,280

DG K=1,3
DO J=1,3



IF{AVE{J,K,L) .GT.0.520) THEN
WRITE({7,25) AVE(J,.K,L)
N = N+1
IF(N.EQ.2486) GO TO 20
ELSE
END IF
ENDDO
ENDDO
20 ENDDO
25 FORMAT (F5.3)
END
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PROGRAM GRIDASSIGN

Program revised 24/9/99 for 4212 crystals (2457 new and
1755 old crystals} "GRIDASSIGN" 1s a Fortran 77 program,
designed to arrange 4212 pyrolytic graphite crystals in their
"ideal" positions on the new IRIS analyser bank. There are two
types of crystal, 1lmm thick and 2mm thick. There are 2457 (new)
and 1755 (o0ld) crystals. Each crystal has a particular mosaic
spread; the purpose of this program is to arrange the crystals
in such a way that the mosaic spread of the whole bhank is as
evenly distributed as possible. This is achieved by placing the
crystals on to the 234 x 18 grid at random, and calculating the
average mosaic spread of consecutive blocks of nine crystals.
The deviation from the mean, 0.72, is then worked out and
squared, and all the errors across the whole grid are summed.
This final value is used as a measure of the evenness of the
distribution; the arrangement with the smallest value is stored
and the process is repeated.

The mosaic spread data is stored in a file called
NAMESPREAD.DAT, in order of their positions in the trays, e.g.
tray#l, row#l, column#l. Rather than keep track of each
individual 1mm crystal, it is just their mosaic spreads that
are manipulated. When the final arrangement of crystals is
reached, a separate search program is used to give individual
crystals a real position in the analyser bank.

PARAMETER (MAXTITER=10000000)
REAL SUM, MEAN, COUNT, J
REAL*8 ERR, ERRSQ, SUMERRSQ, GMAX, GMIN

my arrangement of old c¢rystals uses 1755 hence 2457 new
crystals needed

REAL X (2457), GRID(234,18), BEST(234,18), WORST(234,18)
INTEGER LIST(234,18), LISTSEED({MAXITER)
INTEGER MSEED, ISEED,P

DATA (LISTSEED(I), I=1,MAXITER)/MAXITER*(Q/

GMIN = 10.0
GMAX = 1.0
COUNT = 1
MSEED = 31415%
P=0

Set both GRID and LIST arrays to zero:

DO I=1,234

DO J=1,18
LIST(I,J) = 0
GRID(I,J) = 0
ENDDO

ENDDO

write (*,*} ‘clear list and grid OK-
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SUMERRSQ = 0

MEAN = O

SUM = 0

ISEED = 0

write {(*,*) ’set sumerrsg to zero OK’

Mark the positions of the OLD crystals in the array LIST:

flag=1
DO J=1,18
IF(MOD{(J,2.0).gt.0) THEN
if (flag.eq.0) then
flag=1
else
flag=0
endif
DO C=0,77
Y=1+{C*3)
LIST(Y,.J} = 2
WRITE (8,*) Y,J,flag
write (*,*)} Y,J,flag
IF({MOD{C,2.0}.¢gt.0) THEN
if (flag.eqg.0) then
LIST(Y+1,J} = 2
write (8,*) Y+1,J, flag
write (*,*) ¥+1,J,flag
else
LIST(Y-2,J) = 2
write {8,*) Y-2,J,flag
write (*,*) Y-2,J,flag
endif
endif
ENDDO
ELSE
DO C=0,77
¥=1+(C*3)
LIST{Y+2,J) = 2
WRITE (8,*) Y+2,J
ENDDO
ENDIF

ENDDO

write (*,*) ’'set position of old crystals OK’

Read in mosaic spread data:

OPEN (UNIT=7,FILE='NAMESPREAD.DAT' ,STATUS="0LD’)
READ(7,5,END=20) (X(I), I=1,2457)
FORMAT (10X, F5.3)

write (*,*) ‘reads in mosaic spread data OK’

Place the 2mm thick crystals on to the GRID - these are assumed
to have the average mosaic spread:

Do TI=1,234
Do J=1,18
IF{LIST(I,J).EQ.2) THEN
GRID(I,J) = 0.700
END IF
ENDDO
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30
31

40

ENDDO
write (*,*) ‘places old crystals on grid {(assign 0.7) OK’

Now assign each 1lmm thick crystal spread a position on the GRID
at random and mark it's place in the LIST:

if {(count.eq.99999) then
count=1

p=p+l

write (*,*) P

endif

ISEED = NINT({ (RAN(MSEED)}* {(MAXITER-1})
if (iseed.eqg.0) then
go to 29
end if
IF{LISTSEED(ISEED} .EQ.1l) THEN
ISEED = NINT ( (RAN(MSEED)}}* (MAXITER-1))
if (iseed.eq.0) then
go to 31
end if
GO TO 30
END IF
LISTSEED({ISEED) = 1

DO N=1, 2457
IRAN = NINT({(RAN(ISEED))*234)
JRAN = NINT( (RAN(ISEED))*18)
IF((LIST{IRAN,JRAN) .GT.0).OR.(IRAN.EQ.0)}.OR. (JRAN.EQ.0))

& THEN
IRAN = NINT((RAN(ISEED)) *234)
JRAN = NINT((RAN(ISEED)}*18)
GO TO 40
END IF
GRID{IRAN,JRAN) = X(N)
LIST{IRAN,JRAN} = 1

ENDDO

write (*,*) ‘assigns lmm crystals a place on grid OK'

The grid is now tested for evenness of the distribution of
mosaic spreads. This is done by summing the sguares of the
deviations from the means of blocks of 9 crystals on the grid.

DO I=2,233
Do J=2.,17

Calculate the mean of 9 squares:

SUM = 0

DO M=I-1,I+1
DO N=J-1,J+1
SUM = SUM + GRID{M,N)
ENDCDO

ENDDO

MEAN = SUM/S.0

write (*,*) ' mean of 9 squares tested OK’
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Now work out the deviation from the overall mean,0.72, and sum
the squares of these errors.

ERR = MEAN - 0.72
ERR3Q = ERR*ERR
SUMERRSQ = SUMERRSQ +ERRSQ

ENDDO
ENDDO

write (*,*) ' derivation from mean calculated OK'’

If the value of SUMERRS(Q is the smallest so far, store the GRID
in a separate array. Also keep the GRID with the largest wvalue
for comparison.

IF {SUMERRSQ._LT.GMIN) THEN
GMIN = SUMERRSQ
DO J=1,18
DG I=1,234
BEST(I,J) = GRID(I,J)
ENDDO
ENDDO
ELSE IF{SUMERRSQ.GT.GMAX) THEN
GMAX = SUMERRSQ
Do J=1,18
DO I=1,234
WORST{I,J}) = GRID(I,J)
ENDDO
ENDDO
END IF

write (*,*}) ‘gmin and gmax compared OK'

Every 25000 iterations, write out the best and worst
arrangements intoe two datafiles

COUNT = CQUNT + 1.0

IF (MOD{COUNT, 25000.0} .EQ.(G) THEN
OPEN (UNIT=8,FILE='BESTGRID1.DAT', STATUS='NEW’)
OPEN (UNIT=9,FILE='WORSTGRID1.DAT’, STATUS='NEW")
WRITE (8,15) ((BEST(I,J). J=1,18), I=1,234)
WRITE (9,15) ({WORST(I,J), J=1,18), I=1,234)
CLOSE (8)
CLOSE (9)

ENDIF

FORMAT (1X,16F4.3)

WRITE(*,25) ‘Iteration number’, NINT(COUNT), GMIN ,GMAX
FORMAT ('+',Al6,I1I6,3%X,F8.5,1X,F8.5)

write (*,*) 'best and worst grids written out every 5K counts’
GO TO 10

This program is designed to run continually, achieving a more
preferable arrangement of crystals each time wuntil it is
interrupted.

END
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IV. APPENDIX 4

PROGRAM TEST

Prints out average horizontal mosaic spreads at decreasing
length intervals, to check arrangements of crystals.

REAL GRID(239,16),MEAN(128),ERROR(128)})
REAL SUM(0:6),X(7),Y(7)

INTEGER IDUMMY(0:128)

CHARACTER*80 FILNAM,TITLE

Read in data:

WRITE(*,*) ’Enter Filename: '’

READ(*,5) FILNAM

FORMAT (A10)

OPEN (UNIT=7, FILE=FILNAM, STATUS='0OLD’ , FORM='FORMATTED' , READONLY)
READ(7,15) ((GRID{(I,J), J=1,16), I=1,239)

FORMAT (1¥,16F4.3)

Calculate average mosaic spread of whole array, two half

arrays, four quarters etc. and sum squared deviations from
overall mean.

Jg =20

I = 2**J

CALL AVERAGE{GRID,239,16,I,MEAN, IDUMMY)

SUM(J) = 0.0

Do L=1,I
ERROR(L) = (MEAN(L}-0.7174)**2
SUM(J) = SUM({(J} + ERROR({L)

ENDDO

List sum wvalues.

WRITE (*,25) SUM(J)
FORMAT(F8.6}
WRITE(*, *}
J = J+1

IF(I.LT.64) GO TO 20

DO M=0,6

X(M) = M

Y (M) = SUM(M)
ENDDO

Draw bar chart of values.

WRITE(TITLE, 35) FILNAM
FORMAT (‘Deviations from Overall Mean at Successive Bank
& Divisions - File: ‘,A1Q)

CALL PGBEGIN{O, ?",1,1)
CALL PGENV{(0.,7..,0.,0.007,0,1)
CALL, PGLABEL({‘No. of Divisions', 'Sum of Absolute Errors’,
& TITLE})
CALL PGSCI(1)
Do M=0,6
X1 =M
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= M+l
Y1 =0.0
= SUM{M)
CALL PGRECT(X1,X2,Y1l,Y2)
ENDDO
CALL PGEND
END

SUBROUTINE AVERAGE (ARRAY,IX,IY,N,MEAN,K)

REAL. ARRAY{IX,TI¥Y), MEAN(N}
INTEGER ICOUNT, K{0:N)

K(0) =1
DO M=1,N
K{M) = (IX/N}*M
ENDDO
DO M=1,N
SUM = 0.0
ICOUNT = O

DO I=K{M-1),K{M)
Do J=1,1IY
SUM = SUM+ARRAY(I,J)
ICOUNT = TCOUNT+1
ENDDO
ENDDO
MEAN (M) = SUM/FLOAT (ICOUNT)
ENDDO
END



