CCLRC L

M

Technical Report
RAL-TR-2001-021

R3 5T0RE

Scattering by Entangled Spatial and Spm
Degrees of Freedom

E B Karlsson and S W Lovesey

i e
. EERN SR B
3rd April 2001 A

COUNCIL FOR THE CENTRAL LABORATORY OF THE RESEARCH COUNCILS



© Council for the Central Laboratory of the Research Councils 2001

Enquiries about copyright, reproduction and requests for
additional copies of this report should be addressed to:

The Central Laboratory of the Research Councils
Library and Information Services

Rutherford Appleton Laboratory

Chilton

Didcot

Oxfordshire

OX11 0QX

Tel: 01235 445384  Fax: 01235 446403
E-mail library@rl.ac.uk

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their
reports or in any communication about their tests or investigations.



Scattering by entangled spatial and spin degrees of freedom

E. B. Karlsson' and S. W. Loveseyz

'Department of Physics, Uppsala University, P. O. Box 530, SE-75121 Uppsala,
Sweden

2Rutherford—Apple’ton Laboratory, Oxfordshire, OX11 0QX, UK

PACs: 61.12 Bt, Theories of diffraction and scattering

03.65 Bz, Foundations, theory of measurements

email:
E. B. Karlsson: erk@fysik.uu.se
S.W.Lovesey:  S.W.Lovesey@rl.ac.uk



Scattering by entangled spatial

and spin degrees of freedom

E. B. Karlsson, Department of Physics, Uppsala University,
P.O. Box 530, S-75121 Uppsala, Sweden.

S. W. Lovesey, Rutherford Appleton Laboratory,
Oxfordshire, OX11 0QX, UK.

Abstract

Several recent experiments on liquid and solid samples containing protons or deuterons
show an interesting anomaly, which is a shortfall in the intensity of energetic neutrons
scattered by the samples. Previously we demonstrated that quantum correlations in the
spatial and spin degrees of freedom of the hydrogen isotopes lead to entanglement in
scattering and a reduction in the scattered intensity. The viability of short-lived
quantum correlations as the cause of the observed anomalies is further explored and
found to be entirely feasible. General features of the basic premiss, that quantum
entanglement reduces the scattered signal, are discussed and the interpretation of the
neutron scattering experiments is set in context to related work on other systems. For
the experiments in question, the duration of a scattering event, T, is a fraction of a
femtosecond which is extremely short compared to solid-state relaxation times.
Increasing T, by suitably changing experimental conditions, restores the intensity to the
standard value calculated from the single atom cross-section and concentration of
particles. Our physical picture of the restoration is evolution with increasing ts from a
pure state of the particles (described by a wavefunction) to a mixed state (described by a

density matrix) that is created, through decoherence, by steadily engaging the solid-state

environment of the particles.



1. Introduction

The intensity of energetic neutrons inelastically scattered by samples loaded with
one of the isotopes of hydrogen is found to be smaller than expected from an application
of the standard approach to the theory of scattering. For protons the shortfall in
intensity can be as much as 40%, and for deuterons the shortfall is about 10% [1, 2].
The search for an explanation of the observed shortfall in intensity has led to a
consideration of the influence on the intensity of quantum correlations between particles

in a sample, and the entanglement of degrees of freedom that appear in the scattering of

radiation.

We refer to the purely quantum mechanical correlations between identical
particles, which is an effect created by the behaviour of the wavefunction with respect
to exchange of pairs of particles. (Exchange of a pair of bosons (particles with integer
spin) leaves their wavefunction unchanged, while exchange of a pair of fermions
(particles with half-integer spin) changes the sign of their wavefunction.) One well-
established example of the influence of the quantum correlations, which is also called an
exchange effect, is seen in scattering of identical particles, e.g. in collisions of inert gas
atoms (spin-zero particles) or electrons (spin-’2 particles). In this instance, the
exchange effect appears as an interference between the two channels of scattering in
which a particle is deflected through angles 6 and m — 6. If the behaviour of the
wavefunction with respect to exchange of particles is neglected the calculated collision
cross-section is just an incoherent sum of the cross-sections for deflection through 6 and
n — 0. A second example is found in the formation of ortho and para-states of the
hydrogen molecule. Not surprisingly, perhaps, the two states are distinguished in

neutron scattering by offering quite different cross-sections.

Several aspects of the neutron-scattering experiments on samples loaded with
protons or deuterons indicate that a quantum effect is the likely cause of the shortfall in
intensity. For one thing, the size of the shortfall decreases with increasing mass of the
target particles. We have given figures for protons and deuterons, and no shortfall in
intensity has been reported for particles heavier than a deuteron. A second notable

aspect of the experiments is the extremely short duration of the collision between an



The present paper contains four main sections. In section 2 we briefly review
the neutron Compton scattering experiments that are at the heart of our work. Sections
3 and 4 are given over to discussions of quantum entanglement in condensed matter and

its influence on the intensity of neutron Compton scattering. The last main section
contains work aimed at interpreting the influence of entanglement in scattering events,
and estimates of the size of the shortfall in scattering that can be realized with samples

loaded with protons and deuterons.
2.  Scattering by condensed matter; experimental details

Anomalies in neutron Compton scattering by hydrogen in condensed matter have
been observed in condensed matter systems of a quite different nature; namely,water

[6], metal hydrides [1, 2] and polymers [5].

The anomalies are seen as reductions in the cross-section of protons of between
10 and 30 percent (and smaller anomalies for deuterons) relative to the expected,
tabulated values for isolated protons. The cross-sections have been obtained by
comparing intensities for proton (H), or deuteron (D), peaks with those of heavier

elements (X) in compounds with well-known stoichiometric ratios XHy, etc.

All the above mentioned experiments have been performed in the same
experimental setup, the eVS-spectrometer at the ISIS Facility, Rutherford Appleton
Laboratory, UK. This spectrometer distinguishes scattering from H, D, etc. as separated
peaks 1n the time-of-flight spectrum of the neutrons. Some of these anomalies, those
observed in NbHy and PdHy, show up only at momentum transfers £ that are very large
while anomalies for water and the solid polystyrene are almost independent of k. As
was shown in ref. [1], there is a one-to-one correspondence between the angle 0 through
which the neutron beam is deflected and the duration of the scattering event t5. Times T
fall in the range 107® — 107"%s and the 0 —dependence of the intensities for H in NbHj
and PdH, shows that shortfalls in the cross-section exist only for durations shorter than
~5x10%s. The dependence of the cross-section ratio oy/cn, for NbHp g as a function

of 15 is shown in Fig. 1.



Observed structures in the scattered neutron intensity, which might be of the same
origin as the anomalous cross-sections mentioned above, have also been reported using
neutrons of intermediate energy ~ 0.5 eV in the MARI spectrometer at the ISIS Facility
[7]. The intensity from the compound KHCO; exhibits a structure with extra
components which indicate a (quantum mechanical) coupling between the two closely
spaced protons in this compound. In an accompanying theoretical paper [8], Fillaux has
discussed observed features in terms of correlated proton states. Two-body
entanglement of fermionic and bosonic modes was also considered earlier for

explaining Raman scattering on water [9].

In the eVS spectrometer, used for neutron Compton scattering, energy selection is
made on the outgoing scattered neutrons, using resonance absorption in a metallic foil
[10]. An important parameter for the interpretation of experiments using this inverse
geometry type of spectrometer is the coherence length . = A*/2AMA of the neutron
waves. The energy of the outgoing neutrons, selected by a 197-Au foil, is 4.91 eV
which corresponds to a deBroglie-wavelength of A =9.04 E"*=0.13A. The width of
the resonance AE = 0.26 eV, which relates to a wavelength spread of AL = (1/2)9.04
E"2|AE| = 0.0034A. The coherence length of the outgoing neutrons is therefore of the
order of l.;n = 2.5 A. Thus, although the wavelength of the neutrons is smaller than
typical distances between two neighbouring hydrogen ions in the metal lattices (d =~ 2A)

there is still longitudinal coherence such that more than one scattering center can

contribute to neutron scattering.

Interference in neutron Compton scattering is also taken into account in the work
of Andreani et al. [11] on the H, and D, molecules. The authors analyse measurements,
using the same Au—197 resonance for selecting the energy of neutrons in the eVS-
spectrometer, with momentum transfers in the range 30 — 60 A™'. Interference is
considered for scattering from protons (or deuterons) within the same molecule, but not
for particles belonging to different molecules. Their scattering situation is not the same
as the one presently considered since the kinematics is different, with the whole
molecule recoiling and with no dissociation possible within the momentum transfer
range considered. In the model we discuss, the scattering particles are bound in a lattice

and although both can contribute to the scattering amplitude, only one particle recoils.



3.  Local entanglement in condensed matter

It is well known that in order to explain the thermal neutron scattering for
molecular hydrogen it is necessary to take into account the symmetry of the two-proton
wavefunction, which for these indistinguishable particles is determined by their
fermionic character. This leads to completely different cross-sections for parahydrogen
(with J = 0 and the spatial part of the wavefunction symmetric under exchange of the
particles) and orthohydrogen (with J=1 and spatial part antisymmetric).

In light molecules containing hydrogen, like compounds of the type XHy, the
fermionic character of wavefunctions also leads to a modification of the proton cross-
section in thermal neutron scattering, but only of the order of a few percent as compared
to independent proton values [12]. In these molecules, as well as in H, and D5, such
exchange effects are reduced with increasing temperatures when molecules are excited

to different configurations [13, 14].

On the other hand, in condensed systems (with the exception of superfluids), the
spins of constituent nuclei are usually treated as randomly orientated and uncorrelated.
This is considered to be valid even for identical nuclei, such as protons in metal
hydrides or in hydrocarbon compounds. In theoretical predictions of scattering cross-
sections they are therefore considered as individual scattering objects and the total
cross- sections are calculated starting from a (coherent or incoherent, depending on the

experimental situation) summation of scattering amplitudes from particles localized at

definite sites.

It seems that it is this tacit assumption about the absence of nuclear correlations
in condensed systems that should be abandoned in order to explain the measured cross-
sections for neutron Compton scattering (NCS) in the metallic hydrides. As already
mentioned, this type of scattering differs from thermal neutron scattering in the

important aspect that the duration 75 of the scattering event in NCS is much shorter than



that occuring with thermal neutrons and typically 1,<10"s. Entanglement between
distant particles, which is expected to be extremely short-lived because of the high
probability of decoherence created by the solid-state environment, may therefore be

observed in NCS, although it has a negligible effect in thermal neutron scattering.

There exist estimates in the literature [15] of the decoherence time for quantum
entangled macroscopic objects, exposed to collisions by particles or excitations. If
these relations permit an extrapolation down to linear extensions of the order of a few A
and to the limit of single collisions (by phonons), the results for the decoherence time
will fall in the range of 10™'%s [1], which is of the same order of magnitude as T, in NCS.
These considerations have encouraged us to build a simple model for neutron Compton
scattering which is based on systems of quantum-entangled particles in solid materials
(for particles heavier than protons or deuterons effects of local entanglement will be

much less pronounced in the time window currently accessible for measurements).
4. A soluble model of scattering by identical particles

By restricting our attention to two particles in the sample we have a model of
scattering which can be solved without approximation. As we mentioned in the
introduction, overlap and direct interactions between the two particles are excluded, so
correlations in the model are exclusively due to the purely quantum mechanical

entanglements of spatial and spin degrees of freedom.

The particles are identical and we label them by o and B. Their spins are
denoted by I, and Ig and they are of magnitude I. The spin states are coupled, by a
Clebsch-Gordan coefficient, to form a state with total angular momentum J and

projection M. Such a state is represented by the spinor,

X (@)=Y (I M) |Im >\Iﬁn>. 4.1)

One finds 3, (B,00) = (=1)*"*/ 3, (et, B).



The total wavefunction is the product of 77, (o, ) and a spatial wavefunction, in
keeping with the nonrelativistic limit of quantum mechanics. Under exchange of the
two particles, the total wavefunction is required to be symmetric for bosons and
antisymmetric for fermions, i.e. exchanging the particles introduces in the total
wavefunction a phase factor (—1)21 . From our knowledge of the behaviour with respect
to exchange of the spinor we find that, with respect to exchange of the two particles the

spatial wavefunction acquires a phase 1Y

In our model, there are two spatial centres, labelled 1 and 2. The one-particle

spatial orbitals, @;(R) and @,(R), are taken to be purely real (and thus non-degenerate)

and to satisfy,

iR o} (R) = [dR @}(R) =1, with,  [dR ¢,(R)p,(R)=0. (4.2)

If the two centres are connected by the vector d, one can use the representations
01(R) = 0o(R) and ¢2(R) = ¢ (R — d) and sensibly describe 1 (2) as the left (right) centre
in the model. Suitably normalized, the spatial wavefunction of the initial state of the

two particles is,

1
ﬁépl(Raxpz(RB)+4<p1<RB)<p2(Ra)}. 4.3)

Here, £ = (-1)’. By using ¢ %=1 and the fact that a wavefunction is arbitrary to within a
phase factor it is evident that, in (4.3) the phase factor £ can equally well appear in the
first product of wavefunctions; with regard to the physics which (4.3) describes, the

phase factor £ is not specifically attached to the first or second of the two product states.

The total wavefunction for the initial state of the two particles is the product of

x2 (o, B), which is defined by (4.1), and the spatial wavefunction given in (4.3). On

exchanging the two particles(o. 7 B) the total function acquires a factor (—1)¥ as

10



required in quantum mechanics applied to identical particles. Evidently, in this type of

wavefunction, the spatial and spin degrees of freedom are not separable.

The total wavefunction for the final state of the two particles, after they have
acquired energy and momentum from impinging neutrons, has the same structure as the
initial total wavefunction. The spin state is represented by 7 1.(a,B). The associated
spatial wavefunction is cognizant of the kinematics in Compton scattering. For the
intensity as a function of energy to accumulate at the recoil energy of one particle it
must contain a state which is a plane-wave, to a good approximation. Let the plane-
wave be proportional to exp(ip’-R) and denote the second one-particle orbital by vy (R).
The plane-wave is normalized in a box, and y (R) is normalized to unity like ¢;(R) and
¢2(R). The normalization box has a volume Q and the normalization factor with the

plane-wave is eventually absorbed in a momentum wavefunction. The total final-state

wavefunction is,

s PR ROV, +oxplip’ R)W(R,) | 1o, (“44)

where the phase factor &’ = (~1) .

The spatial part of (4.4) 1s particular to the Compton limit of scattering. As we
will shortly see, the plane-wave it contains strongly influences the calculated cross-
section. Perhaps the best way of appreciating the influence of the plane-wave in the
final state is to compare subsequent working, made for the extreme Compton limit

expressed by (4.4), with results gathered in an appendix that are appropriate before
reaching the Compton limit of scattering.

The cross-section for scattering is calculated using Fermi’s prescription for a
neutron-nuclear collision, namely, the Golden-Rule for transition rates and his pseudo-

potential for the interaction operator. For two particles the neutron-nuclear potential is,

V =b, exp(ik -R,) + b, exp(ik -R;), (4.5)

11



and the cross-section is proportional to |( final | ¥ | initial . The scattering-length

operator,

b=A+Bs-1, (4.6)
is independent of the position variable, and s is the operator for the spin of the neutron
(4 and B are obtained from independent measurements). The spatial factors in V are
functions of the wavevector transfer, k, which is varied in the experiment. In the matrix

element ( final | V| initial ), to be used in the Golden-Rule, b, and bg act on spinors, and

exp(ik - R,) and exp(ik - Rg) act on spatial wavefunctions.

Looking at the initial and final total wavefunctions and ¥V we see that,

( final | 7| initial ) contains eight spatial matrix elements, four of the form,

[dR, exp(R, -K)y *(R,) ¢,(R,) [dR;exp(-ip’-Ry) ¢, (Ry). 4.7)
and four of the form,

[aR, exp{R, -(k—p)f o, (R,) T, 48)
where,

T, = [dR y*(R) ¢, (R). (4.9)

Consider the first integral in (4.7). Because the magnitude of k is very large the phase
factor exp (iRq-K) contains very many oscillations, between +1 and —1, as R,, varies in
the volume of space in which ¢;(R,,) is appreciably different from zero; a volume which
is the order of a unit cell in the crystal. In consequence, the integral in question is close
to zero. The corresponding integral in (4.8) can be significantly different from zero

when p’ is chosen close to k, so exp{iR,-(k — p')} has relatively few oscillations in a

12



unit  cell. From the conservation of momentum it follows that
p’ — k = p is the initial wavevector of the struck particle. With p’ ~ k the second
integral in (4.7) is close to zero and the product of integrals in the expression can be

safely neglected in comparison to (4.8). For the latter we write, K (p)72. Here, the

momentum wavefunction,
K(p)=Q"" [dR exp(~ iR -p) ¢,(R) = Q™" [dR exp(~ iR -p) p(R),

satisfies,

: P__ 0 2
2 K@) =y [ap K@) =1.
The four terms in the matrix element of ¥ that survive the Compton limit are,

< final |V | initial >= % % (0, B){B, +C5'By} %3 (. BYK (D)
(4.10)
(T, +Gexp(-ip-d)T;} = K@) F(J' M| J M),

where 7 is defined in accord with (4.9) and the last equality defines F(JM', JM). The
spatial phase-factor exp(—ip.d) in (4.10) arises in the momentum wavefunction created

from @2(R) = p(R—d).

Let us pause here and compare (4.10) with the corresponding expression in the
calculation by Pitaevskii and Stringari [4] of Compton scattering by two identical Bose-
Einstein condensates. Spin variables in this case play no part and only the spatial part
of (4.10) is significant in the comparison. It reveals that the two model systems contain
exactly the same spatial coherence, embodied here in exp(—i p-d), and £ in (4.10)
appears in place of the unknown phase factor introduced on bringing together two
condensates. The modulation with respect to p of the Compton cross-section for two
condensates, caused by the phase factor exp(—i p-d), is not observed in the neutron
Compton scattering experiments [1, 2] and our expression for the total cross-section, to

be derived from (4.10), is consistent with this observation.

13



In ref. [3], the final state was chosen to be orthogonal to the initial state. This was
in order to show that even when the initial and final states of the particles are
uncorrelated, cancellations still appear in the amplitudes that result from scattering on
the two particles in the pair. Here, the calculation is first presented as in ref. [3]. Later, it
is shown that inclusion of J’=J, terms that are excluded as in ref. [3], will lead to only a
small correction for the proton pairs. For deuteron pairs, on the other hand, the J=J

terms could play a larger réle.

The overlap of the initial and final states is obtained by following the steps that
lead to (4.10) and, in fact, the result can simply be written down by inspection of (4.10).
We find, following ref. [3],

< final | initial > = %SJ,J.BM,M, 1+ EEHNK(P)MT, + Cexp(-ip' -d)T;}, (4.11)

where the necessary conditions J=J' and M = M ' for non-zero overlap come from the
spinors in the initial and final states. By purposely making the choice J # J ' the
overlap of the initial and final states is zero, for all p’ and y(R), and there is in the final
state no remnant of the information in the initial state. Setting to zero the overlap of the
initial and final states, and the overlap of the two states in the initial and final states,

robs the model of correlations other than those due to the quantum exchange effects.

In (4.10) the matrix elements of the scattering length obey the selection rule
J'=|J-1|,Jand J+ 1, which is the selection rule for a tensor of rank one, namely, the
spin I in (4.6). Combining the desired orthogonality of the initial and final states with
the selection rule one finds J' = |/ —1|and J+ 1, and £’ = (- 1) =~1.

The kinematics of the scattering process is relatively simple. The duration of the
collision is by design very small, so the potential energy of the struck particle is

essentially the same in the initial and final states. On the other hand, the kinetic energy
of the struck particle changes from (fp)*/2M to (ip')*/2M, and the conservation of
momentum gives p’ = p + k. Moreover, measured on the scale of energy imparted to

the struck particle, the energy of the other particle is essentially unchanged in the

14



scattering process. Hence, if the change in energy of the neutron is AF the conservation

of energy reads,

2 n2
L) owY
2M 2M

The recoil energy of the struck particle Eg= (7k)*/2M.

The total cross-section per particle, including the conservation of energy, is,

k-p
1 < final | V | initial >|* 8JAE —E, —h*> ——¢. (4.12
2L (2J ) ();ﬁ Z |< final | V" | initial > V; . (4.12)

In this expression, w(J) is the weight attached to a state with angular momentum

J=0,1, 2], and,

g @I+D)
2D =2 oy

The factor 1/(2J + 1) in (4.12) accounts for the degeneracy of initial states with respect

to the projection M.

From the definition of F(J' M ', JM) in (4.10) one finds [3],

_ L 2 | JU+D)
JZ# ; | F(J'M', IM)|*= (o, /4m) | T, + §exp(=ip - d)T, | {1 —41(”1)}, (4.13)

where the so-called incoherent cross-section,
., =nl{I+1B>. (4.14)

Note that the result (4.13) is independent of M, and hence in (4.12) the sum on M gives

a factor (2J + 1) which cancels with the associated degeneracy factor. Also, the resuit

15



(4.13) is zero for 7= 0. On using (4.13) in the expression for the cross-section (4.12) the

latter becomes,

(04 /87) | K@) S{AE -, -1 "7"}2 W) T, +Cexp(-ip-a)7, {1—_—% . 13)}

(4.15)

The presence in (4.15) of the phase factor £ = (— 1)’ means there are for J even and odd
different structure factors and cross-sections. Not surprisingly, the total cross-section is

independent of the spatial phase-factor exp(—ip-d) for,

J(J+1) _J(J+1) :_1_
J@%‘) (J){ AI(I + 1)} J:LM)W(J) {1 4I(I+1)} 4 (4.16)

Whence, the total cross-section per particle 1s,

k-

(04, /4m) [ K(p) > & {AE—ER —-n* Vp} {7, +17, I} (4.17)

This expression is different from the cross-section for Compton scattering by an isolated

particle by a factor,

f =3/ T, [+, [}, (4.18)
where the single-atom cross-section,

o =4n{4® +%BZI (I +1)}. (4.19)
The value of f gives the shortfall in the cross-section due to the entanglement of spatial

and spin degrees of freedom.
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5. Discussion of the soluble model

Some aspects of the model introduced in section 4 can usefully be elaborated
further. In the following, the conceptual features of the model will first be discussed.
Thereafter, there is an orientation to the size of the shortfall in intensity due to quantum

entanglement.

5.1 Exchange terms in neutron Compton scattering

It is important to stress again that the total final-state wavefunction (4.4) is a
superposition. The particle labelled o has an amplitude of equal magnitude at positions
1 and 2, and the same is valid for particle B. One does not know whether particle o or
will be identified as the one recoiling out of its initial site. It is only through an
interaction (a decoherence process) that the wavefunction is reduced such that one of

the two states,

exp(ip’ Ro)w(Rg) or  exp(ip’ Rp)yw(Ra), (5.1

is selected.

The restoration of the cross-section with increasing ts (cf. Fig. 1) to the size
anticipated from standard experience is brought about by coupling to the environment,
which is essentially frozen out on the time scale of the neutron Compton scattering
experiments in question. Under standard conditions the identical particles are not in
isolation from their environment, whereas they appear to be when viewed on a timescale
1 ~ 107%s. In other words, for the experiments in question the particles are in a pure
state and described by a wavefunction. On increasing 1, toward solid-state relaxation

times, the pure state evolves through decoherence to a mixed state which can be

described by a density matrix.

17



Next, we consider the physical significance of the integrals 77 and 7. If we
project the spatial part of the total final-state wavefunction (4.4) on to ¢; (Rp), say, the

result is proportional to TJ* exp (ip'R,). (In reaching this result one uses K(p') ~ 0

which is justified by the large magnitude of the final wavevector of the struck particle.)
Hence, the probability for B to be in the state @; = ¢; (Rg) while o occupies the plane-
wave state is the square of the absolute value of the projection of (4.4) on to ¢; (Rp) and
this quantity is found to have a value | 7; */2. The scattering event does not select one
of the two sites, and j = 1 and j = 2 are treated on an equal footing. Thus, on averaging
over the two sites, we find that the probability that an initial state of the system is

occupied after the reaction event created by Compton scattering is,

2 2
14| +4m T’} (52)

=4[ +

This argument provides physical insight to one of the two factors in the intensity
shortfall (4.18). The second factor is the appearance of cj,./c; here, the appearance of

Ginc 1S due 1n part to use of orthogonal initial and final states in the scattering event, and

we have more to say on this aspect of the soluble model.

5.2 Orientation to the size of the shortfall in intensity

Let us start by considering the integrals 7; and 7, defined according to (4.9).

First, we can readily obtain an upper bound for their appearance in the cross-section

(4.17) or (4.18). To this end, consider y(R) to be a linear combination of ¢; (R) and
02(R). The coefficients in the linear combination are TI* and 7. 2* and normalization of

y(R) leads to |Ti|> + [Ty = 1. In general, ¢; (R) 1s one member of a complete set of

wavefunctions. Expanding y(R) in terms of the complete sets for j = 1 and j = 2 one
finds,

{n] +|z| "y <1. (5.3)

18



Thus, the shortfall in the intensity (4.18) obeys f < oin/4c. For protons (deuterons) the
maximum value of fis 0.24 (0.07).

If entanglement is lost during the scattering process, eq. (4.4) is not valid and the
expressions for the cross-sections reduce to standard values for individual particles.
The experimental data in Fig. 1 are reflecting such a situation where the cross-section is
reduced for short times but reaches its conventional value for long times. The

interpretation is that entanglement is lost after about 0.5 fs in the metal hydride

materials NbH and PdH.

The value found for the shortfall in the cross section at short times for protons in
NbH is about 30% (and somewhat larger for PdH). This corresponds to about 40% of
maximum entanglement and a smaller degree (<10%) for deuterons in NbH. These
numbers are only by way of orientation, because the assumption that entanglement is
only set up pairwise should be seen as a first approximation. In reality, larger groups of
correlated identical particles may be found at still shorter times. The model with
pairwise entanglement might then be viewed as a limit existing shortly before the
entanglement is broken. The entangled fraction will be set by competition between

entanglement-creating forces and decoherence caused by the solid-state environment.

Equation (4.4) represents an extreme situation in the sense that the plane wave is
assumed to be fully developed before decoherence occurs. In reality, there remains a
spherical (/ = 0) component as a distance r travelled by the recoiling particle which is
proportional to the magnitude of the Bessel function j,(kr)/kr < 1/kr. At a typical

distance of 0.5A this fraction can be estimated to be of the order of a few percent.

Taking into account such deviations from the plane wave assumption does not
impair the main conclusions of the model but has the consequence that the final state is
not exactly orthogonal to the initial state but only approximately so. The same is true if
the condition J' # J used to reach (4.18) is relaxed. It is illuminating to consider the

result in the opposite extreme, namely when allowing all terms consistent with the
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angular momentum coupling. One must consider separately / half-integer and [ integer;

on summing over all allowed ., instead of eliminating terms J =J', we have,
f=(/2) @I +1)" {1|T, +exp(ip.d)T, |2 +(I+ 1)|T1 — exp(ipd)T, r} , (5.4)
per proton in entangled proton pairs (half-integral particle spins), and
f=/2) QI+ U +D|T, +explpd)T,| +I|T, —exp(pd)T;| '}, (5.5)

per deuteron in entangled deuteron pairs (integral particle spins). If we assume that

exp(ip.d) ~ 1 and that 7, = 77 we find the values,

f= (1/2)|T1|2 =1/4 for protons, (5.6)

2

f=(4/3) = 2/3 for deuterons, (5.7)

L

where the numerical values are obtained by taking |T1[* = 1/2.

Such a modification of the original model calculation is but one of many which
might be of use. It does not appreciably affect the outcome of our deliberation for
protons (which scatter predominantly incoherently), but would confine the reduction
factor for the deuterons between the two extreme limits 0.07, found with (4.18), and
0.67, found with (5.7).

6. Concluding Remarks

We have discussed the role of quantum entanglement in scattering, and reviewed
the likelihood of it being the cause of the shortfall in intensity observed in neutron
Compton scattering experiments performed on samples containing protons or deuterons.
The key feature of the neutron Compton scattering experiments is the extremely short

duration of the scattering event, which is typically less than a femtosecond in the
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experiments under discussion. In this time domain, solid-state relaxation processes are
essentially inoperative and quantum exchange correlations are the dominant force. This
picture of physical processes is consistent with next to no dependence of the shortfall on
the temperature of the sample, and restoration of the intensity to its expected value
when the duration of the scattering event is increased and approaches solid-state

relaxation times.
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Figure caption

The ratio of the proton and niobium intensities in the Compton profile of the
metallic hydride NbHj g5 is displayed, for two temperatures of the sample, as a function
of the duration of the scattering event ;. The full line is the expected value of the ratio,

namely, oy/on, = 13.1, which the data approaches for the largest values of 75 [1].

22



Appendix

We give here cross-sections for scattering neutrons of moderate energy by two
identical particles. The essential feature of the present cross-sections, compared to
cross-sections discussed in the main text, is that spatial components of the total initial
and final wavefunctions are similar and look like (4.3). (In the extreme limit of
Compton scattering the final spatial wavefunction must approach the result (4.4) and
intensity accumulates at the recoil energy of one of the two particles.)) We find it

convenient to denote the spatial wavefunctions by ¥ and ¥’; the total wavefunctions are

Wy and Wy, and ¥ (¥') depends on J (J).

Let R, = R + r and Ry = R — r. Cross-sections are different for J' = J and
J =|J-1]orJ+ 1. ForJ =J, the cross-section per particle is,

2

. (A

22 w(J){A2 +%B2J(J+l)}8 (Energy)‘<LP’ exp(ik - R) cos(k -r)\ql>

The argument of the delta function expresses conservation of energy in the scattering
event and, in general, it depends on J. With J' = |/ — 1| or J + 1 the conservation of

energy can depend on J” and J. The cross-section for these cases is,

2

JU+D (A2)

4I(I+1)

exp(ik - R)sin(k - r)\‘P>

2B I(I + I)Z W(J){l - }S(Energy)K‘P,

Matrix elements in (Al) and (A2) depend on the particular model used for the two
particles, and little can be said apart from what is obvious in the way of general

properties. Results (Al) and (A2) are similar to cross-sections for scattering by a

homonuclear diatomic molecule [13].
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