Copn2

CCLRC Library & Info Services .
2 Lﬂﬂ[ﬂ[ﬁmlﬂﬂ“ﬂ“ﬂ||H|||“|||“||||||||| vttty
= CCLRC

Use of Performance Toolkits to analyse a
real performance problem

J.V. Ashby

09 December 2004

© Council for the Central Laboratory of the Research Councils

Enquiries about copyright, reproduction and requests for additional copies of this report should
be addressed to:

Library and Information Services

CCLRC Rutherford Appleton Laboratory
Chilton Didcot

Oxfordshire OX11 0QX

UK

Tel: +44 (0)1235 445384

Fax: +44 (0)1235 446403

Email: library@rl.ac.uk

CCLRC reports are available online at:
http://www.clrc.ac.uk/Activity/ACTIVITY=Publications;SECTION=225;

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their
reports or in any communication about their tests or investigations.

Use of Performance Analysis Toolkits to analyse a real
performance problem

John Ashby

Computational Science and Engineering Department
Rutherford Appleton Laboratory
Chilton, Didcot, Oxon OX11 00X
J.V.Ashby@rl.ac.uk

Abstract

We consider the use of two Hardware Performance Monitoring tools in understanding a
performance problem with a computational science code. The tools are assessed for the quality and
usability of the information they present. While the underlying problem is not fully explained,
sufficient understanding is attained to achieve a partial remedy.

1. INTRODUCTION

Modern high performance computers have complex architectures, with multiple registers, Floating
Point Units, cache levels, etc. They frequently employ techniques such as speculative execution and
pre-fetching to keep processor pipelines busy. Often they will provide a toolkit which is capable of
monitoring the performance of a program at a detailed level. Such a toolkit, often initially
developed as a debugging aid at the hardware design stage, enables a programmer to determine
such measures as the number of instructions processed, memory accesses from the various levels of
cache, activity of the Floating Point Units, etc.

The aim of this report is to investigate the use of performance analysis toolkits in analysing a
specific performance problem, namely the discrepancy between the runtimes for a code which uses
statically declared arrays and the same code using dynamically allocated arrays. The objectives of
this are first to understand where this discrepancy comes from, but equally to evaluate how useful
the toolkits are in providing the information that will feed this understanding. This latter part, of
course, has two aspects: is the information available and how easy is it to obtain?

Two such toolkits are HPMToolKit on the IBM Regatta machine, HPCx, and SpeedShop for the
SGI Origin3000. Each allows in varying degree investigation of the very low-level activity of a
program. Since the code exhibits the same problem on both HPCx and Green, the Origin3000 at
Manchester, we shall use both and attempt to compare the tools.

2. THE PCHAN BENCHMARK CODE

PCHAN is a CFD program which solves the Navier-Stokes' equations on a topologically regular
grid in three dimensions. It employs several large arrays which hold solution variables and their
derivatives, as well as various physical quantities related to the domain. As the code is written in
Fortran90 it would be desirable to make use of the language feature that allows the dynamic
allocation of memory to create these arrays, thus allowing them to be created to just the size
required for a particular run, rather than the old Fortran77 way of declaring arrays statically at the
largest imaginable size. In Pchan a third course is taken, the code is re-compiled to the appropriate
size for each different problem. However, it has been noticed that using dynamic allocation slows
down the program considerably, sometimes by a factor a great as 11. Why this should be is difficult
to understand from a naive point of view; memory is memory, whether it is allocated statically or
dynamically, and the code should do exactly the same computations on the data.

3. HPMTOOLKIT

IBM's HPMToolKit can be used in two basic modes. In the first an existing, unmodified code is
monitored by running it using hpmcount. The -g argument to hpmcount determines which statistics
are collected, there is a choice of 61 sets of 8 primary statistics with various derived measures, but
duplication means that there are 234 rather than 488 primary statistics (for example the processor
cycle count turns up in many sets). The most commonly useful sets are 60, which concentrates on
the activity of the Floating Point Units, 5 which gives statistics on memory loads from the outer
levels of cache and 56 which deals with.level 1 cache access.

In the second mode, HPMToolKit provides a set of user-callable routines which can be inserted into
a program to instrument it at a level of granularity chosen by the user.

4. SPEEDSHOP

SpeedShop from SGI similarly provides a coarse level set of tools to be run from a shell and applied
to a whole program, and a library of user-callable routines which can be embedded in a code. The
data that can be gathered by either of these two modes is more restricted than with HPMToolKit,
but this has the advantage that it is more accessible and packaged in a form more digestible to the
application programmer. In SpeedShop rather than specifying a set of data (from a choice of 61
such sets) to collect, there are 29 experiments, some of which can be run using more or less
frequent sampling or with larger counters. Typical experiments are: usertime which measures cpu
time, fpe which collects data on floating point exceptions and a variety of hwc (hardware counter)
experiments which sample where in the code the Program Counter is when a particular counter
pverflows. For example the dc_hwctime experiment works by incrementing a counter whenever a
primary data cache miss occurs. Then every 8009 misses SpeedShop looks-to see which part of the
program is executing and increments a counter for that block of code. At the end of the run a report
can be generated which gives how frequently the Program Counter was found in a partucular
routine.

More details of how to use both HPMToolKit and SpeedShop are given in subsequent sections and
in references 1-3.

5. HPMTOOLKIT EXPERIMENTS

Initial thoughts on the possible causes of the different speeds centred around compiler
optimisations, on the grounds that some automatic optimisation might not be possible in the
dynamic case (c.f. the argument that C programs are inherently less optimisable than Fortran(77)
ones as the compiler is unable to make assumptions that two pointers in C refer to different
locations in memory that can be made about two Fortran variables). However it was found that the
difference occurred at all levels of optimisation, even with no optimisation, which effectively ruled
out this hypothesis.

To investigate the possible causes further the program was instrumented by inserting calls to a
routine which timed blocks of code. This was a relatively crude timer developed for Fortran77
programs many years ago, but for the purposes of this experiment it was adequate. The results show
that the bulk of the time used by the program is spent in a routine called rhs, and that within that
routine the loops which access and update sections of the large rank 4 arrays are the most
discrepant, the statically allocated version of the code spending much more time in those loops than
the dynamically allocated version. However, this still does not explain why there was such a
difference between the static and dynamic versions of these arrays.

The routine in question is at the heart of the PCHAN code. PCHAN is solving the 3d compressible
Navier Stokes equations on a logically regular (though spatially irregular) grid using a finite
difference scheme with explicit multistep Runge-Kutta time stepping. The grid is distributed
between multiple processors. The rhs routine calculates the contributions to the right-hand side for
the time stepping process and updates at grid points within a processor. Data is shared between
processors by calls from the main program to which rhs retums.

To look more closely at what differences in execution there might be that would lead to different
run-times a non-optimised serial version for a small test problem was built on HPCx. Although
PCHAN is a parallel code, the behaviour under investigation is not thought to arise from any
parallel interactions such as communications bottlenecks. Thus a small serial case that could be run
rapidly and repeatedly was sufficient. This proved to be the case; for one pair of runs the statically
allocated executable took 1.490s of cpu time, the dynamic 2.040s. This meant that even running
these jobs using the batch queues gave turn-around of only a minute or so.

The first investigation undertaken was to use hpmcount to look at various performance measures
for both static and dynamic codes. Hpmcount is a tool which produces statistics for the overall
execution of an uninstrumented program. It supports 61 sets of data, of which three, sets 60, 5 and
56, are thought to be most useful. The first set chosen was set 60, which is the default. This looks at
the activity of the Floating Point Units.

Statistic (set 60) Static program Dynamic Program
FPU Divides 3155121 3154826
FPU Fused Multiply Add | 81842835 81840228
FPUO Result 136448327 129283390
FPU1 Result 146338504 152964074
Processor Cycles 1962129510 2679838713
FPU Store Instruction 62971390 62912862
Instructions completed | 2204912990 3028609316
LSU Floating Point Load 301954800 302070469

As can be seen, most of these statistics are very similar (again, naively one would expect many of
them to be identical; the same program acting on the same data should produce exactly the same
number of divides and multiply-adds, for example. That it doesn't suggests that there is a degree of
speculative execution which differs slightly between the two versions). For the most part the
differences are insignificant. The different apportioning of operations between the two Floating
Point Units is probably because the units are having to idle while waiting for data. Clearly the
number of processor cycles is different since this is precisely the cpu-time discrepancy under
investigation. The different (by about 40%) number of instructions completed is interesting, and
again is probably due to speculative execution. It is interesting that this is not reflected in the FPU
statistics, so may warrant further investigation.

Turning to set 5 which deals with data loads from level 2 and level three caches we find the
following:

Statistic (set 5) Static program Dynamic Program
Data load from L3 1754460 1917725
Data load from memory 66080 48016
Data load from L3.5 0 0
Data load from L2 9977907 12067761
Data load from L.2.5 shared 18 46
Data load from 1.2.75 shared 0 0
Data load from L2.75 modified 0 0
Data load from L.2.5 modified 29 28

To understand the levels of cache referred to here requires a knowledge of the machine architecture.
Each processor (CPU) has 64kb of level one cache. There are two processors on a chip and these
share 1440kb of level 2 cache. Four chips (thus eight processors) are packaged together in a multi-
Chip module (MCM) and they share 128Mb of level 3 cache. It is possible (in a multi processor
program) for a process to access level 3 cache on a different MCM from its own. This is referred to
as level 3.5 cache. Since we have a serial program here it is a relief that no L3.5 references are
made. Similarly a process can load from L2 on a different MCM (L2.75) or on a different chip on
the same MCM (L.2.5). We see a few L2.5 loads here which is odd, given the serial program, but
these probably represent system activities, perhaps as the program is migrated around the CPUs
available to the serial batch queue. Otherwise there are more L3 and L2 loads for the dynamic code
that for the static, but fewer from memory, and so the overall effect is probably neutral in terms of
time. These discrepancies may be worth pursuing.

The final set of those recommended by the HPCx team is set 56 which covers level 1 cache and
Translation lookaside buffer (TLB, a table which maps effective to real memory addresses) misses:

Statistic (set 56) Static program Dynamic Program
Data TLB misses 62712 94979
Instruction TLB misses 1113 1353
L1 D cache load misses 7880247 10566145
L1 D cache store misses | 24172886 23600076
Processor cycles 1964229969 2668406206
Instructions completed 2204912080 3028609423
L1 D cache store references 156168768 150600749
L1 D cache load references 648202041 1208903357

Three discrepant measures immediately spring out of this experiment: Data TLB misses, L1 cache
load misses and references. (The processor cycles and instructions completed are increased, but as
before this is an artefact of the longer processing time. Many of the completed instructions may be
no-operation instructions while the processor waits for the data identified by a TLB miss to be
fetched.) These clearly warrant further investigation.

6. SPEEDSHOP EXPERIMENTS

Similar measures are available from SpeedShop on the SGI Origin. However, only one counter can
be examined at a time, for example the floating point instruction counter is checked using the
gfp_hwc (graduated floating point hardware counter) experiment. Data is accumulated each time a
counter overflows a value, by default 32771, and a note is made of where in the program the
overflow occurs. In this way it is possible to build up a picture routine by routine.

The results of a gfp_hwc experiment are shown below:

Counts(static) Yo(static) Yo(static) Counts(dynamic) |Y%(dynamic)

rhs 62035503 29.8 69441749 31.6
ent_euler 35917016 17.2 40013391 18.2
dleta 23070784 11.1 23267410 10.6
dixi 17204775 8.3 17172004 7.8
dlz 16385500 7.9 16451042 7.5
d2eta 5767696 2.8 5636612 2.6
pdns3d 4751795 2.3 6980223 3.2
d2z 4686253 2.3 4620711 2.1
d2xi 4686253 2.3 4784566 2.2
init_tch 393252 0.2 426023 0.2
calcdt 327710 0.2 360481 0.2
deta 262168 0.1 229397 0.1
dxi 163855 0.1 163855 0.1
statacc 98313 0 98313 0

As with the IBM, the floating point counts are very similar for the two programs, and any
discrepancies are most likely to be the result of speculative execution.

The SGI architecture has only two levels of cache rather than the three of the IBM. The data cache
miss counter is examined using the dc_hwc experiment.

Counts(static) %(static) %(static) Counts(dynamic) |%(dynamic)

rhs 21429214 43.8 29975853 50.3
ent_euler 6951458 14.2 8207894 13.8
dlxi 6091251 12.5 6479268 10.9
dleta 4799914 9.8 5216673 8.8
dlz 3812421 7.8 3611227 6.1
d2xi 1689619 3.5 1714255 2.9
d2eta 1451471 3 1609552 2.7
d2z 1135309 23 1315973 2.2
pdns3d 1030606 2.1 808882 14
period_x 186823 04 188876 0.3

Counts(static) %(static) %(static) Counts(dynamic) |%(dynamic)
period_z 141657 0.3 133445 0.2
bc_ch 45166 0.1 41060 0.1
init_tch 28742 0.1 39007 0.1
calcdt 20530 0 18477 0
pad_comp_bum

P 16424 0 22583 0

For the most part these results are consistent between the two programs with the exception of the
greatly increased (30%) number of primary data cache misses in rhs when dynamic memory is
used. Again this is consistent with the results on the IBM, suggesting a similar mechanism is
slowing down the dynamic memory version on both machines.

As a check, on the IBM the secondary data cache statistics were similar for the two versions. On the
SGI secondary data cache misses can be counted using the dsc_hwc experiment.

Counts(static) %(static) %(static) Counts(dynamic) |Y%(dynamic)

rhs 2395466 61 2736197 63.6
ent_euler 1110356 28.3 1073807 25
pdns3d 153532 39 149602 3.5
dlxi 80565 2.1 92879 22
dleta 38383 1 58819 14
d2z 26331 0.7 47553 1.1
dleta 25807 0.7 52007 1.2
d2z 5502 0.1 6026 0.1
d2eta 5240 0.1 2751 0.1
calcdt 2096 0.1 2227 0.1

The results are broadly similar, certainly as similar as those for the IBM...

Finally the IBM experiments pointed strongly at the translation lookaside buffer misses as a large
factor on slowing down the dynamically allocated code. This has a SpeedShop experiment also,

tlb_hwe.

Counts(static) %(static) %(static) Counts(dynamic) |%(dynamic)
ent_euler 40606 50.5 38293 7
rhs 30840 38.3 499608 91.8
pdns3d 2056 2.6 1028 0.2
d2xi 1285 1.6 514 0.1
dixi 1285 1.6 1028 0.2
dleta 1285 1.6 514 0.1

Here the difference between the two codes is strong, much stronger than on the IBM and clearly
localised to the rhs routine, the same routine where much of the extra time was being spent during

the early timing experiments.

To probe further we need to instrument the code at a lower level to see if we can identify lines of
source which might be giving rise to the differences.

With SpeedShop this involves placing calls to a routine ssrt_caliper_point through the
code. This routine takes two arguments, 1 (or . TRUE.) and an identifying string. The compiled code
must be linked against 1ibss. Then the experiment is run using ssrun as before. Results are
viewed using prof -caliper [nl,Jn2 which analyses the segment of program execution
between the nl-th and the n2-th caliper point. In addition -lines will expand the analysis on a line-
by-line basis. For our experiment we chose to put a caliper point at the start of the rhs routine. This
routine is called 15 times during the execution phase and so the caliper point appears as points 1 to
15. The salient output (keeping only those lines contributing more than 2% of the total number of
TLB misses) from prof -caliper 1,15 -lines is, for the static case:

Line list, in descending order by function-time and then line number

counts % cum.% samples function (dso: file, line)

6413 8.2 104 121 ent_euler (TEST-STATIC.x: ent_euler.f, 128)
2597 33 137 49 ent_euler (TEST-STATIC.x: ent_euler.f, 131)
8692 11.1 31.1 164 ent_euler (TEST-STATIC.x: ent_euler.f, 156)
11448 14.6 48.8 216 ent_euler (TEST-STATIC.x: ent_euler.f, 333)

The last two of these (which account for the major part of the TLB misses in this version) are both
references to Q (i, j, k, 1), the large array which came under suspicion from the simple timing

experiments.

For the dynamic case:

Line list, in descending order by function-time and then line number

counts % cum.% samples function (dso: file, line)

24592 44 11.6 464 rhs (TEST-DYNAMIC.x: ths_3d.f, 955)

18020 3.2 149 340 rhs (TEST-DYNAMIC.x: rths_3d.f, 976)

17225 3.1 22.0 325 rths (TEST-DYNAMIC.x: rhs_3d.f, 1088)
40121 7.2 339 757 rhs (TEST-DYNAMIC x: rhs_3d.f, 1343)
18815 3.4 384 355 rhs (TEST-DYNAMIC x: ths_3d.f, 1387)
37842 6.8 45.1 714 rhs (TEST-DYNAMIC x: ths_3d.f, 1404)
20405 3.7 50.8 385 rhs (TEST-DYNAMIC.x: rths_3d.f, 1448)
39379 7.0 57.8 743 rhs (TEST-DYNAMIC.x: ths_3d.f, 1467)
20617 3.7 624 389 rhs (TEST-DYNAMIC x: ths_3d.f, 1511)
35245 6.3 68.7 665 rhs (TEST-DYNAMIC.x: ths_3d.f, 1528)
20988 3.8 744 396 rhs (TEST-DYNAMIC.x: rhs_3d.f, 1572)
13621 2.4 76.8 257 rhs (TEST-DYNAMIC.x: rhs_3d.f, 1603)
34132 6.1 86.6 644 rhs (TEST-DYNAMIC.x: ths_3d.f, 1617)
30369 54 920 573 rhs (TEST-DYNAMIC x: rhs_3d.f, 1636)

Here we see that Q (i, j, k, 1) is involved in almost all these lines of code. The odd one out,
though, is line 1603 which involves another rank 4 array, WX. This may be a clue. Consider line
955:

q(lljlk12)=q(lrjlk12)
+dx_dxi(i,) *(wx(i,3,k,19)* ((wx(i, j,k,11)*y_etaodet (i, J)
-wx(i,J,k,12)*y_xiodet (i, j))
+(-wx (i, 3,k,8)*x_etaodet (i,)
+wx (i, J,k,9)*x_xiodet (i,]J)))
+wx (i, j,k,17)*((wx(i,j,k,30)*y_etaodet (i, J)
+wx (i, j,k,11) *res2 (i, J)
-wx (i, J,k,28)*y_xiodet (i, j)
+wx (i, j,k,12) *res6 (i, J))
+(—wx (i, j, k,24)*x_etaodet (i, J)
+wx (i, j,k,8)*resd (i, J)
+wx (i, j,k,22) *x_xiodet (i, J)
+wx (i, j,k,9)*res8(i,Jj))))

R R R R R R R R R R R

and line 1303:

dwl (i, 3,k)=wx (i, j,k,20) *wx (i, j, k,2)
& +wx (i, 3,k,17) *wx (i, 3, k,10)

The similarity between the two lines is the large strides around the WX array, particularly in
multiplying together two elements of the array, which means that the calculation cannot be
reordered by the compiler to maximise data locality. Once again, though, the fundamental question
is why is the computation less efficient when dynamic storage is used?

7. FURTHER HPMTOOLKIT EXPERIMENTS

Before investigating that further, though, we shall try to gain similar information from HpmToolkit.
As with SpeedShop, this involves placing subroutine calls in the code and linking against two
libraries. It is also necessary to include a header file in any file that contains calls to the library and
pass the file through a preprocessor such as cpp. The four routines used in Fortran are:
f_hpminit to initialise the library, £ _hpmterminate to finish profiling, f_hpmstart which
starts profiling on a block of code and f_hpmstop which ends a block of profiling. (The
equivalent C routines are: hpmInit, hpmTerminate, hpmStart and hpmStop.) The
process of instrumenting the rhs code is tedious as the routine consists of nearly 100 basic blocks
(loops, etc.), each of which must be individually tagged.

Running the instrumented code produces a * .viz file and a file prefixed perfhpm. The latter is
an ascii file which can be viewed in the usual ways and which contains similar information to that
given by hpmcount for the whole program, but for each individual block of code. The .viz file is
a binary file that can be read by a graphical visualisation tool, hpmviz. In a multi-process program,
each process would produce its own .viz file and all of these could be visualised at once. This
means that the performance measurements and metrics for a given code block can be displayed for
all processes. However, is is not possible to display the measurements for all code blocks, which
restricts the usefulness of the tool in this study. It is possible to run both the static and dynamic
memory versions and to display the measurements for a particular block in each version. Given that
we have established that the important measures to consider are TLB misses, L1 cache misses and
references, we can restrict the visualisation tool to show these measures.

Rather than plough through all 98 code sections looking for discrepancies, we can concentrate on
the sections identified by SpeedShop as of particular interest. Here the ability to compare static and
dynamic code section is very useful. In the table below the code line number refers to the line
identified by SpeedShop, the actual line number in the instrumented code is different.

Code line Dynamic Static
TLB misses | LI cache L1 cache | TLB misses | LI cache L1 cache
misses store misses store

955 65 284588 363596 191 189105 348910

976 649 66311 372252 637 61081 370198
1088 233 63938 348347 318 61002 369845
1343 1256 276132 364454 1000 243318 367697
1387 1261 159226 363291 722 100991 367388
1404 153 232101 373558 267 195084 347308
1448 953 181083 348987 713 107205 349663
1467 914 347169 365134 1050 221982 372192
1511 758 258745 364033 467 222363 349893
1528 455 316624 373603 571 201802 350062
1572 905 256629 348703 985 226566 347621
1603 395 12656 570341 700 10131 580341
1617 782 270266 352375 695 186638 348694
1636 604 224108 363800 674 214766 347822

From this table it appears that the story is not as straightforward on the IBM as it appeared to be on
the Origin. The L1 cache stores are comparable (to about 5%) according to these results and can be
ignored. What emerges from a study of the TLB and cache misses is that for some sections of code
the “static code has fewer TLB misses than the dynamic code, while for other sections the opposite
applies. Where the former is the case, the dynamic code has more L1 cache misses, and vice versa.
There seems to be a trade-off between TLB and cache misses. There are typically 100 times fewer
TLB misses than cache misses, but TLB misses are very expensive.

8. A SMALL TEST PROGRAM.

We have now gone about as far with the performance monitoring tools as possible. To examine
further the problem we can use the information gathered so far to produce a small test program
which will encapsulate the behaviour and, it is to be hoped, allow deeper exploration to be made.
Our test program consists of a loop over i, j and k as in the original pchan code, with accesses to
various elements of a rank 4 array, thus:

wx (i, 3,k,1) = 0.16667* (wx(i-1,7,k,2)

+ wx (i+1, 3,k,9)
wx (i, 3-1,k,17)
wx (i, 3+1,k,13)
wx(i,j,k-1,33)
wx (i, 3, k+1,28))

Y R 1 2
+ + + +

Unlike in pchan the test problem uses a six-point finite difference star. The fourth index on the
right-hand side is chosen to stride through the whole array as happens in pchan. The matrix is
initialised randomly through Fortran90's RANDOM__NUMBER routine. This should not affect the
reproducibility of results as the number of floating point operations is fixed. By using #DEFINES

and passing the program through cpp before compilation the WX array can be either statically or
dynamically allocated. For a WX array of dimension (61,201, 61, 42) a linux pentium pc with the
Lahey-Fujitsu compiler takes 8.32 cpu-seconds in static mode and 8.86 cpu-seconds with dynamic
allocation. This is not as great a discrepancy as observed before, but it may well be that
initialisation is a much larger relative component of this code than of pchan. The same code run on
the IBM Regatta can only accommodate an array of dimension (46,151,46,42), and the times are
5.86s (static) and 6.96s (dynamic). For the larger array on the SGI Origin 300 the times are 22.58s
(static) and 24.56s (dynamic).

If it is the case that the large strides through the array caused by the fourth index are responsible for
the discrepancy, then it would be instructive to see if reducing those strides has an impact. One way
would be to move the fourth index to the first position as in Fortran the first index is the most
rapidly varying when stepping sequentially through memory. A neater solution which means little
editing (and hence fewer possibilities of mistakes) is to declare a derived type for WX. For the
dynamic memory case we have:

TYPE SOLVEC
REAL*8, DIMENSION (42) :: SOLUTION
END TYPE SOLVEC
TYPE(SOLVEC), DIMENSION (.,:,:), ALLOCATABLE :: WX

wx (i, j,k)%solution(l) = 0.16667* (wx(i-1,j,k)%solution(2)
+ wx (i+1l, j,k)%solution(9)
wx (i, J-1,k)%solution(1l7)
wx (i, j+1,k)%solution(13)
wx (i, J,k-1)%solution (33)
wx(i,]3,k+1)%solution(28}))

Y 2y 2y Ry &2
+ + + +

In this case the timings on the linux pc drop dramatically to 2.24s (static) and 2.52s (dynamic). On
the IBM the reduction is less dramatic, but interestingly both static and dynamic take the same time,
5.12s. On the SGI the reduction is as good as on the pc, 6.28s (static) and 6.38s (dynamic). These
results are presented in tabular form below.

Machine Static Memory Dynamic Memory
Array Derived Type Array Derived Type
Linux PC 8.32 2.24 8.86 2.52
IBM Regatta 5.86 5.12 6.96 5.12
SGI Origin 300 22.58 6.28 24.56 6.38

Clearly, even if this is not the cause of the discrepancy between the speeds of dynamic and
statically allocated codes, this rearrangement may be of great benefit to the pchan code generally.

In order to see if it is solely the memory strides that influence the speed, the test code has also been
rewritten to use 42 individual rank 3 arrays. Declared (or allocated) sequentially, these should
occupy the same or similar memory locations as the original rank 4 array. The results are
instructive:

Machine | Rank 4 (42 last) Rank 3 Arrays Derived types Rank 4 (42 first)
Static | Dynamic | Static |Dynamic | Static |Dynamic | Static |Dynamic

Linux PC 8.32 8.86 38.28 59.75 224 2.52 221 2.66

IBM

Regatta 5.86 6.96 10.2 11.72 5.12 5.12 5.44 5.61

SGI

Origin

300 22.58 24.56 7152 145.08 6.28 6.38 7.32 8.63

The dynamic/static discrepancy is smaller than observed in the full code, but still present. The use
of separate rank three arrays slows the code significantly on both the PC and the Origin, and in the
latter case the static/dynamic discrepancy is greatly enhanced. The use of derived types (or of
changing the array ordering which in memory placement terms is equivalent) does appear to give a
large speed advantage on the PC and the Origin, and a slight advantage on the IBM. To investigate
this further a version of the full PCHAN code was built using derived types for the three rank-4
arrays.

9. A NEW VERSION OF PCHAN

In the light of the results given above a new version of PCHAN was produced in which the three
rank-4 arrays were replaced by rank 3 arrays of derived types, the members of which were rank 1
arrays of appropriate sizes. This approach was chosen in preference to changing the order of indices
in the arrays as it was possible to automate a large part of the editing process using emacs. Where
necessary the order of loops was also changed to ensure that memory accesses were as local as
possible.

In one area of the code special routines had been provided for the IBM machine which used the
rank 4 arrays in ways designed to make best use of cache. These routines were broken by the use of
derived types, but fortunately the simple equivalents were still present in the code and were used for
the experiments below.

Machine Original version Derived Types Version
Static Dynamic Static Dynamic
IBM Regatta
P690+
SGI Origin 3000 1995.84 12272.08 4548.14 4513.59

Curiously the statically allocated verision with derived types goes slower than the original version,
but the increased speed of the dynalmic version means that they are both running at equivalent
speeds.

10. CONCLUSIONS

In this report we have used two Performance Monitoring tools, HPMToolKit and SpeedShop, to
investigate the origin of the discrepancy between the speed achieved by a code using static memory
allocation (at compile time) and dynamic allocation (at run time). The combined use of the two
codes pointed to excessive Translation Lookaside Buffer misses in the dynamic case, centring
round accesses of large rank 4 arrays. Using this information we were able to rewrite the code to
achieve similar performance in both dynamic and static cases, though with a loss of speed in the
static case.

Our other objective was to review the usability of the tools. Neither has the full functionality that
would make their use particularly simple and effective: for example the ability to compare
performance metrics for code blocks/procedures in SpeedShop rather than for the same block on
different processes would be of much more value inlooking for hot spots in a code. Speedshop is
perhaps more intuitive and provides better information for the application programmer, though
HPMToolKit is more comprehensive and in skilled hands could be a powerful tool.

Neither tool is a magic bullet, and both require a relatively deep understanding of the underlying
architecture and the ability to design and execute additional experiments (including writing small
test programs) to fully understand and remedy performance problems.

11. REFERENCES

1. Using the Hardware Performance Monitor Toolkit on HPCx , Joachim Hein,
http://www.hpcx.ac.uk/research/hpc/technical reports/HPCxTR0307

2. Hardware Performance Monitor (HPM) Toolkit, Luiz DeRose,

http://www.hpcx.ac.uk/support/documentation/IBMdocuments. HPM.html
3. http://www.sgi.com/products/software/irix/tools/prodev.tml

