
Integrated Computer-Aided Engineering 11 (2004) 151–163 151
IOS Press

On combining organisational modelling and
graphical languages for the development of
multiagent systems

Álvaro E. Arenas, Juan C. Garcı́a-Ojeda and José de J. Ṕerez-Alćazar∗
Laboratorio de Ćomputo Especializado, Universidad Autónoma de Bucaramanga, Calle 48 No 39 – 234,
Santander, Colombia

Abstract. This article illustrates the application of the Gaia methodology to the development of a system for Selective Dis-
semination of Information on the Web, as well as the integration of Gaia with AUML. This allows a concrete design closer to
implementation and the developer offers a better insight into the multiagent system that is being built. Gaia is an agent-oriented
organisational methodology that generates an abstract model based on roles describing the system agents, their services and
interactions. AUML, as an agent-based extension of the graphical language UML, uses that model as input and breaks it down
into a series of diagrams that facilitates its implementation.

1. Introduction

The search and dissemination of relevant information
on the Web has become a great challenge,owing mainly
to the fact that the Internet can be considered the largest
man-made deposit of information in the world. Several
authors have proposed techniques and tools to tackle
the excess of information on the Web [15,37]. One
of these techniques is the Selective Dissemination of
Information (SDI), in which the desired information
arrives to a user in a selective manner, according to the
user’s profile (his/her information needs).

This article illustrates the construction of a system for
selective dissemination of information based on agent
technology. In a periodic form, the system informs
a group of users about the publication of new articles
from predetermineddigital libraries, according to a pre-
established profile of the user. The system includes a
module for information extraction based on data con-
tained in web pages of the selected digital libraries [12],
and combines techniques for content-based and collab-
orative filtering of information [4,37]. The combina-

∗Corresponding author. Tel.: +57 7 6436111, Ext. 222; E-mail:
jperez@unab.edu.co.

tion of these two techniques allows a greater flexibility
for scaling the system.

The integration of Gaia and AUML in the construc-
tion of SDI systems represents the main contribution of
this article. Gaia is a methodology based on the view
of a multi-agent system as a computational organisa-
tion consisting of various interacting roles [43]. The
Gaia output consists of a design still too abstract for
implementation. To turn this around, a more concrete
design is produced using AUML [9,31]. AUML takes
the Gaia design as input and breaks it down into a series
of diagrams that facilitates its implementation.

The following section describes some of the topics
related to the selective dissemination of information, in-
cluding aspects of information filtering and extracting.
Section 3 presents the application of Gaia in our study.
Section 4 illustrates the utilisation of AUML diagrams
to generate a detailed representation of the agents in
the system. Section 5 introduces the implementation of
our system. Finally, Section 6 gathers some concluding
remarks and discusses possible extensions to our work.

2. Selective dissemination of information

A system for Selective Dissemination of Information
(SDI) allows users to continuously receive new filtered

ISSN 1069-2509/04/$17.00 2004 – IOS Press and the author(s). All rights reserved

152 Á.E. Arenas et al. / On combining organisational modelling and graphical languages

documents based on the user profile. In many of these
systems, the responsibility of this process lays upon
people, who may be overwhelmed by the great amount
of information sources. In order to face the information
overload, a series of instruments have been developed
such as informationfiltering and informationextraction
systems. Following, we will describe these techniques.

2.1. Information filtering systems

Information filtering systems remove irrelevant
items from a constant stream of documents [1]. Gen-
erally, personalized information filtering systems in-
corporate the interests of the users in a user profile.
They use this profile to filter the data sent to the user.
The filtering systems are classified into two categories:
content-based systems [29], which choose documents
based on content characteristics; and social systems,
also known as collaborative [37], which select docu-
ments based on recommendations or annotations from
other users.

2.1.1. Content-based filtering systems
As mentioned before, these systems choose docu-

ments according to the characteristics of their contents.
The system looks for items similar to those preferred
by the user based on a comparison of contents. These
systems have certain disadvantages, primarily with re-
gard to the capture of different aspects of the content
(i.e., music, videos and images). Furthermore, in the
case of texts, most representations capture only certain
aspects of the content, which results in a poor perfor-
mance. Besides the problem of representation, these
systems try to operate in such a way that they rec-
ommend similar items to the items already displayed.
A few examples of content-based filtering systems are
CiteSeer [10], Letizia [25] and Lira [5].

2.1.2. Collaborative filtering systems
In contrast to content-based systems, which can be

successfully applied to a single user, the collaborative
systems assume that there is a team of users using the
system. With this technique, advice to the user is based
on the reactions of other users. The system looks for
users with similar interests and recommends the items
preferred by these users. Instead of calculating simi-
larities between items, the system calculates similari-
ties between users. In the collaborative approach there
is no analysis of the item’s content. Each item is as-
signed a unique indicator and a user derived rating.
This type of systems can be used for non-text data (i.e.,
video and sound). Some examples of collaborative
filtering systems are: Siteseer [36], Phoaks [41] and
GroupLens [36].

2.2. Information extraction system

The Web has become a platform for data intensive ap-
plications. The majority of the applications have been
converted or are in the process of becoming web-based.
For this reason, there is a greater demand for web
contents amenable to automatic processing. However,
there is the problem that most web data is unstructured
or semi-structured [2]. In other words, it is directed to-
ward human processing and not automated tools. The
recognition and extraction of the implicit information
on the web pages is a current problem, important for
web data processing by automated tools [28].

A traditional form of extracting data from web pages
is the creation of specialized programs called “wrap-
pers” that identify data of interest and converts them to
some suitable format. This method has disadvantages
mainly due to the difficulty in writing and maintain-
ing the wrappers. Recently, various tools have been
proposed to solve these problems, such as RoadRun-
ner [13], DEByE [23], NoDoSe [3] and Minerva [12].
A good review of these tools can be found in [24].

3. Using Gaia for designing SDI systems

In this section we present the design of a SDI system
using the Gaia methodology. A SDI system is a typical
example of a complex problem [27,39]. Researchers
in the area of the agent-oriented software engineer-
ing have described a number of mechanisms to handle
this complexity. Such mechanisms are [21]: organi-
zation, decomposition and abstraction. These mecha-
nisms will be described in the following sections.

Our SDI system automates the task of periodically
notifying the users of the updates from different digital-
library magazines such as ACM (www.acm.org) or
the IEEE (www.computer.org), according to a pre-
established profile.

The prototype uses an information extraction model
based on the Minerva formalism for developing wrap-
pers. It also combines content-based and collabora-
tive filtering, basing its predictions on a fusion of judg-
ments between these techniques. It is worth noting
that the use of these two techniques presents a series
of additional advantages. Firstly, the integration of
content-based and collaborative filtering resolves the
disadvantages mentioned previously. For example, the
use of collaborativefiltering remedies the failures of the
content-based filtering in treating non-text documents.
Secondly, the use of wrapper-generating tools such as

Á.E. Arenas et al. / On combining organisational modelling and graphical languages 153

Acquaintance
Model

Service
Model

Agent
Model

Requirements
Specification

Roles
Model

Interactions
Model

Analysis

Design

Fig. 1. The Gaia Models.

Minerva may allow a continuous addition of new dig-
ital libraries to our system in an automatic or semiau-
tomatic way, thus adding a scaling characteristic to our
system.

3.1. The Gaia methodology

We have selected Gaia as our agent-development
methodology due to its architectural independence and
simplicity [43]. Gaia takes the view that a system can
be seen as a society or organisation of agents. It mod-
els both the micro-level (agent structure) and macro-
level (agent society and organisation structure) of agent
development. Figure 1 shows the Gaia models.

In the analysis phase, the role model and the inter-
action model are constructed. Roles consists of four
attributes: responsibilities, permissions, activities and
protocols. Responsibilities are of two types: liveness
properties – the role has to add something good to the
system –, and safety properties – prevent and disallow
that something bad happens to the system –. Permis-
sions represent what the role is allowed to do. Activ-
ities are tasks that a role performs without interacting
with other roles. Protocols are the specific patterns of
interaction. These two models depict the system as
interacting abstract roles and are then used as input in
the design.

In the design phase, the agent model, the services
model and the acquaintance model are constructed. The
agent model maps roles into agent types, and then cre-
ates the right number of agent instances of each type.
The service model determines the services needed to
fulfil a role in one or several agents. Finally, the ac-
quaintance model represents the communication be-
tween agents. Gaia does not cover detailed design, and
relies on conventional methodologies for that purpose.

3.2. Analysis phase

As mentioned before, the objective of the Gaia anal-
ysis phase is to develop an understanding of the system

and its structure, without considering any implemen-
tation detail. The analysis consists of a roles model,
which identifies the key roles in the system, and of
an interaction model, which defines the interactions
among the roles.

3.2.1. Identifying the roles in the system
A role can be viewed as an abstract description of

an entity’s expected function. Typically, a role corre-
sponds to either an individual, a department within an
organisation or an organisation itself.

We use an organisational vision in our SDI system,
splitting it into the following departments:Informa-
tion Retrieval, Selective Dissemination of Information,
User Management, Mail Management, Digital Library
ManagementandCentral Coordination. Note that the
Mail ManagementandDigital Library Managementare
external departments of the organisation (system). We
identify the members of each department, each member
corresponding to a role, as illustrated in Fig. 2.

3.2.2. The interaction model
The second step in the analysis phase corresponds to

the identification and documentation of the protocols
associated to each role. The definition of a protocol
consists of the following attributes [43]:

– Purpose. Brief description of the nature of the
interaction.

– Initiator. Role(s) responsible for starting the inter-
action.

– Responder.Role(s) that interact(s) with the initia-
tor.

– Inputs. Information used by the initiator during
protocol execution.

– Outputs. Information provided to the responder
during the course of the interactions.

– Processing.Brief textual description of any pro-
cessing that the initiator performs during the inter-
action.

In order to facilitate the understanding of protocol
documentation, we focus our attention on all the inter-
actions of theCoordinatorrole, expressed as the five
protocols:Search, Extraction, Representation, Recom-
mendationandDissemination(Figs 3 and 4).

Figure 3a shows the protocolSearch, which de-
scribes the interactions among the rolesCoordinator,
SearcherandLibrarian in order to search and down-
load new web pages from the digital libraries. First,
theCoordinator(initiator) interacts with theSearcher
(receiver) in order to obtain new web pages. TheCo-

154 Á.E. Arenas et al. / On combining organisational modelling and graphical languages

Departments Informal Description

Searches for new information in
digital libraries and download this
information into the system

Extracts relevant information
from HTML documents such as:
author (s), title, abstract, year,
volume, number, etc.

Makes a representation of the
abstracts in order to generate an
inverted list.

Establishes optimum relationships
between recuperated and qualified
documents with user needs

Sends recommended documents by
e-mail.

 Receives the actions associated
with each user.

Person that requests the service

Person that creates the extraction
parameters

Stores the recommended documents

Stores information in their digital
library(ies).

In charge of presenting the first two
services in an automated manner.CoordinatorCentral

Coordinator

LibrarianDL
Management

Mail ManagerMail
Management

Searcher

Extractor

Representative

Recommender

Disseminator

User Assistant

User

User Manager

User
Management

Selective
Dissemination
of Information

Information
Retrieval

Roles

Fig. 2. Roles of the System.

ordinator initiates this interaction with a waiting time
as input, which represents the maximum time allowed
before beginning the next request to theSearcher, and
with the URLs (Uniform Resource Locator) of the latest
downloaded web pages as output. Then, theSearcher
requests a connection with theLibrarian, with the last
found URL as input, in order to connect this URL and
download newly referenced pages, which are sent by
the Librarian. Finally, theSearcherinforms theCo-
ordinator that the search process has finalized and up-
dates, if needed, the latest URL data as well as the
recuperated web pages.

ProtocolExtraction is shown in Fig. 3(b). It de-
scribes how the interaction between theCoordinator
and theExtractorenables the extraction of relevant in-
formation from the downloaded web pages. First, the
Coordinator makes the corresponding request to the
Extractor. TheExtractoruses the wrapper-generating
tool Minerva [12] to extract information from the web
pages of a digital library. To this effect, previously
generated production rules are used, which describe the

frontiers of the relevant information of the web pages.
Finally, theExtractorsends the extracted information
to theCoordinator.

Next, protocolRepresentationshows the interaction
between theCoordinator and theRepresentative, so
that theRepresentativemay represent the extracted in-
formation in a way that is useful for the application of
retrieval information techniques [4] (see Fig. 3c).

In theRecommendationprotocol (Fig. 4a), theCoor-
dinatorrequests to theRecommenderthe application of
content-based and collaborative filtering techniques to
the documents. On one hand, the content-based tech-
niques evaluates the similarities between the document
representation and the user profile [4]. On the other
hand, the collaborative technique evaluates the similar-
ities between the users’ preferences based on the votes
given by the users to the documents. These similarities
are calculated, for example, using the Pearson’s cor-
relation formula [36]. The combination of these two
techniques allows one to obtain more exact results [6,
14,22].

Á.E. Arenas et al. / On combining organisational modelling and graphical languages 155

SearchRequest

Provide the latest URL data
to begin the search

Coordinator Searcher

lastestURLData

ConnectionRequest

LibrarianSearcher

Ask for connection

waitTime

lastestURLData

lastestURLData

DownloadPages

SearcherLibrarian

Perform the process of
download web pages

lastestURLData

lastestURLData,webPages

SearchResponse

CoordinatorSearcher

Inform the results

lastestURLData,webPages

lastestURLData,webPages

ExtractionRequest

Provide web pages and the
parameter of extraction

Coordinator Extractor

extractionRequirement,
webPages

ExtractionResponse

CoordinatorExtractor

Perform the extraction and
return the extracted information

extractedInformation

extractionRequirement,
webPages

RepresentationRequest

Provide the extracted information

Coordinator Representative

extractedInformation

RepresentationResponse

CoordinatorRepresentative

Perform the representation
and return represented

information representedInformation

extractedInformation

a) b)

c)

Fig. 3. Definition of protocols associated with the Coordinator role: (a) Search, (b)Extraction, and (c) Representation.

RecommendationRequest

Provide the represented
information

Coordinator Recommender

representedInformation

RepresentationResponse

CoordinatorRecommender

Perform the recommendation
and return recommended

information recommendedInformation

representedInformation

DisseminationRequest

Provide the users·profiles
and the documents

Coordinator Disseminator
personalData,
recommendedDocuments

InformDisseminationResults
UserAssistant,
Mail Manager
Coordinator

Disseminator

Inform the results DisseminatedDocuments

a) b)

personalData,
recommendedDocuments

Fig. 4. Definition of protocols associated with the Coordinator role: (a) Recommendation, and (b) Dissemination.

Finally Fig. 4(b) shows protocolDissemination,
where theCoordinatorinteracts with theDisseminator
in order to send the recommended documents to the
users via e-mail.

3.2.3. The roles model
The purpose of this stage is to generate an elaborated

roles model, representing each role by a textual tem-
plate that documents its permissions (resources that can
be used), responsibilities (functions), protocols (inter-
action patterns), and activities (private actions in which
participate).

Figure 5 shows the textual template of theRecom-
menderrole. In our system we have identified three per-
missions associated to theRecommenderrole: reads,
generatesandupdates. The permissionreadsconcerns
with the information about the user’s profile to find the

documents according to his/her interests. The respon-
sibilities of a role can be divided into two categories,
liveness and safety properties, as we mentioned ear-
lier. In Gaia we specify the liveness properties with
regular expressions, which defines the life-cycle of the
role (e.g.,ROLENAME= expression). To distinguish
between activities and protocols in the expression, we
show an activity underlined. In the case of theRec-
ommenderrole, it participates in two protocols (Rec-
ommendationRequestandRecommendationResponse)
and carry out five activities. Safety requirements in
Gaia are specified by means of a list of predicates. The
safety expressions are listed as a bulleted list, in which
each item represents an individual safety responsibil-
ity (e.g., to accomplish the permissionreadsthe user’s
profile has to be valid – see expressionValidProfile=
True).

156 Á.E. Arenas et al. / On combining organisational modelling and graphical languages

Rol e Scheme: RECOMMENDER (REC)

Description:

 The function of this role is to establish optimum relationships between recuperated and
corrected documents with the users needs

Protocols and Activities:

RecommendationRequest, RecommendationResponse,
QualifiedDocumentsSearch,CalculatePearsonCorrelation,
Words-ProfileSearch, CalculateCorrelation, UpdateRecommendedDocuments

Permissions:

 reads profiles // users profiles data
 representedInformation // representation of the information
 qualifiesXdocument // qualifies from users to the documents

 generates recommendedDocuments // set of recommended documents

 updates recommendedDocuments

Responsabilities
 Liveness:

 RECOMMENDER = (REQUEST.COLLABORATIVE.CONTENT.UPDATE.RESPONSE)
 REQUEST = RecommendationRequest
 COLLABORATIVE = QualifiedDocumentsSearch.CalculatePearsonCorrelation
 CONTENT = Words-ProfileSearch.CalculateCorrelation
 UPDATE = UpdateRecommendedDocuments
 RESPONSE = RecommendationResponse

 Safety:

 Valid Profiles = True
 representedInformation = null
 0 = ratingXdocument = 5

w

Fig. 5. Schema for roleRecommender.

3.3. Design phase

The aim of the Gaia design phase is to transform
the analysis models into a sufficiently low level of ab-
straction that traditional design techniques may be ap-
plied in order to implement the agents [43]. The de-
sign process involves three models. Theagent model
identifies theagent typesthat will make up the system,
and theagent instancesthat will be instantiated from
these types. Theservice modelidentifies the principal
services that are required to accomplish the roles of the
agent. Finally, theacquaintance modeldocuments the
communication links between the different agents.

3.3.1. The agent model
Theagent modelaims to document the different types

of agents that will be used in the system, and the in-
stances that will realize these types of agents at run-
time. It is defined by using a simpleagent type tree,
where the root nodes are the agent types and the chil-
dren are the roles associated with this type of agent.

Figure 6 shows the agents’ types and instances that
comprise our prototype. The prototype consists of six
types of agents, where theLibrary Agentand theMail
Agent, which represents the digital libraries and a mail
server, are external to the prototype.

The agent instances that will appear in the system are
documented by annotating the agent types in theagent
model. An annotationn means there will ben instances
in the run-time system. An annotationm · · ·n indicates
there will be betweenm andn instances in the run-time
system (m < n). An annotation∗ means there will be
zero or more instances at run-time, and+ means there
will be one or more instances at run-time. For instance,
Fig. 6 shows that there will be one or more instances of
User Agent.

3.3.2. The services model
Theservice modelindicates the services associated

with each agent role, and specifies the main properties
of these services.

Figure 7 illustrates the services associated with the
Coordinator Agent. TheStart Searchservice, defined
from theSearchprotocol, is invoked when theWaitTime
has been completed, returning the latest URL associ-
ated to the new publications and the content of its re-
lated web pages. TheStart Extractionservice, defined
from the Extraction protocol, requests an extraction
service to theExtractor, obtaining the relevant infor-
mation from the new publications. ThePerform Repre-
sentationservice, defined from theRepresentationpro-
tocol, takes as input the extracted information and re-

Á.E. Arenas et al. / On combining organisational modelling and graphical languages 157

User
Agent

User User
Assistant

IR Agent

Searcher
Extractor

Representative

Coordinator
Agent

Coordinator

Librarian

Mail
Agent

Mail
Manager

SDI
Agent

Recommender Disseminator

User
Manager

Library
Agent

+ + +

1..2
1..2 1

1

1..2

**

*

Fig. 6. The Agent Model.

SERVICE INPUT OUTPUT PRE-CONDITION POST-
CONDITION

Start
Search

Start
Extraction

Perform
Representation

Find
Recommendation

Make
 Dissemination

latestURLData

webPages,
extraction

Requirements

extracted
Information

profiles,
representedInformation,

qualifyXDocument

profiles, recommended
Documents

e-mail,
disseminated
Documents

recommended
Information

represented
Information

LatestURLData,
webPages

extracted
Information

Mail Delivery
Receipt

(e-mail <> empty) and (Channel =
withConnection) and
(personalData= valid)

recommendedInformation
<>null

(validProfile=true) and
(representedInformation

<> null) and
(0<= ratingXdocument <= 5)

representedInformation
<>null

extractedInformation
<>incomplete

extractedInformation
<>incomplete

(webPages <> null)
and (extractionReqirements

<> null) and
(compatible(webPages,

extractionRequirements)=true)

(latestURLData<>null)
and

(webPages=updated)

(waitTime=30 days) and
(latestURLData <> null)

Fig. 7. The Services Model.

quest for representing the information. TheFind Rec-
ommendationservice, defined from theRecommenda-
tionprotocol, takes the user profiles, the represented in-
formation and the qualification matrix (a matrix where
each input represents the qualification given by useri
to documentj) as input; having as output a list with the
recommended documents. Finally, serviceMake Dis-
semination, defined from theDisseminationprotocol,
usesPersonalData(name, last name, user’s e-mail) and
the recommended documents as input, in order to send
e-mails containing the information of the new docu-
ments.

3.3.3. The acquaintance model
The final model of a Gaia design in theacquaintance

model. This model simply defines the communication

links that exist between the agent types. Figure 8 shows
the interactions between the different types of agents
that make up the Selective Dissemination Information
prototype.

4. Towards a more concrete model with AUML

As mentioned previously, the Gaia outcome is an ab-
stract design to be refined by traditional design tech-
niques. We have found useful to further refine Gaia
with AUML, since it enables one to apply the typical
object-orientedproperties of UML and new features for
specifying other aspects of the agent interaction that
are not covered by Gaia.

The Unified Modelling Language (UML) is gain-
ing wide acceptance for the representation of engi-

158 Á.E. Arenas et al. / On combining organisational modelling and graphical languages

User
Agent

Mail
Agent

SDI
Agent

Coordinator
Agent

IR
Agent

Library
Agent

Fig. 8. The Acquaintance Model.

neering artifacts in object-oriented software [38]. The
current UML is sometimes insufficient for modelling
agents and agent-based systems. However, no formal-
ism yet exist to sufficiently specify agent-system de-
velopment [31]. Our view of agents, as the next step
beyond objects, leads us to explore extensions to UML
and idioms within UML to accommodate the distinc-
tive of agents. The result is Agent UML (AUML) [9,
31].

Both FIPA and the OMG Agent Work Group are
exploring and recommending extensions to UML such
as: specification of Agent Interaction Protocols (AIP),
richer role specification, package extension, and de-
ployment diagram extension.

This section describe the first recommended exten-
sion called theAgent Interaction Protocol(AIP). The
AIP describes a communication pattern as an allowed
sequence of messages between agents and the con-
straints on the content of those messages [32].

The first level of the AIP defines communication pat-
terns by means of aggregation concepts such aspack-
ages. For instance, Fig. 9 describes two packages.

The first package isDisseminateInformation, which
expresses a simple protocol between theCoordinator
Agentand theSDI Agent. Here, theCoordinator Agent
sends aDisseminationRequest, that theSDI Agentre-
sponds with aDisseminationResponse. The second
package isSendInformation,which is carried out before
sending theDisseminationResponsein the first pack-
age. TheSDI Agentsends aConnectionRequestmes-
sage to theMail Agent, which decides whether to ac-
cept or reject the request. If theMail Agentaccepts
the request, it will receive an e-mail message fromSDI
Agent.

The second level of the AIP represents of interaction
among agents. It allows one to integrate information
from the Gaiainteraction and acquaintance models.
Figure 10 shows the complete interaction sequence of
theCoordinator Agent.

DisseminateInformation

SendInformation

Coordinator
Agent

SDI
Agent

Mail
Agent

User
Agent

X

Dissemination
Request ConnectionRequest

 [Disseminator]

Accept

Reject

SendMessage

InformDisseminationResults

Dissemination
Response
[Disseminator]

Fig. 9. Using packages to express theDisseminationProtocol.

Finally, the third level models the internal process of
an agent. We may useactivity diagramsor statecharts
to represent such internal process. For instance, Fig. 11
shows the process of information retrieval in theIR
Agent, carried out by theRepresentativerole.

5. Implementation

The implementation and test phases are not part of
the Gaia methodology, since they depend on the envi-
ronment in which the agents will be available and the
employed platform of agent development.

The first step in the implementation consisted in
defining the system architecture. Since our agent-based
system will be available on the web, the selected ar-
chitecture was the three-layer structure [35]. The three
layer architecture consists of a presentation layer, a pro-
cessing layer (application server) and a database layer.
Figure 12 shows the system architecture. The presen-
tation layer is responsible for the visual presentation
of the application, as well as the interaction between
the user and the system. The database layer contains
the data of the application (profiles and documents).
Finally, the processing layer describes the agent coop-
eration in order to achieve a common goal.

Á.E. Arenas et al. / On combining organisational modelling and graphical languages 159

CoordinatorAgent
/Coordinator

IRAgent
/Searcher

IRAgent
/Extractor

IRAgent
/Representative

LibraryAgent
/Librarian

SearchRequest ConnectionRequest

DownloadPages

SearchResponse role change

ExtractionRequest

ExtractionResponse role change
RepresentationRequest

RepresentationResponse

UpdateDB

UpdateDB

UpdateDB

Fig. 10. A sequence diagram depicting an interaction among agents of the System.

The second step in the implementation consisted in
the development of the user interface, based on the
web-flow diagram generated, as an abstraction, from
the acquaintance model, as illustrated in Fig. 14. Each
interface element activates a process developed by ei-
ther an agent, a specific class or procedure. The user
has access to the prototype through a series of screens,
where he/she may administer his/her personal data or
profile. The user is also able to see the documents rec-
ommended by the agents, as well as to evaluate those
documents. In the same way, if the user does not have
the possibility to access the system, he/she can easily
review the recommended documents through his/her
personal mail service (see Fig. 13).

In the third step, we define the parameters to extract
the information contained in the web pages from the
digital libraries. We use the Araneus Wrapper ToolKit
(AWTK version 1.0): Minerva+ Editor [12]. Minerva
is a formalism to define grammars, in the EBNF style,
enriched with an explicit exception-handling mecha-
nism.

The last step consisted in the programming of
agentsCoordinatorAgent, IRAgentsandSDIAgentsus-
ing Java. Each agent corresponds to a class, and the
Java message-passing facility is used for implementing
the agent communication.

The current version of the system is used by mem-
bers of the Information Technology Group at Univer-
sidad Aut́onoma de Bucaramanga. We are working on

a new version of the system, using the AgentBuilder
platform [40], which has been expanded to include
other wrapper-generating tools such as DEByE [23]
and we are studying new algorithms to collaborative
filtering [18] and new ways to integrate two techniques
of information filtering [7,11,33,34].

It is worth noting that having such as detailed design
(Gaia+ AUML) has been very helpful for the purpose
of software maintenance and expandability.

6. Conclusions

The agent-based approach to system development
offers a natural means of conceptualizing, designing
and building distributed systems. The successful prac-
tice of this approach requires robust methodologies for
agent-oriented software engineering. This article ap-
plies Gaia, a methodology for agent-based system de-
velopment founded on the view of a multi-agent system
as a computational organisation, and AUML, a UML
extension for agents, to the problem of Selective Dis-
semination of Information on the Web.

We have developed each of the models included in
Gaia, obtaining a design that identifies the agents of the
system and their instances (the agent model), the ser-
vices associated to each agent (the service model), and
the communication links between the agents (the ac-
quaintance model). Further, we have applied the Agent

160 Á.E. Arenas et al. / On combining organisational modelling and graphical languages

For doc(j) to j

For word(i) to i

Determinate:
Ni = number of documents that shared the term i
MaxFreq = the number of terms in the document j
N = total number of documents in the collection
Freq = the frequency of the term i in the document j

Tf = Freq/MaxFreq

O: Inverted File
Finished

Idf = log(N/Ni)

Wij = Tf * Idf

** Activities carried out by
the Representative role

**

Fig. 11. Internal processing forIR Agent.

Interaction Protocol (AIP) of AUML to the Gaia mod-
els. The acquaintance model is refined in the first two
layers of the AIP, in order to get a deeper view on the in-
teraction among agents as well as their communication
protocols. Finally, the service model is refined in the
last layer of the AIP, resulting in a detailed description
of the internal process of each agent.

Gaia has been successfully applied to diverse do-
mains such as e-commerce [20] and telecommunica-
tion [16]; in the same way, AUML has been also applied
to the same domains [32]. However, as far as we know,
no work has been done, neither on applying Gaia or
AUML to the Selective Dissemination of Information
problem, nor on integrating both techniques.

The Gaia methodology suggests the application of
object-oriented techniques to the generated design in
order to make it more concrete. However, we have
found that some agent-oriented properties of the inter-
action and the acquaintance models could be improved,
and that such improvements are not possible using tra-
ditional object-oriented techniques. This has motivated
the integration with AUML. Figure 15 shows the re-
lation between the Gaia models and the layers of the

SDI
Prototype
(Interface)

IRAgent

Data
Source

Search

Wrapper

ExtractorMinerva

 Web
Pages

Represented
Information

Coordinator
Agent

User
Agent

SDI
Agent Send E-Mail

Extracted
Information

Mail
Server

Fig. 12. System Architecture.

AUML’s AIP. As future work, we plan to include other
AUML extensions into our approach in order to repre-
sent internal and external behaviours of the multiagent
systems in more detail. These models will support the
developers in the implementation phase [8,42].

Another novelty of our system is the combination of
filtering techniques (content-based and collaborative)
with wrapper-generating tools. As a result, we obtain
flexibility and scalability in the SDI on the Web. By
contrast, systems like Amalthaea [30] combine filtering
techniques with hand-coded wrappers.

It is worth noting that systems such as the one de-
scribed here constitute a powerful tool for many organ-
isations. They allow the automated process of search
and dissemination of information, offering the user the
possibility of being notified automatically of new top-
ics of interest. Intended work includes studying the
design and implementation of more general tools for
dissemination of information.

The work presented here is part of an ongoingproject
aimed at comparing and extending different method-
ologies for multiagent systems development, such as
MAS-CommonKADS [19] and MASSIVE [26].

MAS-CommonKADs is an agent-based methodol-
ogy founded on the well-known standard of Com-
monKADS [17]. However, it has the drawback
that some properties feel unnatural for agent devel-
opment. For instance, the communication model in
CommonKADS specifies the communication between

Á.E. Arenas et al. / On combining organisational modelling and graphical languages 161

Fig. 13. Interface of the System.

Main Page

New User

Log-In

Update User
Data

Log-Out

User Account
Information

Recommendation
Page

Recommended
Information

Selecting
Documents to

Qualify

Recommmended
Documents

Fig. 14.Web-flow diagram of the system.

knowledge systems and human; however, the commu-
nication model in MAS-CommonKADS specifies the
interaction between human and agents. By contrast,
Gaia is not based on any existing methodology. The
developers of Gaia have to get the credit for developing
a complete new methodology, especially designed for
agent-based systems.

MASSIVE follows a view-oriented approach for
agent-based development by dealing with the system
as a whole and using different views on the system as
its main abstraction. Its author claims that it avoids the
integration process of model-oriented methodologies –
such as Gaia –, since the system is always consistent
from any view: changes in one view are always prop-

162 Á.E. Arenas et al. / On combining organisational modelling and graphical languages

Gaia�s Models

Roles

Interaction

Agents

Service

Acquaintance

Analysis

Design

AUML (AIP)

Layer 1

Layer 2

Layer 3

Representing the overall protocol

Representing interacctions among agents

Representing internal agent proccesing

Fig. 15. Relation between the Gaia models and the layers of AUML’s AIP.

agated to other views. This offers an interesting per-
spective for software development, but we have found
that its application is not very intuitive.

Acknowledgments

This work was partially supported by the Colombian
Research Council, Instituto Colombiano para el Desar-
rollo de la Ciencia y la Tecnología – Colciencias under
Grant 1241-14-11080.

References

[1] K. Aas,A survey on personalized information filtering systems
for the world wide web,Technical Report 922, Norwegian
Computing Center, 1997.

[2] S. Abiteboul, P. Buneman and D. Suciu,Data on the Web,
Morgan Kaufmann, 2000.

[3] B. Adelberg, NoDoSe: A tool for semi-automatically ex-
tracting estructured and semi-estructured data from text doc-
uments,SIGMOD Record27(2) (1998), 238–294.

[4] R. Baeza-Yates and B. Ribeiro-Neto,Modern Information Re-
trieval, Addison-Wesley, 1999.

[5] M. Balabanovic and Y. Shoham, Learning information re-
trieval agents: Experiments with automated web browsing,
in Proceedings of the AAAI’95 Spring Symposium on Infor-
mation Gathering from Heterogenous, Distributed Resources,
Stanford University, 1995, pp. 13–18.

[6] M. Balabanovic and Y. Shoham, Fab: Content-based, collab-
orative recommendation,Communications of the ACM40(3)
(1997), 66–70.

[7] P. Baudisch, Joining collaborative and content-based filtering,
in Interacting with Recommender Systems, CHI 99 Workshop,
Pittsburgh, PA, 1999.

[8] B. Bauer, Uml classes diagrams and agent-based systems,
in Proceedings of the fifth international conference on Au-
tonomous agents, ACM Press, 2001, pp. 104–105.

[9] B. Bauer, J. Muller and J. Odell, Agent uml: A formalism
for specifying multiagent interaction, in:Agent-Oriented Soft-
ware Enginnering, P. Ciancarinni and M. Wooldridge, eds,
Springer, 2001, pp. 91–103.

[10] K. Bollacker, S. Lawrence and C. L. Giles, CiteSeer: An au-
tonomous web agent for automatic retrieval and identification
of interesting publications, in:Proceedings of the Second In-
ternational Conference on Autonomous Agents, K.P. Sycara
and M. Wooldridge, eds, ACM Press, 1998, pp. 116–123.

[11] M. Claypool, A. Gokhale, T. Miranda, P. Murnikov, D. Netes
and M. Sartin, Combining content-based and collaborative
filters in an online newspaper, inProceedings of ACM SIGIR
Workshop on Recommender Systems, 1999.

[12] V. Crescenzi and G. Mecca, Grammars have exceptions,In-
formation Systems23(8) (1998), 539–565.

[13] V. Crescenzi, G. Mecca and P. Merialdo, Roadrunner: Towards
automatic data extraction from large web sites, inProceedings
of 27th International Conference on Very Large Data Bases,
Morgan Kaufmann, 2001, pp. 109–118.

[14] O. de Vel and S.A. Nesbitt, Collaborative filtering agent sys-
tem for dynamic virtual communities on the web, inWork-
ing Notes of Learning from Text and the Web, Conference on
Automated Learning and Discovery(CONALD-98), Carnegie
Mellon University, 1998.

[15] J. Delgado, N. Ishii and T. Ura, Intelligent collabora-
tive information retrieval, in: 6th Ibero-American Confer-
ence on Progress in Artificial Intelligence(IBERAMIA-98),
(Vol. 1484), H. Coelho, ed., Springer, 1998, pp. 170–182.

[16] N. dos Santos, F.M. Varej ao and O. Tavares, Multi-agent
systems and network management – A positive experience
on Unix environments, in:Advances in Artificial Intelligence
(IBERAMIA 2002), (Vol. 2527), F.J. Garijo, J.C. Riquelme and
M. Toro, eds, Springer, 2002, pp. 616–624.

[17] G. Schreiber et al.,Knowledge Engineering and Management:
The CommonKADS Methodology, MIT Press, 2000.

[18] C.N. Gonźales-Caro, M.L. Calderón-Benavides, J. de J. Párez-
Alcázar, J.C. García Díaz and J. Delgado, Towards a more
comprehensive comparison of collaborative filtering algo-
rithms, in Proceedings of the 9th International Symposium
on String Processing and Information Retrieval(SPIRE’02),
Lecture Notes in Computer Science, Springer, 2002, pp. 248–
253.

[19] C.A. Iglesias, M. Garijo, J.C. González and J.R. Ve-
lasco, Analysis and design of multiagent systems using
MAS-CommonKADS, in: 4th International Workshop on
Agent Theories, Architectures, and Languages(ATAL-97),
(Vol. 1365), M.P. Singh, A. Rao and M.J. Wooldridge, eds,
Springer, 1998, pp. 313–328.

[20] N.R. Jennings, P. Faratin, M.J. Johnson, T.J. Norman, P.
O’Brien and M.E. Wiegand, Agent-based bussines process
management,International Journal of Cooperative Informa-
tion Systems5(2–3) (1996), 105–130.

[21] N.R. Jennings and M. Wooldridge,Handbook of Agent
Technology, chapter Agent-oriented software engineering.
AAAI/MIT Press, 2000.

[22] B. Krulwich, Lifestyle finder,AI Magazine18(2) (1997), 37–
46.

[23] A.H.F. Laender, B. Ribeiro-Neto and A.S. Da Silva, Debye –
data extraction by example,Data and Knowledge Engineering
40(2) (2002), 121–154.

Á.E. Arenas et al. / On combining organisational modelling and graphical languages 163

[24] A.H.F. Laender, B. Ribeiro-Neto, A.S. Da Silva and J.S. Teix-
eira, A brief survey of web data extraction tools,SIGMOD
Record2(31) (2002), 84–93.

[25] H. Lieberman, Letizia: An agent that assists web browsing,
in: Proceedings of the Fourteenth International Joint Con-
ference on Artificial Intelligence, C.S. Mellish, ed., Morgan
Kaufmann, 1995, pp. 924–929.

[26] J. Lind,Iterative software engineering for multiagent systems:
The MASSIVE method, Lecture Notes in Computer Science,
Springer, 1994.

[27] P. Maes, Agents that reduce work and information overload,
Communications of the ACM37(7) (1994), 31–40.

[28] G. Mecca, P. Atzeni, A. Masci, P. Merialdo and G. Sindoni,
The araneus web-based management system, inSIGMOD
1998, Proceedings ACM SIGMOD International Conference
on Management of Data, ACM Press, 1998, pp. 544–546.

[29] D. Mladenic, Text-learning and related intelligent agents: A
survey,IEEE Intelligent Systems14(4) (1999), 44–54.

[30] A. Moukas and P. Maes, Amalthea: An envolving multia-
gent information filtering and discovery for the WWW, inAu-
tonomous Agents and Multiagent Systems, Kluwer Academics,
1998, pp. 59–88.

[31] J. Odell, V.D. Parunak and B. Bauer, Extending uml for agents,
in: Proceedings of the Agent-Oriented Information Systems
Workshop at the 17th National conference on Artificial In-
telligence, G. Wagner, Y. Lesperance and E. Yu, eds, 2000,
pp. 3–17.

[32] J. Odell, V.D. Parunak and B. Bauer, Representing agent in-
teractions protocols in uml, in:Agent-Oriented Software En-
gineering, P. Ciancarini and M.J. Wooldridge, eds, Springer,
2001, pp. 121–140.

[33] P. Melville, R. Mooney and R. Nagarajan, Content-boosted

collaborative filtering, inThe Proceedings of the SIGIR-2001
Workshop on Recommender Systems, New Orleans, LA, 2001.

[34] G. Polcicova, R. Slovak and P. Navrat, Combining content-
based and collaborative filtering, inADBIS-DASFAA Sympo-
sium 2000, Prague, Czech Republic, 2000, pp. 118–127.

[35] R.S. Pressman,Software Engineering. A Practitioner’s Ap-
proach,(5th ed.), McGraw Hill, 2000.

[36] P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm and J. Riedl,
Grouplens: An open architecture for collaborative filtering of
netnews, inProceedings of ACM’94 Conference on Computer
Supported Cooperative Work, ACM Press, 1994, pp. 175–186.

[37] P. Resnick and H.R. Varian, Recommender systems,Commu-
nications of The ACM40(3) (1997), 56–58.

[38] J. Rumbaugh, I. Jacobson and G. Booch,Unified Modelling
Language Reference Manual, Addison-Wesley, 1998.

[39] I. Stadnyk and R. Kass, Modeling users’ interests in infor-
mation filters,Communications of the ACM35(12) (1992),
49–50.

[40] Reticular Systems, Agentbuilder: An integrated toolkit for
constructing intelligent software agents, available at http://
www.agentbulder.com/Documentation/whitepaperr1 3.pdf,
February 1999.

[41] L. Terveen, W. Hill, B. Amento, D. McDonald and J. Creter,
PHOAKS: A system for sharing recommendations,Commu-
nications of the ACM40(3) (1997), 59–62.

[42] G. Wagner, Towards agent-oriented information systems,
Technical report, Freie University of Berlin, Kaiserswerther
Str. 16-18, 14195 Berlin, January 2000.

[43] M. Wooldridge, N.R. Jennings and D. Kinny, The gaia method-
ology for agent-oriented analysis and design,Autonomous
Agents and Multi-Agent Systems3(3) (2000), 285–312.

