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On the complexity of finding first-order

critical points in constrained nonlinear

optimization

Coralia Cartis1,2, Nicholas I. M. Gould2,3,4 and Philippe L. Toint2,5

ABSTRACT

The complexity of finding ǫ-approximate first-order critical points for the general smooth

constrained optimization problem is shown to be no worse that O(ǫ−2) in terms of function

and constraints evaluations. This result is obtained by analyzing the worst-case behaviour

of a first-order shorts-step homotopy algorithm consisting of a feasibility phase followed

by an optimization phase, and requires minimal assumptions on the objective function.

Since a bound of the same order is known to be valid for the unconstrained case, this leads

to the conclusion that the presence of possibly nonlinear/nonconvex inequality/equality

constraints is irrelevant for this bound to apply.
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1 Introduction

Evaluation complexity analysis for nonconvex smooth optimization problems has recently

been a very active area of research and has covered both standard methods for the uncon-

strained case, such as steepest-descent (see Vavasis, 1993, Nesterov, 2004, Cartis, Gould

and Toint, 2010b), trust-region methods (see Gratton, Sartenaer and Toint, 2008), New-

ton’s algorithm (see Cartis et al., 2010b) or finite-difference and derivative-free approaches

(see Vicente, 2010, Cartis, Gould and Toint, 2010c), along with newer approaches involv-

ing regularization (see Nesterov and Polyak, 2006, Cartis, Gould and Toint, 2010a). The

issue considered in this paper is to bound the number of objective function (and gradi-

ent) evaluations that are necessary to find an approximate first-order critical point for the

problem

minimize f(x)

such that x ∈ IRn,

where f is a continuously differentiable possibly nonconvex function from IRn to IR with

Lipschitz continuous gradient. Such an approximate critical point is defined as a point x

such that

‖g(x)‖ ≤ ǫ, (1.1)

where ǫ ∈ (0, 1) is a user-specified accuracy, ‖·‖ is the Euclidean norm and g(x)
def
= ∇xf(x).

For first-order methods, i.e., for steepest-descent and trust-region algorithm with linear

models, it has been shown that this maximum number of objective function (and gradient)

evaluations is bounded above by
⌈ κ

ǫ2

⌉

(1.2)

for some constant κ > 0 independent of n and ǫ (Nesterov, 2004, Gratton et al., 2008).

Moreover, Cartis et al. (2010b) proved that this order in ǫ is sharp. A first extension of this

kind of results to constrained problems was provided by Cartis, Gould and Toint (2009),

where it is shown that (1.2) also holds for a first-order projection-based method for the

more general problem

minimize f(x)

such that x ∈ C,
(1.3)

where C is a convex set and where (1.1) is suitably adapted to define an ǫ-approximate

first-order critical point for constrained problem (1.3). Alternatively, Cartis, Gould and

Toint (2011b) considered a first-order exact penalty function algorithm for solving the

completely general nonlinearly constrained nonconvex optimization problem

minimize f(x)

such that cE(x) = 0,

and cI(x) ≥ 0,

(1.4)

where cE and cI are continuously differentiable functions from IRn to IRm and IRp, respec-

tively, having Lipschitz continuous Jacobians. They proved that the complexity of finding
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an ǫ-approximate first-order critical point for (2.1) is given by an appropriate variant of

(1.2) when the penalty parameters remain finite and is bounded above by O(ǫ−4) other-

wise. Unfortunately, this last result requires the undesirable assumption that the objective

function f is bounded below on the whole of IRn.

In this paper, we provide a theoretical approach to the same problem and improve the

results of Cartis et al. (2011b) by showing that the complexity of achieving ǫ-approximate

first-order criticality for (1.4) is bounded by (1.2) for a first-order algorithm. Morever, this

stronger result only require f to be bounded in an ǫ-neighbourhood of the feasible set,

which is considerably weaker than assuming this property on the whole space.

The paper is organized as follows. The SSSD Algorithm is introduced in Section 2

for approximately solving the equality constrained problem and its complexity is shown

in Section 3 to be bounded above by (1.2). Section 4 briefly covers the simple extension

of this result to the general problem (1.4). Some conclusions and perspectives are finally

proposed in Section 5.

2 The SSSD Algorithm for the equality constrained

problem

For the sake of simplicity, we start by considering the equality constrained problem

minimize f(x)

such that c(x) = 0,
(2.1)

where c is a continuously differentiable function from IRn to IRm with Lipschitz continuous

Jacobian. The algorithm we now describe consists of two phases. In the first, a first-

order algorithm is applied to minimize ‖c(x)‖ (independently of the objective function

f), resulting in a point which is either (approximately) feasible, or is an approximate

infeasible stationary point of ‖c(x)‖. This last outcome is not desirable if one wishes to

solve (2.1), but cannot be avoided by any algorithm not relying on global minimization. If

an (approximate) feasible point has been found, Phase 2 of the algorithm then performs

short steps along generalized steepest-descent directions so long as first-order criticality is

not satisfied. These steps are computed by attempting to preserve feasibility of the iterates

while producing values of the objective function that are close to a sequence of decreasing

“targets”.

Both phases rely on the first-order trust-region algorithm1 proposed in Cartis et al.

(2011b), which can be used to solve the problem

minimize θ
(

u(x)
)

such that x ∈ IRn,
(2.2)

1We make this choice for simplicity of exposition, but other methods can be considered with similar

results. In particular, the quadratic regularization technique of Cartis et al. (2011b) or the trust-region

technique proposed by Byrd, Gould, Nocedal and Waltz (2005) are also adequate.
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where θ is a (potentially nonsmooth) convex and globally Lipschitz function from IRp

into IR and u(x) is a continuously differentiable function from IRn into IRp with Lipschitz

continuous Jacobian A(x). In this algorithm, a “Cauchy step” sk is obtained from the

iterate xk by solving the linearized model problem

minimize θ
(

u(xk) + A(xk)s
)

such that ‖s‖ ≤ ∆k,
(2.3)

where ∆k is a trust-region radius. Because θ is convex and its argument in (2.3) linear,

this problem is computationally tractable. The rest of the algorithm specification follows

standard trust-region technology.

We now return to the solution of problem (2.1) proper, and define the merit function

φ(x, t)
def
= ‖c(x)‖+ |f(x)− t|, (2.4)

where t is meant as a “target” for f(x). We also define the local linearizations of ‖c(x)‖

and φ(x, t) given by

ℓc(x, s)
def
= ‖c(x) + J(x)s‖ and ℓφ(x, t, s)

def
= ℓc(x, s) + |f(x) + 〈g(x), s〉|,

(where 〈·, ·〉 is the Euclidean inner product). The value of the decrease of the linearized

model in a ball of unit radius may then be considered as a first-order criticality measure

for the problems of minimizing ‖c(x)‖ and φ(x, t), yielding the measures

ψ(x)
def
= ℓc(x, 0)− min

‖d‖≤1
ℓc(x, d) and χ(x, t)

def
= ℓφ(x, t, 0)− min

‖d‖≤1
ℓφ(x, t, d).

Note that ψ(x) is zero if and only if x is first-order critical for the problem of minimizing

‖c(x)‖, while χ(x, t) is zero if and only if (x, t) is a first-order critical point for the problem

minimize φ(x, t)

such that x ∈ IRn,
(2.5)

(t fixed). In Phase 1 of the SSSD algorithm (aiming for feasiblility), we apply the first-order

trust-region algorithm of Cartis et al. (2011b) by identifying

p = m, u(x) = c(x), and θ(·) = ‖ · ‖, (2.6)

in (2.2), yieding θ
(

u(y)
)

= ‖c(x)‖. For Phase 2 (the optimality phase), we choose in (2.2),

for t fixed,

p = m+ 1, u(x) = (c(x), f(x)− t) and θ(·) = ‖ · ‖+ | · |, (2.7)

which gives θ
(

u(x)
)

= φ(x, t). Note that θ(·) is clearly convex with global Lipschitz

constant equal to one in both cases.

We are now ready to formalize our Short Step Steepest-Descent (SSSD) Algorithm as

presented on the following page.
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Algorithm 2.1: The SSSD algorithm

Let κf ∈ (0, 1) and ∆1 > 0 be given, together with a starting point x0.

Phase 1:

Starting from x0, minimize ‖c(x)‖ (using (2.2) and (2.6) and the trust-region

method of Cartis et al., 2011b) until a point x1 is found such that

ψ(x1) ≤ ǫ.

If ‖c(x1)‖ > κfǫ, terminate [locally infeasible].

Phase 2:

1. Set t1 = ‖c(x1)‖+ f(x1)− ǫ and k = 1.

2. While χ(xk, tk) ≥ ǫ,

2a. Compute a first-order step sk by solving

minimize ℓφ(xk, tk, s)

such that ‖s‖ ≤ ∆k,
(2.8)

2b. Compute φ(xk + sk, tk) and define

ρk =
φ(xk, tk)− φ(xk + sk, tk)

ℓφ(xk, tk, 0)− ℓφ(xk, tk, sk)
. (2.9)

If ρk ≥ η, then xk+1 = xk + sk; else xk+1 = xk.

2c. Set

∆k+1 =

{

∆k if ρk ≥ η [k successful]

γ∆k if ρk < η, [k unsuccessful]
(2.10)

2d. If ρk ≥ η, set

tk+1 =

{

tk − φ(xk, tk) + φ(xk+1, tk) if f(xk+1) ≥ tk,

2f(xk+1)− tk − φ(xk, tk) + φ(xk+1, tk) if f(xk+1) < tk.

(2.11)

Otherwise, set tk+1 = tk.

2e. Increment k by one and return to 2.

3. Terminate [(approximately) first-order critical]

Since the SSSD algorithm makes no pretense of being practical, we have written Steps

2.2.b and 2.2.c by only using the constants

0 < η < 1, and 0 < γ < 1,
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instead of the more usual η1 ≤ η2 and γ1 ≤ γ2, a simplified choice which is allowed in the

standard trust-region case, including that studied in Cartis et al. (2011b)2. Note that the

SSSD algorithm requires one evaluation of the objective function and its gradient and one

evaluation of the constraint’s function and its Jacobian per iteration.

Note also that one could also consider using the ARC algorithm (see Cartis, Gould

and Toint, 2011a) to minimize ‖c(x)‖2 to find x1 such that ‖J(x1)
T c(x1)‖ ≤ ǫ. We do not

consider this (potentially more efficient) possibility here because it would require stronger

assumptions on the constraint function c.

3 Complexity of the SSSD Algorithm for the equality

constrained problem

Before analyzing the complexity of Algorithm SSSD, we state our assumptions formally.

A.1: The function c is continuously differentiable on IRn and f is continuously differen-

tiable in an open neighbourhood of

Cǫ = {x ∈ IRn | ‖c(x)‖ ≤ ǫ}.

A.2: J(x) is globally Lipschitz continuous in IRn with Lipschitz constant bounded above

by LJ > 0, and g(x) is Lispchitz continuous in Cǫ with Lipschitz constant bounded

above by Lg > 0.

A.3: The objective function is bounded above and below in the neighbourhood of the

feasible set, that is there exist constants flow and fup ≥ flow − 1 such that

flow ≤ f(x) ≤ fup for all x ∈ Cǫ.

We start our analysis by exploiting the results of Cartis et al. (2011b) and bounding

the number of Phase 1 iterations.

Lemma 3.1. Suppose that A.1 and A.2 hold. Then, at most

⌈

‖c(x0)‖
κ1

ǫ2

⌉

(3.12)

evaluations of c(x) and its derivatives are needed to complete Phase 1, for some κ1 > 0

independent of n, ǫ and x0.

Proof. See Theorem 2.4 in Cartis et al. (2011b). 2

We next extract from the same reference a property which is crucial for Phase 2.

2By selecting η1 = η2 and γ1 = γ2 in this reference.
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Lemma 3.2. Suppose that A.1 and A.2 hold. Suppose also that χ(xk, tk) ≥ ǫ and that

∆k ≤
(1− η)ǫ

Lg + 1

2
LJ

. (3.13)

Then iteration k is successful and

φ(xk + sk, tk) ≤ φ(xk, tk)− κCǫ
2, (3.14)

where

κC

def
= ηmin

[

∆1,
(1− η)γ

Lg + 1

2
LJ

]

. (3.15)

is a constant independent of n and ǫ.

Proof. This follows by applying Lemmas 2.1 and 2.3 in Cartis et al. (2011b) to the

objective φ(x, tk) considered as a function of x only. 2

We now bound the total number of unsuccessful iterations in the course of Phase 2.

Lemma 3.3. There are at most O(| log ǫ|) unsuccessful iterations in Phase 2 of the SSSD

algorithm.

Proof. Note that (2.10) implies that the trust-region radius is never increased, and

therefore Lemma 3.2 guarantees that all iterations must be successful once ∆1 has been

reduced (by a factor γ) enough times to ensure (3.13). Hence there are at most
⌈

1

| log γ|
|log ǫ+ log(1− η)− log∆1 − log(Lg + 1

2
LJ)|

⌉

= O(| log ǫ|) (3.16)

unsuccessful iterations during the complete execution of the Phase 2. 2

The next lemma proves the crucial observation that all Phase 2 iterates remain (approx-

imately) feasible, and that the targets tk decrease by a quantity bounded below by a

multiple of ǫ−2 at every successful iteration.

Lemma 3.4. For every k ≥ 1, we have that

f(xk+1)− tk+1 > 0, (3.17)

φ(xk, tk) = ǫ (3.18)

‖c(xk)‖ ≤ ǫ, (3.19)

|f(xk)− tk| ≤ ǫ. (3.20)

Moreover, if iteration k is successful, then

tk − tk+1 ≥ κCǫ
2 (3.21)

where κC is defined in (3.15).
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Proof. We start by observing that (3.17) immediately follows from (2.11) and (3.14)

and the fact that f(xk) and tk remain unchanged on unsuccessful iterations. We now

prove (3.18) by induction on k. We first note that this inequality holds by construcion for

k = 1. We now show that this bound remains valid for k > 1. Assume that iteration k is

successful and that

φ(xk, tk) = ǫ. (3.22)

Using (2.4) and (3.17), we observe that

φ(xk+1, tk+1) = ‖c(xk+1)‖+ f(xk+1)− tk + (tk − tk+1). (3.23)

Consider the case where f(xk+1) ≥ tk first. Then, using (3.23) and (2.11), we obtain that

φ(xk+1, tk+1) = φ(xk+1, tk) + φ(xk, tk)− φ(xk+1, tk) = φ(xk, tk).

If f(xk+1) < tk, we have that

φ(xk+1, tk+1) = ‖c(xk+1)‖ − f(xk+1) + tk + φ(xk, tk)− φ(xk+1, tk)

= φ(xk+1, tk) + φ(xk, tk)− φ(xk+1, tk)

= φ(xk, tk),

where we again used (3.23) and (2.11). Combining the two cases and using (3.14) and

(3.22), we then deduce that

φ(xk+1, tk+1) = φ(xk, tk) = ǫ.

By induction, and since tk and f(xk) (and hence φ) are unmodified at unsuccessul itera-

tions, (3.18) therefore holds for all k ≥ 1. Relations (3.19) and (3.20) immediately follow

from (2.4). Finally, (3.21) results from (2.11) and (3.14) at successful iterations. 2

Lemma 3.5. Assume that ‖c(xk)‖ ≤ ǫ and χ(xk, tk) ≤ ǫ. Then xk is an approximate

critical point in the sense that

‖c(xk)‖ ≤ ǫ and ‖J(xk)
Ty − g(xk)‖ ≤ ǫ (3.24)

for some vector of multipliers y ∈ IRm. Similarly, assume that ψ(x) ≤ ǫ. Then

‖J(x)T z‖ ≤ ǫ (3.25)

for some vector of multipliers z ∈ IRm.

Proof. See Theorem 3.1 in Cartis et al. (2011b) and the comments thereafter. 2
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Theorem 3.6. Assume A.1-A.3 hold. Then the SSSD algorithm generates an ǫ-first-oder

critical point for problem (2.1), that is an iterate xk satisfying either

(3.24) or
[

(3.25) with ‖c(xk)‖ > κf ǫ
]

,

in at most
⌈(

‖c(x0)‖+ fup − flow

)

κ2

ǫ2

⌉

(3.26)

evaluations of c and f (and their derivatives), where κ2 > 0 is a constant independent of

n, ǫ and x0.

Proof. We have seen in Lemma 3.1 that the complexity of obtaining x1 is bounded

above by O(⌈‖c(x0)‖ǫ
−2⌉). Thus, as ψ(x1) ≤ ǫ, Lemma 3.5 ensures that (3.25) holds. If the

algorithm terminates at this stage, then both (3.25) and ‖c(xk)‖ > κf ǫ hold, as requested.

Assume now that Phase 2 of the algorithm is entered. We then observe that Lemma 3.2

implies that successful iterations must happen as long as χ(xk, tk) ≥ ǫ. Moreover, we have

that

flow ≤ f(xk) ≤ tk + ǫ ≤ t1 − σkκCǫ
2 + ǫ ≤ f(x1)− σkκCǫ

2 + ǫ

where σk is the number of these successful iterations from iterations 1 to k of Phase 2,

and where we have successively used A.3, (3.20) and (3.21). Hence, we obtain from the

inequality f(x1) ≤ fup (itself implied by A.3 again) that

σk ≤

⌈

fup − flow + ǫ

κCǫ2

⌉

. (3.27)

The number of Phase 2 iterations satisfying χ(xk, tk) ≥ ǫ is therefore bounded above, and

the algorithm must terminate after (3.27) such iterations at most, yielding, because of

Lemma 3.5, an ǫ-first-order critical point satisfying (3.24). Remembering that only one

evaluation of c and f (and their derivatives, if successful) occurs per iteration, we therefore

conclude from (3.27) and Lemma 3.3 that the total number of such evaluations in Phase 2

is bounded above by
⌈

fup − flow + ǫ

κCǫ2

⌉

+O(| log ǫ|)

Summing this upper bound with that for the number of iterations in Phase 1 given by

Lemma 3.1 then yields (3.26). 2

4 Including general inequality constraints

If we now return to the solution of problem (1.4), we may consider defining

c(x) =

(

cE(x)

min[ 0, cI(x) ]

)
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in the above. The quantity ‖c(x)‖ can again be considered as the composition of a nons-

mooth convex function with the smooth function (cE(x)
T , cI(x)

T )T and the theory devel-

oped above applies without modification, except that Lemma 3.5 must be adapted for the

presence of inequality constraints. If an inequality constraint is active at an approximate

critical point, then its multiplier has to be non-negative because y ∈ ∂(‖min[0, · ]‖) im-

plies that y ≥ 0. If it is inactive, then it may as well be absent from the problem (and its

multiplier must be zero). Hence Lemma 3.5 generalizes to the inequality constraints case

(1.4) without difficulty.

5 Conclusions

We have shown that the complexity to achieve either a ǫ-first-order critical point or an

infeasible ǫ-critical point for the infeasibilities of the general smooth nonlinear optimization

problem (1.4) is O(ǫ−2), where the constant involved is independent of problem dimension.

This is a marked improvement over the results presented in Cartis et al. (2011b), where the

same complexity was achieved only if the penalty parameter of the minimization scheme

discussed in this reference remains bounded, the complexity being O(ǫ−4) othrewise. More-

over, the results obtained in the present paper only assume boundedness of the objective

function on an ǫ-neighbourhood of the feasible set, rather than on the whole space.

Since Cartis et al. (2010b) have shown that the O(ǫ−2) bound can be effectively achieved

by steepest descent in the unconstrained case, improving the same bound in the constrained

case is also impossible for methods of the same type.

We fully accept that the SSSD algorithm discussed in Section 2 is most likely to be

extremely inefficient in practice, because it amounts to following the constraints manifold

with very small steps. “Long steps” variants may be considered in which the setting of the

target tk is more aggressively geared towards minimizing the objective function. Whether

such variants can be numerically effective remains to be seen, but their complexity will be

difficult to guarantee with the kind of technique used here, as this would rely on global

optimization of the constraint violation.

That we expect Algorithm SSSD to be outperformed in practice is to be welcomed,

indicating that the O(ǫ−2) evaluation bound may be as pessimistic for the contrained case

as it is for the unconstrained one. But it remains remarkable that this pessimistic bound

is unaffected by the presence of possibly nonlinear and nonconvex constraints.
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