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ABSTRACT

Optimization problems with constraints that contain a partial differential equation arise widely in many

areas of science. In this paper, we consider distributed control problems in which the 2- and 3-dimensional

Poisson problem is the PDE. If a discretize-then-optimization approach is used to solve the optimization

problem, then a large dimensional, symmetric and indefinite linear system must be solved. In general,

distributed control problems include a regularization term, the size of which is determined by a real value

known as the regularization parameter. The spectral properties and, hence, the condition number of the

linear system are highly dependent on the size of this regularization parameter. We derive intervals that

contain the eigenvalues of the linear systems and, using these, we are able to show that if the regularization

parameter is larger than a certain value, then backward-stable direct methods will compute solutions to

the discretized optimization problem that have relative errors of the order of machine precision: changing

the value of the regularization parameter within this interval will have negligible effect on the accuracy

but the condition number of the system may have dramatically changed. We also analyse the spectral

properties of the Schur complement and reduced systems derived via the nullspace method. Throughout

the paper, we complement the theoretical results with numerical results.
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1 Introduction

In this paper, we consider the linear algebraic properties of distributed control problems after

their discretization. The problems considered consist of a cost functional to be minimized subject

to a partial differential equation (PDE) posed on a domain in Ω ⊂ IR2 or IR3 (in this case, the

Poisson equation):

min
u,f

1

2
‖u− û‖2

L2(Ω̂)
+ β ‖f‖2

L2(Ω) (1.1)

subject to −∇2u = f in Ω (1.2)

with u = g or
δu

δn
= g on δΩ. (1.3)

Here, the function û (the ‘desired state’) is known and we want to find u that satisfies the

PDE and is as close to û as possible in the L2 norm sense over the domain Ω̂ ⊆ Ω for which û is

known. In order to do this, the right-hand side of the PDE, f, (also known as the ‘control’) can

be varied. The second term in the cost functional (1.1), a Tikhonov regularization term, is added

because the problem may be either ill-posed or the right-hand side of the PDE, f, rapidly varies

across the domain Ω. In general, the Tikhonov parameter β needs to be determined, although it

is often selected a priori – a value around β = 10−2 is commonly used (see [6, 11,14] ).

In PDE-constrained optimization there is the choice as to whether to discretize-then-optimize

or optimize-then-discretize, and there are differing opinions regarding which route to take (see

Collis and Heinkenschloss [6] for a discussion). We have chosen to discretize-then-optimize, as

then we are guaranteed symmetry in the resulting linear system. The underlying optimization

problems are naturally self-adjoint and by this choice we avoid non-symmetry due to discretization

that can arise with the optimize-then- discretize approach (as shown in, for example, Collis and

Heinkenschloss [10]). We discuss the formulation and general structure of our discretized problem

in Section 2.

In this paper, we will consider how the size of the regularization parameter effects the spectral

properties of the linear systems associated with problems of the above form. In particular, we

will consider the overall saddle-point system (Section 4), the Schur complement (Section 5) and

the reduced system from the nullspace method (Section 6). In Section 4.4, we will also show

that if the regularization parameter β is large, then solving the overall saddle-point system with

a backward-stable direct method will result in the computed state and control variables being of

much higher accuracy than standard bounds based on the condition number of the system would

suggest. We draw our conclusions in Section 7.

1.1 Notation

All norms are two-norms; the eigenvalues {λi} of a matrix (or generalised eigenvalue problem) are

ordered such that λ1 ≤ λ2 ≤ . . . ≤ λn; the singular values {σi} of a matrix are ordered such that

σ1 ≥ σ2 ≥ . . . ≥ σn. The condition number of a matrix A, κ(A), is defined by κ(A) := ‖A‖
∥
∥A−1

∥
∥ .

We will use the following notation. We will use the notation λmin(A), λmin+(A) and λmax(A)

(σmin(A), σmin+(A) and σmax(A)) to denote the minimum, minimum positive and maximum

eigenvalues (singular values), respectively, of a matrix A. Similarly, λmin(A,B), λmin+(A,B)

and λmax(A,B) denotes the minimum, minimum positive and maximum eigenvalues of the A,
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respectively, of the generalised eigenvalue problem Av = λBv. For each eigenvalue λi(A,B), we

denote the corresponding eigenvector by vi(A,B). We define

min
x

+ (f(x)) = min {f(x) : f(x) > 0} .

Definition 1.1 (Order notation) Let φ be a scalar, vector, or matrix function of a positive

variable α, let p be fixed, and let cu and cl denote constants.

• If there exists cu > 0 such that ‖φ‖ ≤ cuα
p for all sufficiently small/large α, we write

φ = O(αp).

• If there exists cl > 0 and cu > 0 such that clα
p ≤ ‖φ‖ ≤ cuα

p for all sufficiently

small/large α, we write φ = Θ(αp).

2 Formulation and structure

We have chosen to discretize our problem with finite elements. In order to use these, we require

weak formulations of (1.1)–(1.3). For definiteness and clarity we describe the formulation for the

purely Dirichlet problem; the formulation for the mixed and purely Neumann problem is standard

(see [7]). In the Dirichlet problem we wish to find u ∈ H1
g = {u : u ∈ H1(Ω), u = g on δΩ} such

that ∫

Ω
∇u · ∇v =

∫

Ω
vf ∀v ∈ H1

0 (Ω). (2.1)

We assume that V h
0 ⊂ H1

0 is an n-dimensional vector space of test functions with basis {φ1, . . . , φn}.
Then, for the boundary condition to be satisfied, we extend the basis by defining functions

φn+1, . . . , φn+δn and coefficients Uj so that
∑n+δn

j=n+1 Ujφj interpolates the boundary data. Then,

if uh ∈ V h
g ⊂ H1

g (Ω), it is uniquely determined by u = (U1 . . . Un)T in

uh =
n∑

j=1

Ujφj +
n+∂n∑

j=n+1

Ujφj .

Here the φi, i = 1, . . . , n, define a set of shape functions. We also assume that this approximation

is conforming, i.e. V h
g = span{φ1, . . . , φn+∂n} ⊂ H1

g (Ω). Then we get the finite-dimensional

analogue of (2.1): find uh ∈ V h
g such that

∫

Ω
∇uh · ∇vh =

∫

Ω
vhf ∀vh ∈ V h

0 .

We also need a discretization of f , as this appears in (1.1). We discretize this using the same

basis used for u, so

fh =
n∑

j=1

Fjφj
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since it is well known that fh = 0 on ∂Ω. Thus we can write the discrete analogue of the

minimization problem as

min
uh,fh

1

2
||uh − û||22 + β||fh||22 (2.2)

such that

∫

Ω
∇uh · ∇vh =

∫

Ω
vhf ∀vh ∈ V h

0 . (2.3)

If û is defined over the whole of Ω, we can write the discrete cost functional as

min
uh,fh

1

2
||uh − û||22 + β||fh||22 = min

u,f

1

2
uT M̄u − uTb + α+ βfTM f , (2.4)

where u = (U1, . . . , Un)T , f = (F1, . . . , Fn)T , b = {
∫
ûφi}i=1...n, α = ‖û||22, M = {

∫
φiφj}i,j=1...n

is a mass matrix, and M̄ = M. If û is only defined on part of the domain, defining

ũi =

{

ûi if ûi defined

0 if ûi not defined,

we obtain (2.4) but α, b and M̄ are defined by

α = ‖ũ‖2
2 ,

bi =

∫

ũφi,

M̄ij =

{

Mi,j if û is defined atnodes i and j,

0 otherwise.

In this case M̄ will be singular.

We now turn our attention to the constraint: (2.3) is equivalent to finding u such that

∫

Ω
∇
(

n∑

i=1

Uiφi

)

· ∇φj +

∫

Ω
∇
(

n+∂n∑

i=n+1

Uiφi

)

· ∇φj =

∫

Ω

(
n∑

i=1

Fiφi

)

φj , j = 1, . . . , n

which is
n∑

i=1

Ui

∫

Ω
∇φi · ∇φj =

n∑

i=1

Fi

∫

Ω
φiφj −

n+∂n∑

i=n+1

Ui

∫

Ω
∇φi · ∇φj , j = 1, . . . , n

or

Ku = M f + d, (2.5)

where the matrix K = {
∫
∇φi · ∇φj}i,j=1...n is the discrete Laplacian (the stiffness matrix) and

d contains the terms coming from the boundary values of uh. Thus (2.4) and (2.5) together are

equivalent to (2.2) and (2.3).

One way to solve this minimization problem is by considering the Lagrangian

L :=
1

2
uT M̄u − uTb + α+ βfTM f + λT (Ku −M f − d),

where λ is a vector of Lagrange multipliers. Using the stationarity conditions of L, we find that

f , u and λ are defined by the linear system





2βM 0 −M
0 M̄ KT

−M K 0











f

u

λ




 =






0

b

d




 . (2.6)

We will discuss the properties of this system in Section 4
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2.1 Properties of K, M and M̄

Throughout this paper, we will assume that a shape regular, quasi-uniform division of the domain

is used [7] with Pm or Qm (m ≥ 1) finite element approximations. Using these assumptions, we

have the following theorem [7]:

Theorem 2.1 Consider the p-dimensional problem with p ∈ {2, 3}. Now

λmin(K) = chp, λmax(K) = Chp−2,

λmin(M) = dhp, λmax(M) = Dhp,

where c, d, C and D are constants independent of the mesh size h but dependent on p. In

addition, D < 2c
3
.

If the target û is defined over the whole domain Ω, then M̄ = M. Suppose that the target û

is only defined on a sub-domain of Ω. We will use Cauchy’s interlacing theorem [17]:

Theorem 2.2 Suppose T ∈ R
n×n is symmetric and

T =

[

H ⋆

⋆ ⋆

]

,

where H ∈ R
m×m with m < n. Label the eigenpairs of T and H as

Tzi = αizi, i = 1, . . . , n, α1 ≤ α2 ≤ · · · ≤ αn,

Hyi = λiyi, i = 1, . . . ,m, λ1 ≤ λ2 ≤ · · · ≤ λm.

Then

αk ≤ λk ≤ αk+n−m, k = 1, . . . ,m.

There exists a permutation matrix Π such that

ΠT M̄Π =

[

M̄11 0

0 0

]

,

where M̄11 ∈ R
m̄×m̄ is nonsingular. Applying Theorem 2.2, the eigenvalues of M̄11 lie in the

interval
[
λmin(Π

TMΠ), λmax(Π
TMΠ)

]
. Hence, we have the following theorem.
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Theorem 2.3 Consider the p-dimensional problem with p ∈ {2, 3}. Assume that Theo-

rem 2.1 holds and that the target û in (1.1) is only defined on a sub-domain of Ω. Then

λmin(M̄) = 0, λmax(M̄) = D̄hp,

λmin+(M̄) = d̄hp,

where d̄ ≥ d and D̄ ≤ D are constants independent of the mesh size h but dependent on p.

Let

ΠTKΠ =

[

K11 KT
21

K21 K22

]

,

where Π is as defined above and K11 ∈ R
m̄×m̄. We will use the following assumptions.

Assumption 2.1 Consider the p-dimensional problem with p ∈ {2, 3}. Assume that Theo-

rem 2.1 holds and that the target û in (1.1) is only defined on a sub-domain of Ω. We will

assume that

λmin(K22) = c̄hp, λmax(K22) = C̄hp−2,

where c̄ ≥ c and C̄ ≤ C are constants independent of the mesh size h but dependent on p.

2.2 The role of β in (1.1)

The second term in the cost functionals is added because, in general, the problem with be ill-posed

or a bang-bang control state would be obtained. Bang-bang control states are states which rapidly

vary from one extreme to another over the domain [16] and would often be difficult to impose

in real life applications. By varying the value of the regularization parameter β, the balance

between the two terms in the cost functionals will be altered. If it is extremely important for

‖u− û‖ to be very small but we are less concerned by the size of ‖f‖ , then a small value of β

should be chosen. Conversely, if u does not need to closely match û but it is important that ‖f‖
remains small, then a larger value of β would be used. In practice, a tolerance is often given that

determines how small ‖u− û‖ / ‖û‖ should be. A coarse grid is then used to cheaply determine

the value of β that corresponds to this tolerance for this grid size: this value of β is then used to

solve the problem on the refined mesh [1]. Of course, the coarse grid must be fine enough such

that grid refinement is not expected to make a marked difference in terms of the regularization.

As we will see in Section 3, there may be instances when the coarse grid has to have a very small

mesh size for this to be the case.

3 Test problems

As we proceed through this paper, we will use several test examples to illustrate our results.

For all of our tests, we discretize the problem with bilinear quadrilateral Q1 finite elements.
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First, we will describe the target functions that we use. We will consider a continuous and

a discontinuous target that are both described over the whole of Ω, and a target that is only

defined on a sub-domain of Ω.

In Tables 3.1 and 3.2, we define the different targets used within this paper for 2D and 3D

problems, respectively. For the 2D and 3D problems, we define Ω = [0, 1]2 and Ω = [0, 1]3 ,

respectively. Additionally, let

Ω̃ =
{
(x, y, z) : (x− 5

8
)2 + (y − 3

4
)2 + (z − 7

10
)2 ≤ 1

16

}
.

We will define the domain Ω̂ over which the target is defined: for some cases it will be useful to

split Ω̂ into two subregions Ω̂1 and Ω̂2.

Ω̂ Ω̂1 Ω̂2 û(x, y)|Ω̂1
û(x, y)|Ω̂2

Target 1 Ω̂1 ∪ Ω̂2 [0, 1

2
]2 Ω/Ω̂1 (2x− 1)2 (2y − 1)2 0

Target 2 Ω̂1 ∪ Ω̂2

{
(x, y) : (x− 5

8
)2 + (y − 3

4
)2 ≤ 1

25

}
Ω/Ω̂1 2 0

Target 3 Ω̂1 ∪ Ω̂2

{
(x, y) : (x− 5

8
)2 + (y − 3

4
)2 ≤ 1

25

}
∂Ω 2 0

Table 3.1: Target functions for 2D problems

Ω̂ Ω̂1 Ω̂2 û(x, y)|Ω̂1
û(x, y)|Ω̂2

Target 1 Ω̂1 ∪ Ω̂2 [0, 1

2
]3 Ω/Ω̂1 (2x− 1)2 (2y − 1)2 0

Target 2 Ω̂1 ∪ Ω̂2 Ω̃ Ω/Ω̂1 2 0

Target 3 Ω̂1 ∪ Ω̂2 Ω̃ ∂Ω 2 0

Table 3.2: Target functions for 3D problems

We now describe the test examples with which we will use our targets û. Our first example

has Dirichlet boundary conditions.

Example 3.1 Let Ω = [0, 1]2 or Ω = [0, 1]3, and Ω̂ ⊆ Ω be the domain over which û is defined.

Consider the problem

min
u,f

1

2
||u− û||2

L2(Ω̂))
+ β||f ||2L2(Ω)

s.t. −∇2u = f in Ω, (3.1)

u =

{

û on ∂Ω ∩ Ω̂

0 on ∂Ω/Ω̂.
(3.2)

Our second example has Neumann boundary conditions:

Example 3.2 Let Ω = [0, 1]2 and Ω̂ ⊆ Ω be the domain over which û is defined. Consider the

Neumann problem

min
u,f

1

2
||u− û||2

L2(Ω̂)
+ β||f ||2L2(Ω)

s.t. −∇2u = f in Ω, (3.3)

∂u

∂n
= 0 on ∂Ω. (3.4)
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Our final problem has mixed boundary conditions:

Example 3.3 Let Ω = [0, 1]2 and Ω̂ ⊆ Ω be the domain over which û is defined. Consider the

problem

min
u,f

1

2
||u− û||2

L2(Ω̂)
+ β||f ||2L2(Ω)

s.t. −∇2u = f in Ω, (3.5)

u =

{

û on ∂1Ω ∩ Ω̂

0 on ∂Ω1/Ω̂,
(3.6)

∂u

∂n
= 0 on ∂Ω2, (3.7)

where ∂Ω1 = (0 × [0, 1)) ∪ ((0, 1] × 0) and ∂Ω2 = (1 × (0, 1]) ∪ ([0, 1) × 1).
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Figure 3.1: The relative difference ‖u−û‖
‖u‖ for Example 3.1 in 2D with Target 1 and different values

of β. Results are shown for h = 1
16 , h = 1

32 , h = 1
64 and h = 1

128 .

Let us consider the 2D version of Example 3.1 and the continuous target û defined by Target 1.

In Figure 3.1, we plot the value of ‖u− û‖ / ‖û‖ against the regularization parameter β. Results

are given for different choices of mesh size h. We observe that, for the fixed β > 10−7, the larger

values of h produce values of ‖u− û‖ / ‖û‖ that are of the same order of magnitude. For this

problem, it is therefore possible to find a suitable value of β from a coarse discretization and then

use this value of β with a fine discretization to compute the desired u.

If we use the Target 2, then we would not expect the same behaviour of ‖u− û‖ / ‖û‖ because

the discontinuity of the target will not be well approximated on coarse meshes. Indeed, in

Figure 3.2, if we wanted ‖u− û‖ / ‖û‖ ≈ 0.1, then the required value of β would drastically

change as we refine h. Eventually, h will be small enough relative to the required tolerance for

our discretization to be good enough give (almost) mesh independent results.
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‖u‖ for Example 3.1 in 2D with Target 3 and different values

of β. Results are shown for h = 1
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32 , h = 1
64 and h = 1

128 .
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If we instead consider the Target 3, then, so long as ‖u− û‖ / ‖û‖ is not too small, the coarse

meshes will generate values of β that can be used with the finer meshes to generate solutions that

provide the correct level of accuracy with respect the target û. In Figure 3.3 we observe that the

dependency on h is only an issue for small values of β. In fact, in this case, the mesh size it not

small enough for the required tolerance to be relevant.

Therefore, as shown in [1], it is paramount that the value of β is chosen very carefully and

according to the characteristics of the underlying problem. In literature, it is common to see the

choice β = 0.01 or β = 0.001 used [6, 11, 14]. From Figures 3.1–3.3 we see that such values of β

would produce a large value of ‖u− û‖ / ‖û‖ . In practice, we feel that u will be needed to differ

from the target by at most 10% and, hence, for our examples, we should have β ≈ 10−5 or 10−6.

Because the choice of β is very dependent on the target û, we will not restrict ourselves to any

particular value of β in the following analysis.

4 Spectral properties of the saddle-point matrices

We observe that the system (2.6) can be written in the form

[

A BT

B 0

]

︸ ︷︷ ︸

A

[

x

y

]

︸ ︷︷ ︸

s

=

[

b1
b2

]

︸ ︷︷ ︸

b

, (4.1)

where

A =

[

2βM 0

0 M̄

]

, B =
[

−M K
]

. (4.2)

Systems of the general form given in (4.1) are known as saddle-point matrices [2]. We note that,

within this application, the matrix B always has full row rank and if β > 0, then A is guaranteed

to be nonsingular. In addition, if the target û is defined over the whole of the domain Ω, then A

will be nonsingular for β = 0.

4.1 Eigenvalue intervals for saddle-point problems

If A ∈ IRn×n is positive definite and B ∈ IRm×n has full rank, then A defined by (4.1) has m

negative eigenvalues and n positive eigenvalues [2] (similarly for A positive semidefinite and A
nonsingular). The following result from [19] can be used to establish eigenvalue bounds for (4.1).
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Theorem 4.1 Assume A is positive definite and B has full rank. Then

λ(A) ⊂ I− ∪ I+,

where A is defined by (4.1),

I− =

[

1

2

(

λmin(A) −
√

(λmin(A))2 + 4 (σmax(B))2
)

, 1

2

(

‖A‖ −
√

‖A‖2 + 4(σmin(B))2
)]

and

I+ =

[

λmin(A), 1

2

(

‖A‖ +

√

‖A‖2 + 4(σmax(B))2
)]

.

If A is positive semidefinite and we let B [YB, ZB] = [L, 0] , where [YB, ZB] is orthogonal and

L is nonsingular, it has been conjectured that the lower bound of I+ is replaced by λmin(Z
T
BAZB)

and the other bounds are unchanged, [23]. We note that, in this case, A is nonsingular if and

only if ZT
BAZB is positive definite [2]. Consider the problem

A =










0 0 0 1 0

0 1 0 0 1

0 0 100 1 1

1 0 1 0 0

0 1 1 0 0










.

Now ZB = 1
√

3

[

−1 −1 1
]T

, ZT
BAZB = 101

3
and, if the conjecture was true, we would expect

the positive eigenvalues of A to be greater than or equal to 101

3
. However, λmin+(A) = 0.9950.
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Theorem 4.2 Assume A is nonsingular, A is positive semidefinite and possibly nonsingular,

and let A [YA, ZA] = [LA, 0] , where [YA, ZA] is orthogonal and LA has full column rank.

Assume B has full rank and let B [YB, ZB] = [LB, 0] , where [YB, ZB] is orthogonal and LB

is nonsingular. Then

λ(A) ⊂ I− ∪ I+
1 ∪ I+

2 ∪ I+
3 ,

where A is defined by (4.1),

I− =

[

−σmax(B), 1

2

(
∥
∥Y T

B AYB

∥
∥−

√
∥
∥Y T

B AYB

∥
∥+ 4(σmin(B))2

)]

,

I+
1 =

[
λmin(Z

T
BAZB), λmax(Z

T
BAZB)

]
,

I+
2 = [l2, u2] ,

I+
3 =

[

l3, 1

2

(

‖A‖ +

√

‖A‖ + 4 ‖B‖2

)]

,

l2 = 1

2

(

λmin+(A) +

√

(λmin+(A))2 + 4 (σmin(BYA))2
)

≥ 1

2

(

λmin+(A) +

√

(λmin+(A))2 + 4 (σmin(B))2
)

,

u2 = 1

2

(

‖A‖ +

√

‖A‖ + 4 ‖BYA‖2

)

≤ 1

2

(

‖A‖ +

√

‖A‖2 + 4 ‖B‖2

)

,

and l3 < σmin(BZA) is the smallest positive root of the cubic equation

µ3 − µ2λmin+(A) − µ
(

(σmin(BZA))2 + ‖BYA‖2
)

+ λmin+(A) (σmin(BZA))2 = 0.

In particular,

l3 ≥ 1

2

(

−l̄3 +

√

l̄23 + 4 (σmin(BZA))2
)

,

l̄3 =
(σmin(BZA))2 + ‖BYA‖2

λmin+(A)
.

If m = n, we have

I+
1 = ∅,

I+
3 =

[

σmin(B), 1

2

(

‖A‖ +

√

‖A‖2 + 4 ‖B‖2

)]

.

If m < n and A is nonsingular, then I+
3 = ∅.

Proof. Let [x; y] be an eigenvector corresponding to an eigenvalue λ. Expanding out the
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eigenvalue problem we obtain

Ax+BT y = λx, (4.3)

Bx = λy. (4.4)

Consider the case y = 0. From (4.4) we find that x = ZBzB for some vector zB 6= 0.

Premultiplying (4.3) by xT and substituting in x = ZBzB we obtain the interval I+
1 . If x = 0,

then (4.3) implies that y = 0. Since [x; y] is an eigenvector, this case can not occur.

We will firstly calculate the extremes of I−. Premultiplying (4.3) by xT and using (4.4) to

eliminate y we obtain

λ2 ‖x‖2 − λxTAx− ‖Bx‖2 = 0. (4.5)

Since λ < 0, −λxTAx ≥ 0. Additionally −‖Bx‖2 ≥ −‖B‖2 ‖x‖2 . Hence

λ2 − ‖B‖2 ≤ 0

and we obtain the lower bound of I−.

Writing x = ZBzB + YByB and using (4.4) to eliminate y from (4.3) we find that

λ2ZBzB + λ2YByB − λAZBzB − λAYByB −BTBYByB. (4.6)

Premultiplying (4.6) by yT
BY

T
B we obtain

λ2 ‖yB‖2 − λyT
BY

T
B AZBzB − λyT

BY
T
B AYByB − yT

BY
T
B B

TBYByB = 0. (4.7)

Premultiplying (4.6) by zT
BZ

T
B we obtain

λ2 ‖zB‖2 − λzT
BZ

T
BAZBzB − λzT

BZ
T
BAYByB = 0. (4.8)

Subtracting (4.8) from (4.7) gives

0 = λ2 ‖yB‖2 − λ2 ‖zB‖2 − λyT
BY

T
B AYByB + λzT

BZ
T
BAZBzB − yT

BY
T
B B

TBYByB

≤ λ2 ‖yB‖2 − λyT
BY

T
B AYByB − yT

BY
T
B B

TBYByB

≤
(

λ2 −
∥
∥Y T

B AYB

∥
∥− (σmin(B))2

)

‖yB‖2

≤
(

λ2 − ‖A‖ − (σmin(B))2
)

‖yB‖2 .

Hence, we obtain the upper bounds of I−.

Consider λ > 0. Let y 6= 0 and Ax = 0, then x = ZAzA for some vector zA 6= 0. Premultiplying

(4.3) by xT and using (4.4) to eliminate y we obtain

zT
AZ

T
AB

TBZAzA = λ2 ‖zA‖2 .

Note that BZA must have full column rank for A to be nonsingular. Hence,

λ ∈ [σmin(BZA), ‖BZA‖] . (4.9)
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Let y 6= 0 and Ax 6= 0. Substituting x = ZAzA+YAyA into (4.3) and (4.4), and premultiplying

(4.3) by ZT
A and Y T

A , respectively we obtain

ZT
AB

T y = λzA, (4.10)

Y T
A AYAyA + Y T

A B
T y = λyA, (4.11)

BZAzA +BYAyA = λy. (4.12)

Consider the case zA = 0. Now Ax 6= 0 and, hence, yA 6= 0. Using (4.12) to eliminate y from

(4.11) and premultiplying the resultant equation by yT
A, we obtain

0 = λ2 ‖yA‖2 − λyT
AY

T
A AYAyA − yT

AY
T
A B

TBYAyA

≤
(

λ2 − λλmin(Y
T
A AYA) − (σmin(BYA))2

)

‖yA‖2

≤
(

λ2 − λλmin(Y
T
A AYA) − (σmin(B))2

)

‖yA‖2 .

Hence,we obtain the lower bounds of I+
2 . Similarly, we find that

0 = λ2 ‖yA‖2 − λyT
AY

T
A AYAyA − yT

AY
T
A B

TBYAyA

≥
(

λ2 − λ
∥
∥Y T

A AYA

∥
∥− ‖BYA‖2

)

‖yA‖2

≥
(

λ2 − λ
∥
∥Y T

A AYA

∥
∥− ‖B‖2

)

‖yA‖2 .

This gives the upper bounds of I+
2 .

Consider the case zA 6= 0. Then (4.10) implies that ZT
AB

T y 6= 0. From (4.5) we obtain

(

λ2 − λ ‖A‖ − ‖B‖2
)

‖x‖2 ≤ 0.

From this we obtain the upper bound of I+
3 . If m = n, we also find that

(

λ2 − (σmin(B))2
)

‖x‖2 ≥ 0

and, hence, obtain the required lower bound of I+
3 .

Assume that m < n and λ < σmin(BZA). Using (4.10) to eliminate zA from (4.12), and

premultiplying the resulting equation by yT we obtain

λyTBYAyA = λ2 ‖y‖2 − yTBZAZ
T
Ay ≤

(

λ2 − (σmin(BZA))2
)

‖y‖2 < 0.

Also, yTBYA ≥ −‖BYA‖ ‖y‖ ‖yA‖ . Combining the two inequalities we find that

‖y‖ ≤ − λ ‖BYA‖ ‖yA‖
λ2 − (σmin(BZA))2

,

which implies that

−yTBYAyA ≤ − λ ‖BYA‖2 ‖yA‖2

λ2 − (σmin(BZA))2
.
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Premultiplying (4.11) by yT
A we find that

0 = λ ‖yA‖2 − yT
AY

T
A AYAyA − yT

AY
T
A B

T y

≤
(

λ− λmin(Y
T
A AYA) − λ ‖BYA‖2

λ2 − (σmin(BZA))2

)

‖yA‖2

≤
(

λ ‖yA‖2 − λmin(Y
T
A AYA) − λ ‖BYA‖2

λ2 − (σmin(B))2

)

‖yA‖2 ,

which gives

0 ≥ λ3 − λ2λmin(Y
T
A AYA) − λ

(

(σmin(BZA))2 + ‖BYA‖2
)

+ λmin(Y
T
A AYA) (σmin(BZA))2

≥ −λ2λmin(Y
T
A AYA) − λ

(

(σmin(BZA))2 + ‖BYA‖2
)

+ λmin(Y
T
A AYA) (σmin(BZA))2 .

This gives the lower bound for I+
3 . Finally, we observe that the interval given by (4.9) is

contained within I+
3 . 2

Combining Theorem 4.2 with Propositions 2.2 and 2.9 from [10] we obtain the following result.
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Corollary 4.3 Assume A is nonsingular, A is positive semidefinite and possibly nonsingu-

lar, and let A [YA, ZA] = [LA, 0] , where [YA, ZA] is orthogonal and LA has full column rank.

Assume B has full rank and let B [YB, ZB] = [LB, 0] , where [YB, ZB] is orthogonal and LB

is nonsingular. Then

λ(A) ⊂ I− ∪ I+,

where A is defined by (4.1),

I− =

[

−σmax(B), 1

2

(
∥
∥Y T

B AYB

∥
∥−

√
∥
∥Y T

B AYB

∥
∥2

+ 4(σmin(B))2
)]

,

⊂
[

−σmax(B), 1

2

(

‖A‖ −
√

‖A‖2 + 4(σmin(B))2
)]

,

I+ =

[

l+, 1

2

(

‖A‖ +

√

‖A‖2 + 4 ‖B‖2

)]

,

l+ = max (l1,min (l2, l3)) ,

l2 = 1

2

(

λmin+(A) +

√

(λmin+(A))2 + 4 (σmin(BYA))2
)

≥ 1

2

(

λmin+(A) +

√

(λmin+(A))2 + 4 (σmin(B))2
)

,

l1 < λmin(Z
T
BAZB) is the smallest positive root of the cubic equation

µ3 − µ2λmin(Z
T
BAZB) − µ

(

‖A‖2 + (σmin(B))2
)

+ λmin(Z
T
BAZB) (σmin(B))2 = 0

and l3 < σmin(BZA) is the smallest positive root of the cubic equation

µ3 − µ2λmin+(A) − µ
(

(σmin(BZA))2 + ‖BYA‖2
)

+ λmin+(A) (σmin(BZA))2 = 0.

In particular,

l1 ≥ −‖A‖2 + (σmin(B))2

2λmin(ZT
BAZB)

+

√
√
√
√
√

(

‖A‖2 + (σmin(B))2
)2

4
(
λmin(ZT

BAZB)
)2 + (σmin(B))2,

l3 ≥ 1

2

(

−l̄3 +

√

l̄23 + 4 (σmin(BZA))2
)

,

l̄3 =
(σmin(BZA))2 + (σmax(BYA))2

λmin+(A)
.

If m = n, we have l+ = σmin(B).

If m < n and either A is nonsingular, then l+ = max (l1, l2) .
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4.2 Target û defined over whole domain Ω

Suppose that the target û is defined over the whole of the domain Ω. We will consider the p-

dimensional problem with p ∈ {2, 3}. It will be necessary to consider the cases β ≥ 1

2
and β < 1

2

separately.

Consider the case β ≥ 1

2
. We will start by bounding the positive eigenvalues of A by applying

Theorem 4.1. Now λmin(A) = dhp, ‖A‖ = 2βDhp and there exist constants c̃ ≥ c and C̃ ≈ C

such that σmin(B) = c̃hp and σmax(B) = C̃hp−2. Hence, the positive eigenvalues of A lie in

[

dhp, hp−2

(

βDh2 +

√

β2D2h4 + C̃2

)]

.

From [26, pp. 101-2] we obtain

Theorem 4.4 If M and M + E ∈ IRN×N are symmetric matrices, then

λk(M) + λmin(E) ≤ λk(M + E) ≤ λk(M) + λmax(E), k = 1, . . . , N.

Let A = M + E , where

M =






2βM 0 0

0 M KT

0 K 0




 and E =






0 0 −M
0 0 0

−M 0 0




 .

The matrix M is block diagonal with one of the block being of saddle-point form and the other

equal to 2βM : applying Theorem 2.1 and Theorem 4.1, and noting that K ∈ IRn×n, we find that

the M has n negative eigenvalues that lie in

[
1

2
hp−2

(

dh2 −
√

d2h4 + 4C2
)

, 1

2
hp
(

D −
√

D2 + 4c2
)]

.

Applying Theorem 4.4, A will have n eigenvalues that lie in

[
1

2
hp−2

(

dh2 − 2Dh2 −
√

d2h4 + 4C2
)

, 1

2
hp
(

3D −
√

D2 + 4c2
)]

.

Since D < 2c
3
, these n eigenvalues will all be negative and this accounts for all of the negative

eigenvalues of A.
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Corollary 4.5 Consider the p-dimensional problem with p ∈ {2, 3}. Let

A =






2βM 0 −M
0 M KT

−M K 0




 ,

assume that Theorem 2.1 holds and β > 1

2
. Then there exists a constant C̃ ≈ C such that

λ(A) ⊂ I− ∪ I+,

where

I− =
[

1

2
hp−2

(

dh2 − 2Dh2 −
√

d2h4 + 4C2
)

, 1

2
hp
(

3D −
√

D2 + 4c2
)]

,

I+ =

[

dhp,

(

βDhp +

√

β2D2h2p + C̃2h2p−4

)]

.

If β ≫ C̃
D
h−2, then

σmin(A) ≥ 1

2
hp
(√

D2 + 4c2 − 3D
)

,

σmax(A) ≤
(

βhp +

√

β2h2p + C̃2h2p−4

)

≈ 2βhp,

giving, κ(A) = O(β−1).

Consider the case β ≤ 1

2
. Initially we will apply Theorem 4.1 to bound the eigenvalues of

A. Now, λmin(A) = 2βdhp, ‖A‖ = Dh2, and there exist constants c̃ ≥ c and C̃ ≈ C such that

σmin(B) = c̃hp and σmax(B) = C̃hp−2. Therefore, λ(A) ∈ I− ∪ I+, where

I− =

[

hp−2

(

βdh2 −
√

β2d2h4 + C̃2

)

, hp

2

(

D −
√

D2 + 4c̃2
)]

, (4.13)

I+ =
[

2βdhp, 1

2
hp−2

(

Dh2 +
√

D2h4 + 4C̃2
)]

. (4.14)

Alternatively, define

M =






0 0 −M
0 M K

−M K 0




 , E =






2βM 0 0

0 0 0

0 0 0




 ,

then A = M + E .
We will use Theorem 4.2 to bound the eigenvalues of M. Now, Y T

A AYA = M, BYA = K,

BZA = −M and there exist constants c̃ ≥ c and C̃ ≈ C such that σmin(B) = c̃hp and σmax(B) =

C̃hp−2. Let Z̃ = [−M−1,K−1]T , then

µZ
min = min

xz

xT
z Z̃

TAZ̃xz

xT
z Z̃

T Z̃xz

= min
x̃z

x̃T
z K

−1MK−1x̃z

x̃T
z (M−2 +K−2) x̃z

≥ d3c2hp+4

C2 (d2 + c2)
,

µZ
max = max

xz

xT
z Z̃

TAZ̃xz

xT
z Z̃

T Z̃xz

= max
x̃z

x̃T
z K

−1MK−1x̃z

x̃T
z (M−2 +K−2) x̃z

≤ D3C2hp

c2 (D2h4 + C2)
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In fact, µZ
min = c1h

p+4 and µZ
max = c2h

p, where c1 ≈ d3c2

C2(d2+c2)
and c2 ≈ D3

c2
are constants

independent of h.

Combining Corollary 4.3 and Theorem 4.4, and using the fact that λmin(E) = 0 and λmax(E) =

2βdh2, we are able to find alternative bounds for the eigenvalues of A : λ(A) ⊂ Ĩ− ∪ Ĩ+, where

A is defined by (4.1),

Ĩ− =
[

−C̃hp−2, hp

2

(

D + 4βD −
√

D2 + 4c̃2
)]

, (4.15)

Ĩ+
1 =

[
c1h

p+4, (c2 + 2βD)hp
]
, (4.16)

Ĩ+
2 =

[
1

2
hp
(

d+
√

d2 + 4c2
)

, 1

2
hp−2

(

(1 + 2β)Dh2 +
√

D2h4 + 4C
)]

, (4.17)

Ĩ+
3 =

[

max (l1,min (l2, l3)) , 1

2
hp−2

(

(1 + 2β)Dh2 +
√

D2h4 + 4C̃
)]

, (4.18)

where

l1 ≥ −D
2 + c̃2

2c1
hp−4 +

D2 + c̃2

2c1
hp−4

√

1 +
4c21c̃

2h8

(D2 + c̃2)2

=
c1c̃

2

D2 + c̃2
hp+4 − c31c̃

4

(D2 + c̃2)3
hp+12 + O(hp+20)

≥ c3h
p+4,

l2 = 1

2
hp
(

d+
√

d2 + 4c̃2
)

,

l3 ≥ 1

2

(

−
(
d2h4 + C2

)
hp−4

d

)

+

√

(d2h4 + C2)2 h2p−8

d2
+ 4d2h2p

= 1

2

(

−
(
d2h4 + C2

)
hp−4

d

)

+

(
d2h4 + C2

)
hp−4

d

√

1 +
4d4h8

(d2h4 + C2)2

=
d3hp+4

d2h4 + C2
− d7hp+12

(d2h4 + C2)3
+ O(hp+20)

≥ c4h
p+4,

where c3 and c4 are constants independent of h and β. Hence λmin+ (A) ≥ max (c3, c4)h
p+4.

Combining (4.13), (4.14), (4.15), (4.16), (4.17), and (4.18) we obtain the following result.
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Corollary 4.6 Consider the p-dimensional problem with p ∈ {2, 3}. Let

A =






2βM 0 −M
0 M KT

−M K 0




 ,

assume that Theorem 2.1 holds and β < 1

2
. Let λ(A) denote the spectrum of A. Then there

exist constants c1 and C̃ ≈ C such that

λ(A) ⊂ I− ∪ I+,

where,

I− =

[

hp−2

(

βdh2 −
√

β2d2h4 + C̃2

)

, hp

2

(

D −
√

D2 + 4c̃2
)]

,

I+ =
[

max
(
2βdhp, c1h

p+4
)
, 1

2
hp−2

(

Dh2 +
√

D2h4 + 4C̃2
)]

.

For both the 2D and 3D cases, if c1h4

2d
≤ β < 1

2
, we will expect the condition number of A to

be at most inversely proportional to both β and h2. For β < c1h4

2d
, we will expect the condition

number to be independent of β but at most inversely proportional to h6.

In Figure 4.1, we plot the condition number of A with respect to β for Example 3.1 in 3D (left)

and Example 3.2 in 2D (right) with a target û defined over the whole of Ω. Results are given for

h = 1

8
, h = 1

16
and, for the 2D problem, h = 1

32
. We observe that, as expected, if β ≫ C̃

D
h−2, then

the condition number of A is proportional to β but (essentially) independent of the mesh size h.

For c4h4

2d
≤ β ≤ 1

2
, the condition number varies inversely proportionally with β. Additionally, the

condition number is inversely proportional to h2. Finally, for very small β, the condition number

is independent of the regularization parameter but inversely proportional to h6.

4.3 Distributed control problems with target û only defined over a subdomain

In the case where the target û is not defined over all of the domain Ω, the matrix A defined in

(4.2) will be positive semi-definite and singular. As a result, we will use Corollary 4.3 to obtain

bounds for the eigenvalues of A.
Let A = M + E , where

M =






2βM 0 0

0 M̄ KT

0 K 0




 and E =






0 0 −M
0 0 0

−M 0 0




 .

The matrix M is block diagonal with one of the block being of saddle-point form and the other

equal to 2βM : applying Theorem 2.1, Theorem 2.3 and Corollary 4.3, and noting thatK ∈ IRn×n,

we find that the M has n negative eigenvalues that lie in

[

−Chp−2, 1

2
hp
(

D̄ −
√

D̄2 + 4c2
)]

.
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Figure 4.1: Condition number of A with respect to β for Example 3.1 in 3D (left) and Example 3.2

in 2D (right) with a target û defined over the whole of Ω. Results are shown for h = 1

8
, h = 1

16

and, for the 2D problem, h = 1

32
.

Applying Theorem 4.4, A will have n eigenvalues that lie in
[

−
(
Dh2 + C

)
hp−2, 1

2
hp
(

2D + D̄ −
√

D̄2 + 4c2
)]

.

Since D̄ ≤ D < 2c
3
, these n eigenvalues will all be negative and this accounts for all of the

negative eigenvalues of A. Additionally, the positive eigenvalues of M will bounded from below

by min
(

2βdhp, 1

2
hp
(

d̄+
√

d̄2 + 4c̃2
))

. Assuming that β > 0.5d−1
(

d̄+
√

d̄2 + 4c̃2
)

, we obtain

λmin+(A) ≥ 1

2
hp
(

d̄− 2D +
√

d̄2 + 4c̃2
)

> 0. Applying Corollary 4.3 to A, we find that the

positive eigenvalues are bounded from above by hp−2

(

βDh2 +

√

β2D2h4 + C̃2

)

.

Corollary 4.7 Let

A =






2βM 0 −M
0 M̄ KT

−M K 0




 ,

assume that Theorem 2.3 holds and β > 0.5d−1
(

d̄+
√

d̄2 + 4c̃2
)

. There exist constants

c̃ ≥ c and C̃ ≈ C independent of β and h such that

λ(A) ⊂ I− ∪ I+,

where

I− =
[

−
(
Dh2 + C

)
hp−2, 1

2
hp
(

2D + D̄ −
√

D̄2 + 4c2
)]

,

I+ =

[

1

2
hp
(

d̄− 2D +
√

d̄2 + 4c̃2
)

, hp−2

(

βDh2 +

√

β2D2h4 + C̃2

)]

.
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If β ≫ C̃
D
h−2, then there exist constants c1 and C1 such that

σmin(A) ≥ c1h
p and σmax(A) ≤ βC1h

p,

giving, κ(A) = O(β−1).

Consider the case β ≪ D̄
2D
. Similarly to the case where û is defined over the whole of Ω,

applying Theorem 2.1, Theorem 2.3 and Corollary 4.3 we obtain the following result.

Corollary 4.8 Let

A =






2βM 0 −M
0 M̄ KT

−M K 0




 ,

assume that Theorem 2.3 holds and β ≪ D̄
2D
. Then there exist constants c1, c2 and C̃ ≈ C

independent of β and h such that

λ(A) ⊂ I− ∪ I+,

where,

I− =
[

−C̃hp−2, 1

2
hp
(

D̄ −
√

D̄2 + 4c2
)]

,

I+ =
[

βc2h
p, 1

2
hp−2

(

D̄h2 +
√

D̄2h4 + 4C̃2
)]

.

Thus, for β ≪ D̄
2D
, we will expect the condition number to grow at most inversely proportion-

ally with β and h2.

In Figure 4.2, we plot the condition number of A with respect to β for Example 3.1 in 3D

(left) and Example 3.2 in 2D (right) with Target 3. Results are given for h = 1

8
, h = 1

16
and,

for the 2D problem, h = 1

32
. We observe that, as expected, if β ≫ C̃

D
h−2, then the condition

number of A is proportional to β but (essentially) independent of the mesh size h. For β ≪ D̄
2D
,

the condition number varies inversely proportionally with β and h2 : this is as we expected.

4.4 Effect of β on direct solvers applied to the saddle-point problem

Suppose that we wish to solve a system of the form As = b, where A ∈ R
N×N is symmetric,

by using a backward-stable direct method. If A is nonsingular but ill-conditioned, the relative

sensitivity of the solution is bounded by (and in the worse case equal to) the condition number

of A multiplied by the relative perturbations in b or A, [13]. In this paper, we will only consider

relative perturbations in A.
When the matrix A changes by ∆A, the exact solution s̃ of the perturbed system satisfies

(A + ∆A) s̃ = As = b, or s̃− s = − (A + ∆A)−1 ∆As. (4.1)

If κ(A) ≈ κ(A + ∆A), then we may ignore second-order terms and an approximation to (4.1) is

satisfied by ∆s ≈ s̃− s :

A∆s = −∆As, (4.2)
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Figure 4.2: Condition number of A with respect to β for Example 3.1 in 3D (left) and Example 3.2

in 2D (right) with Target 3. Results are shown for h = 1

8
, h = 1

16
and, for the 2D problem, h = 1

32
.

from which we obtain the bound

‖∆s‖ ≤
∥
∥A−1

∥
∥

2
‖∆A‖2 ‖s‖ . (4.3)

Equality can hold in this relation, [13].

We may assume that ∆A = (∆A)T [4, Theorem 3]. For the most common backward-stable

methods performed on a machine with unit roundoff u, the perturbation ∆A satisfies

‖∆A‖ ≤ uγN ‖A‖ , (4.4)

where γN is a function containing a low-order polynomial in N and charateristics of A such as

the growth factor. Charaterizations of γN are known for various conditions:

• the Cholesky factorization when A is sufficiently positive definite, [12];

• the symmetric indefinite factorization with partial pivoting, [13];

• Gaussian elimination with partial pivoting, [13];

• the modified Cholesky factorizations of [8] and [21], see [5].

If extreme growth is not exhibited (as we expect the case to be), then γN is of reasonable size

for all of these methods, i.e., uγN ≪ 1.

Combining (4.3) and (4.4) we obtain

‖∆s‖ ≤ uγNκ(A) ‖s‖ . (4.5)

Thus, if condition number of A is small, then the error will be small. The converse is not true

but it might be the case for some problems.

In interior-point methods, the singular values of the linear system split into two subgroups.

Wright [27] was able to use the fact that these subgroups are well-behaved to show that the portion



PDE-constrained optimization 23

of the solution associated with one of these subgroups has an absolute error bound comparable

to machine precision even though the overall system is extremely ill-conditioned. We will use

similar arguments to show that backward-stable methods applied to some of our linear systems

will achieve much better accuracy than we might expect from (4.5).

Let A be factorized as

A = UΣV T =
[

UL US

]
[

ΣL 0

0 ΣS

][

V T
L

V T
S

]

, (4.6)

where U and V are orthogonal matrices, and Σ is a diagonal matrix whose diagonal entries are

all positive and ordered in decreasing order. Let ΣL have dimension N̂. Assume that 0 < N̂ < N

and σ
N̂
> σ

N̂+1.

Clearly, ‖A‖ = ‖ΣL‖ ,
∥
∥A−1

∥
∥ =

∥
∥Σ−1

S

∥
∥ and κ(A) = ‖ΣL‖

∥
∥Σ−1

S

∥
∥ . Suppose that ΣL and ΣS

are individually much better conditioned than A, i.e.,

σ1

σ
N̂

≪ σ1

σN

and
σ

N̂+1

σN

≪ σ1

σN

.

This can clearly be the case for the problems considered in this paper.

We wish to solve As = b. Writing

b = bL + bS = ULδL + USδS ,

s = sL + sS = VLψL + VSψS , (4.7)

and using the fact that U and V are orthogonal matrices we obtain

‖b‖2 = ‖δL‖2 + ‖δS‖2 , ‖bL‖ = ‖δL‖ and ‖bS‖ = ‖δS‖ .

We can similarly relate s and ψ. Solving As = b is equivalent to solving

Σψ =

[

ΣLψL

ΣSψS

]

=

[

δL
δS

]

= δ. (4.8)

From (4.8) we obtain

‖bL‖ ≤ ‖ΣL‖ ‖sL‖ , ‖bS‖ ≤ ‖ΣS‖ ‖sS‖ , (4.9)

and

‖sL‖ ≤
∥
∥Σ−1

L

∥
∥ ‖bL‖ , ‖sS‖ ≤

∥
∥Σ−1

S

∥
∥ ‖bS‖ . (4.10)

When the matrix A changes, we can use the first-order approximation (4.1), ∆s = −A−1∆As.
Let ∆A = UGV T for some matrix G, then ‖∆A‖ = ‖G‖ . Now, G = UT ∆AV and we partition

G as

G =

[

GL

GS

]

=

[

GL1 GL2

GS1 GS2

]

.

Suppose that we also express ∆s as a linear combination of the columns of V, that is, ∆s = V∆ψ,

then we have [

∆ψL

∆ψS

]

= −
[

Σ−1
L GLψ

Σ−1
S GSψ

]

. (4.11)



24 H. S. Thorne

This implies that

‖∆sL‖ ≤
∥
∥Σ−1

L

∥
∥ ‖GL‖ ‖s‖ ≤

∥
∥Σ−1

L

∥
∥ ‖∆A‖‖s‖ , (4.12)

‖∆sS‖ ≤
∥
∥Σ−1

S

∥
∥ ‖GS‖ ‖s‖ ≤

∥
∥Σ−1

S

∥
∥ ‖∆A‖‖s‖ . (4.13)

(4.14)

Since ‖ΣL‖ = ‖A‖ , (4.12) implies that

‖∆sL‖
‖s‖ ≤

∥
∥Σ−1

L

∥
∥ ‖ΣL‖

‖∆A‖
‖A‖ ,

so that the change in sl relative to s compared to the relative perturbation in A can only be

blown up by κ(ΣL) rather than κ(A). In contrast, the perturbation in sS relative to s can, in

general, be blown up by κ(A). We can use the structure of G to give better bounds for ∆sL and

∆sS .

4.5 Saddle-point formulation: target û defined over the whole of Ω

Initially, we will assume that β is large. From [27, Theorem 3.1], we have the following theorem.

Theorem 4.9 Let M denote a real symmetric matrix, and define the perturbed matrix M̃
as M + E , where E is symmetric. Consider an orthogonal matrix [X1, X2], where X1 has l

columns, such that the range(X1) is a simple invariant subspace of M, where

[

XT
1

XT
2

]

M
[

X1 X2

]

=

[

L1 0

0 L2

]

and

[

XT
1

XT
2

]

E
[

X1 X2

]

=

[

E11 E12

ET
12 E22

]

.

Let d1 = sep(L1, L2) − ‖E11‖ − ‖E22‖ and v = ‖E12‖ /d1, where sep(L1, L2) =

mini,j |λi(L1) − λj(L2)| . If d1 > 0 and v < 1

2
, then there are orthonormal bases X̃1 and

X̃2 for simple invariant subspaces of the perturbed matrix M̃ satisfying
∥
∥
∥X1 − X̃1

∥
∥
∥ ≤ 2v

and
∥
∥
∥X2 − X̃2

∥
∥
∥ ≤ 2v.

Suppose that we let A = M + E , where

M =






2βM 0 0

0 M KT

0 K 0




 and E =






0 0 −M
0 0 0

−M 0 0




 .

If

X1 =






I

0

0




 and X2 =






0 0

I 0

0 I




 ,

then [X1, X2] is orthogonal, and both range(X1) and range(X2) are simple invariant subspaces

of M. From Theorem 4.9, we have

L1 = 2βM, L2 =

[

M K

K 0

]

.
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Correspondingly, E11 = 0, E22 = 0, and E12 = [0,−M ] . Observe that L2 is of saddle-point form

(4.1), with A = M and B = K. From Theorems 2.1 and 4.1, the eigenvalues of L2 lie in I− ∪ I+,

where

I− =
[

1

2
hp−2

(

dh2 −
√

d2h4 + 4C2
)

, 1

2
hp
(

D −
√

D2 + 4c2
)]

and

I+ =
[

dhp, 1

2
hp−2

(

Dh2 +
√

D2h4 + 4C2
)]

.

Thus, d1 := sep(L1, L2) − ‖E11‖ − ‖E22‖ ≥ 2βdhp − 1

2
hp−2

(

Dh2 +
√
D2h4 + 4C2

)

> 0 for

β ≫ 1

4d
h−2

(

Dh2 +
√
D2h4 + 4C2

)

. Now,

v := ‖E12‖ /d1 =
2Dh2

4βdh2 −
(

Dh2 +
√
D2h4 + 4C2

) .

Hence, v → 0 as β → +∞.

Suppose that β ≫ C
d
h−2, then Corollary 4.5 and its derivation tells us that if M ∈ R

n×n, A
has n singular values that are O(β); the remaining eigenvalues are O(1). We shall assume that

the mesh size h remains fixed. From the derivation of Corollary 4.5 and Theorem 4.9, we find

that there are orthonormal bases X̃1 and X̃2 such that

X̃1 =

[

Im
0

]

+ D
βd

[

Υ11

Υ12

]

+ O(β−2), X̃2 =

[

0

I2m

]

+ D
βd

[

Υ21

Υ22

]

+ O(β−2), (4.15)

and [

X̃T
1

X̃T
2

]

A
[

X̃1 X̃2

]

=

[

L̃1 0

0 L̃2

]

,

where Υ1 and Υ2 are O(1), and L̃1 has eigenvalues equal to the n eigenvalues of A that are O(β).

If we write the singular value decompositions of L̃1 and L̃2 as L̃1 = ŨLΣLŨ
T
L and L̃2 = ŨSΣSṼ

T
S ,

we may factorize A as

A =
[

UL US

]
[

ΣL 0

0 ΣS

][

V T
L

V T
S

]

,

where

UL = X̃1ŨL, US = X̃2ŨS , VL = X̃1ŨL, and VS = X̃2ṼS . (4.16)

When β ≫ C
d
h−2, we find that the solution of (2.6) satisfies f = O(β−1), λ = O(1) and

u = O(1), Section 5. Using (4.7) and defining g = [uT , λT ]T , we obtain
[

f

g

]

=

[

ŨLψL

0

]

+
D

βd

[

Υ11

Υ12

]

ŨLψL +

[

0

ŨSψS

]

+
D

βd

[

Υ21

Υ22

]

ṼSψS + O(β−2).

This implies that, for large β, ψS is O(1) and we can introduce a vector ρL with O(1) entries

such that ρL = βψL.

For common backward-stable methods, we can assume that |∆A| ≤ uγN |A| , [13]. Hence, we

may write ∆A as

∆A = uγN

[

βE11 ET
21

E21 E22

]

, (4.17)
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where the entries of E11, E12, E21 and E22 are O(1). Using (4.15), (4.16) and the fact that

G = UT ∆AV, we find that

G =

[

GL1 GL2

GS1 GS2

]

= uγN

[

βŨT
LE11ŨL + Ê11 Ê12

Ê21 Ê22

]

+ uγNO(β−1),

where ‖Ê11‖, ‖Ê12‖, ‖Ê21‖ and ‖Ê22‖ are O(1).

From (4.11) we have

∆ψL = −Σ−1
L

[

GL1 GL2

]
[

ψL

ψS

]

= −Σ−1
L

[

β−1GL1 GL2

]
[

ρL

ψS

]

= −uγNΣ−1
L

[

ŨT
LE11ŨL + β−1Ê11 + O(β−2) Ê12 + O(β−1)

]
[

ρL

ψS

]

.

From the derivation of Corollary 4.5, we know that
∥
∥Σ−1

L

∥
∥ = 1

2βd
+ O(β−2). Hence,

‖∆sL‖ = ‖∆ψL‖

≤ uγN

∥
∥Σ−1

L

∥
∥

∥
∥
∥

[

ŨT
LE11ŨL + β−1Ê11 + O(β−2) Ê12 + O(β−1)

]∥
∥
∥

∥
∥
∥
∥
∥

[

ρL

ψS

]∥
∥
∥
∥
∥

= u

(
c2
β

+ O(β−2)

)

,

where c2 is a constant independent of β. Hence, for β ≫ C
d
h−2, we will expect the change in sL

relative to s to be at most inversely proportional to the regularization parameter β. Similarly,

we can show that we can expect ∆sS
s

to be bounded above by a constant that is of the order

uγN . Equation 4.3 gives an upper bound that is proportional to β, which is a gross overestimate.

Finally, we observe that since ŨLψL → f as β → ∞ and f = O(β−1), if β ≫ C
d
h−2, then ‖∆f‖ / ‖f‖

will be O(u). Also, ŨSψS → g as β → ∞ and g = O(1). Hence, we will expect ‖∆u‖ / ‖u‖ to be

O(u).

In Figure 4.1, we plot ‖∆sL‖ / ‖s‖ ,‖∆sS‖ / ‖s‖ , ‖∆f‖ / ‖f‖ and ‖∆u‖ / ‖u‖ against β for

Example 3.1 with Target 1. The solution s is calculated with the backslash command in Matlab,

whilst s̃ is calculated by applying Matlab’s ldl function to factor a single precision version of A
and this factorization is then used to solve the system. For large β, we observe that, as expected,

the change in sL relative to s is inversely proportional to β but the change in sS relative to s

remains (approximately) constant. Also, as predicted, both ‖∆f‖ / ‖f‖ and ‖∆u‖ / ‖u‖ are O(u).

We will now consider the case where β is small. Let A = M + E , where

M =






2βM 0 0

0 M KT

0 K 0




 and E =






0 0 −M
0 0 0

−M 0 0




 .

If

X1 =






I

0

0




 and X2 =






0 0

I 0

0 I




 ,
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Figure 4.1: Plot of ∆sL and ∆sS with respect to β for Example 3.1 with Target 1. Results are

shown for h = 1
8 .

then [X1, X2] is orthogonal, and both range(X1) and range(X2) are simple invariant subspaces

of M. From Theorem 4.9, we obtain

L1 = 2βM, L2 =

[

M K

K 0

]

.

Correspondingly, E11 = 0, E22 = 0, and E12 = [−M,K]T . Combining Theorem 4.1 and Corol-

lary 4.3 we find that the eigenvalues of L2 lie in I− ∪ I+, where

I− =

[

1

2
hp−2

(

dh2 −
√

d2h4 + 4C2
)

,
1

2
hp
(

D −
√

D2 + 4c2
)]

,

I+ =

[

chp,
1

2
hp−2

(

Dh2 +
√

D2h4 + 4C2
)]

.

Thus, d1 := sep(L1, L2) − ‖E11‖ − ‖E22‖ ≥ chp − βDhp > 0 for β < c
D
. Now,

v := ‖E12‖ /d1 =
D

c− βD
< 1

2
.

From Theorem 4.9, we find that there exist orthonormal bases X̃1 and X̃2 such that

X̃1 =

[

Im
0

]

+ 2v

[

Υ11

Υ12

]

, X̃2 =

[

0

I2m

]

+ 2v

[

Υ21

Υ22

]

, (4.18)

and [

X̃T
1

X̃T
2

]

A
[

X̃1 X̃2

]

=

[

L̃1 0

0 L̃2

]

,

where Υ1 and Υ2 are O(1), and L̃1 has eigenvalues equal to the m eigenvalues of A that are O(β).

If we write the singular value decompositions of L̃1 and L̃2 as L̃1 = ŨSΣSŨ
T
S and L̃2 = ŨLΣLṼ

T
L ,
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we may factorize A as

A =
[

UL US

]
[

ΣL 0

0 ΣS

][

V T
L

V T
S

]

,

where

UL = X̃2ŨL, US = X̃1ŨS , VL = X̃2ṼL, and VS = X̃1ŨS . (4.19)

When β ≪ 1

2
, we find that the solution of (2.6) satisfies f = O(1), λ = O(β) and, in general,

u = O(1). Using (4.7) and defining g = [uT , λT ]T , we obtain

[

f

g

]

=

[

ŨSψS

0

]

+ 2v

[

Υ11

Υ12

]

ŨSψS +

[

0

ŨLψL

]

+ 2v

[

Υ21

Υ22

]

ṼLψL.

This implies that ψS is O(1) and ψL = ρ1 + βρ2, where ρ1 and ρ2 are vectors independent of β.

Using (4.17), (4.15), (4.16) and the fact that G = UT ∆AV, we find that

G =

[

GL1 GL2

GS1 GS2

]

= uγN

[

ŨT
LE22ṼL + 2vÊ11 ŨT

LE21ṼL + 2vÊ12

ŨT
S E

T
21ṼL + 2vÊ21 ŨT

S E11ŨS + 2vÊ22

]

+ uγNv
2Ḡ,

where E11, Ê11, Ê12, Ê21, Ê22 and Ḡ are O(1).

From (4.11) we have

∆ψL = −Σ−1
L

[

GL1 GL2

]
[

ψL

ψS

]

= −uγNΣ−1
L

[

ŨT
LE22ṼL + 2vÊ11 ŨT

LE21ṼL + 2vÊ12

]
[

ρ1 + βρ2

ψS

]

.

From Corollary 4.6, we know that
∥
∥Σ−1

L

∥
∥ = O(1) and, therefore,

‖∆sL‖ = ‖∆ψL‖

≤ uγN

∥
∥Σ−1

L

∥
∥

∥
∥
∥

[

ŨT
LE11ŨL + D

c−βD
Ê11 Ê12

]∥
∥
∥

(∥
∥
∥
∥
∥

[

ρ1

ψS

]

+ β

[

ρ2

0

]∥
∥
∥
∥
∥

)

= uγN (c2 + c3β) .

where c2 and c3 are constants independent of β. Hence, for β ≪ 1

2
, we will expect the change in

sL relative to s to initially decrease as β decreases and then to become constant. Similarly, we

can show that we can expect ∆sS
s

to be proportional uγNβ
−1 for c5h2

2d
≤ β ≪ 1

2
and to become

(approximately) constant but several orders of magnitude larger than u when β ≤ c5h2

2d
, where

c5 ≈ c2d3

C2(c2+d2+D2)
.

Now, as β → 0, the value of v tends towards a positive constant and, therefore, ŨLψL 6→ g.

Hence, we can only conclude that ‖∆g‖2 ≤ ‖∆sL‖2 + ‖∆sS‖2 . For small β, ‖∆sL‖ / ‖s‖ is

expected to initially decrease and then become constant but the dominance of ‖∆sS‖ implies

that ‖∆u‖ / ‖u‖ will initially increase and then become constant but several orders of magnitude

larger than u.

In Figure 4.2, we plot ‖∆sL‖ / ‖s‖ ,‖∆sS‖ / ‖s‖ , ‖∆f‖ / ‖f‖ and ‖∆u‖ / ‖u‖ against β for

Example 3.1 with Target 1. The solution s is calculated by using the backslash command in

Matlab, whilst s̃ is calculated by applying Matlab’s ldl function to factor a single precision
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version of A and this factorization is then used to solve the system. We observe that, as expected,

the change in sL relative to s initially decreases as β decreases and then becomes constant; the

change in sS relative to s initially increases as β decreases and then becomes constant. However,

the nice properties of sL are not reflected in the change in either f or u.
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Figure 4.2: Plot of ∆sL and ∆sS with respect to β for Example 3.1 with Target 1. Results are

shown for h = 1
8 .

4.6 Saddle-point formulation: target û defined over a subdomain of Ω

Let us consider the saddle-point system defined by (2.6) and the case where β is large. Following

the methodology for the case when û is defined over all of the domain Ω, we write A = M + E ,
where

M =






2βM 0 0

0 M̄ KT

0 K 0




 and E =






0 0 −M
0 0 0

−M 0 0




 .

If

X1 =






I

0

0




 and X2 =






0 0

I 0

0 I




 ,

then [X1, X2] is orthogonal, and both range(X1) and range(X2) are simple invariant subspaces

of M. From Theorem 4.9, we have

L1 = 2βM, L2 =

[

M̄ K

K 0

]

.

Correspondingly, E11 = 0, E22 = 0, and E12 = [0,−M ] .

The matrix L2 is of saddle-point form (4.1), with A = M̄ and B = K : Corollary 4.3 can be

used to establish eigenvalue bounds for L2. B is square and nonsingular so we can set Y = I.

The eigenvalues of L2 lie in I− ∪ I+, where

I− =
[

−Chp−2, 1

2
hp
(

D̄ −
√

D̄2 + 4c2
)]
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and

I+ =
[

chp, 1

2
hp−2

(

D̄h2 +
√

D̄2h4 + 4C2
)]

.

Now, d1 := sep(L1, L2) − ‖E11‖ − ‖E22‖ ≥ 2βdhp − 1

2
hp−2

(

D̄h2 +
√
D̄2h4 + 4C2

)

> 0 for β ≫
1

4d
h−2

(

D̄h2 +
√
D̄2h4 + 4C2

)

, and

v := ‖E12‖ /d1 =
2Dh2

4βdh2 −
(

D̄h2 +
√
D̄2h4 + 4C2

) .

Hence, v → 0 as β → +∞. From Theorem 4.9 and the above derivation, we deduce the following

result.

If the regularization parameter β ≫ C
d
h−2, then f = O(β−1), u = O(1) and λ = O(1),

Section 6. Similarly to the case where the target û is defined over the whole of Ω, we can show

that if β ≫ C
d
h−2, we will expect the change in sL relative to s to be at most inversely proportional

to β and for the change in sS relative to s to be roughly constant as β increases. As a result, we

will expect ‖∆f‖ / ‖f‖ and ‖∆u‖ / ‖u‖ to be O(u).

In Figure 4.3, we plot ‖∆sL‖ / ‖s‖ ,‖∆sS‖ / ‖s‖ , ‖∆f‖ / ‖f‖ and ‖∆u‖ / ‖u‖ against β for

Example 3.1 with Target 3 and h = 1
8 . The solution s is calculated by using the backslash

command in Matlab, whilst s̃ is calculated by applying Matlab’s ldl function to factor a single

precision version of A and this factorization is then used to solve the system. For large β,

we observe that, as expected, the change in sL relative to s is inversely proportional to β but

the change in sS relative to s remains (approximately) constant. Also, both ‖∆f‖ / ‖f‖ and

‖∆u‖ / ‖u‖ are (approximately) constant.
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Figure 4.3: Plot of ∆sL and ∆sS with respect to β for Example 3.1 with Target 3. Results are

shown for h = 1
8 .

For β ≪ D̄
2D
, anticipating the nullspace method in Section 6, we find that f and u are O(1),

whilst λ = O(β). In a similar manner to the case where û is defined over the whole of Ω, we can

show that the change in sL relative to s will initially decrease as β decreases and then remain
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(approximately) constant. However, we will expect the change in sS relative to s to be inversely

proportional to β as the regularization parameter decreases. As for the case when û is defined

over the whole of Ω, this does not imply that ‖∆u‖ / ‖u‖ will initially decrease as β decreases

and then remain (approximately) constant; in fact, we will expect ‖∆f‖ / ‖f‖ and ‖∆u‖ / ‖u‖ to

be inversely proportional to β for small enough β

In Figure 4.4, we plot ‖∆sL‖ / ‖s‖ ,‖∆sS‖ / ‖s‖ , ‖∆f‖ / ‖f‖ and ‖∆u‖ / ‖u‖ against β for Ex-

ample 3.1 with Target 3 and h = 1
8 . The solution s is calculated by using the backslash command

in Matlab, whilst s̃ is calculated by applying Matlab’s ldl function to factor a single precision

version of A and this factorization is then used to solve the system. We observe that, as expected,

the change in sL relative to s initially decreases as β decreases and then becomes constant; the

change in sS relative to s increases as β decreases. However, ‖∆f‖ / ‖f‖ and ‖∆u‖ / ‖u‖ are

inversely proportional to β for small enough β.
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Figure 4.4: Plot of ∆sL and ∆sS with respect to β for Example 3.1 with Target 3. Results are

shown for h = 1
8 .

5 Schur complement method

A common method for solving systems of the form (2.6) is to reduce it to a series of smaller

systems that need to be solved. If A is nonsingular, then we can form the Schur complement

factorization:

[

A BT

B 0

]

=

[

I 0

BA−1 I

][

A 0

0 −BA−1BT

][

I A−1BT

0 I

]

.

Thus, if
[

A BT

B 0

][

x

y

]

=

[

b1
b2

]

,
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then

y = −(BA−1BT )−1
(
b2 −BA−1b1

)
,

x = A−1
(
b1 −BT y

)
.

In terms of (2.6), A is only non-singular if the target û is defined over all of Ω. Applying the

Schur complement method to (2.6) we obtain

λ = −S−1
(
d −KM−1b

)
,

f = 1

2β
λ,

u = M−1 (b −Kλ) ,

where

S = 1

2β
M +KM−1K. (5.1)

Thus, it is necessary to be able to carry out solves with M and the Schur complement S. Clearly,

solves with M are independent of the regularization parameter β : there are good methods

available for efficiently carrying out these solves [25].

Using the assumptions of Section 2.1, from Theorem 4.4 we obtain

λmin(S) ≥ 1

2β
λmin(M) + λmin

(
KM−1K

)

= d
2β
hp + c1h

p,

λmin(S) ≤ min
(

1

2β
λmin(M) + λmax

(
KM−1K

)
, 1

2β
λmax(M) + λmin

(
KM−1K

))

= min
(

d
2β
hp + C1h

p−4, D
2β
hp + c1h

p
)
,

λmax(S) ≤ 1

2β
λmax(M) + λmax

(
KM−1K

)

= D
2β
hp + C1h

p−4,

λmax(S) ≥ max
(

1

2β
λmin(M) + λmax

(
KM−1K

)
, 1

2β
λmax(M) + λmin

(
KM−1K

))

= max
(

d
2β
hp + C1h

p−4, D
2β
hp + c1h

p
)
,

where c1 ≈ c2

D
and C1 ≈ C2

d
are constants independent of β and h. Hence,

κ(S) ≤ D + 2βC1h
−4

d+ 2βc1

and if β ≥ D−d

2(C1−c1h4)
h4, then

κ(S) ≥ d+ 2βC1h
−4

D + 2βc1
;

otherwise

κ(S) ≥ D + 2βc1
d+ 2βC1h−4

.

For β ≫ d
2c1
, we have

κ(S) ≤ D + 2βC1h
−4

d+ 2βc1
≈ C1

c1
h−4

and

κ(S) ≥ d+ 2βC1h
−4

D + 2βc1
≈ C1

c1
h−4.
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Therefore, we will expect the condition number to be inversely proportional to h4. For β ≪
D−d

2(C1−c1h4)
h4 < D

2C1
h4, we find that

κ(S) ≤ D + 2βC1h
−4

d+ 2βc1
≈ D

d

and

κ(S) ≥ D + 2βc1
d+ 2βC1h−4

≈ D

d
.

Thus, the condition number will be bounded from above by a constant.

The upper bound for κ(S) is monotonically increasing as β increases. If β ≥ D−d

2(C1−c1h4)
h4,

then the lower bound is also monotonically increasing as β increases.

For intermediate values,

κ(S) ≤ D + 2βC1h
−4

d+ 2βc1
≤ C2βh

−4 + C3,

where C2 and C3 are constants independent of β and h. We can also show that

κ(S) ≥ d+ 2βC1h
−4

D + 2βc1
≥ c2βh

−4 + c3,

where c2 and c3 are constants independent of β and h. Thus, as β increases, it is reasonable to

expect the condition number of S to increase at a rate proportional to β. For small mesh sizes,

h, the condition number will be at most inversely proportional to h4.

In Figure 5.1, we plot the condition number of S = BA−1BT with respect to β for Example 3.3

with a target û defined over all of the domain Ω. Results are given for h = 1

8
, h = 1

16
and

h = 1

32
. We observe that, as expected, if β ≫ dD

2c2
, then the condition number of ZTAZ is

inversely proportional to h4 but (essentially) independent of the regularization parameter β. For

β ≪ dDh4

2C2 , the condition number independent of both β and h : this is as we expected. Finally, for

intermediate values, as β decreases, the condition number of S decreases at a rate proportional

to β. Additionally, the condition number is inversely proportional to h4.

Remark 5.1 If the mesh size h remains fixed and β ≫ dD

2c2
, then we will expect u and λ to be

O(1), and f to be O(β−1). If β ≪ dD

2c2
, we will expect λ to be O(β), whilst f and u will be O(1).

6 Nullspace method and spectral properties

The nullspace method is another commonly used method that recasts the saddle-point system

into systems of reduced order. Consider the solution of (4.1). Suppose that B ∈ R
m×n. Let the

columns of Z ∈ R
n×(n−m) span the nullspace of B and the columns of Y ∈ R

n×m span the range

space of BT , then we can write x = Y xy + Zxz, where xy ∈ R
m and xz ∈ R

n−m. Substituting

this into (4.1) and premultiplying the resulting system by






Y T 0

ZT 0

0 I





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Figure 5.1: Condition number of S = BA−1BT with respect to β for Example 3.3 with target û

defined over the whole of Ω. Results are shown for h = 1

8
, h = 1

16
and h = 1

32
.

we obtain 




Y TAY Y TAZ Y TBT

ZTAY ZTAZ 0

BY 0 0











xy

xz

y




 =






Y T s

ZT s

t




 .

Thus, we can solve (4.1) by carrying out the following steps:

• Solve BY xy = b2;

• Solve ZTAZxz = ZT (b1 −AY xy);

• Set x = Y xy + Zxz;

• Solve Y TBT y = Y T (b1 −Ax).

There are many possibilities for the matrices Y and Z but we will focus on three standard

choices for Z and two standard choices for Y. One possibility is to use the full QR factorization:

let QR = [Y Z]
[
RT 0T

]T
be an orthogonal factorization of BT , where R ∈ R

m×m is upper

triangular. For small choices of mesh size h, the QR factorization of BT , where B is defined by

(4.2), will be very expensive to form and, hence, we will not consider this method for forming Y

and Z. Now, the simplest choice for Y is Y = BT . Since

B =
[

−M K
]

,

we find that solving BY xy = b2 is equivalent to solving

(
M2 +K2

)
xy = b2.

From our analysis in Section 4, we know that there exist constants c̃ ≥ c and C̃ ≈ C such

that λmin(M
2 + K2) = c̃2h2p and λmax(M

2 + K2) = C̃2h2p−4. Thus, this system will become

increasingly ill-conditioned as the mesh size h is refined. Alternatively, we can use a generalized

form of the nullspace method:
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• Find x̂ such that Bx̂ = b2;

• Solve ZTAZxz = ZT (b1 −Ax̂);

• Set x = x̂+ Zxz;

• Find y such that BT y = b1 −Ax.

If we choose a symmetric matrix G such that ZTGZ is nonsingular, then we can find x̂ such that

Bx̂ = d by solving
[

G BT

B 0

]

︸ ︷︷ ︸

P

[

x̂

ŷ

]

=

[

0

b2

]

.

Similarly, once x has been calculated we can obtain y by solving

[

G BT

B 0

][

x̃

y

]

=

[

b1 −Ax

0

]

.

Note that x̃ = 0 when x is exact.

Considering our problem (2.6), if we set

G =

[

0 0

0 I

]

,

then we obtain

PI =






0 0 −M
0 I KT

−M K 0




 .

It is straightforward to see that solves with PI will only require the solution of two systems with

coefficient matrix M. As noted in Section 5, since M is a mass matrix, there are a number of

efficient methods available to us to carry out these solves. We note that P is sometimes called a

constraint preconditioner [15] for A. If ZTGZ is symmetric and positive definite, it may be used

in combination with a projected preconditioned conjugate gradient method to solve saddle-point

systems of the form (4.1) that have ZTAZ symmetric and positive definite [9]. See [18] for a

discussion on the use of constraint preconditioners for solving problems of the form (1.1)–(1.3).

Two further possibilities for defining Z are

Z =

[

M−1K

I

]

or Z =

[

I

K−1M

]

.

We will consider these two choices for Z and analyse how the condition number of ZTAZ varies

with the regularization parameter β. As a result, we hope to be able to choose the optimal value

of Z for our problems.

Consider the case Z =
[
KM−1, I

]T
. Given A as in (4.2), we obtain

ZTAZ = M̄ + 2βKM−1K.
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If the target û is defined over all of the domain Ω, then M̄ = M and ZTAZ = 2βS, where S is

the Schur complement defined by (5.1). Hence, the condition number of ZTAZ will be equal to

the condition number of S.

Suppose that the target û is only defined over a sub-domain of Ω. Consider the Rayleigh

quotient of ZTAZ. Clearly, if vT M̄v = 0 and ‖v‖ = 1, then

vTZTAZv = 2βvTKM−1Kv,

and, assuming that Theorem 2.3 and Assumption 2.1 hold,

2βc̄2

D
hp ≤ vTZTAZv ≤ 2βC̄2

d
hp−4; (6.1)

if vT M̄v 6= 0 and ‖v‖ = 1, then

d̄hp +
2βc2

D
hp ≤ vTZTAZv ≤ D̄hp +

2βC2

d
hp−4. (6.2)

Consider the case where β is small. Suppose that we compare the lower bounds in (6.1)–(6.2). If

β ≪ d̄dh4

2C̄2 , then we can assume that the eigenvector vmin corresponding to λmin(Z
TAZ) will be

such that vT
minM̄vmin = 0 and, hence, we obtain λmin(Z

TAZ) ≥ 2βc̄2

D
hp. Clearly, λmax(Z

TAZ) ≤
D̄hp + 2βC2

d
hp−4.

Consider the case where β is large. Comparing the lower bounds in (6.1)–(6.2), we observe

that if β ≫ d̄D
2(c̄2−c2)

, then λmin(Z
TAZ) ≥ d̄hp + 2βc2

D
hp and λmax(Z

TAZ) ≤ D̄hp + 2βC2

d
hp−4.

Hence, we obtain the following:

• if β ≪ dD̄h4

2C̄2 , then κ(ZTAZ) ≤ D(dD̄β−1+2C2h−4)
2c̄2d

≈ DD̄β−1

2c̄2
;

• if β ≫ d̄D
2(c̄2−c2)

, then κ(ZTAZ) ≤ D(dD̄+2βC2h−4)
d(d̄D+2βc2)

.

If β ≫ d̄D
2(c̄2−c2)

, then κ(ZTAZ) is monotonically increasing and, if β ≫ d̄D

2c2
, we have κ(ZTAZ) ≈

C2D

c2d
h−4.

In Figure 6.1, we plot the condition number of ZTAZ = M̄ + 2βKM−1K with respect to

β for Example 3.3 with Target 3. Results are given for h = 1

8
, h = 1

16
and h = 1

32
. We observe

that, as expected, if β ≫ d̄D

2c2
, then the condition number of ZTAZ is inversely proportional to

h4 but independent of the regularization parameter β; for β ≪ dD̄h4

2C̄2 , the condition number is

independent of h but inversely proportional to β : this is as we expected. Finally, for intermediate

values, as β increases, the condition number of ZTAZ increases.

Now consider the case Z =
[
I, MK−1

]T
. Given A as in (4.2), we obtain

ZTAZ = 2βM +MK−1M̄K−1M.

Let us firstly assume that the target û is defined over all of Ω, in which case, M̄ = M. If ‖v‖ = 1,

then from Theorem 2.1

d
(
2β + d2

C2h
4
)
hp ≤ vTZTAZv ≤ Dhp

(
2β + D2

c2

)
,
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Figure 6.1: Condition number of ZTAZ = M̄ + 2βKM−1K with respect to β for Example 3.3

with Target 2. Results are shown for h = 1

8
, h = 1

16
and h = 1

32
.

and

κ(ZTAZ) ≤ C2D

c2d

(
2βc2 +D2

2βC2 + d2h4

)

.

We note that this upper bound is monotonically decreasing as β increases and, hence, we will

expect the condition number to improve as β increase. For β ≪ d2

2C2h
4, the condition number of

ZTAZ will be bounded above by a function that is approximately equal to C3D3

c2d3 h
−4. If β ≫ D2

2c2
,

then κ(ZTAZ) is bounded above by a function that is approximated by D
d
.

In Figure 6.2, we plot the condition number of ZTAZ = 2βM+MK−1MK−1M with respect

to β for Example 3.3 with a û defined over the whole of Ω. Results are given for h = 1

8
, h = 1

16

and h = 1

32
. We observe that, as expected, if β ≫ D3

2c2d
, then the condition number of ZTAZ is

inversely proportional to h4 but independent of the regularization parameter β; for β ≪ d3h4

2C2D
,

the condition number independent of h and β : this is as we expected. Finally, for intermediate

values, as β decreases, the condition number of ZTAZ also decreases.

Now suppose that the target û is only defined on a sub-domain of Ω. If ‖v‖ = 1 and

M̄K−1Mv 6= 0, then

dhp
(
2β + dd̄

C2h
4
)
≤ vTZTAZv ≤ Dhp

(
2β + DD̄

c2

)
;

if ‖v‖ = 1 and M̄K−1Mv = 0, then

2βdhp ≤ vTZTAZv ≤ 2βDhp.

Hence, λmin(Z
TAZ) ≥ 2βdhp, λmax(Z

TAZ) ≤ Dhp
(
2β + DD̄

c2

)
. Note that as β increases, this

upper bound on κ(ZTAZ) will decrease and, hence, we will expect the condition number to

decrease. If β ≫ DD̄

2c2
, then κ(ZTAZ) . D

d
; if β ≪ DD̄

2c2
, then κ(ZTAZ) . D2D̄

2c2d
β−1.

In Figure 6.3, we plot the condition number of ZTAZ = 2βM+MK−1M̄K−1M with respect

to β for Example 3.3 with Target 3. Results are given for h = 1

8
, h = 1

16
and h = 1

32
. We observe
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Figure 6.2: Condition number of ZTAZ = 2βM +MK−1MK−1M with respect to β for Exam-

ple 3.3 with û defined over the whole of Ω. Results are shown for h = 1

8
, h = 1

16
and h = 1

32
.
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Figure 6.3: Condition number of ZTAZ = 2βM +MK−1M̄K−1M with respect to β for Exam-

ple 3.3 with Target 2. Results are shown for h = 1

8
, h = 1

16
and h = 1

32
.

that, as expected, if β ≫ DD̄

2c2
, then the condition number of ZTAZ is independent of the both the

mesh size h and regularization parameter β; for β ≪ DD̄

2c2
, the condition number is independent

of h but inversely proportional to β.
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7 Conclusions

We have presented results about the spectral properties of the discretized systems that arise in

distributed control problems: the PDE in the constraints is assumed to be the Poisson problem.

The distributed control problems considered include a target û. If û is defined over the whole of

the domain, then we have shown that the condition number of the resulting saddle-point system

will be bounded from above by a function that is independent of of the regularization parameter

β but inversely proportional to h6 for β smaller than c1h
4, where h is the mesh size and c1 is a

constant independent of h and β; if c1h
4 ≪ β < 1

2
, then the condition number will be bounded

from above by a function that is inversely proportional to β and h2; if β ≫ c2h
−2, where c2 is

a constant independent of h and β, the condition number is bounded from above by a function

that is independent of h but proportional to β. Conversely, if û is only defined over a sub-domain

of the overall problem, then the condition number is no longer bounded from above by a function

that is independent of β when β is small: the upper bound is inversely proportional to β and h2.

In all of our numerical examples, we observed that the behaviour of the upper bound was well

reflected in the calculated condition number. We were also able to show that if β is large and a

backward-stable direct method is used to solve the saddle-point system, then the large condition

number is not reflected in the relative error of f and u : the relative error in these components is

of order machine precision. However, this is not the case if β is small.

If the Schur complement method is used to solve the saddle-point system when û is defined

over the whole of the domain, we were able to show that as β → 0, the condition number of the

Schur complement converges to the condition number of the mass matrix M. As β → +∞, the

condition number of the Schur complement converges to κ(M) (κ(K))2 . Hence, refining the mesh

will result in a larger condition number. We obtain more favourable condition numbers when the

regularization parameter is small.

Alternatively, we could solve the saddle-point system by using a nullspace method. We have

analyzed two different choices for the nullspace and were able to show that the spectral properties

and, hence, the condition number, significantly altered when we changed which nullspace was

used.

In practice, as the mesh is refined, the resulting linear systems will become too large for direct

methods to be feasible and iterative methods will be required. The large condition numbers of

the systems analyzed in this paper mean that popular iterative methods, for example, Krylov

methods, may perform many iterations before reaching the desired level of accuracy [20, 24]. As

a result, a preconditioner should be used such that the condition number of the preconditioned

system is small. Only a handful of papers in the literature consider the saddle-point structure

of the matrices when solving distributed control problems of the type considered in this paper,

see, for example, [18, 22]. We hope that the analysis in this paper will be a building block for

the derivation of preconditioners that will be effective for realistic values of the regularization

parameter.

In this paper, we have concentrated on distributed control problems containing the Poisson

problem. In many applications, this may be replaced by the Stokes or Navier-Stokes problem [3].

In these cases, the constraints will be degenerate but it is possible to deal with this degeneracy.

Similar methods to those used in this paper can be applied to characterize the spectral properties

of the resulting saddle-point systems, the Schur complement, and the reduced system from the

nullspace method.
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