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ABSTRACT

Optimization problems with constraints that contain a partial differential equation arise widely in many
areas of science. In this paper, we consider distributed control problems in which the 2- and 3-dimensional
Poisson problem is the PDE. If a discretize-then-optimization approach is used to solve the optimization
problem, then a large dimensional, symmetric and indefinite linear system must be solved. In general,
distributed control problems include a regularization term, the size of which is determined by a real value
known as the regularization parameter. The spectral properties and, hence, the condition number of the
linear system are highly dependent on the size of this regularization parameter. We derive intervals that
contain the eigenvalues of the linear systems and, using these, we are able to show that if the regularization
parameter is larger than a certain value, then backward-stable direct methods will compute solutions to
the discretized optimization problem that have relative errors of the order of machine precision: changing
the value of the regularization parameter within this interval will have negligible effect on the accuracy
but the condition number of the system may have dramatically changed. We also analyse the spectral
properties of the Schur complement and reduced systems derived via the nullspace method. Throughout

the paper, we complement the theoretical results with numerical results.
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1 Introduction

In this paper, we consider the linear algebraic properties of distributed control problems after
their discretization. The problems considered consist of a cost functional to be minimized subject
to a partial differential equation (PDE) posed on a domain in © C IR? or IR? (in this case, the
Poisson equation):

1 2 2
min 5 lu = 22 0y + B 112 (1)
subject to — V*u=f in Q (1.2)
with w=g¢g or g—u =g on 6f2. (1.3)
n

Here, the function @ (the ‘desired state’) is known and we want to find u that satisfies the
PDE and is as close to @ as possible in the Ly norm sense over the domain Q) C Q for which 4 is
known. In order to do this, the right-hand side of the PDE, f, (also known as the ‘control’) can
be varied. The second term in the cost functional (1.1), a Tikhonov regularization term, is added
because the problem may be either ill-posed or the right-hand side of the PDE, f, rapidly varies
across the domain 2. In general, the Tikhonov parameter 3 needs to be determined, although it
is often selected a priori — a value around 3 = 1072 is commonly used (see [6,11,14] ).

In PDE-constrained optimization there is the choice as to whether to discretize-then-optimize
or optimize-then-discretize, and there are differing opinions regarding which route to take (see
Collis and Heinkenschloss [6] for a discussion). We have chosen to discretize-then-optimize, as
then we are guaranteed symmetry in the resulting linear system. The underlying optimization
problems are naturally self-adjoint and by this choice we avoid non-symmetry due to discretization
that can arise with the optimize-then- discretize approach (as shown in, for example, Collis and
Heinkenschloss [10]). We discuss the formulation and general structure of our discretized problem
in Section 2.

In this paper, we will consider how the size of the regularization parameter effects the spectral
properties of the linear systems associated with problems of the above form. In particular, we
will consider the overall saddle-point system (Section 4), the Schur complement (Section 5) and
the reduced system from the nullspace method (Section 6). In Section 4.4, we will also show
that if the regularization parameter (3 is large, then solving the overall saddle-point system with
a backward-stable direct method will result in the computed state and control variables being of
much higher accuracy than standard bounds based on the condition number of the system would
suggest. We draw our conclusions in Section 7.

1.1 Notation

All norms are two-norms; the eigenvalues {\;} of a matrix (or generalised eigenvalue problem) are
ordered such that \; < \p < ... < \,; the singular values {o;} of a matrix are ordered such that
01> 09 > ... > oy,. The condition number of a matrix A, k(A), is defined by k(A) := || A]| HA_IH .
We will use the following notation. We will use the notation Amin(A4), A+ (A) and Amax(A)
(0min(A), Opin+(A) and omax(A)) to denote the minimum, minimum positive and maximum
(4, B)

and Apax(A, B) denotes the minimum, minimum positive and maximum eigenvalues of the A,

eigenvalues (singular values), respectively, of a matrix A. Similarly, Amin(A, B), A+
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respectively, of the generalised eigenvalue problem Av = ABw. For each eigenvalue \;(A, B), we
denote the corresponding eigenvector by v;(A, B). We define

min® (f(x)) = min {f(2) : f(x) > 0}.

Definition 1.1 (Order notation) Let ¢ be a scalar, vector, or matrix function of a positive
variable «, let p be fixed, and let ¢, and ¢; denote constants.

e If there exists ¢, > 0 such that ||¢| < ¢yaP for all sufficiently small/large «, we write

¢ = O(aP).

e If there exists ¢; > 0 and ¢, > 0 such that ¢a? < ||¢]| < cyaP for all sufficiently
small/large o, we write ¢ = ©(aP).

2 Formulation and structure

We have chosen to discretize our problem with finite elements. In order to use these, we require
weak formulations of (1.1)—(1.3). For definiteness and clarity we describe the formulation for the
purely Dirichlet problem; the formulation for the mixed and purely Neumann problem is standard
(see [7]). In the Dirichlet problem we wish to find u € H} = {u : uw € H'(Q),u = g on 6Q} such
that

/QVU-VU:/Qvf Yo € HY(Q). (2.1)

We assume that Voh C H} is an n-dimensional vector space of test functions with basis {¢1, ..., ¢n}.
Then, for the boundary condition to be satisfied, we extend the basis by defining functions
Gntl,-- - Pntsn and coefficients U; so that Z?;Lflil Uj¢; interpolates the boundary data. Then,

if up, € Vgh C H;(Q), it is uniquely determined by u = (Uy ...U,)T in

n n+on
up =Y Uidj+ Y Ujg;.
j=1 j=n+1
Here the ¢;, i = 1, ..., n, define a set of shape functions. We also assume that this approximation
is conforming, i.e. Vgh = span{o1,...,dpran} C H, gl(Q) Then we get the finite-dimensional

analogue of (2.1): find uy, € Vgh such that

/ Vuy, - Vo, = / Uhf Yy, € Voh.
Q Q

We also need a discretization of f, as this appears in (1.1). We discretize this using the same
basis used for u, so

fn=Y_Fjs,

j=1
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since it is well known that f;, = 0 on 0. Thus we can write the discrete analogue of the

minimization problem as

min *Huh—quJrﬁHfhllz (2.2)
up,fh 2

such that / Vuy, - Vo, = / vpf Yoy, € Voh. (2.3)
If 4 is defined over the whole of €2, we can write the discrete cost functional as

1 1 _
min ~|[up, — @[3 + B||fxl|3 = min ~u’ Mu —u’b + o + g MF, (2.4)
un,fn 2 uf 2

)

where u = (U, .. -,Un)?, f=(F,....F)", b={[d¢i}i=1.n, o =|i|[3, M = {[ ¢ip;}ij=1..n
is a mass matrix, and M = M. If 4 is only defined on part of the domain, defining

0 w; if 4; defined
"1 0 if 4; not defined,
we obtain (2.4) but «, b and M are defined by
112
a = |z,

b, = /ﬁdm

- M; ; if 4 is defined atnodes ¢ and j,
N 0 otherwise.

In this case M will be singular.
We now turn our attention to the constraint: (2.3) is equivalent to finding u such that

n n+on n
/szV<;Ui¢i>-V¢j+/ (Zzn;wz).wj:/g)(;m@)% i=1,....n
which is
n+on
Ui | Voi-Voj=) Fi | ¢id; Vi Vi, j=1,...,n
Z / J Z / j sz:_l / ;
or
Ku = Mf+d, (2.5)

where the matrix K = {[ V¢; - V;}ij=1..n is the discrete Laplacian (the stiffness matrix) and
d contains the terms coming from the boundary values of uy. Thus (2.4) and (2.5) together are
equivalent to (2.2) and (2.3).
One way to solve this minimization problem is by considering the Lagrangian
1
L= §uTMu —u'b +a+ T Mf 4+ AT (Ku — Mf — d),
where A is a vector of Lagrange multipliers. Using the stationarity conditions of £, we find that

f, u and X\ are defined by the linear system
26M 0 —-M f
0 M KT u | =
-M K 0 A

(2.6)

o T o

We will discuss the properties of this system in Section 4



4 H. S. Thorne

2.1 Properties of K, M and M

Throughout this paper, we will assume that a shape regular, quasi-uniform division of the domain
is used [7] with Py, or Qm (m > 1) finite element approximations. Using these assumptions, we
have the following theorem [7]:

Theorem 2.1 Consider the p-dimensional problem with p € {2,3}. Now

Amin (K)
Amin (M)

P, Amax(K) = ChP=2,
dhP, Amax(M) = DhP,

where ¢, d, C and D are constants independent of the mesh size h but dependent on p. In
addition, D < 2.

If the target 4 is defined over the whole domain €, then M = M. Suppose that the target
is only defined on a sub-domain of 2. We will use Cauchy’s interlacing theorem [17]:

Theorem 2.2 Suppose T' € R™*"™ is symmetric and
H *
* x|’

where H € R™*™ with m < n. Label the eigenpairs of T' and H as

T =

Tzi:aiz’ia 7::1,...,’/7/, OélSOCQS'”SaTH

Then
o <A < Qgan—m, k=1,...,m.

There exists a permutation matrix II such that

M1 =
0

My, 0]

where Mj; € R™*™ is nonsingular. Applying Theorem 2.2, the eigenvalues of Mj; lie in the
interval [Amin(HTM ), Amax (T M H)] . Hence, we have the following theorem.
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Theorem 2.3 Consider the p-dimensional problem with p € {2,3}. Assume that Theo-
rem 2.1 holds and that the target @ in (1.1) is only defined on a sub-domain of 2. Then

)\min(M) = 07 )\max(M) = tha
Amin* (M) = Jhp?

where d > d and D < D are constants independent of the mesh size h but dependent on p.

Let
7K =

K K§
Ko Ko |’

where II is as defined above and K717 € R™*™, We will use the following assumptions.

Assumption 2.1 Consider the p-dimensional problem with p € {2,3}. Assume that Theo-
rem 2.1 holds and that the target @ in (1.1) is only defined on a sub-domain of Q2. We will
assume that

Amin(K22) = hP,  Amax(K22) = ChP ™2,

where & > ¢ and C' < C are constants independent of the mesh size h but dependent on p.

2.2 The role of # in (1.1)

The second term in the cost functionals is added because, in general, the problem with be ill-posed
or a bang-bang control state would be obtained. Bang-bang control states are states which rapidly
vary from one extreme to another over the domain [16] and would often be difficult to impose
in real life applications. By varying the value of the regularization parameter (3, the balance
between the two terms in the cost functionals will be altered. If it is extremely important for
||lu — i]| to be very small but we are less concerned by the size of || f||, then a small value of 3
should be chosen. Conversely, if u does not need to closely match @ but it is important that || f||
remains small, then a larger value of G would be used. In practice, a tolerance is often given that
determines how small ||u — ul| /||4|| should be. A coarse grid is then used to cheaply determine
the value of § that corresponds to this tolerance for this grid size: this value of § is then used to
solve the problem on the refined mesh [1]. Of course, the coarse grid must be fine enough such
that grid refinement is not expected to make a marked difference in terms of the regularization.
As we will see in Section 3, there may be instances when the coarse grid has to have a very small
mesh size for this to be the case.

3 Test problems

As we proceed through this paper, we will use several test examples to illustrate our results.
For all of our tests, we discretize the problem with bilinear quadrilateral Q finite elements.
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We will consider a continuous and

a discontinuous target that are both described over the whole of €2, and a target that is only

defined on a sub-domain of €.

In Tables 3.1 and 3.2, we define the different targets used within this paper for 2D and 3D
problems, respectively. For the 2D and 3D problems, we define Q = [0, 1]2 and Q = |0, 1]3,

respectively. Additionally, let

Q: {(.’L’,y,Z) : (55_5)2"‘(?1—

e

)2+(Z_10

) < &)

We will define the domain €2 over which the target is defined: for some cases it will be useful to

split Q) into two subregions Ql and QQ.

0 & o I X
Target 1 | Q1 UQy [0, 1] Q/ | 22 —1)(2y—1)° 0
Target 2 | €, Uy {(z,y) 2 (y—3)2< L} Q/0 2 0
Target 3 | Q1 U, {(z,y) : 24 (y—3)2< L} 00 2 0
Table 3.1: Target functions for 2D problems
] Q ] O Q% a(z,y)lg, a(z,y)lg,
Target 1 | QUQ | [0,4 Q/ | (22 —1)"(2y —1)? 0
Target 2 Ql U QQ Q Q/Ql 2 0
Target 3 Ql U Qg Q o0 2 0

Table 3.2: Target functions for 3D problems

We now describe the test examples with which we will use our targets @. Our first example

has Dirichlet boundary conditions.

Example 3.1 Let Q = [0,1]% or Q = [0,1]3, and Q C Q be the domain over which i is defined.

Consider the problem

s.t.

1 N
min —||u — 4|
u,f 2

2

La(S2)

)+ﬂ|\f||%2(9)

fin Q,

o

on 90N Q
0 on 99/Q.

Our second example has Neumann boundary conditions:

(3.1)

(3.2)

Example 3.2 Let Q = [0,1] and Q) C Q be the domain over which @ is defined. Consider the

Neumann problem

—Viu=f
ou

on

'1 ~112 2
T?;m_umm®+mmuﬂn

in €,
on 0.
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Our final problem has mixed boundary conditions:

Example 3.3 Let Q = [0,1]? and Q C Q be the domain over which @ is defined. Consider the

problem

. 1 ~112 2

s.t. —V%u = fin Q, (3.5)
a4 oma0nQ
“= {o on 9 /Q, (3.6)
o
a—z — 0 on 00, (3.7)

where 021 = (0 x [0,1)) U ((0,1] x 0) and 92 = (1 x (0,1]) U ([0,1) x 1).

0
10
o=t i
f':". ‘‘‘‘‘‘‘
P
’“'f‘
L7
s
=l oy ]
10 W
o7
o0
¢y
e
o
8, o5
c 10 Py E
< %
(9]
= ¢
© /
° y
zZ P
8 10 /,' 4
[ “e
e
/e
/e
&g,
- . -
107 &, ===h=27|
SRy _
2 - h=25
o . " ..... h=2°
.. _
) h=2"
, 1 1 1 T
-10 8 6 4 2 0
10 10 10 10 10 10

[[u—1
[|]]

of 3. Results are shown for h = 1—16, h= 3—12, h= é and h = ﬁls.

I for Example 3.1 in 2D with Target 1 and different values

Figure 3.1: The relative difference

Let us consider the 2D version of Example 3.1 and the continuous target 4 defined by Target 1.
In Figure 3.1, we plot the value of ||u — 4| / ||| against the regularization parameter 3. Results
are given for different choices of mesh size h. We observe that, for the fixed 3 > 1077, the larger
values of h produce values of ||u — 4| /|G| that are of the same order of magnitude. For this
problem, it is therefore possible to find a suitable value of 3 from a coarse discretization and then
use this value of 8 with a fine discretization to compute the desired u.

If we use the Target 2, then we would not expect the same behaviour of ||u — @|| / ||@|| because
the discontinuity of the target will not be well approximated on coarse meshes. Indeed, in
Figure 3.2, if we wanted |u — @/ /||@]| =~ 0.1, then the required value of § would drastically
change as we refine h. Eventually, h will be small enough relative to the required tolerance for
our discretization to be good enough give (almost) mesh independent results.
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Figure 3.2: The relative difference ”;ﬁ}” for Example 3.1 in 2D with Target 2 and different values

of §. Results are shown for h = 1—16, h= %, h = 6%1 and h = ﬁlg.

10° —-
107 Pl |
d
(]
2 3
9] 10 "¢ e ]
g ,\.,."
k] @ "
S .
2, -3 \O\" ,'
® 10 F o R J
[S] R
4 4
4
S, ===p=27%
07, . h=p5f
4 - = 276
. h=27"
10 ‘ ‘ ‘ ‘
107 10° 10° 107 107 10°
B
Figure 3.3: The relative difference Hlﬁ;T” for Example 3.1 in 2D with Target 3 and different values
_ 1 op_ 1 p_ 1 _ 1
of 8. Results are shown for h = 1z, h = 55, h = g; and h = 35.
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If we instead consider the Target 3, then, so long as ||u — @] / ||%|| is not too small, the coarse
meshes will generate values of 3 that can be used with the finer meshes to generate solutions that
provide the correct level of accuracy with respect the target @. In Figure 3.3 we observe that the
dependency on h is only an issue for small values of 8. In fact, in this case, the mesh size it not
small enough for the required tolerance to be relevant.

Therefore, as shown in [1], it is paramount that the value of 3 is chosen very carefully and
according to the characteristics of the underlying problem. In literature, it is common to see the
choice # = 0.01 or 8 = 0.001 used [6,11,14]. From Figures 3.1-3.3 we see that such values of (3
would produce a large value of |u — 4| /||@]| . In practice, we feel that u will be needed to differ
from the target by at most 10% and, hence, for our examples, we should have 8 ~ 107> or 107,
Because the choice of 3 is very dependent on the target 4, we will not restrict ourselves to any
particular value of § in the following analysis.

4 Spectral properties of the saddle-point matrices

We observe that the system (2.6) can be written in the form

A BT X b1
4.1
\—X_/\V_/ \T_/
where
286M 0
a= "0 ] B_[—M K}. (4.2)

Systems of the general form given in (4.1) are known as saddle-point matrices [2]. We note that,
within this application, the matrix B always has full row rank and if 3 > 0, then A is guaranteed
to be nonsingular. In addition, if the target @ is defined over the whole of the domain €2, then A
will be nonsingular for 3 = 0.

4.1 Eigenvalue intervals for saddle-point problems

If A € IR™™ is positive definite and B € IR™*" has full rank, then A defined by (4.1) has m
negative eigenvalues and n positive eigenvalues [2] (similarly for A positive semidefinite and A
nonsingular). The following result from [19] can be used to establish eigenvalue bounds for (4.1).
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Theorem 4.1 Assume A is positive definite and B has full rank. Then
MA) Cc I uIlt,

where A is defined by (4.1),

= [% (Ammm) — \/Cuin(4))? +4<Umax<B>>2> 4 (”A” VIR + 4omin(B ”ZH

and

1% = Prain), (1414 IAP + 4omme(3)2) |

If A is positive semidefinite and we let B [Yg, Zg] = [L,0], where [Yp, Zp] is orthogonal and
L is nonsingular, it has been conjectured that the lower bound of I is replaced by )\min(Z%:;AZ B)
and the other bounds are unchanged, [23]. We note that, in this case, .4 is nonsingular if and
only if ZLAZp is positive definite [2]. Consider the problem

00 0110
01 0101
A=10 0 100]1 1
10 1100
(01 1[0 0|

T
Now Zp = - [ -1 -1 1 , Z%;AZB = 18 and, if the conjecture was true, we would expect

the positive eigenvalues of A to be greater than or equal to 9L. However, A ; +(A) = 0.9950.



PDE-constrained optimization 11

Theorem 4.2 Assume A is nonsingular, A is positive semidefinite and possibly nonsingular,
and let A[Ya,Za| = [La,0], where [Ya,Z4] is orthogonal and L4 has full column rank.
Assume B has full rank and let B [Yp, Zp] = [Lp,0], where [Yp, Zp] is orthogonal and Lp
is nonsingular. Then

MA CI U uLfuly,

where A is defined by (4.1),

I = [)\min(ZBAZB),)\maX(ZBAZB)]7
I;_ = [ZQ,UQ],
o= s (1 +4||B||2)] ,

lh = <mm+ +\/ At (A +4(amm(BYA))2)
E < m1n+ +\/ mln+ +4(Jmin(B))2>v
u = (HA||+\/IIAII+4HBYAH>
1 2 2
< Z(HAH+ 1Al +4IIBH>,

and [3 < omin(BZ4) is the smallest positive root of the cubic equation

1 = 1At () = 1 (Omin (BZa))® + [ BY A1) 4 A+ (4) (0in(BZ4))* = 0.

In particular,

L/ 2
l3 Z 5 <_l3 + \/l?g + 4 (Umin(BZA)) > y

b (un(BZ2) + |BYa)’
)‘min+ (A) .

If m = n, we have
I =0,

i = own®)4 (141 + V1A 44151

If m < n and A is nonsingular, then Ig“ = 0.

Proof. Let [z;y] be an eigenvector corresponding to an eigenvalue . Expanding out the
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eigenvalue problem we obtain

Az + BTy = Az, (4.3)
Bx = \y.

Consider the case y = 0. From (4.4) we find that z = Zpzp for some vector zp # 0.
Premultiplying (4.3) by 2T and substituting in # = Zpzp we obtain the interval I;". If x = 0,
then (4.3) implies that y = 0. Since [z;y] is an eigenvector, this case can not occur.

We will firstly calculate the extremes of I~. Premultiplying (4.3) by 7 and using (4.4) to
eliminate y we obtain

A2z)|? = AT Az — | Bz|)* = 0. (4.5)

Since A < 0, —Az” Az > 0. Additionally — ||Bz||> > — || B||* ||z||* . Hence
N —|B|* <0

and we obtain the lower bound of ™.

Writing * = Zpzp + Ypyp and using (4.4) to eliminate y from (4.3) we find that
N Zpzp 4+ MYy — AMAZpgzp — MYgys — BT BYgyp. (4.6)
Premultiplying (4.6) by y5YZ we obtain
N \lysll* = \EYE AZpzp — \yEYE AYpys — y5YE BY BYpys = 0. (4.7)
Premultiplying (4.6) by 25Z% we obtain

M zgl|P = A2z AZpap — M5 ZE AYpyp = 0. (4.8)

Subtracting (4.8) from (4.7) gives

0 = Xlysl® = N ||zB||* = \EYEAYBys + A\2hZ5AZpzp — yLYE BT BYpys
< Nlysl® - \EYS AYpys — ypYi B BYpys
< (W= [IvEAYE| - (@uin(B))) lys]?
< (2= 1Al = (@win(B))?) lys.

Hence, we obtain the upper bounds of I~.

Consider A > 0. Let y # 0 and Az = 0, then x = Z 4z for some vector z4 # 0. Premultiplying
(4.3) by z7 and using (4.4) to eliminate 3 we obtain

22 ZEBTBZyzn = A2 247
Note that BZ 4 must have full column rank for A to be nonsingular. Hence,

A € [omin(BZ4),||BZ4l|] - (4.9)
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Let y # 0 and Az # 0. Substituting © = Z424+ Y4y into (4.3) and (4.4), and premultiplying
(4.3) by Z}g and Y;{, respectively we obtain

ZEiBTy = Az, (4.10)
YIAYaya +YIBTy = Aya, (4.11)
BZaza+ BYaya = My. (4.12)

Consider the case z4 = 0. Now Az # 0 and, hence, y4 # 0. Using (4.12) to eliminate y from
(4.11) and premultiplying the resultant equation by y%, we obtain

0 = N lyal® = AAY{ AYaya — y4 Y BT BYaya
< (W = Muin (VT AY2) = (0in(BY4))*) lyal?
< (= M (VT AYA) = (@min(B))?) lyal”.

Hence,we obtain the lower bounds of I; . Similarly, we find that

0 = Nyal® = MWAYTAYaya — y4Y{ BT BYaya
(3 = AYFAYa] = 1BYAI?) Iyl

V

v

(3 = A¥TAYall = 1BI) vl >

This gives the upper bounds of I;r .
Consider the case z4 # 0. Then (4.10) implies that Z4 BTy # 0. From (4.5) we obtain

(X = Al = 1BI) lz]* < 0.
From this we obtain the upper bound of I; . If m = n, we also find that
(X = (Gmin(B))?) llz]* = 0

and, hence, obtain the required lower bound of Igr .

Assume that m < n and A\ < omin(BZ4). Using (4.10) to eliminate z4 from (4.12), and
premultiplying the resulting equation by y? we obtain

Xy BYaya = N ||y||> —y"BZaZiy < (AQ - (Umin(BZA))Z) lyl* < o.

Also, yI' BY4 > — || BY || ||yl ||yl - Combining the two inequalities we find that

M|BY 4]l ||yl
Iyl < - 5
A2 — (omin(BZ4))
which implies that
M| BY4l? 2
_yTBYAyA S _ H A” ”yAH

A2 — (omin(BZ4))?
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Premultiplying (4.11) by y% we find that

0 = Mlyall® — yAY{ AYaya — y4iYI BTy
A2 — (omin(BZ4))?

N = (omn(B)” )

< ()\ — Amin(YFAY,) —

VAN

(A yall® = Amin (Y4 AY2) —

which gives

0 > A ADun(YTAYL) — A ((amm(BzA))2 4 ||BYA||2) F Amin (YT AY ) (0min(BZ4))>

> A2 (YTAYL) — A ((amin(BZA))z + HBYAH?) F Amin (YT AY ) (0min (BZ4))2.

This gives the lower bound for I; . Finally, we observe that the interval given by (4.9) is
contained within I; . O

Combining Theorem 4.2 with Propositions 2.2 and 2.9 from [10] we obtain the following result.
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Corollary 4.3 Assume A is nonsingular, A is positive semidefinite and possibly nonsingu-
lar, and let A [Y4, Za] = [La,0], where [Y4, Z4] is orthogonal and L 4 has full column rank.
Assume B has full rank and let B [Yp, Zp] = [Lp,0], where [Yp, Zp] is orthogonal and Lp
is nonsingular. Then

MA) I uUIT,
where A is defined by (4.1),

I = _—UmaX(B)7% (HYB?AYBH - \/“YgAYB“Q +4(Umin<B))2>:| )

c |-omas(®) 4 (141 = VIAP + a3 |

- zt;(umu ||A||2+4HB||2)],

= max (I1, min (I3,13)),

= (i () + O (A + 4 (oin (7))

v

b (R ()4 O (4 4 (00in(B)7)
1 < )\min(Z]gAZ p) is the smallest positive root of the cubic equation

i = 12 in(Z5AZ) = p (AP + (@uin(B))?) + Min( Z5AZp) (oin(B))* = 0
and I3 < omin(BZ4) is the smallest positive root of the cubic equation

1 = 1A (A) = 1 (in(BZ))” + 1BYAIP) + A+ (A) (Gmin(BZ4))* = 0.

In particular,

AL + in(B)? | | (141 + mn(B))°

L > — + + (omin(B))?,
2)\min(Z£AZB) 4 ()\min(ZgAZB))2 ( ( ))
1 _
l3 > 5 <_l3 + \/l_g +4 (Umin(BZA)>2> )
l_3 _ (Umin(BZA>)2 + (UmaX(BYA)>2

)‘minJr (A)

If m = n, we have It = opin(B).
If m < n and either A is nonsingular, then [T = max (I1,[2) .
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4.2 Target 4 defined over whole domain ()

Suppose that the target @ is defined over the whole of the domain 2. We will consider the p-
dimensional problem with p € {2,3}. It will be necessary to consider the cases § > 1 and § <

2
separately.

Consider the case # > 1. We will start by bounding the positive eigenvalues of A by applying
Theorem 4.1. Now Amin(A) = dh?, ||A|| = 28Dh? and there exist constants é > ¢ and C' ~ C
such that ouyin(B) = ¢hP and omax(B) = ChP~2. Hence, the positive eigenvalues of A lie in

[dhp, hP2 (BDh2 +1/B2D2h4 + 02)] :

From [26, pp. 101-2] we obtain

Theorem 4.4 If M and M + £ € RV*¥ are symmetric matrices, then

)\k(M) + /\min(g) < )\k’(M + 5) < )\k’(M) + )\max(g)a k= 1> v 7N-

Let A = M + &, where

26M 0 0 0 0 —-M
M = 0 M KT and & = 0 0 0
0 K 0 -M 0 0

The matrix M is block diagonal with one of the block being of saddle-point form and the other
equal to 23M : applying Theorem 2.1 and Theorem 4.1, and noting that K € IR"*", we find that
the M has n negative eigenvalues that lie in

4072 (dn? = V@2t 4 4C?) 1w (D - VD2 1 42) |
Applying Theorem 4.4, A will have n eigenvalues that lie in
(40772 (an? = 2D0? — @Rt +4C?) 107 (3D — VD2 + 42|

Since D < %, these n eigenvalues will all be negative and this accounts for all of the negative
eigenvalues of A.
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Corollary 4.5 Consider the p-dimensional problem with p € {2,3}. Let

28M 0 —-M
A= 0o M KT |,
-M K 0

assume that Theorem 2.1 holds and # > 1. Then there exists a constant C =~ C such that
MA) c I urlt,
where
1= = [sh72 (an? - 202 — @R+ 4C?) 107 (3D - VD2 + 42|

1
2
I = [dhp, <5th + \/ B32D2h2p + é?h?p—‘iﬂ :

If > Sh™2, then

Omin(A) = 3h" (\/m— BD) ,
Umax(A) S (ﬂhp + /82h2p + 62h2p_4> ~ 2ﬂhp7

giving, k(A) = O(57).
Consider the case 8 < i. Initially we will apply Theorem 4.1 to bound the eigenvalues of

A. Now, Amin(A) = 2BdhP, ||A|| = Dh?, and there exist constants & > ¢ and C' ~ C' such that
Omin(B) = éh? and oyax(B) = Ch?~2. Therefore, A\(A) € I~ U I, where

I- = {hP‘Q (ﬁdhz —\/B2d2h* + é2> , b2 (D — /D2 + 452)} , (4.13)

o= [zﬁdhp,;hH (Dh2+ D2h4+4é2)] (4.14)
Alternatively, define
0 0 —-M 28M 0 0
M=| 0o M K |,£=]| 0 o0 0],
-M K 0 0 0 0

then A =M+ €£.

We will use Theorem 4.2 to bound the eigenvalues of M. Now, Y;{AYA = M, BY, = K,
BZ 4 = —M and there exist constants ¢ > ¢ and C ~ C such that Omin(B) = ¢h? and opax(B) =
ChP=2 Let Z = [-M~', K~7, then

7 2l ZTAZzx, . ATKTTMK i, d3c2hptt
Hpin = 1IN ST 5 = un ~T -2 —2\5 = 2 2 2\’
R AN i. TP (M2 +K=2)z, — C?(d*+?)
p 2T ZTAZzx, HKTMK 'z, D3C?hp
= mhmaX —=—=—" = Ia <

Hmax T, atZTZTsz jZX 53; (M*Z + K*2) T, 2 (D2h4 + 02)



18 H. S. Thorne

3.2 3
In fact, pZ, = c1h?™ and pZ,, = cohP?, where ¢; = CQ(‘id20+62) and cy ~ Zr are constants

independent of h.

Combining Corollary 4.3 and Theorem 4.4, and using the fact that Ayin (£) = 0 and Apax(€) =
23dh?, we are able to find alternative bounds for the eigenvalues of A : A\(A) C I~ UT", where
A is defined by (4.1),

i = :—(}hp—% W <D 48D — \/m)} : (4.15)
I = [ah?™, (c2 +28D)RP], (4.16)
I = [w (d Va2t 4c2) ,1hP2 ((1 +208) Dh? + /D2ht + 40)} , (4.17)
I = [max (i, min (I, 1)), 1hP~2 ((1 +2B) Dh? + v/ D2hA + 4@)} , (4.18)
where

2 ~2 2 ~2 2218
T Y B Y P Ll

2¢q 2¢q (D2 + &)

_ 0@ e A8 e o)
D? 4 &2 (D2 + )*

+4
C3 hp y

>
b = 30 (d+ V@ +42),

d2h4 02 hp—4 d2h4 2 2thfS
ls = é<—( +d ) i +§;) + 4d2h2
B O o W S o Ly P 0
: d d (d2h4 + C2)?
d3 hp+4 d7hp+12 420
= mpiior (BT 02)3 + O(hP™47)
Z C4h’p+47

where c3 and ¢4 are constants independent of h and 8. Hence A+ (A) > max (c3, c4) hPH4.

Combining (4.13), (4.14), (4.15), (4.16), (4.17), and (4.18) we obtain the following result.
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Corollary 4.6 Consider the p-dimensional problem with p € {2,3}. Let

28M 0 —-M
A= 0o M KT |,
-M K 0

assume that Theorem 2.1 holds and § < 1. Let A\(A) denote the spectrum of A. Then there
exist constants ¢; and C ~ C such that

MA) I uUIT,
where,

= [ (s ren e o (0 - Vo)

o= [max(zﬁdhp,clhpﬂ),%hf’*? (Dh2+ D2h4+46’2)}.

For both the 2D and 3D cases, if 51224 < B < 3, we will expect the condition number of A to
be at most inversely proportional to both 3 and h2. For 8 < C1224,

number to be independent of # but at most inversely proportional to hS.

we will expect the condition

In Figure 4.1, we plot the condition number of A with respect to 3 for Example 3.1 in 3D (left)
and Example 3.2 in 2D (right) with a target @ defined over the whole of Q. Results are given for
h =1, h =1L and, for the 2D problem, h = L. We observe that, as expected, if 3 > Sh=2, then
the condition number of A is proportional to 5 but (essentially) independent of the mesh size h.
For % < 8 <1, the condition number varies inversely proportionally with 8. Additionally, the
condition number is inversely proportional to k2. Finally, for very small 3, the condition number
is independent of the regularization parameter but inversely proportional to hS.

4.3 Distributed control problems with target @ only defined over a subdomain

In the case where the target @ is not defined over all of the domain 2, the matrix A defined in
(4.2) will be positive semi-definite and singular. As a result, we will use Corollary 4.3 to obtain
bounds for the eigenvalues of A.

Let A =M + &, where

26M 0 0 0 0 —M
M = 0 M KT and & = 0 0 0
0 K 0 -M 0 0

The matrix M is block diagonal with one of the block being of saddle-point form and the other
equal to 26M : applying Theorem 2.1, Theorem 2.3 and Corollary 4.3, and noting that K € IR™*",
we find that the M has n negative eigenvalues that lie in

[—Chp’z, P (D _ VD + 402)} .
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—h = 1/8
1071 ---h=1/16]
- - =h=1/32

K(A)
K(A)

. .
-10 -5 0 5 10
10

Figure 4.1: Condition number of A with respect to 3 for Example 3.1 in 3D (left) and Example 3.2
in 2D (right) with a target @ defined over the whole of 2. Results are shown for h = 1, h = L
and, for the 2D problem, h = .

Applying Theorem 4.4, A will have n eigenvalues that lie in
|~ (Dr?+ C) W2 407 (2D + D — /D2 + 4 |

Since D < D < 2, these n eigenvalues will all be negative and this accounts for all of the
negative eigenvalues of A. Additionally, the positive eigenvalues of M will bounded from below
by min (2ﬁdhp, 1hP (J—i— \/m>> . Assuming that 3 > 0.5d~! (J—l— V2 + 452) , we obtain

Amin+ (A) > L1hP (cZ— 2D + \/d? +462> > 0. Applying Corollary 4.3 to A, we find that the

positive eigenvalues are bounded from above by hP~2 <ﬂDh2 +1/B32D2h* + C~'2> .

Corollary 4.7 Let

28M 0 -M
A=1| o M KT |,
M K 0

assume that Theorem 2.3 holds and 3 > 0.5d! (J +Vd2+ 4é2> . There exist constants
¢ > c and C ~ C independent of 8 and h such that

MA) Cc I UIt,
where
I~ = [~ (pr?+C)w 2 v (2D + D - VD2 4 42)]
It = [;h” (J— 2D + m) P2 (ﬁDh2 - \/M)] :
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If 8> €h~2, then there exist constants ¢; and Cy such that
Umin(A) > Clhp and Umax(A) < Bclhpv

giving, x(A) = O(67).
Consider the case § < L. Similarly to the case where @ is defined over the whole of €,
applying Theorem 2.1, Theorem 2.3 and Corollary 4.3 we obtain the following result.

Corollary 4.8 Let

26M 0 —M
A= 0 M KT |,
-M K 0

assume that Theorem 2.3 holds and 3 < 2. Then there exist constants ci, ¢ and C~C
independent of 3 and h such that

MA) cI-uIlt,
where,
- = [-Cw2 4w (D VD24 42)]

o= [5thP,%hp—2 (Dh2+ D2h4+46~‘2)}.

Thus, for § < £, we will expect the condition number to grow at most inversely proportion-
ally with 8 and h2.

In Figure 4.2, we plot the condition number of A with respect to 8 for Example 3.1 in 3D
(left) and Example 3.2 in 2D (right) with Target 3. Results are given for h = 1, h = & and,
for the 2D problem, h = . We observe that, as expected, if 5 > €h=2, then the condition
number of A is proportional to 8 but (essentially) independent of the mesh size h. For § < 2,

the condition number varies inversely proportionally with 3 and h? : this is as we expected.

4.4 Effect of J on direct solvers applied to the saddle-point problem

Suppose that we wish to solve a system of the form As = b, where A € RYXVN is symmetric,
by using a backward-stable direct method. If A is nonsingular but ill-conditioned, the relative
sensitivity of the solution is bounded by (and in the worse case equal to) the condition number
of A multiplied by the relative perturbations in b or 4, [13]. In this paper, we will only consider
relative perturbations in A.

When the matrix A changes by AA, the exact solution § of the perturbed system satisfies

(A+AA)G=As=b, or §—s=—(A+AA) " AAs. (4.1)

If K(A) = k(A + AA), then we may ignore second-order terms and an approximation to (4.1) is
satisfied by As ~ 35— s:
AAs = —AAs, (4.2)
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—nh=18 —nh=1/8
-==h=1/16 -==h=1/16
10"t 4 10"t

= =h=1/32]]

K(A)
K(A)

10 10° 10° 10° 10% 107 10° 10° 10° 10%

Figure 4.2: Condition number of A with respect to 3 for Example 3.1 in 3D (left) and Example 3.2
in 2D (right) with Target 3. Results are shown for h = 1, h = L and, for the 2D problem, h = L.

from which we obtain the bound
[As] < || ATH], 1AAl [Is]l - (4.3)

Equality can hold in this relation, [13].
We may assume that AA = (AA)T [4, Theorem 3]. For the most common backward-stable
methods performed on a machine with unit roundoff u, the perturbation AA satisfies

IAA] < wyw (Al (4.4)

where vy is a function containing a low-order polynomial in N and charateristics of A such as
the growth factor. Charaterizations of vy are known for various conditions:

e the Cholesky factorization when A is sufficiently positive definite, [12];
e the symmetric indefinite factorization with partial pivoting, [13];

e Gaussian elimination with partial pivoting, [13];

e the modified Cholesky factorizations of [8] and [21], see [5].

If extreme growth is not exhibited (as we expect the case to be), then vy is of reasonable size
for all of these methods, i.e., uyy < 1.
Combining (4.3) and (4.4) we obtain

[As]| < uynr(A)[ls]]- (4.5)

Thus, if condition number of A is small, then the error will be small. The converse is not true
but it might be the case for some problems.

In interior-point methods, the singular values of the linear system split into two subgroups.
Wright [27] was able to use the fact that these subgroups are well-behaved to show that the portion
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of the solution associated with one of these subgroups has an absolute error bound comparable
to machine precision even though the overall system is extremely ill-conditioned. We will use
similar arguments to show that backward-stable methods applied to some of our linear systems
will achieve much better accuracy than we might expect from (4.5).

Let A be factorized as

Y. 0
0 g

Vi

A=UsvT =1y Us | VI

; (4.6)

where U and V are orthogonal matrices, and ¥ is a diagonal matrix whose diagonal entries are
all positive and ordered in decreasing order. Let ¥, have dimension N. Assume that 0 < N < N
and o > 0. ) 1

Clearly, [|All = ||S.]l, || A7 = ||=5"|| and £(A) = [|SL] |S5"]| - Suppose that ¥z, and Sg
are individually much better conditioned than A, i.e.,

o1 o1 ORN+1 o1
— <« — and Yl -,
o5 ON ON ON

This can clearly be the case for the problems considered in this paper.
We wish to solve As = b. Writing

b = bp+bs=ULér + Ugdsg,
s = sp+ss =V + Vs, (4.7)

and using the fact that U and V are orthogonal matrices we obtain
2 2 2
161" = lloLll” + losl®,  llbzll = [lozll  and  [[bs| = l|ds]| -

We can similarly relate s and 1. Solving As = b is equivalent to solving

XL or,
S = = =J. 4.8
v Esws] [55 (48)
From (4.8) we obtain
lorll < 1=zl lIscll,  Nbsll < 18l lIssl (4.9)
and
Iscll < 152 el lssll < [|=5 | bs]l- (4.10)

When the matrix A changes, we can use the first-order approximation (4.1), As = — A~ AAs.
Let AA= UGV for some matrix G, then |AA| = ||G||. Now, G = UTAAV and we partition
G as
Gr
Gs

G Gre

G —
Gs1 Gs2

Suppose that we also express As as a linear combination of the columns of V, that is, As = VA,
then we have

ZZI Gry
ZEIGSW/J

Ay,
Avg

. (4.11)
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This implies that

1Aszll < I=ZHHIGLI sl < =2 IAANs]] (4.12)
1Assll < [I=5 [ IGsI sl < [[=5 [ IAAl ] (4.13)
(4.14)
Since ||2L|| = ||A|l, (4.12) implies that
[Asr] _ -1 [AA]
o N [NDSPTI nd

so that the change in s; relative to s compared to the relative perturbation in A can only be
blown up by k(Xr) rather than x(A). In contrast, the perturbation in sg relative to s can, in
general, be blown up by k(A). We can use the structure of G to give better bounds for As;, and
ASS.

4.5 Saddle-point formulation: target u defined over the whole of )

Initially, we will assume that (3 is large. From [27, Theorem 3.1], we have the following theorem.

Theorem 4.9 Let M denote a real symmetric matrix, and define the perturbed matrix M
as M + &, where £ is symmetric. Consider an orthogonal matrix [X7, Xs], where X; has [
columns, such that the range(X1) is a simple invariant subspace of M, where

xT Ly 0 xT By Eng
M| X1 X | = al e[ x x]= .
[X’ZI“] 1 2 0 LQ an X,2T 1 2 E{Q E22
Let di = sep(Li,L2) — ||E1] — ||E22| and v = | E12|/di, where sep(Li,La) =

min, ; [\i(L1) — Aj(L2)|. If dy > 0 and v < L, then there are orthonormal bases X; and

29

X, for simple invariant subspaces of the perturbed matrix M satisfying HX1 - XIH < 2v
and HX2 — X2‘

< 2v.

Suppose that we let 4 = M + £, where

26M |0 0 0 |0 -M
M= 0 |M KT | and &= 0 |0 o0
0 |K 0 -M1|0 0
I 00
X1: 0 andX2: I 0 y
0 0 I

then [X7, Xs] is orthogonal, and both range(X;) and range(Xs2) are simple invariant subspaces
of M. From Theorem 4.9, we have
K 0

Ly = 26, L2=[M K]
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Correspondingly, E1; = 0, Foe = 0, and Eq2 = [0, —M]. Observe that Ls is of saddle-point form
(4.1), with A = M and B = K. From Theorems 2.1 and 4.1, the eigenvalues of Ly liein I~ UTIT,

where
1= = [ (an? = V@Rt 4C?) 4 (D - VD2 42|
and
o= [dhp, L2 (Dh2 + m)} .
Thus, di := sep(L1, Ls) — | En|| — || Bl > 28dh? — 1h?~2 (Dh2+\/m) > 0 for
B> Lp~2 (Dh2 + m) . Now,
2Dh?

V= ||E12H /dl = .
48dh? — (Dh2 + VDR ¥ 402)

Hence, v — 0 as 8 — +oc.

Suppose that 3 > %h_z, then Corollary 4.5 and its derivation tells us that if M € R"*" A

has n singular values that are O(f3); the remaining eigenvalues are O(1). We shall assume that

the mesh size h remains fixed. From the derivation of Corollary 4.5 and Theorem 4.9, we find
that there are orthonormal bases X 1 and f(g such that

X = [ L, Ty

Tio

To1
To9

o

+ 2 + +0(B7%),  (4.15)

Q|

d

0 I2m

S aln w]-[ 2]

where T; and Yy are O(1), and L; has eigenvalues equal to the n eigenvalues of A that are O(f3).

+0(372), X2=[ 0

and

If we write the singular value decompositions of f)l and f)g as Jil = ULZLULT and ig = USZSVST,
we may factorize A as

Y, 0 vr
A= [ U, U } Lol
L=s 0 ¥g || VT
where
Up=XU,, Usg=XyUg, Vip=XUy, and Vg= X,Vs. (4.16)

When 3 > €h~2 we find that the solution of (2.6) satisfies f = O(871), A = O(1) and
u = O(1), Section 5. Using (4.7) and defining g = [u”, \T]7, we obtain
0
_ _l’_ _

f
[ g ] B pd Usts pd

This implies that, for large 3, ¥g is O(1) and we can introduce a vector pr with O(1) entries
such that pr = BvYr.
For common backward-stable methods, we can assume that |AA| < uyy |A|, [13]. Hence, we

D D

Uryr,
0

T
T2

To1

- —2
Ty Vsis +O(B77).

Uryr, +

may write AA as
BEn E

AA =uyy
7 Es1 E

: (4.17)
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where the entries of Fy1, Fia, E2; and Fay are O(1). Using (4.15), (4.16) and the fact that
G = UTAAV, we find that

G Gre BULENWUL + By Eny 1
G= - X 12 | 4L e 087,
Gs1 Gso Ex Ey OB
where || En|, | Erzl, | B2 || and || Enol| are O(1).
From (4.11) we have
Ay, = -1 [ Gri Gra ] VL
Vs
= -1 [ 671G Gra } PL
s
= —uyps;! [ ULEWUL + BB +O(872) Fia+0(67Y) } [ ZZ‘ ] .
From the derivation of Corollary 4.5, we know that HZZlH =k T O(572). Hence,
[Asrll = [|Aye]l

< v =0 [ OFE0OL+ 87 B0 + 08 B+ 0(87) || H [ s ] H

= u <Cg + 0(6‘2)> ,

where co is a constant independent of 3. Hence, for 5 > %h_2, we will expect the change in sp,

relative to s to be at most inversely proportional to the regularization parameter . Similarly,
Asg

we can show that we can expect to be bounded above by a constant that is of the order

uvyy. Equation 4.3 gives an upper bound that is proportional to 3, which is a gross overestimate.
Finally, we observe that since Uziby, — fas 8 — oo and £ = O(8~1), if 3> Sh~2, then || Af] / |/f]
will be O(u). Also, Usihg — g as § — oo and g = O(1). Hence, we will expect |Au| /||u] to be
O(u).

In Figure 4.1, we plot [[Aspl/|[s[l,|Ass] /|[sll, |Af]/If] and [|Aull/]u] against & for
Example 3.1 with Target 1. The solution s is calculated with the backslash command in Matlab,
whilst § is calculated by applying Matlab’s 1d1 function to factor a single precision version of A
and this factorization is then used to solve the system. For large 3, we observe that, as expected,
the change in sy, relative to s is inversely proportional to § but the change in sg relative to s
remains (approximately) constant. Also, as predicted, both ||Af|| / ||f|| and [|Aul| /||u]| are O(u).

We will now consider the case where (3 is small. Let A = M + &£, where

26M |0 0 0 |0 -M
M = 0 |M KT | and &= 0 |0 0
0 |K 0 ~M |0 0

If
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— 18 sgllisll
- = =llas sl

= A
(1A ufi/tull

Figure 4.1: Plot of Asy and Asg with respect to § for Example 3.1 with Target 1. Results are

shown for h = %.

then [X1, Xs] is orthogonal, and both range(X;) and range(Xs) are simple invariant subspaces
of M. From Theorem 4.9, we obtain

M K
Ly =208M, L= .
1 /67 2 [K 0]

Correspondingly, F11 = 0, Fys = 0, and Ej2 = [—M, K]T. Combining Theorem 4.1 and Corol-
lary 4.3 we find that the eigenvalues of Lo lie in I~ U I't, where

= {;h”_Q (an? = Vi + 4c?) ,%hp (p- m)} ,
I+t = [chp, %hH (Dh2 + /D2t & 402)] .

Thus, dy := sep(L1, La) — || E11]| — || E22|| > c¢h? — BDRP > 0 for < &. Now,

D

v:=[|Erg| /di = Py

<L
From Theorem 4.9, we find that there exist orthonormal bases X 1 and Xg such that

> In, > 0
X: X:
- e[

0
Xxr - o1 | Lo
BRI

where Y7 and Y9 are O(1), and L, has eigenvalues equal to the m eigenvalues of A that are O(B).

T11
T12

To1

+ 2v
Ta2

+ 2 : (4.18)

and

If we write the singular value decompositions of f)l and ig as 1:4 = USZSUE and I:2 = ULZLVLT,
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we may factorize A as

_ >, O VLT
A=|uv Us ]| oo | | v |
where
Ur = XgﬁL, Ug = Xlﬁs, Vi, = XQVL, and Vg = Xlﬁs. (4.19)

When § < 1, we find that the solution of (2.6) satisfies f = O(1), A = O(f) and, in general,
u = O(1). Using (4.7) and defining g = [u?, A7), we obtain

)

This implies that ¢g is O(1) and ¥, = p1 + Bp2, where p; and po are vectors independent of (.
Using (4.17), (4.15), (4.16) and the fact that G = UT A AV, we find that

Usts
0

To1
Yoo

T

Viby.
T, YL

+ 2v Usipg + + 2v

Uryr

Gri Gro UEEQQVL + 21}E11 UgEgle + 2UE12 24
G = = T ~ -, . +uynvG,
Gs1 Ggso US E21VL + 2vE9; US E11Ug + 2vE99
where EH, Ella Elg, Egl, E22 and G are 0(1)
From (4.11) we have
Ay, = %1 { G Gra } VL
¥s
_ ~ ~ ~ ~ ~ - +
= —u")/NELl [ UIJ;EQQVL + 2vF1 UgEgle + 20F9 i| Pl wﬁp2
S

From Corollary 4.6, we know that HEElH = O(1) and, therefore,
[Asz] = [lAyL]
+

)

where ¢y and c3 are constants independent of 3. Hence, for 8 < 1, we will expect the change in

< uyw |32 H[ UrEnUL + Z25E11 Enp ]H (H [ z;

= uyn (c2 +e30).

sy, relative to s to initially decrease as 0 decreases and then to become constant. Similarly, we

can show that we can expect 255 to be proportional uyn3! for % < B <K 3 and to2 become
csh

53—, wWhere

(approximately) constant but several orders of magnitude larger than u when g <
243

C2(c2+d2+D2) "

c5 ~

Now, as 3 — 0, the value of v tends towards a positive constant and, therefore, Ur¢r, # ¢.
Hence, we can only conclude that [|Ag||* < ||Asp|®* + ||Ass||*. For small 8, ||[Asz|/||s|| is
expected to initially decrease and then become constant but the dominance of ||Asgl|| implies
that ||Au|| / |lu|| will initially increase and then become constant but several orders of magnitude
larger than u.

In Figure 4.2, we plot [|Asz | /[lsl [ ass] /[Is], IAL]/1£] and [|Aull/ |[u] against @ for
Example 3.1 with Target 1. The solution s is calculated by using the backslash command in
Matlab, whilst § is calculated by applying Matlab’s 1d1 function to factor a single precision



PDE-constrained optimization 29

version of A and this factorization is then used to solve the system. We observe that, as expected,
the change in sy, relative to s initially decreases as 3 decreases and then becomes constant; the
change in sg relative to s initially increases as 8 decreases and then becomes constant. However,
the nice properties of sy, are not reflected in the change in either f or u.

p— e
A N 1T -

@

10 h

SR AN
""" (1A ufi/tull

105
10

10°°

Figure 4.2: Plot of Asy and Asg with respect to § for Example 3.1 with Target 1. Results are

shown for h = %.

4.6 Saddle-point formulation: target @ defined over a subdomain of )

Let us consider the saddle-point system defined by (2.6) and the case where 3 is large. Following
the methodology for the case when u is defined over all of the domain €2, we write A = M + &,

where
26M |0 0 0 |0 -M
M = 0 |M KT | and &= 0 |0 0
0 |K 0 ~M 1[0 0
If
I 0 0
X1=|0| andXo= |1 0|,
0 0 1

then [X, X3] is orthogonal, and both range(X;) and range(Xs2) are simple invariant subspaces
of M. From Theorem 4.9, we have

Ly = 28M, L2:[M K]

K 0
Correspondingly, F11 = 0, Ego =0, and Eqo = [0, —M].
The matrix Ly is of saddle-point form (4.1), with A = M and B = K : Corollary 4.3 can be

used to establish eigenvalue bounds for Ly. B is square and nonsingular so we can set ¥ = 1.
The eigenvalues of Lg lie in I~ U I, where

- = [—ChH, 1P (D . m)}
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and

o= [chp, 12 (Dh2 D2kt + 402” .
Now, di = sep(L1, Lz) = | Buil| = | Easl| = 28dh? — {h~2 (Dh? 4 VDPhT +4C?) > 0 for § >
Lh? (Dh2 +VD?hE + 402) . and

2Dh?
48dh? — (Dh2 + VD2 ¥ 402)

vi=[|Epl /di =

Hence, v — 0 as § — 400. From Theorem 4.9 and the above derivation, we deduce the following
result.

If the regularization parameter 3 > Sh™2 then f = O(87!), u = O(1) and A = O(1),
Section 6. Similarly to the case where the target 4 is defined over the whole of {2, we can show
that if 3 > %h_Q, we will expect the change in sy, relative to s to be at most inversely proportional
to 8 and for the change in sg relative to s to be roughly constant as § increases. As a result, we
will expect ||Af]| / [|f]| and |[Au|| / [[u] to be O(u).

In Figure 4.3, we plot [|Asz | /[lsll | Ass| /sl A8 /[£] and [|Au] /[u]l against 3 for
Example 3.1 with Target 3 and h = %. The solution s is calculated by using the backslash
command in Matlab, whilst § is calculated by applying Matlab’s 1d1 function to factor a single
precision version of 4 and this factorization is then used to solve the system. For large 3,
we observe that, as expected, the change in sj, relative to s is inversely proportional to § but
the change in sg relative to s remains (approximately) constant. Also, both ||Af]|/|/f]] and
|Au|| / ||u|| are (approximately) constant.

10°

D gmmaLA e maLntemsmTEmTtAT, oL "LlL,"" -
1065,4 B PR R R e R N

..............................................

10° |

— 18 sgllisll

10751 = A s sl

= lA A
""" [1A ull/f]ull ‘ ‘ ‘
:
10° 10° 10" 10° 10° 10"

Figure 4.3: Plot of Asy and Asg with respect to § for Example 3.1 with Target 3. Results are

shown for h = %.

For § < 2, anticipating the nullspace method in Section 6, we find that f and u are O(1),
whilst A = O(f). In a similar manner to the case where @ is defined over the whole of 2, we can
show that the change in sy, relative to s will initially decrease as 3 decreases and then remain
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(approximately) constant. However, we will expect the change in sg relative to s to be inversely
proportional to (3 as the regularization parameter decreases. As for the case when @ is defined
over the whole of Q, this does not imply that ||Aul| /||u| will initially decrease as [ decreases
and then remain (approximately) constant; in fact, we will expect |Af]| /||f]] and ||Aul| / ||u]| to
be inversely proportional to G for small enough

In Figure 4.4, we plot [|Asy | / 5]l Assll /1lsl], A /[|£] and [|Au]| / |[ul| against 3 for Ex-
ample 3.1 with Target 3 and h = %. The solution s is calculated by using the backslash command
in Matlab, whilst § is calculated by applying Matlab’s 1d1 function to factor a single precision
version of A and this factorization is then used to solve the system. We observe that, as expected,
the change in sy, relative to s initially decreases as 3 decreases and then becomes constant; the
change in sg relative to s increases as [ decreases. However, ||Af||/[/f|| and [|Aul|/||lu] are
inversely proportional to § for small enough 3.

:
— 1A sglllIsl
- = =l1Bs sl

i o A
SN0 e 1A uliAlull |

Figure 4.4: Plot of As; and Asg with respect to § for Example 3.1 with Target 3. Results are
shown for h = L.

8

5 Schur complement method

A common method for solving systems of the form (2.6) is to reduce it to a series of smaller
systems that need to be solved. If A is nonsingular, then we can form the Schur complement

factorization:
A BT | I 0| A 0 I A7'BT
B 0 BA™l T 0 —BA1BT 0 I
Thus, if
A BT X . bl
B 0 y | | b |’
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then

= —(BA'BY)"' (by - BA '),
== A_l (bl — BTy) .

In terms of (2.6), A is only non-singular if the target u is defined over all of 2. Applying the
Schur complement method to (2.6) we obtain

A= —S'(d-KM'b),
f o= LA
u = M 1(b-K)),
where
S=LrLM+EKM K. (5.1)

Thus, it is necessary to be able to carry out solves with M and the Schur complement S. Clearly,
solves with M are independent of the regularization parameter (3 : there are good methods
available for efficiently carrying out these solves [25].

Using the assumptions of Section 2.1, from Theorem 4.4 we obtain

)\min (S)

Y

2 Amin (M) + Amin (KM 'K
= gZh? +clh?,

)\min(s) = min (LAmin(M) + )‘max (KM_IK)

A

. /\maX(M) + )\min (KM_IK))

28 26
= min (LAY + C1h?~*, BhP + c1hP)
Amax(9) < HAmax (M) + Amax (KM 'K)
= Dh 4+ CihP Y,
Amax(9) > max (HAmin(M) + Amax (KM 'K) |, 5 Amax (M) 4 Amin (KM 7'K))
= max (%h" + C1hP™4, ZhP + clhp) ,

2 2 .
where ¢ = < and C} = < are constants independent of $ and h. Hence,

D+ 2ﬁC1h74
< Z e
k() < d+206c;

: - 4
and if § > #h , then

1—c1h?)
d+ 2601h74 )

K(S) = D+ 208¢;

otherwise
K(S) > D+—2501
d+28C1h—4
For 6> e We have
D+23Cih™* Oy

< AP 20 —4
KJ(S) - d—+ 208cq Cc1 h

and
S d+2BC A% N ﬁ

~—ht
D+ 2ﬁ01 c1 '
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Therefore, we will expect the condition number to be inversely proportional to h*. For f <
ﬁh‘l < %h‘l, we find that
D +23C,h™4

~ D
d+2Bc;  d

k(S) <

and
D + 2501 N D

>~ —,
A8 2 g ¥

Thus, the condition number will be bounded from above by a constant.

The upper bound for x(S) is monotonically increasing as [ increases. If g > ﬁqh‘l,

(

then the lower bound is also monotonically increasing as 3 increases.
For intermediate values,

D+ 2,801h74

< _4
d+26€1 > 026]7/ +C37

k(S) <
where Co and C3 are constants independent of 8 and h. We can also show that

d—+ 2ﬁ01h_4

> coBh 2
D+28e; - c2Bh™" + 3,

K(S) >
where co and c3 are constants independent of 6 and h. Thus, as § increases, it is reasonable to
expect the condition number of S to increase at a rate proportional to 3. For small mesh sizes,
h, the condition number will be at most inversely proportional to h?.

In Figure 5.1, we plot the condition number of S = BA~! BT with respect to 3 for Example 3.3
with a target @ defined over all of the domain ). Results are given for h = i, h = L and

16

h = L. We observe that, as expected, if 3 > 45 then the condition number of ZTAZ is

2e20
inversely proportional to h* but (essentially) independent of the regularization parameter 3. For

0K dfgf, the condition number independent of both 8 and h : this is as we expected. Finally, for
intermediate values, as 0 decreases, the condition number of S decreases at a rate proportional

to (. Additionally, the condition number is inversely proportional to h?.

Remark 5.1 If the mesh size h remains fized and 3 > 45, then we will expect u and A to be
O(1), and £ to be O(B7Y). If B < 45, we will expect A to be O(3), whilst £ and u will be O(1).

6 Nullspace method and spectral properties

The nullspace method is another commonly used method that recasts the saddle-point system
into systems of reduced order. Consider the solution of (4.1). Suppose that B € R™*". Let the
columns of Z € R™*("=m) gpan the nullspace of B and the columns of Y € R™ ™ gpan the range
space of BT, then we can write z = Yz, + Zx,, where z, € R™ and z, € R"™™. Substituting
this into (4.1) and premultiplying the resulting system by
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cond(BA™LBT),

W0 Tt —h=18
-==h=1/16
-=h=1/32
10°
107 10° 10° 10°

Figure 5.1: Condition number of S = BA~'B” with respect to 3 for Example 3.3 with target @

defined over the whole of 2. Results are shown for h =1, h = L and h = J.

we obtain
YTAY YTAZ YTBT Ty YTs
ZTAY ZTAZ 0 z, | =] 27s
BY 0 0 y t

Thus, we can solve (4.1) by carrying out the following steps:
e Solve BY z, = ba;
e Solve ZTAZz, = ZT(by — AY zy);
o Set v =Yu,+ Zx,;
e Solve YIBTy = YT (b — Ax).

There are many possibilities for the matrices Y and Z but we will focus on three standard
choices for Z and two standard choices for Y. One possibility is to use the full QR factorization:
let QR = [Y Z] [RT OT]T be an orthogonal factorization of BT, where R € R™*™ is upper
triangular. For small choices of mesh size h, the QR factorization of BT, where B is defined by
(4.2), will be very expensive to form and, hence, we will not consider this method for forming Y’
and Z. Now, the simplest choice for Y is Y = BT Since

B= [ M K } ,
we find that solving BY z, = by is equivalent to solving
(M? + K?) 2y = b.

From our analysis in Section 4, we know that there exist constants ¢ > ¢ and C ~ C such
that Amin(M?2 4+ K2) = &h% and Apax(M? + K2) = C?h?%~*. Thus, this system will become
increasingly ill-conditioned as the mesh size h is refined. Alternatively, we can use a generalized
form of the nullspace method:
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e Find Z such that Bz = by;

o Solve ZTAZx, = Z" (by — A%);

e Set x =&+ Zx;

e Find y such that BTy = b; — Ax.

If we choose a symmetric matrix G such that Z7GZ is nonsingular, then we can find # such that

:m

Similarly, once = has been calculated we can obtain y by solving

T . bl—A$
Y N 0

Bz = d by solving
G BT
B 0

z

y

P

G BT
B 0

Note that £ = 0 when z is exact.
Considering our problem (2.6), if we set

00
G f—
0 I ] ’
then we obtain
0 0 —M
P = o I KT
-M K 0

It is straightforward to see that solves with P; will only require the solution of two systems with
coefficient matrix M. As noted in Section 5, since M is a mass matrix, there are a number of
efficient methods available to us to carry out these solves. We note that P is sometimes called a
constraint preconditioner [15] for A. If ZTGZ is symmetric and positive definite, it may be used
in combination with a projected preconditioned conjugate gradient method to solve saddle-point
systems of the form (4.1) that have ZT AZ symmetric and positive definite [9]. See [18] for a
discussion on the use of constraint preconditioners for solving problems of the form (1.1)-(1.3).
Two further possibilities for defining Z are

M-1K I
or /= _1 .
I KM

We will consider these two choices for Z and analyse how the condition number of ZT AZ varies

7 =

with the regularization parameter 3. As a result, we hope to be able to choose the optimal value
of Z for our problems.
Consider the case Z = [KM ™, I]T . Given A as in (4.2), we obtain

ZTAZ = M +26KM ™K.
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If the target @ is defined over all of the domain €, then M = M and ZTAZ = 23S, where S is
the Schur complement defined by (5.1). Hence, the condition number of Z7'AZ will be equal to
the condition number of S.

Suppose that the target @ is only defined over a sub-domain of €. Consider the Rayleigh
quotient of ZT AZ. Clearly, if v Mv = 0 and ||v|| = 1, then

v ZT AZv = 280 KM~ 'K,

and, assuming that Theorem 2.3 and Assumption 2.1 hold,

~2
2B Z0C g < T 2T AZw < 255 P4, (6.1)

if vI' Mv # 0 and |Jv|| = 1, then

26¢? 23C? -1
D d

dhP + we <o ZTAZv < DhP + (6.2)
Consider the case where 3 is small. Suppose that we compare the lower bounds in (6.1)—(6.2). If
B < ddn
202" _2
such that v M Umin = 0 and, hence, we obtain Ay, (Z7AZ) > 2%: hP. Clearly, Amax(ZTAZ) <
DhP + & hp 4
Con51der the case where [ is large. Comparing the lower bounds in (6.1)—(6.2), we observe
that if 8 > 5L, then Amin(27AZ) > dh? + 2ZE1P and Amax(2TAZ) < Dh? + 25E o=,

Hence, we obtain the following:

then we can assume that the eigenvector vy, corresponding to /\min(ZTAZ ) will be

; D D(dDp=1+2C2h=4 531
o if f< % then w(27AZ) < 2UDF 2001 DS,

D(dD+2BC%h~4)

) lf,B>> 2 ) then K(Z AZ) W

Ifg > %, then x(ZT AZ) is monotonically increasing and, if 3 >> 4B, we have K(ZTAZ) ~
it

In Figure 6.1, we plot the condition number of ZTAZ = M +2BKM~ 'K With respect to
0 for Example 3.3 with Target 3. Results are given for h = L, h = L and h = L. We observe
that, as expected, if § > 25, then the condition number of ZTAZ 1s inversely proportlonal to
h* but independent of the regularlzatlon parameter (3; for § < 4227 the condition number is

02 9
independent of h but inversely proportional to § : this is as we expected. Finally, for intermediate

values, as [ increases, the condition number of ZT AZ increases.
Now consider the case Z = [I, MK_I]T . Given A as in (4.2), we obtain

ZVAZ =28M + MK *MK~'M.

Let us firstly assume that the target @ is defined over all of Q, in which case, M = M. If ||v|| = 1,
then from Theorem 2.1

d (26 + Lnt) h? < oTZTAZv < DhP (26 + 27)
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K(Z'AZ)

—h=1/8
===h=1/16
==h=1/32

10° 10°

Figure 6.1: Condition number of ZTAZ = M + 28K M 'K with respect to 3 for Example 3.3

with Target 2. Results are shown for h =%, h = L and h = .

and

2 2

26C? + d?h*
We note that this upper bound is monotonically decreasing as [ increases and, hence, we will
expect the condition number to improve as (8 increase. For 3 <« %h‘l, the condition number of

ZT AZ will be bounded above by a function that is approximately equal to C;C%S Rt If > D3

2027

then k(ZT AZ) is bounded above by a function that is approximated by 2.

In Figure 6.2, we plot the condition number of ZT AZ = 28M + MK~ M K~' M with respect
to 8 for Example 3.3 with a @ defined over the whole of €). Results are given for h = 1, h = &
and h = L. We observe that, as expected, if 5 > D% then the condition number of ZTAZ is

2¢2d’

inversely proportional to h* but independent of the regularization parameter 3; for 3 < 2‘123417,

the condition number independent of h and 3 : this is as we expected. Finally, for intermediate

values, as (3 decreases, the condition number of ZTAZ also decreases.
Now suppose that the target @ is only defined on a sub-domain of Q. If ||jv|| = 1 and
MK~'Muv # 0, then

dh? (28 + 44h") <vTZTAZv < DRP (28 + 22);
if |v]| =1 and MK~1Mv = 0, then
28dh? < vTZT AZv < 2B8DhP.

Hence, A\uin(ZTAZ) > 2BdhP, Mnax(ZTAZ) < DhP (25—1— ’i—f’). Note that as G increases, this
upper bound on x(ZTAZ) will decrease and, hence, we will expect the condition number to
decrease. If 3> 22 then x(ZTAZ) < 2;if B < 2B, then w(ZTAZ) < 25p 371

In Figure 6.3, we plot the condition number of ZTAZ = 28M + MK ' MK ~'M with respect
to 8 for Example 3.3 with Target 3. Results are given for h = 1, h = L and h = J. We observe

16
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—h=1/8
S ===h=1/16
108, ., ==h=1/32}

10

Figure 6.2: Condition number of ZTAZ = 28M + MK ~'MK~'M with respect to 3 for Exam-
ple 3.3 with @ defined over the whole of 2. Results are shown for h = 1, h = & and h = L.
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Figure 6.3: Condition number of ZTAZ = 28M + MK "MK ~'M with respect to 3 for Exam-
ple 3.3 with Target 2. Results are shown for h = 1, h = L and h = 4.

that, as expected, if 3 > g, then the condition number of Z7 AZ is independent of the both the
mesh size h and regularization parameter J3; for § < %, the condition number is independent
of h but inversely proportional to S.
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7 Conclusions

We have presented results about the spectral properties of the discretized systems that arise in
distributed control problems: the PDE in the constraints is assumed to be the Poisson problem.
The distributed control problems considered include a target @. If 4 is defined over the whole of
the domain, then we have shown that the condition number of the resulting saddle-point system
will be bounded from above by a function that is independent of of the regularization parameter
(3 but inversely proportional to h® for 3 smaller than c;h*, where h is the mesh size and ¢; is a
constant independent of h and f; if c1h?* < 3 < 1, then the condition number will be bounded
from above by a function that is inversely proportional to 8 and h?; if 8 > coh™2, where ¢y is
a constant independent of h and (3, the condition number is bounded from above by a function
that is independent of h but proportional to 3. Conversely, if 4 is only defined over a sub-domain
of the overall problem, then the condition number is no longer bounded from above by a function
that is independent of 3 when (3 is small: the upper bound is inversely proportional to 3 and h?.
In all of our numerical examples, we observed that the behaviour of the upper bound was well
reflected in the calculated condition number. We were also able to show that if 3 is large and a
backward-stable direct method is used to solve the saddle-point system, then the large condition
number is not reflected in the relative error of f and u : the relative error in these components is
of order machine precision. However, this is not the case if § is small.

If the Schur complement method is used to solve the saddle-point system when 4 is defined
over the whole of the domain, we were able to show that as 3 — 0, the condition number of the
Schur complement converges to the condition number of the mass matrix M. As 8 — —+oo, the
condition number of the Schur complement converges to £(M) (k(K))? . Hence, refining the mesh
will result in a larger condition number. We obtain more favourable condition numbers when the
regularization parameter is small.

Alternatively, we could solve the saddle-point system by using a nullspace method. We have
analyzed two different choices for the nullspace and were able to show that the spectral properties
and, hence, the condition number, significantly altered when we changed which nullspace was
used.

In practice, as the mesh is refined, the resulting linear systems will become too large for direct
methods to be feasible and iterative methods will be required. The large condition numbers of
the systems analyzed in this paper mean that popular iterative methods, for example, Krylov
methods, may perform many iterations before reaching the desired level of accuracy [20,24]. As
a result, a preconditioner should be used such that the condition number of the preconditioned
system is small. Only a handful of papers in the literature consider the saddle-point structure
of the matrices when solving distributed control problems of the type considered in this paper,
see, for example, [18,22]. We hope that the analysis in this paper will be a building block for
the derivation of preconditioners that will be effective for realistic values of the regularization
parameter.

In this paper, we have concentrated on distributed control problems containing the Poisson
problem. In many applications, this may be replaced by the Stokes or Navier-Stokes problem [3].
In these cases, the constraints will be degenerate but it is possible to deal with this degeneracy.
Similar methods to those used in this paper can be applied to characterize the spectral properties
of the resulting saddle-point systems, the Schur complement, and the reduced system from the
nullspace method.
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