
RAL-TR-2009-002

February 9, 2009

N I M Gould D P Robinson

A second derivative SQP method:

local convergence



c© Science and Technology Facilities Council

Enquires about copyright, reproduction and requests for additional
copies of this report should be addressed to:

Library and Information Services
SFTC Rutherford Appleton Laboratory
Harwell Science and Innovation Campus
Didcot
OX11 0QX
UK
Tel: +44 (0)1235 445384
Fax: +44(0)1235 446403
Email: library@rl.ac.uk

The STFC ePublication archive (epubs), recording the scientific output of the
Chilbolton, Daresbury, and Rutherford Appleton Laboratories is available
online at: http://epubs.cclrc.ac.uk/

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their reports
or in any communication about their tests or investigation



RAL-TR-2009-002

A second derivative SQP method: local

convergence1
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ABSTRACT
Gould and Robinson (RAL-TR-2009-001) gave global convergence results for a second-derivative

SQP method for minimizing the exact ℓ1-merit function for a fixed value of the penalty parameter.

To establish this result, we used the properties of the so-called Cauchy step, which was itself

computed from the so-called predictor step. In addition, we allowed for the computation of a

variety of (optional) SQP steps that were intended to improve the efficiency of the algorithm.

Although we established global convergence of the algorithm, we did not discuss certain aspects

that are critical when developing software capable of solving general optimization problems. In

particular, we must have strategies for updating the penalty parameter and better techniques

for defining the positive-definite matrix Bk used in computing the predictor step. In this paper

we address both of these issues. We consider two techniques for defining the positive-definite

matrix Bk—a simple diagonal approximation and a more sophisticated limited-memory BFGS

update. We also analyze a strategy for updating the penalty parameter based on approximately

minimizing the ℓ1-penalty function over a sequence of increasing values of the penalty parameter.

Algorithms based on exact penalty functions have certain desirable properties. To be practical,

however, these algorithms must be guaranteed to avoid the so-called Maratos effect. We show

that a nonmonotone variant of our algorithm avoids this phenomenon and, therefore, results in

asymptotically superlinear local convergence; this is verified by preliminary numerical results on

the Hock and Shittkowski test set.
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1. Introduction

In [19], we presented a sequential inequality/equality constrained quadratic programming

algorithm (an SIQP/SEQP “hybrid”) for solving the problem

(ℓ1-σ) minimize
x∈Rn

φ(x) = f(x) + σ‖[c(x)]−‖1,

where the constraint vector c(x) : Rn → Rm and the objective function f(x) : Rn → R
are assumed to be twice continuously differentiable, σ is a positive scalar known as the

penalty parameter, and we have used the notation [v]− = min(0, v) for a generic vector

v (the minimum is understood to be component-wise). The motivation for solving this

problem is that solutions of problem (ℓ1-σ) correspond (under certain assumptions) to

solutions of the nonlinear programming problem

(NP) minimize
x∈Rn

f(x) subject to c(x) ≥ 0.

An outline of this paper is as follows. In Section 2 we provide methods for defining

the positive-definite matrix associated with the so-called predictor step subproblem, while

in Section 3 we discuss a strategy for updating the penalty parameter. In Section 4

we discuss the local convergence properties of a nonmonotone variant of the algorithm

described in [19] that culminates with two rate-of-convergence results. The first applies

when the so-called SQP step is computed from an equality constrained subproblem based

on the predictor step, while the second applies when the SQP step is computed from an

inequality constrained subproblem based on the so-called Cauchy step [19, Sections 2.3.1

and 2.3.2]. Finally, in Section 5, we provide preliminary numerical results for the proposed

algorithm.

Before proceeding, we catalogue essential notation and provide an outline of the algo-

rithm presented in [19]. The outline is relatively brief and, therefore, we recommend a

careful reading of [19] since this paper is essentially a continuation of that work.

1.1. Notation and definitions

Most of our notation is standard. We let e denote the vector of all ones whose dimension is

determined by the context. A local solution of (NP) is denoted by x∗; g(x) is the gradient

of f(x), and H(x) its (symmetric) Hessian; the matrix Hj(x) is the Hessian of cj(x); J(x)

is the m × n Jacobian matrix of the constraints with ith row ∇ci(x)T . The Lagrangian

function associated with (NP) is L(x, y) = f(x)− yT c(x). The Hessian of the Lagrangian

with respect to x is ∇2
xxL(x, y) = H(x)−

∑m
j=1 yjHj(x).

For a general vector v, the notation [v]− = min(0, v) is used, where the minimum is

understood to be component-wise, and diag(v) represents a diagonal matrix whose ith

diagonal entry is vi; given two general vectors v and w, the notation v · w represents the

vector whose ith component is viwi; given a general symmetric matrix A the notation

A � λ means that the smallest eigenvalue of A is bigger than or equal to λ; and given a
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set of of matrices A1, A2, . . . , Ap for some p ≥ 1, we define diag(A1, A2, . . . , Ap) to be the

block-diagonal matrix whose ith block is Ai.

Given a vector v ∈ Rn and scalar ε we define Bε(v) = {x ∈ Rn : ‖x − v‖2 < ε} and

B̄ε(v) = {x ∈ Rn : ‖x− v‖2 ≤ ε} to be the open and the closed ball centered at v of radius

ε, respectively.

We often consider problem functions evaluated at a specific point xk. To simplify

notation we define the following: fk = f(xk), ck = c(xk), gk = g(xk) and Jk = J(xk).

Given a pair of values (xk, yk), we let Hk and Bk denote symmetric approximations to

H(xk, yk) in which Bk is required additionally to be positive definite. Similar notation is

used for a solution x∗; we define f ∗ = f(x∗), c∗ = c(x∗), g∗ = g(x∗), and J∗ = J(x∗).

When a primal-dual solution (x∗, y∗) is given, we define H∗ = H(x∗, y∗).

Given the symmetric matrix Hk, we define

MH

k(s)
def
= MH

k(s ;xk) = fk + gT
k s + 1

2
sT Hks + σ‖[ck + Jks]

−‖1 (1.1)

to be the faithful model of φ and

∆MH

k(s)
def
= ∆MH

k(s ; xk) = MH

k(0 ;xk)−MH

k(s ;xk) (1.2)

to be the change in the faithful model. We mention that this notation does not allude to

their dependence on the penalty parameter σ.

Given a solution x∗ to problem (NP), we use the indexing sets A
def
= {i : ci(x

∗) = 0}

and I
def
= {i : ci(x

∗) > 0} , which are the set of active and inactive constraints, respectively,

at x∗. Given a generic vector v, a generic matrix V , and a generic indexing set S, the

notation vS and VS will denote the rows of v and V that correspond to the indices in S;

if v and V are functions of x, then we sometimes write vS(x) and VS(x) instead of [v(x)]S
and [V (x)]S.

We use the following definitions related to a solution of problem (NP).

Definition 1.1. (First-order KKT point) We say that the point (x∗, y∗) is a first-order

KKT point for problem (NP) if

g∗ − J∗Ty∗ = 0, c∗ ≥ 0, y∗ ≥ 0, and c∗ · y∗ = 0. (1.3)

Definition 1.2. (Second-order sufficient conditions) A point (x∗, y∗) satisfies the second-

order sufficient conditions for problem (NP) if (x∗, y∗) is a first-order KKT point and if

there exists λH
min

> 0 such that sTH∗s ≥ λH
min

sTs for all s satisfying J∗
As = 0.

Definition 1.3. (Strict complementarity) We say that strict complementarity holds

at a KKT point (x∗, y∗) for problem (NP) if y∗
A > 0.

Definition 1.4. (Linear independent constraint qualification) We say that the lin-

ear independent constraint qualification (LICQ) holds at a KKT point (x∗, y∗) for problem

(NP) if J∗
A has full row rank.

Definition 1.5. We say that the strong second-order sufficient conditions hold at a point

(x∗, y∗) if it satisfies Definitions 1.1 – 1.4.
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1.2. Algorithm Overview

We now give a brief description of the algorithm we proposed in [19] for minimizing

problem (ℓ1-σ); the algorithm has been restated as Algorithm 1.1. First, the user sup-

plies an initial guess (x0, y0) of a solution to problem (ℓ1-σ). Next, “success” parameters

0 < ηS ≤ ηVS < 1, a maximum allowed predictor trust-region radius ∆U, expansion and

contraction factors 0 < ηc < 1 < ηe, sufficient model decrease and approximate Cauchy

point tolerances 0 < η ≤ ηACP < 1, and SQP trust-region radius factor τf are defined.

With parameters set, the main “do-while” loop begins. First, the problem functions are

evaluated at the current point (xk, yk). Next, a symmetric positive-definite matrix Bk is

defined and the predictor step sP

k is computed as a solution to

minimize
s∈Rn

fk + gT
k s + 1

2
sT Bks + σ‖[ck + Jks]

−‖1 subject to ‖s‖∞ ≤ ∆P

k . (1.4)

By introducing elastic variables [15], this problem is equivalent to

minimize
s∈Rn

fk+gT
k s+ 1

2
sT Bks+σeTv subject to ck+Jks+v ≥ 0, v ≥ 0, ‖s‖∞ ≤ ∆P

k . (1.5)

Strategies for defining the positive-define matrix Bk are discussed in Section 2. Next, we

define the Cauchy step as sCP

k = αks
P

k , where αk is the solution to

minimize
0≤α≤1

MH

k(αsP

k), (1.6)

and then compute ∆MH

k(s
CP

k ). We then have the option of computing an SQP step sS

k

as the solution of any of the subproblems discussed in [19, Section 3.2]. The trial step

computation is completed by defining the full step sk so that the condition

∆MH

k(sk) ≥ η∆MH

k(s
CP

k ) (1.7)

is satisfied for some constant 0 < η < 1 independent of k (see [19, Section 2.3] for more

details). Next, we evaluate φ(xk + sk) and ∆MH

k(sk) and compute the ratio rk of actual

versus predicted decrease in the merit function.

The strategy for updating the trust-region radii and for accepting or rejecting can-

didate steps is identical to that used by Fletcher [12] and is determined by the ratio rk

(except we have the added responsibility of updating the SQP trust-region radius). More

precisely, if the ratio rk is larger than ηVS , then we believe that the model is a very accurate

representation of the merit function within the current trust-region; therefore, we increase

the predictor trust-region radius with the belief that the current trust-region radius may

be overly restrictive. If the ratio is greater than ηS , then we believe the model is suffi-

ciently accurate and we keep the predictor trust-region radius fixed. Otherwise, the ratio

indicates that there is poor agreement between the model MH

k and the merit function and,

therefore, we decrease the predictor trust-region radius with the hope that the model will

accurately capture the behavior of the merit function over the smaller trust-region. As

for step acceptance or rejection, we accept any iterate for which rk is positive, since this
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indicates that the merit function has decreased. We note that the update used for the

dual vector yk+1 is not important for proving global convergence, so no specific update is

provided. However, the update to yk is crucial when considering local convergence and the

multiplier vector from the SQP subproblem is the most obvious candidate. We consider

this further in Section 4. Finally, the SQP trust-region radius is defined to be a constant

multiple of the predictor trust-region radius, although the condition ∆S

k+1 ≤ τf ·∆
P

k+1 for

some constant τf is also sufficient.

Algorithm 1.1. Minimizing the ℓ1-penalty function

Input: (x0, y0)

Set parameters 0 < ηS ≤ ηVS < 1, ∆U > 0, 0 < η ≤ ηACP < 1, and τf > 0.

Set expansion and contraction factors 0 < ηc < 1 < ηe.

k ← 0

do

Evaluate fk, gk, ck, Jk, and then compute φk.

Define Bk and Hk to be symmetric approximations to H(xk, yk) with Bk positive definite.

Solve problem (1.4) for sP

k .

Solve problem (1.6) for sCP

k and compute ∆MH

k(s
CP

k ).

Possibly compute an SQP step sS

k.

Define a full step sk that satisfies condition (1.7).

Evaluate φ(xk + sk) and ∆MH

k(sk).

Compute rk =
(
φk − φ(xk + sk)

)
/∆MH

k(sk).

if rk ≥ ηVS [very successful]

∆P

k+1 ← min( ηe ·∆
P

k , ∆U ) [increase predictor radius]

else if rk ≥ ηS [successful]

∆P

k+1 ← ∆P

k [keep predictor radius]

else [unsuccessful]

∆P

k+1 ← ηc ·∆
P

k [decrease predictor radius]

end

if rk > 0 [accept step]

xk+1 ← xk + sk

yk+1 ← arbitrary

else [reject step]

xk+1 ← xk

yk+1 ← yk

end

∆S

k+1 ← τf ·∆
P

k+1 [update SQP radius]

k ← k + 1

end do

The following global convergence result applies to Algorithm 1.1.
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Theorem 1.1. [19, Theorem 4.1] Let f and c be twice continuously differentiable func-

tions, and let {xk}, {Hk}, {Bk}, {∆
P

k}, and {∆S

k}, be sequences generated by Algorithm

1.1. Assume that the following conditions hold:

1. {xk}k≥0 ⊂ B ⊂ Rn, where B is a closed and bounded set; and

2. there exists positive constants bB and bH such that ‖Bk‖2 ≤ bB and ‖Hk‖2 ≤ bH for

all k ≥ 0.

Then, either xK is a first-order point for problem (ℓ1-σ) for some K ≥ 0, or there exists a

subsequence of {xk} that converges to a first-order solution of problem (ℓ1-σ).

2. Defining Bk

The definition of the positive-definite matrix Bk is critical in developing an efficient algo-

rithm. In Section 2.1 we consider defining Bk as a diagonal matrix. Although this approach

is simple to implement and cheap to compute, it can not be expected to perform well in

general. A more promising idea is to update Bk using the well-known BFGS formula. This

is an appealing alternative, but we must be cautious since the matrix H(xk, yk) is gen-

erally indefinite and, therefore, the traditional BFGS update may result in an indefinite

matrix [2, 33]. In Section 2.2 we consider a limited-memory BFGS update since we are

interested in solving large-scale problems.

2.1. A diagonal approximation

Given scalars νi > 0 for i = 1 : n, we define the diagonal matrix Bk+1 = diag(ν1, ν2, . . . , νn).

Possibly the simplest choice is

νi = max
( ∣∣(sT

k H(xk, yk)sk

)
/
(
sT

k sk

)∣∣ , ε
)

(2.1)

for all i, where ε is a small pre-defined positive constant (ε has this meaning for the

remainder of this section). This strategy approximates the magnitude of the curvature of

H(xk, yk) in the previous direction sk.

A second possibility is to utilize more of the matrix H(xk, yk). Given any value 0 ≤

r ≤ n we may define

νi = max

(
1

ru − rl + 1

ru∑

j=rl

|[H(xk, yk)]ij |, ε

)

, (2.2)

where rl = max(i − r, 1) and ru = min(n, i + r). In other words, νi is the average of

the absolute values of the elements of H(xk, yk) in row i within band-width r. We note

that if r = 0, then the curvature of Bk+1 and H(xk, yk) will agree in those standard co-

ordinate directions for which H(xk, yk) is sufficiently positive definite as determined by the

parameter ε.
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2.2. A limited-memory BFGS update

Symmetric positive-definite approximations based on equations (2.1) and (2.2) are cheap

to compute, but can not be expected to approximate H(xk, yk) very well. An attractive

alternative is to define the matrix Bk+1 from the positive-definite matrix Bk by using

a limited-memory quasi-Newton BFGS update. This approach uses a fixed number of

vectors, say l, to define a positive-definite approximation to H(xk, yk) based on the most

recent l iterations (for more details see [28, 2]). If we define dk = ∇xL(xk + sk, yk+1) −

∇xL(xk, yk+1), then we may write the update as

Bk = B0
k +

k−1∑

i=k−l

(qiq
T
i − pip

T
i ), (2.3)

where B0
k denotes any initial positive-definite approximation to H(xk, yk) and

pi =
Bisi

(sT
i Bisi)1/2

, qi =
di

(dT
i si)1/2

, and Bi = B0
k +

i−1∑

j=k−l

(qjq
T
j − pjp

T
j ). (2.4)

Note that in these definitions we have assumed that k ≥ l−1 so that there are l vectors to

use. This formula is relatively simple, but one must be careful. It is tempting to store the

vector-pairs (pi, qi). However, as equation (2.4) illustrates, the vector pi is defined from Bi

and the matrix Bi changes from iteration to iteration since the “oldest” vector-pair (si, di)

is removed from the set of l vector-pairs. Hence, the vector pi must be recomputed at each

iteration. The relationships given by equation (2.4) suggest how this may be done since

Bisi = B0
ksi +

i−1∑

j=k−l

[
(qT

j si)qj − (pT
j si)pj

]
. (2.5)

Algorithm 2.1, which is [28, Procedure 7.6], computes the vector-pair (pi, qi) recursively.

Algorithm 2.1. Computing the vector-pairs (pi, qi)

for i = k − l, k − l + 1, . . . , k − 1

qi ← di/(dT
i si)

1/2

pi ← B0
ksi +

∑i−1
j=k−l

[
(qT

j si)qj − (pT
j si)pj

]

pi ← pi/(sT
i pi)

1/2

end (for)

During the kth iteration, Algorithm 2.1 computes the values qi for k − l ≤ i ≤ k − 1

and qT
j si for all k − l ≤ j ≤ i − 1. However, since qi only depends on the data (di, si),

only the value qk−1 and values qT
j sk−1 (k− l ≤ j ≤ k− 2) need to be computed (the other

quantities should be stored from previous iterations).

Once the vector-pairs (pi, qi) have been computed, we set Bk = B0
k−PP T +QQT where

we have defined P = [pk−l pk−l+1 . . . pk−1] and Q = [qk−l qk−l+1 . . . qk−1]. The predictor
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subproblem (1.5) then becomes

minimize
s∈Rn,v∈Rm

fk + gT
k s + 1

2
sT (B0

k − PP T + QQT )s + σeT v

subject to ck + Jks + v ≥ 0, v ≥ 0, ‖s‖∞ ≤ ∆P

k .
(2.6)

If we define the 2l extra variables

wa = P T s and wb = QT s, (2.7)

then problem (2.6) is equivalent to

minimize
s,v,wa,wb

fk + gT
k s + 1

2
(sT B0

ks− wT
a wa + wT

b wb) + σeT v

subject to ck + Jks + v ≥ 0, P T s = wa, QT s = wb, v ≥ 0, ‖s‖∞ ≤ ∆P

k .
(2.8)

As a function of (s, v, wa, wb), the Hessian associated with subproblem (2.8) is given by

BA

k =





B0
k 0 0 0

0 0 0 0

0 0 −I 0

0 0 0 I



 , (2.9)

which is not positive definite. This may seem strange since problem (2.8) is equivalent

to the strictly convex QP (2.6) (assuming that the updated matrix was positive definite).

However, if the current iterate is feasible for subproblem (2.8), then any step that maintains

linear feasibility is guaranteed to be a direction of positive curvature even though BA

k is

indefinite. To see this, suppose that (s, v, wa, wb) is a feasible point so that wa = P Ts and

wb = QT s. Furthermore, suppose that P T (s+∆s) = wa+∆wa and QT (s+∆s) = wb+∆wb.

Simplification yields P T ∆s = ∆wa and QT ∆s = ∆wb . It then follows that

(∆s, ∆v, ∆wa, ∆wb)
T BA

k (∆s, ∆v, ∆wa, ∆wb) = ∆sT B0
k∆s−∆wT

a ∆wa + ∆wT
b ∆wb

= ∆sT B0
k∆s−∆sT PP T∆s + ∆sT QQT ∆s

= ∆sT (B0
k − PP T + QQT )∆s

= ∆sT Bk∆s > 0,

since Bk is positive definite by construction. A great advantage in using subproblem (2.8)

is that the Hessian matrix has essentially the same sparsity as B0
k. In contrast, the Hessian

matrix associated with subproblem (2.6) is generally dense since it uses a sum of rank-1

updates. Note, however, that the 2l extra constraints (2.7) are generally dense; fortunately

a limited number of dense constraints can be accommodated easily by modern sparse QP

solvers such as QPA and QPB from the GALAHAD library [18].

Until this point we have assumed that the limited-memory BFGS update results in

a positive-definite matrix. However, it is well-known that this is true if and only if the
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quantity dT
k sk > 0 and this is not guaranteed to hold. We say that the vector-pair (sk, dk)

will result in a sufficiently positive-definite update if

sT
k dk ≥ ηSPDsT

k Bksk (2.10)

for some positive scalar 0 < ηSPD < 1. Since we want to reserve the notation sk for the

solution of kth iterate of Algorithm 1.1, we use the notation (s̄k, d̄k) to denote the (possibly)

modified values of (sk, dk) that satisfy condition (2.10).

When the estimate dT
k sk ≥ ηSPDsT

k Bksk fails, the simplest course of action is to skip the

update. Since we do not advocate this option, we use a damping technique introduced by

Powell [33], which is guaranteed to produce acceptable values for d̄k and s̄k by perturbing

dk if necessary. This is accomplished by defining the “damped” vectors

d̄k = θkdk + (1− θk)Bksk, (2.11a)

s̄k = sk, (2.11b)

where the damping factor θk is defined as

θk =

{
1 if sT

k dk ≥ ηSPDsT
k Bksk,

(1− ηSPD)sT
k Bksk/(sT

k Bksk − sT
k dk) if sT

k dk < ηSPDsT
k Bksk.

(2.12)

If θk 6= 1, it can be verified by computation that s̄T
k d̄k = ηSPDsT

k Bksk. Note that if θk = 0,

then d̄k = Bksk, pk = qk, and Bk+1 = Bk.

We finish this section by briefly mentioning other strategies that could be implemented.

First, we could approximate the reduced Hessian of the Lagrangian since it is this matrix

that is known to be positive definite at a minimizer satisfying the second-order sufficient

conditions (see Gill, Murray and Saunders [15]). It will be shown in Section 4 that if x∗ is a

solution to problem (NP) that satisfies the strong-second order sufficient conditions, then

the active constraints at x∗ will ultimately be identified by the predictor step sP

k . If one

examines the various SQP subproblems discussed in [19, Section 2], then it is reasonable

to expect that the solution of the kth SQP subproblem will be “close enough” to the null

space of the active constraints to be a direction of positive curvature. This observation

suggests that we define

s̄k = sS

k and d̄k = ∇xL(xk+1, yk+1)−∇xL(xP

k , yk+1), (2.13)

where xP

k = xk + sP

k and sS

k is the solution to any of the SQP subproblems considered

in [19, Section 2.3]. The quantity s̄T
k d̄k approximates the curvature of the reduced Hessian

and is likely to be positive definite in the neighborhood of a solution. Note that this strategy

requires an extra evaluation of the first derivatives at xP

k . Second, we could approximate

the curvature of the Augmented Lagrangian. This has been studied by Han [21], Tapia [40],

Byrd, Tapia, and Zhang [7], but we mention here the approach used in the software package

SNOPT [15]. The idea is to use the augmented Lagrangian function to define a perturbation
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∆d of dk such that (dk +∆d)T sk = ηSPDsT
k Bksk. To obtain ∆d, we consider the augmented

Lagrangian function [32, 22]:

LA(s, y, Ω(ω)) = f(x)− c(x)T y + 1
2
c(x)Ω(ω)c(x), (2.14)

where ω ≡ (ω1, . . . , ωn)
T ∈ Rm and Ω(ω) = diag(ω1, . . . , ωn). The gradient of the aug-

mented Lagrangian with respect to x is given by

∇xLA

(
x, y, Ω(ω)

)
= g(x)− J(x)T

(
y −Ω(ω)c(x)

)
, (2.15)

so that

∇xLA

(
xk+1, yk+1, Ω(ω)

)
−∇xLA

(
xk, yk+1, Ω(ω)

)
= dk + ∆d(ω), (2.16)

where ∆d(ω) = J(xk+1)
T Ω(ω)c(xk+1) − JT

k Ω(ω)ck. The authors of SNOPT [15] suggest

computing an ω of minimal norm so that s̄k
def
= sk and d̄k

def
= dk + ∆d(ω) satisfy condi-

tion (2.10) by solving the problem

minimize
ω∈Rn

‖ω‖22 subject to aT ω = b, ω ≥ 0, (2.17)

where b = ηSPDs̄T
k Bks̄k − dT

k s̄k, ai = ci(xk+1)ti − ci(xk)ri, t = J(xk+1)s̄k, and r = Jks̄k. If

no solution exists or if the norm of the solution is considered too large, then a different

strategy should be used.

3. Updating the penalty parameter

The following theorem clarifies why it is essential to incorporate a strategy for updating

the penalty parameter (see [9, 10, 31] for more details).

Theorem 3.1. [9, Theorem 14.5.1] Suppose that f and ci are twice continuously differ-

entiable for 1 ≤ i ≤ m and that x∗ and y∗ are vectors such that c(x∗) ≥ 0 and σ ≥ ‖y∗‖∞.

Then if (x∗, y∗) satisfies the second-order sufficient conditions for problem (NP), x∗ also

satisfies the second-order sufficient conditions for problem (ℓ1-σ). In addition, if σ > ‖y∗‖∞
then the second-order sufficient conditions for the two problems are equivalent.

The updating scheme that we now discuss is based on the simple idea of calculating a

sequence of approximate solutions for problem (ℓ1-σ). After each approximate solution is

computed, we check the constraint violation and if sufficient improvement is not obtained,

then the penalty parameter is increased with the intent of driving the constraint violation

to zero. Since the penalty parameter is now allowed to change over a sequence of iterations,

we let σk denote the penalty parameter during the kth iterate. We accept the vector-pair

(xk, πk) as an approximate solution for problem (ℓ1-σ) if it satisfies

εD

k ≥
‖gk + σkJ

T
k πk‖∞

1 + ‖gk‖∞
(3.1a)

[πk]i =






[−
εC

k

σk

,
εC

k

σk

] if [ck]i > εP

k,

[−1− εC

k ,
εC

k

σk

] if −εP

k ≤ [ck]i ≤ εP

k,

[−1− εC

k ,−1 + εC

k ] if [ck]i < −εP

k ,

(3.1b)
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where εP

k, εD

k , and εC

k denote the kth primal, dual, and complementary-slackness tolerances,

respectively, for problem (ℓ1-σ). These conditions are based on the optimality conditions

for an exact minimizer (x, π), which are given by g(x)+σkJ(x)T π = 0 for π ∈ ∂ ‖[c(x)]−‖1
(see [12, Section 14.3] for more details). Perhaps the most natural way of generating a

vector πk is to use the multipliers from either subproblem (1.5) or any of the elastic SQP

subproblems considered in [19, Section 3.3]. If we define yk to be any of those choices,

then the optimality conditions for their respective subproblems (assuming that the TR

constraint is inactive) suggest the definition πk = −yk/σk. Provided the sequence {yk}

converges to a Lagrange multiplier vector for the elastic version of problem (ℓ1-σ), this

strategy will eventually produce a vector-pair (xk, πk) satisfying equation (3.1). A second

way of generating a vector πk is by defining it to be a solution to the optimization problem

minimize
π∈Rm

1
2
‖gk + σkJ

T
k π‖22 subject to π satisfying equation (3.1b). (3.2)

This will also eventually result in a vector-pair (xk, πk) satisfying equation (3.1), regardless

of the predictor and SQP multipliers. Therefore, for a fixed value of the penalty parameter,

we have a guaranteed method for computing a vector pair (xk, πk) that is an approximate

critical point to problem (ℓ1-σ).

Algorithm 3.1 provides the pseudo-code for updating the penalty parameter as well as

the additional parameter initiations that must be made.

Algorithm 3.1. Updating σ based on an approximate critical point to problem (ℓ1-σ).

begin (additions to preamble of Algorithm 1.1)

Choose σ0 > 0, η0 > 0, 0 < εc < 1, 0 < εP

0 < εcη0, 0 < ηc < 1, and 1 < σe.

Set εD

0 = εP

0 and εC

0 = εP

0 .

end (additions to preamble of Algorithm 1.1)

if (xk, πk) satisfies condition (3.1) then [an approximate critical point]

if c(xk) ≥ −ηke [successful]

ηk+1 ← ηcηk [decrease ηk]

εP

k+1 ← εcηk+1 [ensure that εP

k is less than ηk]

εD

k+1 ← εP

k+1, εC

k+1 ← εD

k+1

σk+1 ← σk

else [unsuccessful]

ηk+1 ← ηk

εP

k+1 ← εcε
P

k

εD

k+1 ← εP

k+1, εC

k+1 ← εD

k+1

σk+1 ← σeσk [increase σk]

end if

else [not an approximate critical point]

ηk+1 ← ηk, εP

k+1 ← εP

k, εD

k+1 ← εD

k , εC

k+1 ← εC

k , σk+1 ← σk

end if
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For simplicity, we have defined εD

k = εC

k = εP

k . However, all that is required is that

limk→∞ εP

k = limk→∞ εD

k = limk→∞ εC

k = 0.

For numerical considerations, it is generally not desirable to let the penalty parameter

grow “too large”. However, there are two situations in which the penalty parameter should

converge to infinity. The first is when the user supplies an optimization problem that is

not well-defined. It is possible that the user may formulate a set of nonlinear constraints

c(x) ≥ 0 for which no feasible point exists. Detecting this situation is difficult and is

equivalent to showing that the global solution of

minimize
x∈Rn

‖[c(x)]−‖1 (3.3)

is strictly positive. The second situation occurs when the iterates converge to a critical

point of problem (3.3) for which ‖[c(x)]−‖1 > 0. This undesirable situation may occur for

all penalty methods, but it is rarely encountered in practice. Barring these two situations

and under reasonable assumptions, Theorem 3.2 below shows that the penalty parameter

remains uniformly bounded and that we can expect to generate an approximate solution

to problem (NP) in a finite number of iterations. We use the following definition.

Definition 3.1. A point x is a first-order critical point for problem (3.3) if it satisfies

J(x)Ty = 0 (3.4)

for some y ∈ ∂ ‖[c(x)]−‖1.

For given primal, dual, and complementary-slackness tolerances τp, τd, and τc, respec-

tively, we say that a vector-pair (xk, yk) is an approximate solution to problem (NP) if it

satisfies

‖gk − JT
k yk‖∞

1 + ‖gk‖∞
≤ τd, (3.5a)

ck ≥ −τpe, (3.5b)

yk ≥ −τce, (3.5c)

max(|ck|, |yk|) ≤ τce, (3.5d)

where condition (3.5d) should be interpreted component-wise.

Theorem 3.2. Let all the assumptions of Theorem 1.1 hold and let {xk} be the sequence of

iterates generated by Algorithm 1.1 with penalty parameter update given by Algorithm 3.1.

Assume that at all limit points x∗ of {xk}, the Jacobian of active constraints has full row

rank and if x∗ is a first-order critical point for problem (3.3) then ‖[c(x∗)]
−‖1 = 0. Then

(i) the penalty parameter remains uniformly bounded; and

(ii) if τp, τd, and τc denote positive primal, dual, and complementary-slackness toler-

ances, respectively, for problem (NP), then the algorithm described in this theorem

terminates in a finite number of iterations with an approximate solution to problem

(NP) as given by (3.5), where yk
def
= −σkπk and (xk, πk) is an approximate solution

to (ℓ1-σ) as given by (3.1) for the value σk.
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Proof. We first note that

lim
k→∞

εP

k = lim
k→∞

εD

k = lim
k→∞

εC

k = 0, (3.6)

since Algorithm 1.1 is guaranteed to generate an infinite sequence {(xk, πk)} of approximate

critical points to problem (ℓ1-σ).

We now prove part (i) by contradiction. Suppose that {σk} → ∞. Examination of

Algorithm 3.1 implies the existence of a subsequence K0 ⊆ N such that for each k ∈

K0 the vector-pair (xk, πk) is an approximate critical point to problem (ℓ1-σ) as given

by equation (3.1) for which ck � −ηke. Since {πk} is bounded and {xk} belongs to

the compact set B, we may pass to a further subsequence K1 so that limk∈K1
(xk, πk) =

(x∗, π∗). Equation (3.6) and condition (3.1b) then imply that π∗ ∈ ∂ ‖[c(x∗)]
−‖1, while

condition (3.1a) and equation (3.6) imply

lim
k∈K1

‖ gk

σk

+ JT
k πk‖∞

1 + ‖gk‖∞
≤ lim

k∈K1

εD

k

σk

= 0. (3.7)

Since g is continuous by assumption and limk∈K1
xk = x∗, we know that limk∈K1

gk/σk = 0

and we may conclude from equation (3.7) that

J(x∗)
T π∗ = 0. (3.8)

Thus, x∗ is a first-order critical point for problem (3.3), and it follows from the assumptions

of this theorem that ‖[c(x∗)]
−‖1 = 0 so that c(x∗) ≥ 0. Define the index set of active

constraints at x∗ to be A∗
def
= A(x∗). Since π∗ ∈ ∂ ‖[c(x∗)]

−‖1 and c(x∗) ≥ 0, it follows

that [π∗]i = 0 for all i /∈ A∗, and therefore

JA∗(x∗)
T [π∗]A∗ = 0. (3.9)

Since JA∗(x∗) has full row rank by assumption, it follows that [π∗]A∗ = 0 and therefore

π∗ = 0. Since limk∈K1
πk = π∗ = 0, limk→∞ σk = ∞, and limk→∞ εC

k = 0, we conclude

from (3.1b) that c(xk) ≥ −εP

ke for all k ∈ K1 sufficiently large. However, since k ∈ K1 we

also know that c(xk) � −ηke. Combining these two inequalities, we have ηk < εP

k which

contradicts how Algorithm 3.1 constructs the sequence {εP

k}. Therefore, {σk} is uniformly

bounded.

We now prove part (ii) by contradiction. Suppose that Algorithm 1.1 does not terminate

in a finite number of iterations. We may then define the subsequence K2 ⊆ N such that for

all k ∈ K2 the vector-pair (xk, πk) is an approximate solution to problem (ℓ1-σ) as given

by equation (3.1). Since {σk} is uniformly bounded from part (i) and since σk is increased

by a constant factor when it is increased, there exists a number σb such that σk = σb for

all k sufficiently large. Consideration of Algorithm 3.1 then implies that limk→∞ ηk = 0.

These observations and equation (3.6) imply the existence of an integer kC such that the

following estimates hold for all k ≥ kC:

σk = σb, εD

k ≤ τd, ηk ≤ min( τp, τc ), εC

k ≤ min(τc, 1) and εP

k ≤ τc. (3.10)



14 N. I. M. Gould and D. P. Robinson

We then define the subsequence K3 to be the subsequence of K2 for which k ≥ kC.

We claim that the vector-pair (xk, yk) is an approximate solution to problem (NP)

for all k ∈ K3, where the auxiliary vector sequence {yk} is defined by yk = −σkπk.

Condition (3.5a) follows from equation (3.1a) and equation (3.10) since

‖gk − JT
k yk‖∞

1 + ‖gk‖∞
=
‖gk + σbJ

T
k πk‖∞

1 + ‖gk‖∞
≤ εD

k ≤ τd (3.11)

for all k ∈ K3. Next, since all k ∈ K3 are successful iterates by definition, we have

ck ≥ −ηke ≥ −τpe, (3.12)

where the second inequality follows from equation (3.10). Thus, condition (3.5b) is satis-

fied. Condition (3.5c) may be verified from equations (3.1b) and (3.10) since

yk = −σbπk ≥ −σb
εC

k

σb

= −εC

k ≥ −τc (3.13)

for all k ∈ K3. Finally, we verify condition (3.5d). Let k ∈ K3 and consider the ith

component of ck and πk. If |[ck]i| ≤ τc, then condition (3.5d) is satisfied. Therefore, we

assume that |[ck]i| > τc. Since k ∈ K3, it follows from equation (3.10) that

[ck]i ≥ −ηk ≥ −τc (3.14)

and, therefore,

[ck]i > τc ≥ εP

k , (3.15)

where the second inequality follows from equation (3.10). Condition (3.1b) and equa-

tion (3.10) then imply

|[yk]i| = σb|[πk]i| ≤ εC

k ≤ τc. (3.16)

This verifies condition (3.5d). We have shown that the vector-pair (xk, yk) is an approx-

imate solution to problem (NP) with tolerances τp, τd, and τc for all k ∈ K3. This is a

contradiction and, therefore, the algorithm must terminate with an approximate solution

to problem (NP) in a finite number of iterations. 2

We close this section by mentioning two potential drawbacks associated with using

Algorithm 3.1. First, if the initial penalty parameter is substantially smaller than the

threshold value required to guarantee convergence (see Theorem 3.1), then Algorithm 3.1

may be laborious since it is based on computing a sequence of approximate minimizers of

the merit function. We also note that when the penalty parameter is too small, the merit

function may not even have a well-defined minimizer [5, Example 1]. Second, even if the

merit function does have a well-defined minimizer, there may not exist a strictly decreasing

path that connects a poor initial point x0 to this minimizer [5, Example 2]. A possible

way of avoiding these situations is to dynamically update the penalty parameter based on

linear infeasibility. The so-called “steering” method is based on this idea and has been
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studied by Byrd et al. [4, 5]. Their algorithm is composed of essentially two stages that

we now briefly describe using our notation. If we denote the current penalty parameter

by σC, then the first stage is to compute a step s∞ that locally minimizes the linearized

constraint violation; this can be viewed as essentially solving the predictor subproblem

with penalty parameter σ = ∞. The second stage is to compute a predictor step sP

k and

a new penalty parameter σN that satisfy the following conditions: (i) the decrease in the

linearized constraint violation obtained from sP

k must be at least a fixed multiple of the

decrease obtained from s∞; and (ii) the decrease in the faithful model must respect the

progress made by sP

k on the linearized infeasibility by satisfying

∆MB

k(s
P

k) ≥ εaσN(‖[ck]
−‖1 − ‖[ck + Jks

P

k ]
−‖1), (3.17)

where the constant εa satisfies 0 < εa < 1 (note that ∆MB

k(sk) depends on σN although

the notation does not make this explicit). The authors present three compelling examples

that elucidate the strengths of this approach. For this approach to be beneficial, however,

the additional cost must be offset by the “superior” values for the penalty parameter.

This dynamic strategy is used in an SLQP method that is part of the KNITRO software

package [41] and the authors report results that are superior to static penalty updating

strategies.

We take the stance that both approaches should be available to the user. If the user

has no information about the size of the multipliers, then our experience has been that

steering is generally superior to finding a sequence of approximate minimizers. However,

if a reasonable estimate for the size of the multipliers is known in advance, then steering

is likely to be less efficient because of the potential overhead associated with the method.

4. Local convergence

This section considers the local convergence properties of Algorithm 4.1, which is a non-

monotone implementation of Algorithm 1.1. The update to the Lagrange multiplier vector

yk is now critical and we must consider the sequence of vector-pairs (xk, yk). To simplify

notation, we let w denote the combined x and y vectors, i.e., w = (x, y), and we write

wk = (xk, yk) for the current estimate of a solution w∗ = (x∗, y∗), wP

k = (xP

k , y
P

k) for the

solution to the predictor subproblem (1.5), and wS

k = (xS

k, y
S

k) for the solution of the SQP

subproblem (the precise definition of yS

k depends on which SQP subproblem is used).

The primary result of this section is that if a successful iterate of Algorithm 4.1 gets

close enough to a local minimizer w∗ of problem (NP) that satisfies the strong second-

order sufficient conditions, then the sequence of iterates converges to w∗ with convergence

properties derived from Newton’s Method for zero-finding applied to the function

FN (x, yA) =

(
g(x)− JA(x)T yA

cA(x)

)
. (4.1)

We accomplish this by first showing that if wk is close enough to w∗, then the predictor step

accurately predicts the optimal active set and that the trust-region constraint is inactive.
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We then show that specific SQP steps also identify the optimal active set and that their

associated trust-region constraints are inactive. Since these steps are then equivalent to

one step of Newton’s Method for zero-finding applied to FN , we deduce that wk+1 is

closer to w∗ than was wk. This process is then repeated and results in the value wk+2.

Since Algorithm 4.1 is a nonmonotone approach, the analysis given by Conn, Gould and

Toint [9, Section 15.3.2] shows that the ℓ1-merit function will accept the value xk+2 and

it follows that convergence may be described using classical results for Newton’s Method

applied to the function FN .

Algorithm 4.1 generates trial steps in exactly the same way as does Algorithm 1.1. In

fact, if every iteration is successful, then the two algorithms are identical. However, if a

failure occurs then Algorithm 4.1 still accepts the step with the hope that the next iterate

will be successful; we say that a “nonmonotone phase” has been entered. If we enter a

nonmonotone phase, the ratio rk of actual to predicted decrease in the merit function is

computed based on the trial point xk + sk and the best-known point, i.e., the solution

estimate directly before the nonmonotone phase was entered. If the number of consecutive

failures reaches the maximum number allowed (as denoted by the parameter max fails),

then the algorithm reverts to the best-known point, reduces the predictor trust-region

radius, and then tries again. In less precise terms, the algorithm has “gone back in time”

and proceeds as if we were using Algorithm 1.1 until the next failure occurs.

We have also changed the update to the predictor trust-region radius. The new up-

date ensures that the radius following every successful/very successful iteration is at least

as large as some pre-defined positive number ∆R. We will see that this strategy allows

us to prove that the trust-region constraints are eventually inactive; more complicated

alternatives are briefly outlined in [9, Chapter 15].

One final modification to Algorithm 1.1 is the introduction of the vector yF

k . Lemma 4.6

shows that we may choose yF

k to be the multipliers from the predictor step, but any estimate

satisfying the conditions yF

k − y∗ = O(‖xk − x∗‖2) and [yF

k ]I = 0 may be used. We then

define Hk to be any symmetric approximation to H(xk, y
F

k), but for the local convergence

results given by Theorems 4.1 and 4.2 we choose Hk ≡ H(xk, y
F

k).

It may easily be verified that [19, Theorems 4.3, 4.4, and 4.7] are still true with these

changes. Thus, Algorithm 4.1 is globally convergent.

Algorithm 4.1. Nonmonotone algorithm.

Input: (x0, y0)

Set parameters 0 < ηS ≤ ηVS < 1, 0 < ∆R ≤ ∆U, 0 < η ≤ ηACP < 1, τf ≥ 1, and 0 ≤ max fails ∈ N.

Set expansion and contraction factors 0 < ηc < 1 < ηe and fail counter fails = 0 .

k ← 0

do

Evaluate fk, gk, ck, Jk and then compute φk.

Define Bk to be a symmetric positive definite approximation to H(xk, yk).

Solve problem (1.4) for predictor step and multipliers (sP

k , y
P

k).
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Define yF

k to be any multiplier estimate for which yF

k−y∗ = O(‖xk−x∗‖2) and [yF

k ]I = 0.

Define Hk to be a symmetric approximation to H(xk, y
F

k).

Solve problem (1.6) for sCP

k and compute ∆MH

k(s
CP

k ).

Compute an SQP step and multipliers (sS

k, y
S

k) (optional).

Define a full step sk that satisfies condition (1.7).

Evaluate φ(xk + sk) and ∆MH

k(sk).

if fails = 0 then

rk ←
(
φ(xk)− φ(xk + sk)

)
/∆MH

k(sk) [standard definition]

else

rk ←
(
φR − φ(xk + sk)

)
/∆H

R
[change in φ based on point xR]

end if

if rk ≥ ηVS then [very successful]

xk+1 ← xk + sk

yk+1 ← yS

k (yk+1 ← yF

k if SQP step not computed)

∆P

k+1 ← min
(
max(ηe ·∆

P

k , ∆R ) , ∆U

)
[increase ∆P

k and ensure ∆P

k ≥ ∆R ]

fails ← 0

else if rk ≥ ηS then [successful]

xk+1 ← xk + sk

yk+1 ← yS

k (yk+1 ← yF

k if SQP step not computed)

∆P

k+1 ← max( ∆P

k , ∆R ) [ensure ∆P

k is bigger than ∆R]

fails ← 0

else [failure]

if fails ≤ max fails then

if fails = 0 then [save current point]

xR ← xk, yR ← yk, φR ← φk, ∆H

R
← ∆MH

k(sk)

∆P

R
← ∆P

k

∆P

k+1 ← ηc∆
P

k (optional)

end if

xk+1 ← xk + sk

∆P

k+1 ← ∆P

k

fails ← fails + 1

else [revert to saved point]

xk+1 ← xR, yk+1 ← yR

∆P

k+1 ← ηc∆
P

R
[decrease ∆P

k ]

fails ← 0

end if

end if

∆S

k+1 ← τf ·∆
P

k+1 [update SQP radius]

k ← k + 1

end do
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4.1. Optimal active set identification

The analysis that ensues requires a notion of “uniformity” for the underlying KKT systems

within a neighborhood of a solution w∗. This is generally not an an issue for systems

involving Hk since it is reasonable to expect that if wk converges to w∗ then Hk will

converge to H∗; this certainly occurs if Hk ≡ H(xk, yk) or Hk ≡ H(xk, y
F

k). A similar

statement does not hold for systems involving Bk since Bk is generally not a continuous

function of w. Moreover, we certainly can not expect the positive-definite matrix Bk to

converge to H∗ since H∗ is normally indefinite. The optimality conditions for problem

(NP) suggest that we need the matrices Hk and Bk to be positive definite when restricted

to the null space of the active constraints (note that Bk is positive definite by construction);

this is essentially the uniformity that we need. To develop a general framework, we define

the following sets that depend on the minimizer w∗:

S(x ; x∗) = {M ∈ Rn×n : M = MT, ‖M‖2 ≤ βmax and sTMs ≥ λmins
Ts ∀ s satisfying JA(x)s = 0}

(4.2)

and

Sε = ∪w∈B̄ε(w∗)S(x ; x∗) (4.3)

for given real numbers βmax and λmin > 0. Using this definition, we now state a result that

supplies the required uniformity.

Lemma 4.1. If w∗ is a KKT point for problem (NP) that satisfies the LICQ, then

(i) for any 0 ≤ ε <∞ the set

Sε = ∪w∈B̄ε(w∗)S(x ; x∗)

is compact;

(ii) if ν1 ≤ ν2, then Sν1
⊆ Sν2

;

(iii) there exists a positive number ε1 such that if w ∈ Bε1
(w∗) and M ∈ Sε1

, then sTMs ≥

(λmin/2)sTs for all s satisfying JA(x)s = 0.

If in addition, strict complementarity holds at w∗, then

(iv) there exists a positive number ε2 such that ε2 ≤ ε1 and numbers β0 > 0 and β > 0

such that if w ∈ Bε2
(w∗) and M ∈ Sε2

, then JA(x) has full row rank, cI(x) > 0,

yA > 0, and the matrices

K̄M(x) =

(
M JA(x)T

JA(x) 0

)
and KM(w) =




M −JA(x)T −JI(x)T

diag(yA)JA(x) 0 0

0 0 diag(cI)





are nonsingular and satisfy

‖K̄M(x)−1‖2 ≤ β0 and (4.4a)

‖KM(w)−1‖2 ≤ β; (4.4b)
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(v) if w ∈ Bε2
(w∗) and M ∈ Sε2

, then it follows that

s = O(‖x− x∗‖2), πA − y∗
A = O(‖x− x∗‖2), and π − y∗ = O(‖x− x∗‖2), (4.5)

where s and πA satisfy

K̄M(x)

(
s

−πA

)
≡

(
M JA(x)T

JA(x) 0

)(
s

−πA

)
= −

(
g(x)

cA(x)

)
, (4.6)

and π is obtained from πA by “scattering” the components of πA into a zero-vector of

length m as indicated by A.

Proof. We first prove part (i). Since it is clear that Sε is bounded, we only show that

Sε is closed. Let {Mk} be a sequence in Sε such that limk→∞ Mk = M̄ . This implies the

existence of a sequence {wk} ∈ B̄ε(w
∗) such that Mk ∈ S(xk; x

∗) and vT Mkv ≥ λminv
Tv

for all v such that JA(xk)v = 0. The set B̄ε(w
∗) is compact and, therefore, we can pass to

a subsequence K1 such that limk∈K1
wk = w̄ ∈ B̄ε(w

∗). Since J is continuous and JA(x∗)

has full row rank, [6, Theorem 2.3] implies the existence of a locally continuous null space

basis function Z(·) such that JA(xk)Z(xk) = 0, limk∈K1
Z(xk) = Z, and JA(x̄)Z = 0. This

implies that Z(xk)
T MkZ(xk) � λmin and upon taking limits that ZT M̄Z � λmin. Since

it is clear that M̄ is symmetric and satisfies ‖M̄‖2 ≤ βmax, we have M̄ ∈ S(x̄ ; x∗) ⊆ Sε.

Thus, Sε is closed.

Part (ii) follows immediately from the definitions of Sν1
and Sν2

.

We now prove part (iii). If part (iii) was not true, then there would exist a monotonically

decreasing and strictly positive sequence {δk} → 0 and associated sequences {wk}, {sk},

and {Mk} such that wk ∈ Bδk
(w∗), Mk ∈ Sδk

⊆ Sδ1 , JA(xk)sk = 0, ‖sk‖2 = 1 and

sT
kMksk < λmin/2. It follows from these properties, part (i), and the fact that the sequence

{sk} belongs to a compact set, that there exists a subsequence K2, a matrix M∗ ∈ Sδ1 and

a unit vector s∗ such that

lim
k∈K2

wk = w∗, lim
k∈K2

Mk = M∗, lim
k∈K2

sk = s∗, J∗
As∗ = 0, and s∗TM∗s∗ ≤ λmin/2.

(4.7)

Since Mk ∈ Sδk
and {δk} → 0, there also exists a sequence {x̂k} → x∗ such that sTMks ≥

λmins
Ts for all s satisfying JA(x̂k)s = 0. Using the same argument as in the first paragraph

of this proof, we find that Z∗TM∗Z∗ � λmin, where the columns of Z∗ form a basis for the

null space of J∗
A. This contradicts (4.7) and thus (iii) must be true.

To show that part (iv) holds, we first note that strict complementarity and the LICQ

imply that there exists a number εs such that 0 < εs ≤ ε1 and

ci(x) ≥ 1
2
c∗i > 0 for i ∈ I , yi ≥

1
2
y∗

i > 0 for i ∈ A , and JA(x) has full row rank

(4.8)

for all w ∈ Bεs
(w∗). Under the current assumptions, it follows from parts (ii), (iii) and [1,

Lemma 1.27] that

the matrix K̄M(x) is nonsingular for all w ∈ Bεs
(w∗) and M ∈ Sεs

. (4.9)
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Assume that (4.4a) does not hold for any ε2 ≤ εs so that there exists a monotonically

decreasing sequence {δk} → 0 such that 0 < δk ≤ εs, and associated sequences {wk} ∈

Bδk
(w∗) and {Mk} ∈ Sδk

⊆ Sεs
such that

‖K̄Mk
(xk)

−1‖2 ≥ k for all k ≥ 0. (4.10)

Since {δk} → 0 and Sεs
is compact as a result of part (i), there exists a subsequence K3

such that limk∈K3
wk = w∗ and limk∈K3

Mk = M∗ ∈ Sεs
. It then follows from (4.9) that

K̄M∗(x∗) is nonsingular. Since limk∈K3
K̄Mk

(xk) = K̄M∗(x∗), [16, Theorem 8.64] implies

that the singular values of K̄Mk
(xk) are uniformly bounded away from zero for k ∈ K3

sufficiently large. Therefore, ‖K̄Mk
(xk)

−1‖2 must be bounded above for all k ∈ K3, which

contradicts (4.10). Thus, (4.4a) holds for some ε1 ≥ εs ≥ ε2 > 0 and β0 > 0. It also follows

from (4.8) that JA(x) has full row rank, cI(x) > 0, and yA > 0 for all w ∈ Bε2
(w∗).

We now show that equation (4.4b) holds for ε2. Let w ∈ Bε2
(w∗) and M ∈ Sε2

.

Equation (4.8) implies that the matrices

NF =




I 0 JI(x)T diag

(
cI(x)

)−1

0 diag(yA)−1 0

0 0 I



 , NM =




M JA(x)T 0

JA(x) 0 0

0 0 diag
(
cI(x)

)



 ,

and NS = diag(I,−I, I) are nonsingular ; they satisfy NFKM(w)NS = NM so that ‖KM(w)−1‖2 ≤

‖N−1
M ‖2‖NF‖2. It is also clear from equation (4.8) that the quantity ‖NF‖2 is bounded for

all w ∈ Bε2
(w∗), so to bound ‖KM(w)−1‖2 we must bound ‖N−1

M ‖2, but it is sufficient to

bound ‖K̄M(x)−1‖2 due to equation (4.8). The result follows from equation (4.4a) and,

therefore, there exists a number β > 0 such that ‖KM(w)−1‖2 ≤ β for all w ∈ Bε2
(w∗) and

M ∈ Sε2
.

Finally, we prove part (v). Let wk ∈ Bε2
(w∗), and M ∈ Sε2

. Since c∗A = 0, it follows

that system (4.6) is equivalent to

(
M JA(x)T

JA(x) 0

)(
s

y∗
A − πA

)
= −

(
g(x)− JA(x)T y∗

A

cA(x)− c∗A

)
. (4.11)

Equation (4.4a), norm inequalities, and Taylor expansions for g(x), cA(x), and JA(x) at

the point x∗ yield s = O(‖x− x∗‖2) and πA − y∗
A = O(‖x− x∗‖2). The fact that π − y∗ =

O(‖x−x∗‖2) follows since πI = 0 by construction and y∗
I = 0 from the optimality conditions

for problem (NP). 2

Our next aim is to prove a result concerning active set identification. Given a vector

w, we define the function

FKKT(w) =

(
g(x)− J(x)T y

c(x) · y

)
. (4.12)

Lemma 4.2. Let w∗ be a solution to problem (NP) that satisfies strict complementarity

and the LICQ. Then there exist numbers µ > 0 and β > 0 such that if wk ∈ Bµ/2(w
∗), M ∈
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Sµ/2, and 4β‖FKKT(wk)‖2 ≤ µ then there exists a unique closest minimizer
(
xk(M), yk(M)

)
=

wk(M) to the point wk for the problem

minimize
x∈Rn

1
2
(x− xk)

T M(x− xk) + gT
k (x− xk)

subject to ck + Jk(x− xk) ≥ 0
(4.13)

with the following properties:

(i) ‖xk(M)− xk‖∞ ≤ ‖wk(M)− wk‖2 ≤ 2β‖FKKT(wk)‖2;

(ii) the set of constraints active at xk(M) for problem (4.13) are the same as the indices

in A;

(iii) the solution wk(M) satisfies strict complementarity; and

(iv) JA(xk) has full row rank.

Proof. We begin by letting ε1 ≥ ε2 > 0 and β > 0 be the constants guaranteed by

Lemma 4.1. Given any vector-pair (w, w̄) and symmetric matrix M , we define

FM(w ; w̄) =

(
M(x− x̄) + g(x̄)− J(x̄)T y(

c(x̄) + J(x̄)(x− x̄)
)

· y

)
. (4.14)

Differentiating (4.14) we have

F ′
M(w ; w̄) =

(
M −J(x̄)T

diag(y)J(x̄) diag
(
c(x̄) + J(x̄)(x− x̄)

)
)

.

Choosing (w, w̄) = (w∗, w∗) we have

F ′
M(w∗ ;w∗) =




M −J∗

A
T −J∗

I
T

diag(y∗
A)J∗

A 0 0

0 0 diag(c∗I)





since optimality conditions at w∗ imply c∗A = 0 and y∗
I = 0. It follows from (4.4a) with the

choice w = w∗ that the matrix F ′
M(w∗ ; w∗) is nonsingular and satisfies

‖F ′
M(w∗ ;w∗)−1‖ ≤ β for all M ∈ Sε2

. (4.15)

Next, choose a number µ such that 0 < µ ≤ ε2 and if w and w̄ are contained in Bµ(w∗),

then the following conditions are satisfied:

C1. if c∗i > 0 then [c(x̄) + Jk(x− x̄)]i > 0;

C2. if y∗
i > 0 then yi > 0;

C3. ‖F ′
M(w ; w̄)− F ′

M(w∗ ; w∗)‖2 ≤ 1/(2β) (this estimate holds for all M);



22 N. I. M. Gould and D. P. Robinson

Let wk ∈ Bµ/2(w
∗) and M ∈ Sµ/2. Since µ < µ/2 ≤ ε2 ≤ ε1, it follows from parts (ii) and

(iii) of Lemma 4.1 that JA(xk) has full row rank and that estimate (4.15) holds for M ;

thus part (iv) is true. Using the argument by Robinson [35, Lemma 1], we now show that

FM(w ; wk) has a unique zero in B̄µ/2(wk). Note that

B̄µ/2(wk) ⊂ Bµ(w∗) (4.16)

since if w ∈ B̄µ/2(wk) then

‖w − w∗‖2 ≤ ‖w − wk‖2 + ‖wk − w∗‖2 < µ/2 + µ/2 ≤ µ.

Define the function

TM (w) = w − F ′
M(w∗ ; w∗)−1FM(w ;wk) (4.17)

so that

T ′
M(w) = I − F ′

M(w∗ ;w∗)−1F ′
M (w ;wk) = F ′

M(w∗ ; w∗)−1
(
F ′

M(w∗ ; w∗)− F ′
M(w ;wk)

)
.

It follows that

‖T ′
M(w)‖2 ≤ β‖F ′

M(w∗ ; w∗)− F ′
M(w ; wk)‖2 ≤

1
2

(
use (4.15), (4.16), and C3

)

for all w ∈ B̄µ/2(wk), which implies that TM is a contraction. It also follows that

‖TM(wk)− wk‖2 ≤ β‖FM(wk ; wk)‖2
(
use (4.17) and (4.15)

)
. (4.18)

Using the triangle inequality, the fact that TM(w) is a contraction with contraction factor

1/2, equation (4.18), and the assumption that 4β‖FM(wk ; wk)‖2 ≤ µ, we have that for all

w ∈ B̄µ/2(wk) the estimate

‖TM(w)−wk‖2 ≤ ‖TM(w)−TM(wk)‖2+‖TM(wk)−wk‖2 ≤
1
2
‖w−wk‖2+β‖FM(wk ; wk)‖2 ≤ µ/2,

which implies TM : B̄µ/2(wk) → B̄µ/2(wk). We may now apply the well-known fixed point

result [37, Theorem 9.23]), which states that TM has a unique fixed point wk(M) in B̄µ/2(wk)

and that

‖xk(M)− xk‖∞ ≤ ‖xk(M)− xk‖2 ≤ ‖wk(M)− wk‖2 (use norm inequalities)

≤ 2‖TM(wk)− wk‖2 (estimate from fixed-point theorem)

≤ 2β‖FM(wk ;wk)‖2 (use (4.18)),

which proves part (i). Since wk(M) is a fixed point for TM(w), equation (4.17) implies that

FM(wk(M) ; wk) = 0. (4.19)

Thus wk(M) satisfies the equality conditions for being a first-order KKT point for prob-

lem (4.13). We now show that the point wk(M) is actually a first-order KKT point for

problem (4.13). Since wk(M) ∈ B̄µ/2(wk) ⊂ Bµ(w∗), we may deduce the following: if y∗
i > 0
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then C2 implies [yk(M)]i > 0 and then (4.19) implies [ck + Jk

(
xk(M) − xk

)
]i = 0; and if

c∗i > 0 then C1 implies [ck + Jk

(
xk(M) − xk

)
]i > 0 and then (4.19) implies [yk(M)]i = 0.

Since strict complementarity holds at w∗ by assumption, one of these two cases must hold

and, therefore, wk(M) is a first-order KKT point for the problem (4.13) that satisfies strict

complementarity and correctly identifies the optimal active set; this establishes parts (ii)

and (iii). The fact that xk(M) is a minimizer follows from parts (ii) and (iii) of Lemma 4.1.

Finally, wk(M) is the unique closest solution since any other solution would be a KKT

point and, therefore, a zero of the function FM (w ; wk). However, wk(M) is the unique zero

inside B̄µ/2(wk). 2

4.2. Local descent properties

In this section we show that, in a neighborhood of a solution w∗, directions related to

the traditional SQP step are descent directions for the underlying model functions; this

result is critical for proving that Algorithm 4.1 has a fast rate of convergence. We use the

following definition.

Definition 4.1. Given a vector v ∈ Rn and a subspace V ⊆ Rn, we define

θ(v,V) =

{
tan−1 (‖vR‖2/‖vN‖2) if ‖vN‖2 6= 0;

π/2 otherwise.
(0 ≤ θ ≤ π/2) (4.20)

to be the angle between v and V, where v = vN + vR is the unique orthogonal decomposition

of v such that vN ∈ V and vR ⊥ V.

The next result essentially says how close a vector s must be to the null space of the

active constraints to guarantee positive curvature in a neighborhood of a solution.

Lemma 4.3. Let w∗ be a solution to problem (NP) that satisfies the LICQ. Then, there

exists a number ε2 > 0 such that if w, s, and M satisfy w ∈ Bε2
(w∗), M ∈ Sε2

, and

θ
(
s, null

(
JA(x)

))
≤ θ̄

def
= min

(
π/4, tan−1

(
λmin

24βmax

))
, (4.21)

then sT Ms ≥ (λmin/8)sTs.

Proof. Let ε2 be defined as in part (iv) of Lemma 4.1 so that JA(x) has full row-rank for

all w ∈ Bε2
(w∗). Suppose that w ∈ Bε2

(w∗), M ∈ Sε2
, and s satisfy (4.21). If we write

s = sN + sR for sN ∈ null(JA(x)) and sR ∈ range(JA(x)T ), it follows from (4.20) and (4.21)

that θ = θ
(
s, null

(
JA(x)

))
satisfies

‖sR‖2
‖sN‖2

= tan(θ) ≤ 1. (4.22)
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Using the orthogonal decomposition of s, parts (ii) and (iii) of Lemma 4.1, the Cauchy-

Schwarz inequality, definition of βmax, and equations (4.22) and (4.21), we have

sT Ms

sTs
=

sN

T MsN + sR

T MsR + 2sN

T MsR

‖sN‖22 + ‖sR‖22

≥
(λmin/2)sN

TsN − βmax‖sR‖
2
2 − 2βmax‖sR‖2‖sN‖2

‖sN‖22 + ‖sR‖22

≥ λmin/4− βmax tan2(θ)− 2βmax tan(θ)

≥ λmin/4− 3βmax tan(θ) ≥ λmin/8,

which completes the proof. 2

We now show that in the neighborhood of a solution w∗, the (unique) solution to

minimize
s∈Rn

g(x)Ts + 1
2
sTMs subject to cA(x) + JA(x)s = 0 (4.23)

satisfies a certain “descent” property for the underlying models (under certain assump-

tions).

Lemma 4.4. Let w∗ be a minimizer for problem (NP) that satisfies the LICQ and strict

complementarity and suppose that σ > ‖y∗‖∞. It follows that there exist positive numbers

c2 and ε3 such that if w ∈ Bε3
(w∗) and M ∈ Sε3

then problem (4.23) is well-defined and

the solution sT satisfies

(
g(x) + σJ(x)T z

)T
sT < −c2‖sT‖

2
2 for z =

{
0 if c(x) ≥ 0;

−1 otherwise.
(4.24)

Proof. Strict complementarity implies the existence of a scalar κS > 0 such that

y∗
A ≥ κSe > 0. (4.25)

We define θ̄ as in Lemma 4.3 and choose positive scalars κJ and ε3 so that the following

hold for all w ∈ Bε3
(w∗) and M ∈ Sε3

:

1. ε3 ≤ ε2, where ε2 is defined in Lemma 4.3;

2. ‖J(x)T‖2‖(J(x)J(x)T )−1‖2 ≤ κJ;

3. the system (
M JA(x)T

JA(x) 0

)(
s

−q

)
= −

(
g(x)− JA(x)T yA

cA(x)

)
(4.26)

has a unique solution (s, q) that satisfies

a. (κS/2)e ≤ yA + q ≤ σ(1− κσ)e for some κσ > 0;
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b. ‖s‖2 ≤ min(1, c1), where

c1 =
κ sin(θ̄)

2κJβmax

> 0 and κ = min
(κS

2
, σκσ

)
> 0; and (4.27)

c. if c∗i > 0 then ci(x) +∇ci(x)Ts > 0.

Condition 2 can be satisfied since J∗
A has full row rank. Condition 1 is well-defined since

the assumptions of this theorem imply that the assumptions of Lemma 4.3 hold. Since

ε3 ≤ ε2, parts (ii), (iii) and (iv) of Lemma 4.1 combined with [1, Lemma 1.27] guarantee

that problem (4.23) has a unique solution, say sT, and the optimality conditions show

that (sT, qT) satisfies system (4.26), where qT is the step from y to the Lagrange multiplier

vector for problem (4.23). Note that we can make the solution (sT, qT) arbitrarily small

in norm since the target vector in system (4.26) converges to zero as w converges to w∗.

This observation, equation (4.25), and the assumption σ > ‖y∗‖∞, guarantee that we can

satisfy conditions 3a and 3b for some κσ > 0.

Now let w ∈ Bε3
(w∗), M ∈ Sε3

, and (sT, qT) denote the solution to problem (4.23) so

that it satisfies system (4.26). For convenience we “scatter” the vector qT, which has length

equal to the size of the indexing set A, into a vector qTF ∈ Rm so that [qTF]i = 0 if i /∈ A.

We also partition the constraints up into four types: I, II, III, and IV (see Figure 4.1); 3a

and the properties of sT guarantee that these are the only possibilities.

[ck + Jks]i = 0

xk

F
sT

(a) Active - type I.

[ck + Jks]i = 0xk

F

sT

(b) Active - type II.

[ck + Jks]i = 0
F

sT

xk

(c) Active - type III.

[ck + Jks]i = 0

xk

F

sT

(d) Inactive - type IV.

Figure 4.1: The only four possibilities in a small enough neighborhood of the solution w∗.

(a) For type I, we have ci(xk) > 0, c∗i = 0, and ∇ci(xk)
TsT < 0. (b) For type II, we have

ci(xk) = 0, c∗i = 0, and ∇ci(xk)
TsT = 0. (c) For type III, we have ci(xk) < 0, c∗i = 0, and

∇ci(xk)
TsT > 0 . (d) For type IV, we have c∗i > 0.

Note that ∇ci(x)T sT < 0 for i ∈ I, ∇ci(x)T sT = 0 for i ∈ II and ∇ci(x)T sT > 0 for i ∈ III.

It then follows from system (4.26), the definitions of qTF and z, condition 3a, and the
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definition of κ that
(
g(x) + σJ(x)T z

)T
sT = −sT

TMsT + (JA(x)sT)T[y + qTF]A + σzT (J(x)sT)

= −sT

TMsT +
∑

i∈I

(∇ci(x)T sT)[y + qTF]i +
∑

i∈III

(∇ci(x)T sT)[y + qTF − σe]i

≤ −sT

TMsT +
κS

2

∑

i∈I

(∇ci(x)T sT)− σκσ

∑

i∈III

(∇ci(x)T sT)

≤ −sT

TMsT − κ
∑

i∈I∪II∪III

|∇ci(x)T sT| = −sT

TMsT − κ‖JA(x)sT‖1.

(4.28)

We now develop a lower bound on ‖JA(x)sT‖1.

Let sT = sR

T
+ sN

T
be the orthogonal decomposition of sT such that sR

T
∈ range(JA(x)T )

and sN

T
∈ null(JA(x)). It follows that there exists a vector r such that JA(x)T r = sR

T
and,

therefore,

‖sR

T
‖2 ≤

∥∥JA(x)T
∥∥

2
‖r‖2 and JA(x)sT = JA(x)sR

T
= JA(x)JA(x)Tr. (4.29)

Using the nonsingularity of JA(x)JA(x)T and norm inequalities, we have

‖r‖2 ≤
∥∥∥
(
JA(x)JA(x)T

)−1
∥∥∥

2
‖JA(x)sT‖2. (4.30)

This inequality, equation (4.29) and condition 2, imply

‖JA(x)sT‖2 ≥
‖r‖2∥∥∥

(
JA(x)JA(x)T

)−1
∥∥∥

2

≥
‖sR

T
‖2∥∥∥

(
JA(x)JA(x)T

)−1
∥∥∥

2
‖JA(x)T‖2

≥
‖sR

T
‖2

κJ

. (4.31)

Using this inequality, norm inequalities, and the fact that ‖sR

T
‖2 = sin(θ)‖sT‖2, we have

‖JA(x)sT‖1 ≥ ‖JA(x)sT‖2 ≥
(
sin(θ)‖sT‖2

)
/κJ. (4.32)

Combining this with equation (4.28) we have
(
g(x) + σJ(x)T z)T sT ≤ −sT

TMsT −
(
κ sin(θ)‖sT‖2

)
/κJ. (4.33)

We consider two cases. First suppose that sT

TMsT ≥ (λmin/8)sT

TsT. Then it immediately

follows from equation (4.33) that
(
g(x) + σJ(x)T z

)T
sT ≤ −(λmin/8)‖sT‖

2
2. (4.34)

Next, suppose that sT

TMsT < (λmin/8)sT

TsT. Lemma 4.3 then implies that 0 < θ̄ < θ and,

therefore, 0 < sin(θ̄) < sin(θ). We can then use this fact, equation (4.33), the Cauchy-

Schwarz inequality, the definition of βmax, and condition 3b to conclude
(
g(x) + σJ(x)T z

)T
sT ≤ ‖sT‖

2
2‖M‖2 − (κ sin(θ̄)‖sT‖2)/κJ

≤ ‖sT‖2
(
βmax‖sT‖2 − (κ sin(θ̄))/κJ

)

≤ −
κ sin(θ̄)

2κJ

‖sT‖2 ≤ −
κ sin(θ̄)

2κJ

‖sT‖
2
2. (4.35)
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If we define

c2 = min

(
λmin

8
,

κ sin(θ̄)

2κJ

)
> 0, (4.36)

then it follows from equations (4.34) and (4.35) that

(
g(x) + σJ(x)T z

)T
sT ≤ −c2‖sT‖

2
2, (4.37)

which completes the proof. 2

With a little more effort, we can show that the step from the Cauchy step sCP

k to the

solution of problem (4.23) is a descent direction for the underlying models. Since the

Cauchy step is computed from the predictor step, it is imperative that we choose Bk so

that sP

k has desirable properties. The results in Section 4.1 suggest that we make the

following assumption.

Assumption 4.1. There exists a number λB
min

> 0 such that the sequence of positive-

definite matrices {Bk} defined in Algorithm 4.1 satisfies

sTBks ≥ λB
min

sTs for all s ∈ Rn and all k ≥ 0.

We now show that in the neighborhood of a solution w∗, the (unique) solution to

minimize
s∈Rn

(gk + MsCP

k

)T
s + 1

2
sTMs subject to cA(xk) + JA(xk)(s

CP

k + s) = 0 (4.38)

is a descent direction for the underlying model determined by the matrix M (under certain

assumptions).

Lemma 4.5. Let w∗ be a minimizer for problem (NP) that satisfies the LICQ and strict

complementarity and assume that σk > ‖y∗‖∞, that Assumption 4.1 holds, and ‖Bk‖2 ≤ bB

for some bB > 0. It follows that there exist positive numbers c2 and ε4 such that if iterate

k− 1 is successful, wk ∈ Bε4
(w∗) and M ∈ Sε4

, then problem (4.38) is well-defined and the

solution sT satisfies

(gk + MsCP

k + σkJ
T
k zk)

T sT < −c2‖sT‖
2
2 for [zk]i =

{
0 if i ∈ Vk,

−1 if i ∈ Sk,
(4.39)

where Vk = {i : [ck + Jks
CP

k ]i < 0} and Sk = {i : [ck + Jks
CP

k ]i ≥ 0}.

Proof. Since the proof is very similar to Lemma 4.4, we only point out the differences.

First, by choosing λmin ≤ λB
min

, we have that Bk ∈ Sε for all ε > 0. Second, since σk > ‖y∗‖∞
the predictor subproblem (1.4) is equivalent to problem (4.13) for the choice M = Bk

provided that the trust-region constraint is inactive. Third, Lemma 4.2 shows that the

solution to problem (4.13) with M = Bk correctly identifies the optimal active set if wk

is sufficiently close to w∗, so that the solution satisfies system (4.6). Equation (4.5) then

shows that we can make the solution to problem (4.13) arbitrarily small by choosing wk
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sufficiently close to w∗. Fourth, since iteration k − 1 is successful by assumption, we

know that the predictor trust-region radius is at least as large as ∆R for iteration k (see

Algorithm 4.1). Combining all of this together, we know that there exists a positive number

ε4 < µ/2 (µ is defined in Lemma 4.2) such that if wk ∈ Bε4
(w∗) then the trust-region in the

predictor step will be inactive, sP

k correctly identifies the optimal active set (see Figure 4.2),

and ‖sP

k‖2 is as small as we wish. The system that arises in place of (4.26) is

[ck + Jks]i = 0

xk

F

s
P

k

s
CP

k

sT

(a) Active - type I.

[ck + Jks]i = 0xk

F

s
CP

k sT

(b) Active - type II.

[ck + Jks]i = 0

xk

F

s
P

k

s
CP

k

sT

(c) Active - type III.

[ck + Jks]i = 0

xk F

s
P

k

s
CP

k

sT

(d) Inactive - type IV.

Figure 4.2: The only four possibilities in a small enough neighborhood of the solution w∗.

(a) For type I, we have ci(xk) > 0, c∗i = 0, and ∇ci(xk)
TsT < 0. (b) For type II, we have

ci(xk) = 0, c∗i = 0, and ∇ci(xk)
TsT = 0. (c) For type III, we have ci(xk) < 0, c∗i = 0, and

∇ci(xk)
TsT > 0 . (d) For type IV, we have c∗i > 0.

(
M JA(x)T

JA(x) 0

)(
s

−q

)
= −

(
g(x)− JA(x)T yA + MsCP

k

cA(x) + JA(xk)s
CP

k

)
, (4.40)

but since ‖sCP

k ‖2 ≤ ‖s
P

k‖2 we can ensure – by possibly decreasing ε4 – that parts 3a and 3b

of Lemma 4.4 are once again satisfied. The rest of the proof is identical. 2

4.3. Local convergence with an SEQP step

Our first rate of convergence result for Algorithm 4.1 assumes that the SQP step is com-

puted from subproblem (SEQP) as discussed in [19, Section 2.3.2]. We restate this sub-

problem for convenience:

(SEQP) minimize
s∈Rn

f̄k + (gk + Hks
P

k)
T s + 1

2
sT Hks

subject to [Jks]A(sP

k)
= 0, ‖s‖2 ≤ ∆S

k,

where A(sP

k) = {i : [ck +Jks
P

k]i ≤ 0} and f̄k = fk +gT
k sP

k + 1
2
sP

k
T Hks

P

k . Since this subproblem

only defines multipliers for the constraints whose indices are in the set A(sP

k), we form yS

k
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by ”scattering” the multipliers from subproblem (SEQP) into the appropriate locations of

a zero-vector of length m.

Theorem 4.1. (SEQP local convergence result) Let w∗ be a minimizer for problem

(NP) that satisfies the strong second-order sufficient conditions as given by Definition 1.5.

Let Assumption 4.1 hold and suppose that σk ≡ σb > ‖y∗‖∞ and ‖Bk‖2 ≤ bB for some

bB > 0 and σb > 0 and for all k ≥ 0, the SQP step is computed from subproblem (SEQP)

with the choice Hk ≡ H(xk, y
F

k), and max fails ≥ 1 in Algorithm 4.1. It follows that there

exists a positive number δ, such that if the SQP step is computed for every iteration once the

first successful iterate of Algorithm 4.1 is contained in Bδ(w
∗) then the sequences of iterates

{xk} and {yk} generated by Algorithm 4.1 converge to x∗ and y∗ at a Q-superlinear and R-

superlinear rate, respectively. Moreover, if H(w) is Lipschitz continuous in a neighborhood

of w∗, then they convergence at a Q-quadratic and R-quadratic rate, respectively.

Proof. We begin by setting λmin = min(λH
min

/2, λB
min

) and βmax = max(bB, ‖H∗‖2 +1) in

the definition of S(x ; x∗) as given by (4.2), and by letting β, ε1, ε2, and µ be the positive

constants guaranteed by Lemmas 4.1 and 4.2; note that they satisfy 0 < µ ≤ ε2 ≤ ε1 by

construction, so that part (ii) of Lemma 4.1 implies

Bµ/2(w
∗) ⊆ Bµ(w∗) ⊆ Bε2

(w∗) ⊆ Bε1
(w∗) and Sµ/2 ⊆ Sµ ⊆ Sε2

⊆ Sε1
, (4.41)

where Sε is defined by (4.2) and (4.3). By possibly decreasing µ, we can also guarantee

that if w and w̄ are contained in Bµ(w
∗), then the following conditions are satisfied:

C1. ‖y − y∗‖∞ < σb − ‖y
∗‖∞;

C2. ‖H
(
x, yF(x)

)
‖2 ≤ ‖H

∗‖2 + 1, where yF(x) is any estimate satisfying yF(x) − y∗ =

O(‖x− x∗‖2);

C3. sTH
(
x, yF(x)

)
s ≥ (λH

min
/2)sTs for all s satisfying J∗

As = 0;

C4. Newton’s Method applied to the function FN in equation (4.1) converges from the

point w to w∗; moreover, the Newton update w+ to w satisfies ‖w+−w∗‖2 ≤ ‖w−w∗‖2
(see Dennis and Schnabel [11, Theorem 5.2.1].

With µ defined, we now pick δ∆ > 0 so that

C5. δ∆ ≤ min
(
µ/2, ε4

)
, where ε4 is defined in Lemma 4.5; and

C6. δ∆ ≤ ηc∆R/2, where 0 < ∆R ≤ ∆U and ηc are used in Algorithm 4.1.

Finally, we choose δ > 0 so that

C7. δ ≤ min(µ/2, ε4), where ε4 is defined in Lemma 4.5; and

C8. if w ∈ Bδ(w
∗), then the following bound on the KKT equality conditions is satisfied:

‖fKKT(w)‖2 =

∥∥∥∥

(
g(x)− J(x)T y

c(x) · y

)∥∥∥∥
2

<
1

4β
min (δ∆, ηc∆R) .
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Now let k − 1 be the first successful iterate generated by Algorithm 4.1 such that wk ∈

Bδ(w
∗). By construction of Algorithm 4.1 and the fact that the SQP trust-region scale

factor satisfies τf ≥ 1, we have

∆P

k ≥ ∆R > 0 and ∆S

k ≥ τf∆R ≥ ∆R > 0. (4.42)

Since equation (4.41) and C7 imply that wk ∈ Bµ/2(w
∗), it follows from C8, Lemma 4.2,

and (4.42) that JA(xk) has full row rank and if M ∈ Sµ/2 then xk(M) correctly identifies

the optimal active set and satisfies

‖xk(M)− xk‖∞ ≤ 2β‖FM(wk ; wk)‖2 ≤
1
2
min(δ∆, ηc∆R) ≤ 1

2
ηc min(∆P

k , ∆
S

k). (4.43)

We now observe that Bk ∈ Sµ/2 by construction and is, in fact, positive definite. Further-

more, since C1 implies σk = σb > ‖yk(Bk)‖∞ and equation (4.43) implies ‖xk(Bk)−xk‖∞ ≤

(ηc/2)∆P

k < ∆P

k , we must have wP

k = wk(Bk). Thus the solution to the predictor subproblem

satisfies sP

k = xk(Bk)− xk, correctly identifies the optimal active set, and is not restricted

by the trust-region constraint, i.e., sP

k is the solution to (4.23) with M = Bk.

Next we observe that C2 and C3 imply that Hk ∈ S(x∗; x∗) ⊂ Sµ/2. Therefore, the

point wk(Hk) is well-defined, identifies the optimal active set, and is the unique minimizer

of problem (4.13) in a neighborhood of wk for M = Hk. Since JA(xk) has full row rank,

it follows from (4.41), part (iii) of Lemma 4.1, and [1, Lemma 1.27] that subproblem

(SEQP) has sS

k as a unique solution. It follows that if ‖xk(Hk) − (xk + sP

k)‖2 ≤ ∆S

k, then

sS

k = xk(Hk) − (xk + sP

k) (see Figure 4.3). Using the triangle inequality, the definition of

wk(Bk), and equation (4.43), we have

‖xk(Hk)−(xk+sP

k)‖2 ≤ ‖xk(Hk)−xk‖2+‖s
P

k‖2 = ‖xk(Hk)−xk‖2+‖xk(Bk)−xk‖2 ≤ ηc∆
S

k ≤ ∆S

k.

(4.44)

Thus, if sP

k+sS

k satisfies condition (1.7) then sk = sP

k+sS

k and it follows that xk+sk = xk(Hk)

and yS

k = yk(Hk). We now show that this is the case. If sT 6= 0 then C5 and Lemma 4.5

show that the vector sT, which satisfies sCP

k + sT = xk(Hk), is a descent direction for the

model MH

k. Therefore, MH

k(s
P

k +sS

k) < MH

k(s
CP

k ) so that condition (1.7) is satisfied by sP

k +sS

k.

On the other hand, if sT = 0 then it follows that sP

k = sCP

k and sS

k = 0, so that sP

k +sS

k = sCP

k

trivially satisfies condition (1.7).

If xk +sk is a successful step, then xk+1 ← xk +sk; otherwise, the update xk+1 ← xk +sk

is still made since max fails ≥ 1 , but a nonmonotone phase is entered. In either case, the

vector wk+1 is the same vector that is obtained by performing one step of Newton’s Method

on the function FN (see equation (4.1)) from the point (xk, y
F

k) with the understanding

that yk+1 is formed by “scattering” yS

k into a zero-vector of length m. Since Algorithm 4.1

makes the assignment wk+1 ← wS

k, it follows from C4 that wk+1 ∈ Bδ(w
∗) and so the same

argument may be repeated starting from the point wk+1; this results in a vector wk+2

that has the same properties as wk+1 and is, in fact, equivalent to performing one step of

Newton’s Method on the function FN from the point (xk+1, y
F

k+1) . The only difference in

the argument is that the predictor and SQP trust-region radii are only guaranteed to be
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bigger than ηc∆R since the predictor trust-region radius may be contracted if the point wk+1

was not successful. However, conditions C1–C8 were chosen to ensure that all the previous

estimates still hold. It is shown in [9, Section 15.3.2.3] that this process is sufficient for

avoiding the Maratos effect provided the ratio rk of actual to predicted decrease in the merit

function is defined using the strategy in Algorithm 4.1; therefore, wk+2 will be accepted

by the ℓ1-merit function. This argument can clearly be repeated so that every remaining

step will be accepted. As for rate of convergence, we have from [28, Theorem 11.2] and C2

that (
xk+1 − x∗

yk+1 − y∗

)
= o

(∥∥∥∥

(
xk − x∗

yF

k − y∗

)∥∥∥∥
2

)
= o (‖xk − x∗‖2) (4.45)

so that {x∗
k} and {yk} converge to x∗ and y∗ Q-superlinearly and R-superlinearly, respec-

tively (see [29, Chapter 9] for a description of Q and R convergence); C2 also shows that

{yF

k} converges to y∗ R-superlinearly. If H(w) is locally Lipschitz continuous then a sim-

ilar argument shows that {xk} converges to x∗ Q-quadratically and that {yk} and {yF

k}

converge to y∗ R-quadratically. 2

xk

s
P

k

s
CP

k

s
T

s
S

k
xk(Hk) [ck + Jks]i = 0

∆S

k

x
P

k

F

Figure 4.3: A depiction of the scenario in Theorem 4.1. The following quantities are

displayed: xk is the current iterate, sP

k is the predictor step, xP

k is the predictor point, sCP

k

is the Cauchy step, sS

k is the SQP step as computed from problem (SEQP), ∆S

k is the SQP

trust-region radius, sT is the solution to problem (4.38), xk(Hk) is the first n components of

wk(Hk), which is the closest minimizer to wk for problem (4.13) with the choice M = Hk,

and F denotes the feasible side of the constraint [ck + Jks]i ≥ 0.

Lemma 4.6. Let w∗ be a minimizer for problem (NP) that satisfies the LICQ and strict

complementarity and suppose that σk > ‖y∗‖∞, that Assumption 4.1 holds, and ‖Bk‖2 ≤ bB

for some bB > 0 and all k ≥ 0. Then there exists a scalar δP > 0 such that if iterate k − 1

is successful and wk ∈ BδP(w∗), then

yP

k − y∗ = O(‖xk − x∗‖2) and [yP

k ]I = 0, (4.46)
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where yP

k are the multipliers for the predictor subproblem (1.5).

Proof. Let δP be defined to satisfy conditions C5–C8 of Theorem 4.1. It follows, just as

in the proof of Theorem 4.1, that sP

k = xk(Bk) − xk and that sP

k is the unique solution to

problem (4.23) with the choice M = Bk. This implies that (sP

k , y
P

k) satisfies system (4.6)

(π = yP

k) so that (4.46) follows from (4.5). 2

4.4. Local convergence with an SIQP step

We now consider the rate of convergence for Algorithm 4.1 when the SQP step is computed

from subproblem (SIQP-E) as described in [19, Section 2.3.1]. We restate this subproblem

for convenience:

(SIQP-E) minimize
s∈Rn

f̄k + (gk + Hks
CP

k )T s + 1
2
sT Hks + σk‖[ck + Jk(s

CP

k + s)]−Vk
‖1

subject to [ck + Jk(s
CP

k + s)]Sk
≥ 0,

(gk + Hks
CP

k + σkJ
T
k zk)

T s ≤ 0, ‖s‖∞ ≤ ∆S

k,

where zk ∈ Rm is defined by (4.39), f̄k = fk + gT
k sCP

k + 1
2
sCP

k
T Hks

CP

k , and (gk + Hks
CP

k +

σkJ
T
k zk)

T s ≤ 0 is the so-called “descent-constraint”.

We begin by making two observations. First, since problem (SIQP-E) is generally a

nonconvex inequality constrained QP, we will need to assume that the solution sS

k is one

of minimal norm; a similar assumption is made by Robinson in [36, Section 3]. Although

this assumption is not ideal, it is not too offensive within our setting; if we use an active-

set QP solver with a hot start based on the active set obtained from the predictor step,

then the solution to subproblem (SIQP-E) will ultimately be the same as the solution

to subproblem (SEQP). Theorem 4.1 validates that this is a good step and, therefore, if

this strategy is used then the “minimum-norm solution” assumption is not necessary. The

second observation is that if the SQP step is chosen to be one of minimal norm, then the

proof of Theorem 4.1 carries over since 1) the Cauchy step sCP

k satisfies ‖sCP

k ‖∞ ≤ ‖s
P

k‖∞; 2)

the vector xk(Hk)−sCP

k is a solution to subproblem (SIQP-E); and 3) Lemma 4.5 guarantees

that the descent-constraint does not interfere with the step from sCP

k to xk(Hk).

Theorem 4.2. (SIQP-E local convergence result) Let w∗ be a minimizer for problem

(NP) that satisfies the strong second-order sufficient conditions as given by Definition 1.5.

Let Assumption 4.1 hold and assume that σk ≡ σb > ‖y∗‖∞ and ‖Bk‖2 ≤ bB for some

bB > 0 and σb > 0 and all k ≥ 0, the SQP step is computed from subproblem (SIQP-E)

with the choice Hk ≡ H(xk, y
F

k), and max fails ≥ 1 in Algorithm 4.1. It follows that

there exists a positive number δ, such that if the SQP step is a solution of minimal-norm

and is computed for every iteration once the first successful iterate of Algorithm 4.1 is

contained in Bδ(w
∗), then the sequences of iterates {xk} and {yk} converge to x∗ and y∗

at a Q-superlinear and R-superlinear rate, respectively. Moreover, if H(w) is Lipschitz

continuous in a neighborhood of w∗, then they converge at a Q-quadratic and R-quadratic

rate, respectively.
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Proof. Follows from the proof of Theorem 4.1, the discussion above, and Lemma 4.4. 2

5. Numerical results

We tested Algorithm 4.1 on the Hock-Schittkowski (HS) [23] test problems. The HS test

suite is comprised of generally small and dense problems that are very useful during early

stages of code development; the small size of the problems allows for relatively careful

inspection of each problem. We note that problem hs87 has been removed from the test

set since the objective function is not continuous.

To be precise, we tested three variants of Algorithm 4.1—they differ in how we compute

the SQP step and update the penalty parameter. In the first variant we computed the

SQP step from the inequality constrained subproblem (SIQP-E) on page 32 and updated

the penalty parameter by using “steering” as briefly described at the end of Section 3. In

the second variant we computed the SQP step from the equality constrained subproblem

(SEQP) on page 28 and again used steering to update the penalty parameter. Finally, in

the third variant we computed the SQP step from the inequality constrained subproblem

(SIQP-E) and updated the penalty parameter by using Algorithm 3.1.

Since the problems in the test set are of small dimension, we chose to update the

positive-definite matrix Bk in the predictor subproblem (1.5) by using the BFGS update.

To perform this update, we used the vectors sk and dk = ∇xL(xk+sk, yk+1)−∇xL(xk, yk+1).

If these vectors did not result in a sufficiently positive-definite update, then we used the

damped vectors given by equations (2.11) and (2.12). For simplicity, we chose B0 = I.

In all cases for the SQP and Cauchy step calculations we chose Hk ≡ H(xk, y
P

k), where

yP

k is the multiplier vector from the predictor subproblem. We solved both the (convex)

quadratic program (1.5) and the (generally indefinite) quadratic program (SIQP-E) using

the GALAHAD [18] package QPC, which is a “cross-over” QP solver. In the first phase, QPC

calls the GALAHAD interior-point QP solver QPB [8] to compute an approximate solution

and an estimate of the optimal active set. In the second phase, QPC calls the GALAHAD

active-set QP solver QPA [20] to “refine” the approximate solution from the first phase. To

solve the equality constrained QP (SEQP) we used the GALAHAD package EQP, which has

been designed to solve problems of precisely this form. We should mention that most of

the GALAHAD packages, including the QP solvers mentioned above, use the sparse solvers

MA48 and MA57 from [24] to handle the required systems. The modular design of all the

GALAHAD packages makes it easy to call these subroutines as needed.

The following parameters were used in all cases: primal/dual/complementarity slack-

ness tolerances τp = τd = τc = 1.0e−5, successful/very successful tolerances ηS = 0.01

and ηVS = 0.7, maximum predictor trust-region radius ∆U = 1000, trust-region “reset”

radius ∆R = 1.0e−4, SQP trust-region scale factor τf = 4.0, number of nonmonotone

steps allowed max fails = 1, and trust-region contraction and expansion factors ηc = 0.1

and ηe = 5.0. We used an initial penalty parameter of σ = 1.0 for the first and second

strategies, and an initial penalty parameter of σ = 9.0 for the third strategy. The larger
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(seemingly arbitrary) initial penalty parameter for the third variant was chosen based on

performance and seems to be related to the less dynamic nature of the update as compared

with steering.

Table 5.1: We record the number of function and gradient evaluations required, and

note that the difference between these values indicates the number of unsuccessful steps

attempted; an F indicates that more than 500 evaluations were required.

SIQP-steer SEQP-steer SIQP-seq

Prob #fc #gJ #fc #gJ #fc #gJ

hs1 46 25 39 24 46 25

hs2 11 8 11 8 11 8

hs3 3 3 3 3 3 3

hs4 3 2 3 2 3 2

hs5 10 6 9 6 10 6

hs6 3 3 5 5 3 3

hs7 10 9 9 8 12 10

hs8 6 6 6 6 6 6

hs9 3 3 4 4 3 3

hs10 10 10 10 10 10 10

hs11 6 6 6 6 6 6

hs12 7 7 6 6 14 11

hs13 15 12 29 27 56 54

hs14 5 5 5 5 5 5

hs15 7 7 7 7 20 20

hs16 4 4 4 4 5 5

hs17 7 7 7 7 10 10

hs18 9 8 7 7 9 8

hs19 6 6 6 6 13 13

hs20 8 8 4 4 16 15

hs21 2 2 2 2 2 2

hs22 2 2 2 2 2 2

hs23 6 6 6 6 6 6

hs24 3 3 4 4 3 3

hs25 1 1 1 1 1 1

hs26 17 17 16 16 17 17

hs27 12 11 14 13 13 12

hs28 2 2 3 3 2 2

hs29 6 6 6 6 31 23

SIQP-steer SEQP-steer SIQP-seq

Prob #fc #gJ #fc #gJ #fc #gJ

hs30 10 10 10 10 10 10

hs31 8 8 9 7 5 5

hs32 3 3 4 4 3 3

hs33 5 5 14 11 5 5

hs34 9 8 9 8 34 28

hs35 2 2 3 3 2 2

hs36 3 3 4 4 3 3

hs37 5 5 5 5 5 5

hs38 84 38 65 46 84 38

hs39 12 11 13 11 12 11

hs40 4 4 4 4 4 4

hs41 2 2 2 2 2 2

hs42 6 6 4 4 4 4

hs43 7 7 8 8 12 10

hs44 2 2 3 3 2 2

hs45 3 3 5 4 3 3

hs46 16 16 16 16 16 16

hs47 15 15 20 18 19 17

hs48 2 2 3 3 2 2

hs49 16 16 16 16 16 16

hs50 9 9 6 6 9 9

hs51 2 2 2 2 2 2

hs52 2 2 2 2 2 2

hs53 2 2 2 2 2 2

hs54 9 9 14 14 22 22

hs55 2 2 2 2 2 2

hs56 110 82 F F F F

hs57 8 6 6 6 8 6

hs59 10 9 8 8 18 15

Tables 5.1 and 5.2 on pages 34 and 39 give our preliminary numerical results for these

three strategies; column SIQP-steer corresponds to the first strategy, column SEQP-steer

corresponds to the second strategy, and column SIQP-seq corresponds to the third strategy.

For each strategy we have recorded the number of function evaluations #fc and the number

of gradient evaluations #gJ. Note that if the quantity #fc - #gJ is positive, then its value

represents the number of unsuccessful iterations, i.e., the number of times that the trust-

region radii were necessarily decreased in order to obtain good agreement between the

faithful model MH

k and the merit function φ. An F indicates that more than 500 evaluations
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were required and an FQP indicates that the QP solver failed.

We believe that these preliminary results show that our method works quite well. The

strictly convex predictor subproblem combined with either SQP subproblem (SIQP-E) or

(SEQP) typically generates iterates that rapidly converge to a solution; the nonmonotone

approach avoids the Maratos effect. The results also indicate that using steering to update

the penalty parameter generally performs better than the method discussed in Section 3;

this agrees with [4, 5]. In particular, steering was essential in solving hs93 for otherwise

the merit function converged to minus infinity, the constraints blew up, and the method

failed. In a less clear manner, the update to the penalty parameter is important in solving

hs56 . When the update in Section 3 was used, the merit function again converged to minus

infinity; the same occurred when the SQP step was computed from subproblem (SEQP)

and steering was used.

6. Conclusions and future work

In [19], we proved global convergence of a second-derivative SQP method for minimizing the

ℓ1-penalty function for a fixed value of the penalty parameter. This algorithm requires the

definition of a positive-definite matrix that approximates the Hessian of the Lagrangian; in

Section 2 we considered two possibilities. The first was a simple diagonal approximation

that attempted to crudely estimate the size of the Hessian of Lagrangian. The second

approach used a limited -memory BFGS update. We proceeded to show how the resultant

dense QP could be transformed into an equivalent QP whose sparsity is essentially the

same as the initial approximation (which will be sparse in practice). In Section 3 we gave

details on a simple strategy for updating the penalty parameter based on minimizing the

ℓ1-penalty function over a sequence of increasing values of the penalty parameter. Although

the basic idea is certainly not new [34, 25, 38, 30, 42, 3, 26], the details of our very simple

strategy have not been published to our knowledge. The main result of that section is

that the penalty parameter will stay uniformly bounded and that an approximate solution

to the nonlinear programming problem will be computed in a finite number of iterations.

However, the primary purpose of this paper was to study the local convergence properties

of a nonmonotone variant of the algorithm given in [19]. In Section 4 we gave two local

convergence results—the first applies when the SQP step is computed from an equality

constrained subproblem (the so-called SEQP approach) and the second applies when the

SQP step is computed from an inequality constrained subproblem (the so-called SIQP ap-

proach). Both results show superlinear convergence of the iterates to a solution satisfying

the strong second-order sufficiency conditions; under slightly stronger assumptions on the

second-derivatives, the convergence is quadratic. We note that the second convergence

result required that the so-called “descent-constraint” be inactive at a “minimum-norm”

solution to problem (SIQP-E) on page 32; this result was presented as Lemma 4.5. In

Section 5 we gave preliminary numerical results for the Hock-Schittkowski test problems.

Our first set of results were based on using “steering” [4, 5] to update the penalty param-

eter and computing the SQP step from the inequality constrained subproblem (SIQP-E).
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Although this requires “solving” a potentially indefinite quadratic program, which is gen-

erally perceived as a bad idea, the results are quite good. Our second set of results also

used steering to update the penalty parameter, but instead computed the SQP step from

the equality constrained subproblem (SEQP) on page 28. Our last set of results were based

on solving subproblem (SIQP-E) for the SQP step, but updating the penalty parameter by

monitoring the norm of the constraint violation over a sequence of approximate minimizers

of the merit function (see Section 3). We stress that these results are preliminary and that

they are not intended to compare the (SIQP) approach with the (SEQP) approach, but

rather to show that both approaches have the potential to be successful in practice. We

must also mention that in essentially simultaneous work, Morales, Nocedal, and Wu [27]

have been developing an ℓ1-SQP line-search algorithm based on subproblem (SEQP) in

which the optimal active set is predicted by solving a convex QP. During initial testing,

the authors have reported that the use of the convex QP to predict the active set combined

with the additional equality constrained subproblem is effective.

There are still many ideas to be explored and options to be added to our evolving

and (soon to be) freely available Fortran 95 GALAHAD [18] package S2QP. First, we want

to explore whether solving an SQP subproblem with perturbed constraints (a “correction

step”) is sufficient for avoiding the Maratos effect. This deserves further investigation

since if this is the case, then fast convergence would be guaranteed without the need for

a nonmonotone approach. Second, we plan on experimenting with modern approaches for

adjusting/defining the trust-region radius [13,14,39] as well as exploring new possibilities.

Third, we want to examine the consequences of removing the trust-region constraint from

the predictor step computation; the problem is strictly convex and, therefore, well-defined

without this constraint. Fourth, we will investigate the notion of “steering”, as it pertains

to our setting, as a reliable strategy for dynamically updating the penalty parameter.

Finally, we plan on extensively testing the package on larger problems from the CUTEr [17]

test set.
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Table 5.2: We record the number of function and gradient evaluations required, and

note that the difference between these values indicates the number of unsuccessful steps

attempted; an F indicates that more than 500 evaluations were required and an FQP

indicates that the QP solver QPC failed.

SIQP-steer SEQP-steer SIQP-seq

Prob #fc #gJ #fc #gJ #fc #gJ

hs60 7 7 7 7 7 7

hs61 5 5 5 5 14 11

hs62 12 6 8 7 12 6

hs63 7 7 7 7 7 7

hs64 15 15 20 17 23 23

hs65 6 6 6 6 22 16

hs66 4 4 4 4 4 4

hs67 7 7 10 10 14 14

hs68 27 20 38 27 20 16

hs69 24 19 42 30 45 34

hs70 21 17 41 33 21 17

hs71 5 5 5 5 5 5

hs72 16 15 15 14 46 45

hs73 3 3 3 3 3 3

hs74 8 8 8 8 8 8

hs75 8 8 8 8 8 8

hs76 2 2 4 4 2 2

hs77 12 12 12 12 12 12

hs78 4 4 4 4 4 4

hs79 5 5 5 5 5 5

hs80 7 7 8 8 7 7

hs81 6 6 6 6 6 6

hs83 6 6 6 6 16 16

hs84 4 4 4 4 5 5

hs85 8 8 13 12 21 20

hs86 4 4 4 4 4 4

hs88 20 18 25 21 43 41

hs89 23 21 64 46 45 43

SIQP-steer SEQP-steer SIQP-seq

Prob #fc #gJ #fc #gJ #fc #gJ

hs90 44 33 40 30 42 34

hs91 43 32 32 25 73 61

hs92 35 25 34 27 64 37

hs93 18 15 6 6 F F

hs95 3 3 2 2 3 3

hs96 3 3 2 2 3 3

hs97 4 4 5 5 4 4

hs98 4 4 5 5 4 4

hs99 5 5 FQP FQP 75 34

hs100 10 9 13 10 10 9

hs101 34 27 68 40 67 52

hs102 28 21 55 34 44 39

hs103 26 20 27 20 79 62

hs104 17 14 19 14 14 11

hs105 21 14 31 23 21 14

hs106 103 101 122 66 103 101

hs107 6 6 6 6 10 10

hs108 12 9 12 10 242 177

hs109 9 9 9 9 10 10

hs110 9 5 8 6 9 5

hs111 28 23 41 31 23 19

hs112 11 11 50 50 11 11

hs113 5 5 6 6 5 5

hs114 142 142 13 13 136 134

hs116 F F F F F F

hs117 10 10 11 11 10 10

hs118 3 3 12 12 3 3

hs119 7 7 8 8 7 7
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