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ABSTRACT

Sequential quadratic programming (SQP) methods form a class of highly efficient algo-

rithms for solving nonlinearly constrained optimization problems. Although second deriva-

tive information may often be calculated, there is little practical theory that justifies

exact-Hessian SQP methods. In particular, the resulting quadratic programming (QP)

subproblems are often nonconvex, and thus finding their global solutions may be com-

putationally nonviable. This paper presents a second-derivative Sℓ1QP method based on

quadratic subproblems that are either convex, and thus may be solved efficiently, or need

not be solved globally. Additionally, an explicit descent constraint is imposed on certain

QP subproblems, which “guides” the iterates through areas in which nonconvexity is a

concern. Global convergence of the resulting algorithm is established.
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1 Introduction

In this paper we present a sequential quadratic programming (SQP) method for solving

the problem

(ℓ1-σ) minimize
x∈Rn

φ(x) = f(x) + σ‖c(x)−‖1,

where the constraint vector c(x) : R
n → R

m and the objective function f(x) : R
n → R

are assumed to be twice continuously differentiable, σ is a positive scalar known as the

penalty parameter, and we have used the notation v− = min(0, v) for a generic vector

v (the minimum is understood to be component-wise). Our motivation for solving this

problem is that solutions of problem (ℓ1-σ) correspond (under certain assumptions) to

solutions of the problem

(NP) minimize
x∈Rn

f(x) subject to c(x) ≥ 0.

For more details on precisely how problems (ℓ1-σ) and (NP) are related see [10, 19].

The precise set of properties that characterize an SQP method is often author depen-

dent. In fact, as the immense volume of literature on SQP methods continues to increase,

the properties that define these methods become increasingly blurred. One may argue,

however, that the backbone of every SQP method consists of “step generation” and “step

acceptance/rejection”. We describe these concepts in turn.

All SQP methods generate a sequence of trial steps, which are computed as solutions

of cleverly chosen quadratic or quadratic-related subproblems. Typically, the QP subprob-

lems are closely related to the optimality conditions of the underlying problem and thus

give the potential for fast Newton-like convergence. More precisely, the trial steps “approx-

imately” minimize (locally) a quadratic approximation to a Lagrangian function subject to

a linearization of all or a subset of the constraint functions. Two major concerns associated

with this QP subproblem are incompatible linearized constraints and unbounded solutions.

There are essentially two approaches that have been used for handling unbounded solu-

tions. The first approach is to use a positive definite approximation to the Hessian in

the quadratic subproblem. The resultant convex QP is bounded with a unique minimizer.

The second approach allows for a nonconvex QP by explicitly bounding the solution via

a trust-region constraint. Both techniques have been effective in practice. The issue of

incompatible subproblems is more delicate. We first note that the QP subproblem may be

“naturally” incompatible – i.e., the set of feasible points is empty. However, even if the lin-

earized constraints are compatible, the feasible region may still be empty if a trust-region

constraint is imposed; the trust-region may “cut-off” all solutions to the linear system.

Different techniques, such as constraint shifting [23], a special “elastic” mode [16], and a

“feasibility restoration” phase [13], have been used to deal with incompatible subproblems.

Strategies for accepting or rejecting trial steps are sometimes referred to as “globaliza-

tion techniques” since they are the instrument for guaranteeing global convergence. The

earliest methods used so-called merit functions to measure the quality of a trial step. A
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merit function is a single function that carefully balances the (usually) conflicting aims

of reducing the objective function and satisfying the constraints. The basic idea is that

a step is accepted if it gives sufficient decrease in the merit function; otherwise, the step

is rejected, parameters updated, and a new trial step is computed. More recently, filter

methods have become an attractive alternative to a merit function. Filter methods view

problem (NP) as a bi-objective optimization problem – minimizing the objective function

f(x) and minimizing the constraint violation ‖c(x)−‖. Filter methods use the idea of a

“filter”, which is essentially a collection of pairs (‖c(x)−‖, f(x)) such that no pair dom-

inates another – we say that a pair (‖c(x1)
−‖, f(x1)) dominates a pair (‖c(x2)

−‖, f(x2))

if f(x1) < f(x2) and ‖c(x1)
−‖ < ‖c(x2)

−‖. Although the use of a merit function and a

filter are conceptually quite different, Curtis and Nocedal [11] have shown that a “flexible”

penalty approach partially bridges this gap. The flexible penalty approach may be viewed

as a continuum of methods with classical merit function and filter methods as the extrema.

The previous two paragraphs described two properties of all SQP methods – step com-

putation and step acceptance or rejection – and these properties alone may differentiate

one SQP method from another. In the context of problem (NP), a further fundamental

distinction between SQP methods can be found in how the inequality constraints are used

in the QP subproblems. This distinction has spawned a rivalry between essentially two

classes of methods, which are commonly known as SEQP and SIQP methods.

Sequential equality-constrained quadratic programming (SEQP) methods solve prob-

lem (NP) by solving an equality constrained QP during each iterate. The linearized equality

constraints that are included in the subproblem may be interpreted as an approximation

to the optimal active constraint set. Determining which constraints to include in each

subproblem is a delicate task. The approach used by Coleman and Conn [8] includes those

constraints that are nearly active at the current point. Then they solve an equality con-

strained QP in which a second-order approximation to the locally differentiable part of

an exact penalty function is minimized subject to keeping the “nearly” active constraints

fixed. An alternative approach is to use the solution of a “simpler” auxiliary subproblem

as a prediction of the optimal active constraints. Often, the simpler subproblem only uses

first-order information and results in a linear program. Merit function based variants of

this type have been studied by Fletcher and Sainz de la Maza [14], Byrd et al. [4, 5], while

filter based variants have been studied by Chin and Fletcher [7].

Sequential inequality-constrained quadratic programming (SIQP) methods solve prob-

lem (NP) by solving a sequence of inequality constrained quadratic subproblems. Contrary

to the strategy of SEQP methods, SIQP methods utilize every constraint in each subprob-

lem and, therefore, avoid the precarious task of choosing which constraints to include.

These methods also have the potential for fast convergence; under standard assumptions,

methods of this type correctly identify the optimal active-set in a finite number of iterations

and thereafter rapid convergence is guaranteed by the famous result due to Robinson [20].

Probably the greatest disadvantage of SIQP methods is their potential cost; to solve the

inequality constrained QP subprobelm, both active-set and interior-point algorithms may
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require the solution of many equality constrained quadratic programs. However, in the

case of moderate-sized problems, there is much empirical evidence that indicates that the

additional cost per iteration is often off-set by substantially fewer function evaluations

(similar evidence has yet to surface for large-sized problems). SIQP methods that utilize

exact second-derivatives must also deal with nonconvexity. To our knowledge, all previous

second-order SIQP methods assume that global minimizers of nonconvex subproblems are

computed, which is not a realistic assumption in most cases. For these methods, the com-

putation of a local minimizer is unsatisfactory because it may yield an accent direction.

Line-search, trust-region, and filter variants of SIQP methods have been proposed. The

line-search method by Gill et al. [16] avoids unbounded and non-unique QP solutions by

maintaining a quasi-Newton (sometimes limited-memory quasi-Newton) approximation to

the Hessian of the Lagrangian. The SIQP approaches by Boggs, Kearsley and Tolle [1, 2]

modify the exact second derivatives to ensure that the reduced Hessian is sufficiently pos-

itive definite. Finally, the filter SIQP approach by Fletcher and Leyffer [13] deals with

infeasibility by entering a special restoration-phase to recover from bad steps.

The algorithm we propose is an SIQP method that is most closely related to the Sℓ1QP

method proposed by Fletcher [12], which is a second-order method designed for finding

first-order critical points of problem (ℓ1-σ). The QP subproblem studied by Fletcher is

to minimize a second-order approximation to the ℓ1-penalty function subject to a trust-

region constraint. More precisely, the QP subproblem is obtained by approximating f(x)

and c(x) in the ℓ1-penalty function by a second- and first-order Taylor approximation,

respectively. Unfortunately, Fletcher’s method requires the global minimizer of this (gen-

erally) nonconvex subproblem, which is known to be a NP-hard problem. The method

we propose is also a second-derivative method that is globalized via the ℓ1-merit function,

but we do not require the global minimizer of any nonconvex QP. To achieve this goal,

our procedure for computing a trial step is necessarily more complicated than that used

by Fletcher. Given an estimate xk of a solution to problem (NP), a search direction is

generated from a combination of three steps: a predictor step sp

k is defined as a solution

to a convex QP subproblem; a Cauchy step sc

k drives convergence of the algorithm and is

computed from a special uni-variate global minimization problem; and an (optional) SQP

step ss
k is computed as a local solution of a special nonconvex QP subproblem.

The rest of the paper is organized as follows. This section proceeds to introduce requi-

site notation and to catalog various model functions used throughout the paper. Section 2

gives a complete description of how we generate the predictor, Cauchy and SQP steps.

The algorithm for computing a first-order solution to problem (ℓ1-σ) is given in Section 3

and the global convergence of this algorithm is considered in Section 4. Finally, Section 5

gives conclusions and future work.

1.1 Notation

Most of our notation is standard. We let e denote the vector of all ones whose dimension is

determined by the context. A local solution of (ℓ1-σ) is denoted by x∗; g(x) is the gradient
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of f(x), and H(x) its (symmetric) Hessian; the matrix Hj(x) is the Hessian of cj(x); J(x) is

the m×n Jacobian matrix of the constraints with ith row ∇ci(x)T . For a general vector v,

the notation v− = min(0, v) is used, where the minimum is understood to be component-

wise. The Lagrangian function associated with (NP) is L(x, y) = f(x) − yT c(x). The

Hessian of the Lagrangian with respect to x is ∇2L(x, y) = H(x)−
∑m

j=1
yjHj(x).

We often consider problem functions evaluated at a specific point xk. To simplify

notation we define the following: fk = f(xk), ck = c(xk), gk = g(xk) and Jk = J(xk). In

addition, when given a pair of values (xk, yk) we define Hk = H(xk, yk). Finally, we let Bk

denote a symmetric positive semi-definite approximation to Hk.

1.2 Model functions

We define the following models of φ(x) for a given estimate xk of a solution to problem

(ℓ1-σ).

• The linear model of the merit function:

ML

k(s) := ML

k(s ; xk) = fk + gT
k s + σ‖(ck + Jks)

−‖1.

• The convex model of the merit function:

MB

k(s) := MB

k(s ; xk) = fk + gT
k s + 1

2
sT Bks + σ‖(ck + Jks)

−‖1.

• The faithful model of the merit function:

MH

k(s) := MH

k(s ;xk) = fk + gT
k s + 1

2
sT Hks + σ‖(ck + Jks)

−‖1.

• The SQP model:

MS

k(s) := MS

k(s ; xk, s
c

k) = f̄k + (gk + Hks
c

k)
T s + 1

2
sT Hks,

where f̄k = fk + gT
k sc

k + 1

2
sc

k
T Hks

c

k and sc

k is the Cauchy step (see Section 2.2).

• The change in the convex model:

∆MB

k(s) := ∆MB

k(s ;xk) = MB

k(0 ;xk)−MB

k(s ; xk).

• The change in the faithful model:

∆MH

k(s) := ∆MH

k(s ;xk) = MH

k(0 ;xk)−MH

k(s ;xk).

• The change in the SQP model:

∆MS

k(s) := ∆MS

k(s ;xk, s
c

k) = MS

k(0 ;xk, s
c

k)−MS

k(s ;xk, s
c

k).

• For a given trust-region radius ∆ ≥ 0, primal variable x, and penalty parameter σ,

we denote the maximum decrease in the linear model to be

∆L

max(∆) := ∆L

max(x, ∆) = ML

k(0 ;x)− min
‖s‖∞≤∆

ML

k(s ;x). (1.1)
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Useful properties of the function ∆L

max are given in the next lemma. See Borwein et al.

[3] and Rockafellar [21] for more details.

Lemma 1.1 Consider the definition of ∆L

max as given by equation (1.1). Then the follow-

ing properties hold:

(i) ∆L

max(x, ∆) ≥ 0 for all x and all ∆ ≥ 0;

(ii) ∆L

max(x, ·) is a non-decreasing function;

(iii) ∆L

max(x, ·) is a concave function;

(iv) ∆L

max(·, ∆) is continuous;

(v) For any fixed ∆ > 0, ∆L

max(x, ∆) = 0 if and only if x is a stationary point for problem

(ℓ1-σ).

Properties (ii) and (iii) allow us to relate the maximum decrease in the linear model

for an arbitrary radius to the maximum decrease in the linear model for a constant radius.

For convenience, we have chosen that constant to be one. The following corollary makes

this precise.

Corollary 1.2 Let x be fixed. Then for all ∆ ≥ 0

∆L

max(∆) ≥ min(∆, 1)∆L

max(1). (1.2)

Proof. First, if ∆ ≥ 1 then part (ii) of Lemma 1.1 implies that

∆L

max(∆) ≥ ∆L

max(1). (1.3)

Second, if 0 ≤ ∆ < 1 then part (iii) of Lemma 1.1 implies

∆L

max

(

(1− α)x + αy
)

≥ (1− α)∆L

max(x) + α∆L

max(y)

for all 0 ≤ α ≤ 1. Choosing x = 0, y = 1, α = ∆, and using the fact that ∆L

max(0) = 0

yields

∆L

max(∆) ≥ ∆ ·∆L

max(1). (1.4)

Equations (1.3) and (1.4) give the required result. 2

2 Step Computation

During each iterate of our proposed method we compute a trial step sk that is calculated

from three steps: a predictor step sp

k, a Cauchy step sc

k, and an SQP step ss
k. The predictor

step is defined as the solution of a convex model for which the global minimum is unique

and computable in polynomial time. The Cauchy step is then computed as the global



A second derivative SQP method with imposed descent 7

minimizer of a specialized one-dimensional optimization problem involving the faithful

model MH

k and is also computable in polynomial time. It will be shown that the Cauchy

step alone is enough for proving convergence but we allow the option for computing an

additional SQP step. The SQP step is computed using the faithful model and is, generally

speaking, intended to increase the efficiency of the method. We begin by discussing the

predictor step.

2.1 The predictor step sp

k

The predictor step sp

k plays a role in our method analogous to the role played by the

direction of steepest descent in unconstrained trust-region methods. During each iterate of

a classical unconstrained trust-region method, a quadratic model of the objective function

is minimized in the direction of steepest descent. The resulting step, known as the Cauchy

step, gives a decrease in the quadratic model that is sufficient for proving convergence

(see Conn et al. [9]). A vector that is directly analogous is the vector that minimizes the

linearization of the ℓ1-merit function within a trust-region constraint. However, since we

want to incorporate second-order information, we define the predictor step to be a solution

to

minimize
s∈Rn

MB

k(s) subject to ‖s‖∞ ≤ ∆p

k , (2.1)

where Bk is any symmetric positive semi-definite approximation to the Hessian, and ∆p

k > 0

is the predictor trust-region radius. If Bk is positive definite then problem (2.1) is strictly

convex and the minimizer is unique. However, if Bk is only positive semi-definite, then the

problem is convex and therefore has a unique minimum, but there may be more than one

minimizer. We note that

∆MB

k(s
p

k) ≥ 0, (2.2)

since MB

k(s
p

k) ≤MB

k(0) and that problem (2.1) is a non-differentiable minimization problem.

In fact, it is not differentiable at any point for which the constraint linearization is zero.

In practice, we solve the equivalent smooth ”elastic” problem defined as

minimize
s∈Rn,v∈Rm

fk + gT
k s + 1

2
sT Bks + σke

T v

subject to ck + Jks + v ≥ 0, v ≥ 0, ‖s‖∞ ≤ ∆p

k ,
(2.3)

where e is a vector of ones of length m.

Problem (2.3) is a smooth linearly-constrained convex quadratic program that may be

solved using a number of software packages such as LOQO [22] and QPOPT [15], as well as the

QP solvers QPA, QPB, and QPC that are part of the GALAHAD [17] library. In addition, if

Bk is chosen to be diagonal, then the GALAHAD package LSQP may be used since problem

(2.1) is then a separable convex quadratic program. Note that this includes the simplest

choice of Bk ≡ 0.

The following estimate is Lemma 2.2 by Yuan [24] transcribed into our notation.
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Lemma 2.1 For a given xk and σk the following inequality holds:

∆MB

k(s
p

k) ≥
1

2
∆L

max(∆
p

k) min

(

1,
∆L

max(∆
p

k)

‖Bk‖2∆
p

k

2

)

. (2.4)

We note that the proof by Yuan requires the global minimum of the predictor subproblem.

For a general symmetric matrix Bk this requirement is not practical since finding the

global minimum of a nonconvex QP is NP-hard. This is likely the greatest drawback of

any previous methods utilizing both exact second derivatives and the ℓ1-penalty function.

In our situation, however, the matrix Bk is positive semi-definite by construction and

therefore the global minimum can be found efficiently.

We may further bound ∆MB

k(s
p

k) by applying Corollary 1.2.

Corollary 2.2

∆MB

k(s
p

k) ≥
1

2
∆L

max(1) min

(

1, ∆p

k ,
∆L

max(1)

‖Bk‖2
,

∆L

max(1)

‖Bk‖2∆
p

k

2

)

. (2.5)

Proof. Follows directly from Corollary 1.2 and Lemma 2.1. 2

The previous corollary bounds the change in the convex model at the predictor step

in terms of the maximum change in the linear model within a unit trust-region. Since we

wish to drive convergence using the faithful model, we must derive a useful bound on the

change in the faithful model. This essential bound is derived from the Cauchy point and

is the topic of the next section.

2.2 The Cauchy step sc

k

In the beginning of Section 2 we stated that the Cauchy step induces global convergence

of our proposed method. However, it is also true that the predictor step may be used to

drive convergence for a slightly different method; this modified algorithm may crudely be

described as follows. At each iterate the ratio of actual versus predicted decrease in the

merit function is computed, where the predicted decrease is given by the change in the

convex model MB

k(s) at sp

k. Based on this ratio, the trust-region radius and iterate xk may

be updated using standard trust-region techniques. Using this idea and assuming standard

conditions on the iterates generated by this procedure, one may prove convergence to a

first-order solution of problem (ℓ1-σ). However, our intention is to stay as faithful to the

problem functions as possible. Therefore, in computing the ratio of actual versus predicted

decrease in the merit function, we use the decrease in the faithful model MH

k(s) instead of

the convex model MB

k(s). Unfortunately, since the predictor step is computed using the

approximate Hessian Bk, the point sp

k is not directly appropriate as a means for ensuring

convergence. In fact, it is possible that MH

k(s
p

k) < 0, which implies that the predictor

step gives an increase in the faithful model. However, a reasonable point is close-at-hand

and is what we call the Cauchy step. The basic idea behind the Cauchy step is to make
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improvement in the faithful model in the direction sp

k. This is done by finding the global

minimizer of MH

k(αsp

k) for 0 ≤ α ≤ 1. We will see that the Cauchy step allows us to prove

convergence by using the quantity ∆MH

k(s
c

k) as a prediction of the decrease in the merit

function.

To be more precise, the Cauchy step is defined as sc

k = αks
p

k where αk is the solution to

minimize
0≤α≤1

MH

k(αsp

k). (2.6)

The function MH

k(αsp

k) is a piecewise-continuous quadratic function of α for which the exact

global minimizer may be found efficiently. Before discussing the properties of the Cauchy

step, we give the following simple lemma.

Lemma 2.3 Let c ∈ R
m, J ∈ R

m×n, and s ∈ R
n. Then the following inequality holds for

all 0 ≤ α ≤ 1:

‖(c + αJs)−‖1 ≤ α‖(c + Js)−‖1 + (1− α)‖c−‖1. (2.7)

Proof. From the convexity of ‖(·)−‖1 it follows that

‖(c + αJs)−‖1 = ‖
(

α(c + Js) + (1− α)c
)−
‖1 ≤ α‖(c + Js)−‖1 + (1− α)‖c−‖1.

2

We now give a precise lower bound for the change in the faithful model obtained from

the Cauchy step.

Lemma 2.4 Let sp

k and sc

k be defined as previously. Then

∆MH

k(s
c

k) ≥
1

2
∆MB

k(s
p

k) min

(

1,
∆MB

k(s
p

k)

n‖Bk −Hk‖2∆
p

k

2

)

. (2.8)

Proof. For all 0 ≤ α ≤ 1, we have

∆MH

k(s
c

k) ≥ ∆MH

k(αsp

k) (2.9)

= σ
(

‖c−k ‖1 − ‖(ck + αJks
p

k)
−‖1
)

− αgT
k sp

k −
α2

2
sp

k
T Hks

p

k (2.10)

= σ
(

‖c−k ‖1 − ‖(ck + αJks
p

k)
−‖1
)

− αgT
k sp

k −
α2

2
sp

k
T Bks

p

k +
α2

2
sp

k
T (Bk −Hk)s

p

k. (2.11)

Equation (2.9) follows since sc

k minimizes MH

k(αsp

k) for 0 ≤ α ≤ 1. Equations (2.10) and

(2.11) follow from the definition of MH

k and from simple algebra. Continuing to bound the
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change in the faithful model, we have

∆MH

k(s
c

k) ≥ σ
(

‖c−k ‖1 − α‖(ck + Jks
p

k)
−‖1 − (1− α)‖c−k ‖1

)

− αgT
k sp

k −
α

2
sp

k
T Bks

p

k +
α2

2
sp

k
T (Bk −Hk)s

p

k (2.12)

= ασ
(

‖c−k ‖1 − ‖(ck + Jks
p

k)
−‖1
)

− αgT
k sp

k −
α

2
sp

k
T Bks

p

k +
α2

2
sp

k
T (Bk −Hk)s

p

k (2.13)

= α∆MB

k(s
p

k) +
α2

2
sp

k
T (Bk −Hk)s

p

k. (2.14)

Equation (2.12) follows from equation (2.11), Lemma 2.3 and the inequality α2 ≤ α, which

holds since 0 ≤ α ≤ 1. Finally, equations (2.13) and (2.14) follow from simplification of

equation (2.12) and from the definition of ∆MB

k(s
p

k).

The previous string of inequalities holds for all 0 ≤ α ≤ 1, so it must hold for the value

of α that maximizes the right-hand-side. As a function of α, the right-hand-side may be

written as q(α) = aα2 + bα where

a = 1

2
sp

k
T (Bk −Hk)s

p

k and b = ∆MB

k(s
p

k) ≥ 0.

There are three cases to consider.

Case 1 : a ≥ 0

In this case the quadratic function q(α) is convex and the maximizer on the interval [0, 1]

must occur at x = 1. Thus, the maximum of q on the interval [0, 1] is q(1) and may be

bounded by

q(1) = a + b ≥ b ≥ 1

2
b = 1

2
∆MB

k(s
p

k)

since b ≥ 0 and a ≥ 0.

Case 2 : a < 0 and −b/2a ≤ 1

In this case the maximizer on the interval [0, 1] must occur at α = −b/2a. Therefore, the

maximum of q on the interval [0, 1] is given by

q(−b/2a) = a
b2

4a2
+ b
−b

2a
= −

b2

4a
.

Substituting for a and b, using the Cauchy-Schwarz inequality, and applying norm inequal-

ities shows

q(−b/2a) =
∆MB

k(s
p

k)
2

2|sp

k
T (Bk −Hk)s

p

k|
≥

∆MB

k(s
p

k)
2

2‖Bk −Hk‖2‖s
p

k‖
2
2

≥
∆MB

k(s
p

k)
2

2n‖Bk −Hk‖2‖s
p

k‖
2
∞

.

Finally, since ‖sp

k‖∞ ≤ ∆p

k , we have

q(−b/2a) ≥
∆MB

k(s
p

k)
2

2n‖Bk −Hk‖2∆
p

k

2
.
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Case 3 : a < 0 and −b/2a > 1

In this case the maximizer of q on the interval [0, 1] is given by α = 1. Therefore, the

maximum of q on the interval [0, 1] is given by q(1) and is bounded by

q(1) = a + b > −1

2
b + b = 1

2
b = 1

2
∆MB

k(s
p

k),

since the inequality −b/2a > 1 implies a > −b/2.

If we denote the maximizer of q(α) on the interval [0, 1] by α∗, then consideration of

all three cases shows that

q(α∗) ≥ 1

2
∆MB

k(s
p

k) min

(

1,
∆MB

k(s
p

k)

n‖Bk −Hk‖2∆
p

k

2

)

. (2.15)

Returning to equation (2.14), we have

∆MH

k(s
c

k) ≥ q(α∗) ≥ 1

2
∆MB

k(s
p

k) min

(

1,
∆MB

k(s
p

k)

n‖Bk −Hk‖2∆
p

k

2

)

,

which completes the proof. 2

We note that in the special case Bk = Hk, the term ∆MB

k(s
p

k)/
(

n‖Bk−Hk‖2∆
p

k

2
)

should

be interpreted as infinity, and then Lemma 2.4 reduces to

∆MH

k(s
c

k) ≥
1

2
∆MB

k(s
p

k), (2.16)

which trivially holds since Bk = Hk and sc

k = sp

k.

We may further bound the change in the faithful model obtained from the Cauchy step

by employing Corollary 2.2

Corollary 2.5 Let sp

k and sc

k be defined as previously. Then

∆MH

k(s
c

k) ≥
1

4
∆L

max(1) min(S)

where

S =
{

1, ∆p

k ,
∆L

max(1)

‖Bk‖2
,

∆L

max(1)

‖Bk‖2∆
p

k

2
,

∆L

max(1)

2n‖Bk −Hk‖2
,

∆L

max(1)

2n‖Bk −Hk‖2∆
p

k

2
,

∆L

max(1)3

2n‖Bk −Hk‖2‖Bk‖22∆
p

k

2
,

∆L

max(1)3

2n‖Bk −Hk‖2‖Bk‖22∆
p

k

6
,
}

.

Proof. The bound follows from Corollary 2.2 and Lemma 2.4. 2

Corollary 2.5 provides the necessary bound for proving convergence of our proposed

algorithm. However, the derivation of this bound relied on minimizing the faithful model

along a single direction, namely the predictor step sp

k. If the predictor step is a bad

search direction for the faithful model (most likely because Bk is, in some sense, a poor

approximate to Hk), then convergence is likely to be slow. In order to improve efficiency

we may need to make “better” use of the faithful model; the SQP step serves this purpose.
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2.3 The SQP step ss

k

We begin by discussing three primary motivations for an SQP step ss
k; we use the word

“an” instead of “the” since we propose many reasonable alternatives. The first motivation

of the SQP step is to improve the rate-of-convergence. The predictor step sp

k uses a

positive semi-definite approximation Bk to the true Hessian Hk. Since the Cauchy step

sc

k is computed as a minimization problem in the direction sp

k, the ultimate quality of the

Cauchy step is constrained by how well Bk approximates Hk (when restricted to the null-

space of the Jacobian). The simplest and cheapest choice is Bk = 0, but this would result

in at best first-order convergence. In general, if Bk is chosen to more closely approximate

Hk then the predictor step sp

k becomes more costly to compute, but would likely lead to

better convergence. Of course as Bk is required to be positive semi-definite and since Hk is

usually indefinite, this is typically not even possible. However, if a quasi-Newton approach

was used to update Bk at each iterate using, for example, a quasi-Newton BFGS update,

then one might expect to establish super-linear convergence.

The previous paragraph may do the Cauchy step injustice; not only does the Cauchy

step guarantee convergence of the algorithm, but it may happen that the Cauchy step is an

excellent direction. In fact, if we are allowed the choice Bk = Hk and pick σk sufficiently

large, then provided the trust-region radius ∆p

k is inactive, the resulting Cauchy step

sc

k(= sp

k) is the classical SQP step for problem (NP). This means that the Cauchy step

may be the “ideal” step. As previously stated, the choice Bk = Hk will generally not

be permissible. However, if a quasi-Newton or limited-memory quasi-Newton approach is

used that maintains positive definite approximations Bk, then good convergence properties

may be expected. We summarize by saying that the quality of the Cauchy step is strongly

dependent on how well Bk approximates Hk (possibly when restricted to the null-space of

the Jacobian matrix).

Unfortunately, even if the Cauchy step is an “excellent” direction, it may still suffer

from the Maratos effect [9, 18]. The Maratos effect occurs when the linear approximation to

the constraints in problem (2.1) does not adequately capture the nonlinear behavior of the

constraints. As a result, although the unit step may make excellent progress towards finding

a solution of problem (NP), it is in fact rejected by the merit function and subsequently the

trust-region radius is reduced; this inhibits the natural convergence of Newton’s Method.

Avoiding the Maratos effect is the second motivation for the SQP step.

The third motivation for the SQP step is to improve the general performance of our

method. Since the quadratic model used in computing the SQP step is allowed to use the

exact Hessian Hk, it is generally a more faithful model of the merit function.

2.3.1 Explicitly-constrained SQP steps

This section discusses a class of SQP steps computed from explicitly-constrained subprob-

lems. We use the terminology “explicitly-constrained” to emphasize that we include a

“constraint-like” restriction explicitly in the subproblem. Useful estimates may be shown

for rather general explicit constraints, but in terms of efficiency there are three natural
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choices that may be used. We define an explicitly-constrained SQP step as a solution to

(SQP-E) minimize
s∈Rn

f̄k + (gk + Hks
c

k)
T s + 1

2
sT Hks = MS

k(s)

subject to χ(s) ≥ 0

(gk + Hks
c

k)
T s ≤ 0

‖s‖∞ ≤ ∆s

k,

where χ(s) is any concave vector-valued function defined for all ‖s‖∞ ≤ ∆s

k, and f̄k =

fk + gT
k sc

k + 1

2
sc

k
T Hks

c

k. The artificial constraint (gk + Hks
c

k)
T s ≤ 0 is imposed to ensure

that all local solutions are non-accent directions for the SQP model; it is clear that a local

minimizer of a nonconvex QP may be an ascent direction. The following lemma gives a

bound on the change in the SQP model MS

k(s) at a local solution of problem (SQP-E).

Lemma 2.6 Assume that χ(0) ≥ 0. Then if ss
k is a local solution for problem (SQP-E),

the following bound on the change in the quadratic model holds at ss
k:

∆MS

k(s
s
k) = MS

k(0)−MS

k(s
s
k) ≥

1

2
max

(

−(gk + Hks
c

k)
T ss

k, |s
s
k
T Hks

s
k|
)

.

Moreover;

if ss
k
T Hks

s
k > 0 then (gk + Hks

c

k)
T ss

k < 0.

Proof. We consider two cases.

Case 1. : ss
k
T Hks

s
k ≤ 0

In this case we have

∆MS

k(s
s
k) = −(gk + Hks

c

k)
T ss

k −
1

2
ss

k
T Hks

s
k.

Since ss
k
T Hks

s
k ≤ 0 by assumption and the inequality (gk + Hks

c

k)
T ss

k ≤ 0 is enforced as an

explicit constraint in problem (SQP-E), it follows that

∆MS

k(s
s
k) ≥ max

(

−(gk + Hks
c

k)
T ss

k,
1

2
|ss

k
T Hks

s
k|
)

≥ 1

2
max

(

−(gk + Hks
c

k)
T ss

k, |s
s
k
T Hks

s
k|
)

,

and case 1 is complete.

Case 2. : ss
k
T Hks

s
k > 0

Recall that the descent constraint ensures that the inequality (gk + Hks
c

k)
T ss

k ≤ 0 holds.

We first show that (gk + Hks
c

k)
T ss

k < 0. For proof by contradiction, assume that (gk +

Hks
c

k)
T ss

k = 0. Since 0 and ss
k are both feasible for problem (SQP-E), and since χ(s) is a

concave function by assumption, it is clear that αss
k is feasible for problem (SQP-E) for

0 ≤ α ≤ 1. Furthermore, the directional derivative of MS

k at ss
k in the direction −ss

k exists

and is given by

∇MS

k(s
s
k)

T (−ss
k) = −

(

gk + Hk(s
c

k + ss
k)
)T

ss
k = −ss

k
T Hks

s
k < 0,

where we have used the fact that (gk + Hks
c

k)
T ss

k = 0 and that ss
k
T Hks

s
k > 0. This

contradicts that ss
k is a local solution to problem (SQP-E) since −ss

k is a feasible descent

direction. Therefore, (gk + Hks
c

k)
T ss

k < 0 must be true.
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Now we show the bound on ∆MS

k(s
s
k). We define the quadratic function

q(α) = aα2 + bα + e,

where

a = 1

2
ss

k
T Hks

s
k > 0, b = (gk + Hks

c

k)
T ss

k < 0, and e = f̄k.

With this definition, it follows that q(α) = MS

k(αss
k) and that ∆MS

k(s
s
k) = q(0)−q(1). Since

q(α) is a strictly convex quadratic function and q(1) is a minimizer for q on the interval

[0, 1], it follows that −b/2a ≥ 1. Using this inequality we have

∆MS

k(s
s
k) = −a− b ≥ max(−1

2
b, a) = 1

2
max

(

−(gk + Hks
c

k)
T ss

k, |s
s
k
T Hks

s
k|
)

,

which completes case 2. 2

This result shows that an (SQP-E) step will never cause the SQP model to increase

and, in general, it will decrease. The only situation in which the SQP model does not

decrease is when the step ss
k is a direction of zero curvature for Hk and the explicit descent

constraint is active. It is of interest to consider a sequence of iterates {xk} converging to

a solution of problem (NP) for which the second-order sufficient conditions are satisfied.

In this case, we expect that for k sufficiently large the condition ss
k
T Hks

s
k > 0 would be

satisfied. Then, Lemma 2.6 implies that the artificial constraint (gk + Hks
c

k)
T s ≤ 0 will

be inactive. This property is essential if we expect to recover fast convergence since the

artificial constraint may impede the natural convergence of Newton’s Method. However,

when far from a solution, the artificial constraint stabilizes the method by “guiding” the

iterates through areas of indefiniteness by ensuring that the SQP step does not increase

the model MS

k.

We now provide three specific concave functions χ(s) and the resultant explicitly-

constrained SQP subproblem; these choices have been made with our primary goals in

mind. We use the notation cc

k = c(xk + sc

k) and Jc

k = J(xk + sc

k).

• The choice

χ(s) = ck + Jks−min(ck,−Jks
c

k)

leads to the following explicitly-constrained SQP subproblem:

(SQP-E1) minimize
s∈Rn

f̄k + (gk + Hks
c

k)
T s + 1

2
sT Hks

subject to ck + Jks ≥ min (ck,−Jks
c

k),

(gk + Hks
c

k)
T s ≤ 0,

‖s‖∞ ≤ ∆s

k.

• The choice

χ(s) = cc

k + Jks−min
(

cc

k, 0
)
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leads to the following explicitly-constrained SQP subproblem:

(SQP-E2) minimize
s∈Rn

f̄k + (gk + Hks
c

k)
T s + 1

2
sT Hks

subject to cc

k + Jks ≥ min
(

cc

k, 0
)

,

(gk + Hks
c

k)
T s ≤ 0,

‖s‖∞ ≤ ∆s

k.

• The choice

χ(s) = cc

k + Jc

ks−min
(

cc

k, 0
)

leads to the following explicitly-constrained SQP subproblem:

(SQP-E3) minimize
s∈Rn

f̄k + (gk + Hks
c

k)
T s + 1

2
sT Hks

subject to cc

k + Jc

ks ≥ min(cc

k, 0),

(gk + Hks
c

k)
T s ≤ 0,

‖s‖∞ ≤ ∆s

k.

First, we note that the value s = 0 is feasible for all three subproblems. Second, we note

that subproblems (SQP-E2) and (SQP-E3) are closely related to subproblems typically

used to avoid the Maratos effect in SQP methods for equality constraints (see [9], for

example). However, we emphasize that we are not claiming that these subproblems avoid

the Maratos effect.

We now give a brief interpretation of χ(s) for each subproblem. For subproblem (SQP-

E1), the constraint χ(s) ensures that the linearized constraint violation at the step sc

k+ss
k is

no larger than the linearized constraint violation at sc

k. We will soon see that this property

results in a useful bound on ∆MH

k(s
c

k + ss
k). For subproblem (SQP-E2), the constraint

χ(s) may allow for further minimization of the model function MS

k for all constraints i that

“bend backwards”, i.e. constraints i for which ci(xk +sc

k) is feasible. Finally, the constraint

χ(s) for subproblem (SQP-E3) is a “tilted” version of (SQP-E2).

2.3.2 Implicitly-constrained SQP steps

This section discusses several choices for computing an SQP step from implicitly-constrained

SQP subproblems. We use the terminology implicitly-constrained because we are attempt-

ing to satisfy a “constraint-like” function implicitly by penalizing the violation of that

constraint. The primary advantage of these subproblems over explicitly-constrained SQP

subproblems is their direct connection to standard techniques for avoiding the Maratos

effect. Their main disadvantage is that we are no longer guaranteed that the sum of the

Cauchy step and the SQP step will give us sufficient decrease in the faithful model MH

k .

However, since these steps are intended to avoid the Maratos effect, they would mostly be

used asymptotically and this is precisely the situation in which we expect the implicitly-

constrained SQP steps to give sufficient decrease in the faithful model.
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We define an implicitly-constrained SQP step as a solution to

(SQP-I) minimize
s∈Rn

f̄k + (gk + Hks
c

k)
T s + 1

2
sT Hks + σ̄‖χ(s)−‖1

subject to ‖s‖∞ ≤ ∆s

k,

where χ(s) is any vector-valued function defined for all ‖s‖∞ ≤ ∆s

k, f̄k = fk + gT
k sc

k +
1

2
sc

k
T Hks

c

k, and σ̄ > 0 is a positive penalty parameter that may or may not be equal to σ.

We now provide two specific vector-valued functions χ(s) and the resultant implicitly-

constrained SQP subproblem; these choices have been made with the Maratos effect in

mind. Again, we use the notation cc

k = c(xk + sc

k) and Jc

k = J(xk + sc

k).

• The choice

χ(s) = cc

k + Jks

leads to the following implicitly-constrained SQP subproblem:

(SQP-I1) minimize
s∈Rn

fk + (gk + Hks
c

k)
T s + 1

2
sT Hks + σ̄‖(cc

k + Jks)
−‖1

subject to ‖s‖∞ ≤ ∆s

k.

• The choice

χ(s) = cc

k + Jc

ks

leads to the following implicitly-constrained SQP subproblem:

(SQP-I2) minimize
s∈Rn

fk + (gk + Hks
c

k)
T s + 1

2
sT Hks + σ̄‖(cc

k + Jc

ks)−‖1

subject to ‖s‖∞ ≤ ∆s

k.

2.4 The full step sk

In Sections 2.1 and 2.2 we discussed how to compute the predictor step and the Cauchy

step. The Cauchy step sc

k was carefully constructed from the predictor step to ensure

that it gave decrease in the faithful model MH

k . Next, Section 2.3 discussed many options

for computing an SQP step ss
k; they were categorized as either explicitly- or implicitly-

constrained SQP steps. This section analyzes the full step sk = sc

k + ss
k.

We first examine the full step sk when the SQP step is computed from any of the

explicitly-constrained SQP subproblems. These subproblems were carefully constructed

to ensure that any local minimizer results in a decrease in the model MS

k. We now must

investigate the decrease in the faithful model obtained from the full step. The next lemma

gives a condition that guarantees that the decrease in the faithful model obtained from the

full step is at least as great as the decrease obtained from the Cauchy point.

Lemma 2.7 If ss
k is computed from an explicitly-constrained SQP subproblem and if the

following inequality holds

‖(ck + Jksk)
−‖1 ≡ ‖

(

ck + Jk(s
c

k + ss
k)
)−
‖1 ≤ ‖(ck + Jks

c

k)
−‖1 (2.17)
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then the following three estimates hold

∆MH

k(sk) ≥ ∆MS

k(s
s
k) + ∆MH

k(s
c

k), (2.18)

∆MH

k(sk) ≥ ∆MS

k(s
s
k), (2.19)

∆MH

k(sk) ≥ ∆MH

k(s
c

k). (2.20)

Proof. We begin by noticing that equations (2.19) and (2.20) follow immediately from

equation (2.18) since ∆MH

k(s
c

k) ≥ 0 and ∆MS

k(s
s
k) ≥ 0 by Lemma 2.4 and Lemma 2.6. It

remains to show (2.18).

Using the definition of ∆MH

k and simplifying, we have

∆MH

k(sk) = MH

k(0)−MH

k(sk) (2.21)

= σ
(

‖c−k ‖1 − ‖(ck + Jksk)
−‖1
)

− gT
k sk −

1

2
sT

k Hksk (2.22)

= σ
(

‖c−k ‖1 − ‖(ck + Jksk)
−‖1
)

− ss
k
T (gk + Hks

c

k)

− 1

2
ss

k
T Hks

s
k − gT

k sc

k −
1

2
sc

k
T Hks

c

k (2.23)

= ∆MS

k(s
s
k) + σ

(

‖c−k ‖1 − ‖(ck + Jksk)
−‖1
)

− gT
k sc

k −
1

2
sc

k
T Hks

c

k (2.24)

≥ ∆MS

k(s
s
k) + σ

(

‖c−k ‖1 − ‖(ck + Jks
c

k)
−‖1
)

− gT
k sc

k −
1

2
sc

k
T Hks

c

k (2.25)

= ∆MS

k(s
s
k) + ∆MH

k(s
c

k). (2.26)

Equations (2.21) and (2.22) follow from the definitions of ∆MH

k and MH

k . Equation (2.23)

follows from the definition of sk and from gathering like terms, while equation (2.24) follows

from the definition of ∆MS

k. Finally, equations (2.25) and (2.26) follow from the assumption

in this lemma and the definition of ∆MH

k . 2

The previous lemma has the following interpretation: if the linearized constraint vio-

lation at the full step is no greater than the linearized constraint violation at the Cauchy

step, then the decrease in the faithful model at the full step is no less than the decrease in

the faithful model obtained from the Cauchy step. The next lemma gives a condition that

guarantees that inequality (2.17) is satisfied.

Lemma 2.8 Let sk = sc

k + ss
k. Then inequality (2.17) holds if

Jks
s
k ≥ min

(

0,−(ck + Jks
c

k)
)

. (2.27)

Proof. Inequality (2.17) holds if

min(0, ck + Jks
c

k) ≤ min
(

0, ck + Jk(s
c

k + ss
k)
)

. (2.28)

We consider a generic component i. If [ck + Jks
c

k]i ≥ 0, then inequality (2.28) holds if and

only if [Jks
s
k]i ≥ −[ck + Jks

c

k]i. On the contrary, if [ck + Jks
c

k]i < 0, then inequality (2.28)

holds if and only if [Jks
s
k]i ≥ 0. These conditions are precisely those given by inequality

(2.27). 2

We now give a bound on the decrease in the model MH

k provided the explicitly-constrained

SQP step is computed from problem (SQP-E1).
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Lemma 2.9 Define sk = sc

k + ss
k, where sc

k is computed as described in Section 2.2 and ss
k

is any feasible point for problem (SQP-E1). Then the following bounds on the decrease of

MH

k(sk) hold:

∆MH

k(sk) ≥ ∆MS

k(s
s
k) + ∆MH

k(s
c

k),

∆MH

k(sk) ≥ ∆MS

k(s
s
k),

∆MH

k(sk) ≥ ∆MH

k(s
c

k).

In particular, if ss
k is a local solution to problem (SQP-E1), then the previous estimates

hold.

Proof. Subtracting the term ck from both sides of the general constraint for problem (SQP-

E1) shows that any feasible point satisfies equation (2.27) and therefore inequality (2.17)

holds. Lemma 2.7 then implies the result. 2

The previous lemma shows that the full step sk = sc

k + ss
k is guaranteed to produce a

good decrease in the model Hk. More specifically, the lemma shows that the decrease in

the model MH

k obtained from the full step sk is at least as large as the decrease obtained

from the Cauchy point, which in turn was carefully constructed to guarantee convergence.

We are not guaranteed that inequality (2.17) holds for the explicitly-constrained SQP

subproblems (SQP-E2) and (SQP-E3) and therefore an estimate like that found in Lemma 2.9

is not guaranteed to be satisfied; the same situation exists for every implicitly-constrained

SQP subproblem. Hence, when the SQP step is computed from any of these subproblems

we should monitor the change in the model MH

k to ensure that the change is “sufficient”.

By sufficient, we mean that the inequality

∆MH

k(sk) ≥ η∆MH

k(s
c

k) (2.29)

is satisfied for some constant 0 < η ≤ 1 independent of k. If subproblem (SQP-E1) is used

to compute the SQP step, then Lemma 2.9 guarantees that inequality (2.29) holds with

η = 1. For any other SQP subproblem, if inequality (2.29) is satisfied then we defined

sk = sc

k + ss
k; otherwise, we set ss

k = 0 so that sk = sc

k and inequality (2.29) holds for

η = 1.

3 The Algorithm

This section presents an algorithm for minimizing problem (ℓ1-σ); the algorithm is given by

Algorithm 3.1. First, the user supplies an initial guess (x0, y0) of a solution to problem (ℓ1-

σ). Next, “success” parameters 0 < ηS ≤ ηVS < 1, a maximum allowed predictor trust-

region radius ∆̄, and expansion and contraction factors 0 < τc < 1 < τe are defined.

With parameters set, the main “do-while” loop begins. First, the problem functions

are evaluated at the current point (xk, yk). Next, a symmetric positive semi-definite matrix

Bk is defined and the predictor step sp

k is computed as a solution to problem (2.1). Simple
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choices for Bk would be the zero matrix, the identity matrix, or perhaps a scaled diagonal

matrix that attempts to model the “essential properties” of the matrix Hk. However,

computing Bk via a limited-memory quasi Newton update is an attractive option. We

leave further discussion of the matrix Bk to a separate paper.

Next, we solve problem (2.6) for the Cauchy step sc

k. As given, the Hessian Hk is

evaluated at (xk, yk). However, it is also possible to compute the matrix Hk after the

predictor step is computed using the multiplier vector from the predictor subproblem. In

either case, once the Cauchy step is computed we calculate the decrease in the model MH

k

at the Cauchy step, which is given by ∆MH

k(s
c

k). Next, we must compute an SQP step

satisfying inequality (2.29). This may be done in three ways. First, the SQP subproblem

may be skipped entirely so that ss
k = 0 and condition (2.29) is trivially satisfied. Sec-

ond, the SQP step may be defined as the solution to the SQP problem (SQP-E1), since

Lemma 2.9 guarantees that the full step will satisfy condition (2.29). Third, we may solve

any of the other SQP subproblems discussed in Section 2.3 and check a-posteriori whether

condition (2.29) is satisfied. If the condition is satisfied we accept the step; otherwise, we

set ss
k = 0 so that condition (2.29) is once again satisfied. Once the SQP step is computed,

we set sk = sc

k + ss
k, evaluate φ(xk + sk) and ∆MH

k(sk), and compute the ratio rk of actual

versus predicted decrease in the merit function.

Our strategy for updating the predictor trust-region radius and for accepting or re-

jecting candidate steps is identical to that used by Fletcher [12] and is determined by the

ratio rk. More precisely, if the ratio rk of actual versus predicted decrease in the ℓ1-merit

function is larger than ηVS , then we believe that the model is a very accurate representa-

tion of the true merit function within the current trust-region. Therefore we increase the

predictor trust-region radius with the belief that the current trust-region radius may be

overly restrictive. If the ratio is greater than ηS , then we believe the model is sufficiently

accurate and we keep the predictor trust-region radius fixed. Otherwise, the ratio indicates

that there is poor agreement between the model MH

k and the merit function. Therefore

we decrease the predictor trust-region radius with the hope that the model will accurately

capture the behavior of the merit function over the smaller trust-region. As for step ac-

ceptance or rejection, we accept any iterate for which rk is positive, since this indicates

that the merit function has decreased. We note that the precise update used for the dual

variables yk+1 is not important for proving convergence; we do not specify any particular

update in the algorithm. However, the precise update used is essential when considering

performance; the multiplier vector from the SQP subproblem is the most obvious candi-

date. In the case that the SQP step is not computed, then the most obvious multiplier

update becomes the multiplier vector from the predictor subproblem. We also note that

a least-squares multiplier update is also possible, but would require solving a specialized

inequality-constrained linear program.

Finally, we have the additional responsibility of updating the SQP trust-region radius.

In Algorithm 3.1 we set the SQP trust-region radius to a constant multiple of the predictor

trust-region radius although the condition ∆s

k+1 ≤ τf · ∆
p

k+1
for some constant τf is also
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sufficient. Although this update is simple and may be viewed as “obvious”, we believe that

it deserves extra discussion. If the predictor trust-region radius is not converging to zero on

any subsequence, then the algorithm must be making good progress in reducing the merit

function. The delicate situation is when the predictor trust-region radius is converging

to zero on some subsequence. Since the predictor step must also be converging to zero,

it seems natural to require that the full step also converges to zero. Therefore it seems

intuitive to require that if {xkj
}j≥0 is any subsequence such that limj→∞ ‖s

p

kj
‖∞ = 0, then

the sequence

{∆s

kj/‖s
p

kj
‖∞}j≥0 remain bounded. (3.1)

A simple way to ensure this condition is by defining the SQP trust-region radius as ∆s

k+1 ←

τf · ‖s
p

k‖∞, i.e. set the SQP trust-region radius to be a constant multiple of the size of

the predictor step. This condition is sufficient for proving convergence, but we prefer

the alternate update ∆s

k+1 ← τf · ∆
p

k+1
, i.e. set the SQP trust-region radius to be a

constant multiple of the size of predictor radius. Asymptotically they are equivalent since

Corollary 4.2 shows that if we are not converging to a solution, then ‖sp

k‖∞ = ∆p

k for ∆p

k

sufficiently small. However, the update ∆s

k+1 ← τf · ∆
p

k+1
allows for larger value of ∆s

k

globally and has been observed to perform better in our initial tests.

Algorithm 3.1. Minimizing the ℓ1-penalty function

Input: (x0, y0)

Set parameters 0 < ηS ≤ ηVS < 1, and ∆̄ > 0.

Set expansion and contraction factors 0 < τc < 1 < τe.

k ← 0

do

Evaluate fk, gk, ck, Jk, Hk, and then compute φk.

Define Bk to be a positive semi-definite approximation to Hk.

Solve problem (2.1) for sp

k.

Solve problem (2.6) for sc

k and compute ∆MH

k(s
c

k).

Compute an SQP-correction step ss
k satisfying (2.29).

sk ← sc

k + ss
k

Evaluate φ(xk + sk) and ∆MH

k(sk).

Compute rk =
(

φk − φ(xk + sk)
)

/∆MH

k(sk).

if rk ≥ ηVS [very successful]

∆p

k+1
← min( τe ·∆

p

k , ∆̄ ) [increase predictor radius]

else if rk ≥ ηS [successful]

∆p

k+1
← ∆p

k [keep predictor radius]

else [unsuccessful]

∆p

k+1 ← τc ·∆
p

k [decrease predictor radius]

end

if rk > 0 [accept step]

xk+1 ← xk + sk
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yk+1 ← whatever you want

else [reject step]

xk+1 ← xk

yk+1 ← yk

end

∆s

k+1 ← τf ·∆
p

k+1
[update SQP radius]

k ← k + 1

end do

4 Convergence

This section shows that Algorithm 3.1 is globally convergent. Our man result is that

under certain assumptions, there exists a subsequence of the iterates generated by Algo-

rithm 3.1 that converges to a first-order solution of problem (ℓ1-σ). The proof requires two

preliminary results as well as two estimates. First, since f(x) and c(x) are continuously

differentiable by assumption, there exists a positive constant M such that

∥

∥

∥

∥

(

g(x)T

J(x)

)
∥

∥

∥

∥

2

≤ M for all x ∈ B, (4.1)

where B is a closed and bounded subset of R
n. Second, since the function h(f, c) =

f + σ‖c−‖1 is convex, there exists a positive constant L such that

|h(f1, c1)− h(f2, c2)| ≤ L

∥

∥

∥

∥

(

f1 − f2

c1 − c2

)
∥

∥

∥

∥

2

(4.2)

for all (f1, c1) and (f2, c2) ∈
(

f(B), c(B)
)

[21, Theorem 10.4]. Using these bounds we may

now state the following lemma, which provides a lower bound on the size of the predictor

step. This is essentially [24, Lemma 3.2] except for the use of the infinity norm.

Lemma 4.1 Let xk ∈ B so that equations (4.1) and (4.2) hold. Then, if ‖sp

k‖∞ < ∆p

k then

‖sp

k‖∞ ≥
1

2
∆L

max(xk, 1) min

(

1

LM
,

1

n(1 + ∆̄)‖Bk‖

)

. (4.3)

Corollary 4.2 Suppose that {xk}k≥0 ⊂ B and that K is a subsequence of the integers such

that the following hold:

(i) there exists a number δ such that ∆L

max(xk, 1) ≥ δ > 0 for all k ∈ K;

(ii) there exists a positive constant bB such that ‖Bk‖ ≤ bB for all k ∈ K;

(iii) limk∈K ∆p

k = 0.
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Then

‖sp

k‖∞ = ∆p

k for all k ∈ K sufficiently large. (4.4)

Proof. Equation (4.3), (i), and (ii) imply that ‖sp

k‖∞ is strictly bounded away from zero

for all k ∈ K. However, this contradicts assumption (iii) for k ∈ K sufficiently large since

‖sp

k‖∞ ≤ ∆p

k . Therefore, Lemma 4.1 implies that ‖sp

k‖∞ = ∆p

k for all k ∈ K sufficiently

large. 2

We may now state our main result. The organization of the proof is based on The-

orem 14.5.1 by Fletcher [12] and the proof of case 1 is nearly identical to that given by

Fletcher.

Theorem 4.3 Let f and c be twice continuously differentiable functions, and let {xk},

{Hk}, {Bk}, {∆
p

k}, and {∆s

k}, be sequences generated by Algorithm 3.1. Assume that the

following conditions hold:

1. {xk}k≥0 ⊂ B ⊂ R
n, where B is a closed and bounded set;

2. There exists positive constants bB and bH such that ‖Bk‖2 ≤ bB and ‖Hk‖2 ≤ bH for

all k ≥ 0;

Then, either xK is a first-order point for problem (ℓ1-σ) for some K ≥ 0, or there exists a

subsequence of {xk} that converges to a first-order solution of problem (ℓ1-σ).

Proof. If xK is a first-order point for problem (ℓ1-σ) for some K ≥ 0 then we are done.

Therefore, we assume that xk is not a first-order solution to problem (ℓ1-σ) for all k. We

consider two cases.

Case 1 : there exists a subsequence of {∆p

k} that converges to zero.

Examination of the algorithm shows that this implies the existence of a subsequence S of

the integers such that

lim
k∈S

xk = x∗, (4.5)

lim
k∈S

∆p

k = 0, (4.6)

lim
k∈S
‖sp

k‖∞ = 0, and (4.7)

rk < ηS for all k ∈ S. (4.8)

For a proof by contradiction, we suppose that x∗ is not a first-order critical point. This

implies that there exists a direction s and a scalar ρ > 0 such that ‖s‖∞ = 1 and

max
y∈∂ ‖c−∗‖1

sT (g∗ + σJT

∗y) = −ρ, (4.9)

where ∂ ‖c−∗‖1 is the sub-differential of ‖(·)−‖1 at the point c∗ (see [12, Section 14.3] for

more details). A Taylor expansion of f at xk in a general direction v gives

f(xk + εv) = fk + εgT
k v + o(ε) = fk + εgT

k v +
ε2

2
vT Hkv + o(ε) (4.10)
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since {Hk} is bounded by assumption, while a Taylor expansion of c at xk gives

c(xk + εv) = ck + εJkv + o(ε). (4.11)

Combining these two equations gives

φ(xk + εv) = fk + εgT
k v +

ε2

2
vT Hkv + o(ε) + σ‖

(

ck + εJkv + o(ε)
)−
‖1

= fk + εgT
k v +

ε2

2
vT Hkv + σ‖(ck + εJkv)−‖1 + o(ε)

= MH

k(εv) + o(ε),

(4.12)

where the first equality follows from the definition of φ and the Taylor expansions, the

second equality follows from the boundedness of ∂ ‖(·)−‖1, and the last equality follows

from the definition of MH

k(εv). The same argument using Bk in place of Hk gives the

estimate

φ(xk + εv) = MB

k(εv) + o(ε). (4.13)

Choosing v = sk/‖sk‖∞ and ε = ‖sk‖∞ in equation (4.12), and v = s and ε = εk (we have

not yet defined εk) in equation (4.13) gives

φ(xk + sk) = MH

k(sk) + o(‖sk‖∞) and (4.14)

φ(xk + εks) = MB

k(εks) + o(εk). (4.15)

Equation (4.14) then implies the equation

rk =
φk − φ(xk + sk)

∆MH

k(sk)
=

∆MH

k(sk) + o(‖sk‖∞)

∆MH

k(sk)
= 1 +

o(‖sk‖∞)

∆MH

k(sk)
. (4.16)

We now proceed to bound ∆MH

k(sk). For all k ∈ S we have

∆MH

k(sk) ≥ η∆MH

k(s
c

k) (4.17)

≥ η∆MH

k(s
p

k) (4.18)

= η
(

MH

k(0)−MH

k(s
p

k)
)

(4.19)

= η
(

MB

k(0)−MB

k(s
p

k)−
1

2
sp

k
T (Hk − Bk)s

p

k

)

(4.20)

= η∆MB

k(s
p

k)−
η

2
sp

k
T (Hk −Bk)s

p

k (4.21)

= η∆MB

k(s
p

k) + o(‖sp

k‖∞) (4.22)

Inequalities (4.17) and (4.18) follow from assumption (2.29) and since the Cauchy step

maximizes ∆MH

k(s) in the direction sp

k. Equations (4.19) - (4.21) follow from the definitions

of ∆MH

k and ∆MB

k, and by introducing Bk. Finally, equation (4.22) follows since {Bk} and

{Hk} are bounded by assumption.

We now define the scalar-valued sequence {εk}k≥0 such that εk = ‖sp

k‖∞. It follows that

‖εks‖∞ = ‖sp

k‖∞ and, therefore, the vector εks is feasible for the kth predictor subproblem.
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It now follows that for all k ∈ S sufficiently large we have

∆MH

k(sk) ≥ η∆MB

k(εks) + o(‖sp

k‖∞) (4.23)

= η(φk − φ(xk + εks) + o(‖sp

k‖∞) (4.24)

≥ ηεk

(

ρ + o(1)
)

+ o(‖sp

k‖∞) (4.25)

= ηρεk + o(εk) + o(‖sp

k‖∞) (4.26)

= ηρ‖sp

k‖∞ + o(‖sp

k‖∞), (4.27)

where we have used the convention ζ(εk) = o(1) to mean that ζ(εk) → 0 as εk → 0.

Inequality (4.23) follows from equation (4.22) and since sp

k is a global minimizer for the

kth predictor subproblem. Equation (4.24) follows from equation (4.15), while inequality

(4.25) follows from [12, corollary to Lemma 14.5.1]. Finally, equations (4.26) and (4.27)

follow from algebra and definition of εk.

Equation (4.27) implies the existence of a positive sequence {zk} such that for k ∈ S

sufficiently large
∣

∣

∣

∣

o(‖sk‖∞)

∆MH

k(sk)

∣

∣

∣

∣

≤

∣

∣

∣

∣

o(‖sk‖∞)

ηρ‖sp

k‖∞ + o(‖sp

k‖∞)

∣

∣

∣

∣

(4.28)

≤
zk‖sk‖∞

1

2
ηρ‖sp

k‖∞
(4.29)

≤
2zk(‖s

c

k‖∞ + ‖ss
k‖∞)

ηρ‖sp

k‖∞
(4.30)

≤
2zk(‖s

p

k‖∞ + ‖ss
k‖∞)

ηρ‖sp

k‖∞
(4.31)

=
2zk

ηρ

(

1 +
‖ss

k‖∞
‖sp

k‖∞

)

(4.32)

and where {zk}S is a subsequence that converges to zero as k → ∞. Inequality (4.28)

follows from inequality (4.27), while inequality (4.29) follows from definition of “little-oh”.

Inequality (4.30) follows from the triangle-inequality and inequalities (4.31) and (4.32)

follow from how the Cauchy point sc

k is computed and simplification.

We now show that the assumptions in Corollary 4.2 are satisfied. Since x∗ is not first-

order optimal by assumption, it follows that ∆L

max(x∗, 1) 6= 0. By continuity it follows

that ∆L

max(xk, 1) is strictly bounded away from zero for k ∈ S sufficiently large; this

is assumption (i) of the Corollary. Assumptions (ii) and (iii) follow directly from the

assumptions in this theorem and the case we are considering.

Equation (4.32), Corollary 4.2, and the SQP trust-region radius update used in Algo-

rithm 3.1 imply
∣

∣

∣

∣

o(‖sk‖∞)

∆MH

k(sk)

∣

∣

∣

∣

≤
2zk

ηρ

(

1 +
‖ss

k‖∞
∆p

k

)

≤
2(1 + τf )zk

ηρ
. (4.33)

Finally, inequalities (4.16) and (4.33) show that

rk = 1 + o(1) for k ∈ S. (4.34)
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This is a contradiction since this implies that for k ∈ S sufficiently large the identity

rk > ηS holds, which violates equation (4.8). Thus, x∗ is a first-order critical point if

Case 1 occurs.

Case 2 : there does not exists a subsequence of {∆p

k} that converges to zero.

Examination of the algorithm shows that this implies the existence of a positive number δ

and of an infinite subsequence S of the integers such that

lim
k∈S

xk = x∗, (4.35)

∆p

k ≥ δ > 0, for all k (4.36)

rk ≥ ηS for all k ∈ S. (4.37)

Equation (2.29) and the fact that each k ∈ S is a successful iterate imply

φk − φ(xk + sk) ≥ ηS∆MH

k(sk) ≥ ηηS∆MH

k(s
c

k). (4.38)

Corollary 2.5, equation (4.36), the bounds bB and bH on Bk and Hk, and the bound ∆p

k ≤ ∆̄

imply

φk − φ(xk + sk) ≥
ηηS

4
∆L

max(xk, 1) min(S) (4.39)

where

S =
{

1, δ,
∆L

max(xk, 1, σ)

bB

,
∆L

max(xk, 1, σ)

bB∆̄2
,

∆L

max(xk, 1, σ)

2n(bB + bH)
,

∆L

max(xk, 1, σ)

2n(bB + bH)∆̄2
,

∆L

max(xk, 1, σ)3

2n(bB + bH)b2
B∆̄2

,
∆L

max(xk, 1, σ)3

2n(bB + bH)b2
B∆̄6

,
}

.

Summing over all k ∈ S yields

∑

k∈S

φk − φ(xk + sk) ≥
∑

k∈S

ηηS

4
∆L

max(xk, 1) min(S). (4.40)

Next, using the monotonicity of {φ(xk)}k≥0 it follows that

∑

k∈S

φk − φ(xk + sk) =
∑

k∈S

φk − φ(xk+1) ≤ φ(x0)− φ(x∗). (4.41)

Combining the two previous inequalities gives

φ(x0)− φ(x∗) ≥
∑

k∈S

ηηS

4
∆L

max(xk, 1) min(S), (4.42)

which implies

lim
k∈S

∆L

max(xk, 1) = 0 (4.43)

since the series on the right-hand-side is convergent. Parts (iv) and (v) of Lemma 1.1 then

imply that ∆L

max(x∗, 1, σ) = 0 and that x∗ is a first-order critical point.
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In both cases we have shown that x∗ is a first-order point. We are done since one of

these cases must occur. 2

As stated previously, the proof of case 1 is nearly identical to that given by Fletcher.

However, Fletcher’s proof for case 2 does not carry over to our setting. Examination of his

proof indicates that the break down occurs when Fletcher essentially requires the global

minimizer of MH

k over the trust-region defined by radius ∆p

k ; we only compute the global

minimizer of MH

k in the single direction sp

k.

5 Conclusions and future work

Research on second-derivative SQP methods is very active. The optimization community

continues to tangle with the difficulties associated with nonconvex subproblems in an

attempt to further our understanding of these methods. This paper has provided further

understanding of these methods by showing how a relatively simple idea may be used to

avoid the pitfalls typically associated with second-derivative SQP algorithms.

We presented an ℓ1-SQP method that is based on the work by Fletcher [12]. In Sec-

tion 2, we described how to compute trial steps as a combination of a Cauchy step and

an SQP step. Two classes of SQP steps were considered. Section 2.3.1 discussed the class

of explicitly-constrained SQP steps that were designed to enhance efficiency, while Sec-

tion 2.3.2 considered the class of implicitly-constrained SQP steps that were designed to

avoid the Maratos effect. We feel that our method provides a natural framework for avoid-

ing the Maratos effect that is less ad-hoc than traditional means. In Section 4, we proved

that our method is globally convergent without having to compute the global minimizer of

a nonconvex quadratic program; this is arguably the greatest contribution of this paper.

Yuan [24] shows that Fletcher’s method is globally convergent under weaker assump-

tions on the matrices Hk. Similar conclusions are true for our method and will be covered

in a separate paper. In addition, we plan to discuss 1) mechanisms for updating the penalty

parameter; 2) local convergence issues; and 3) strategies for defining convex approxima-

tions to the Hessian of the Lagrangian in the large-scale case. We note that Byrd, Nocedal,

and Waltz [6] and Byrd et al. [4] have already published clever techniques for updating

the penalty parameter, and this will likely influence our developments. Finally, we aim to

give details of numerical experiments with our evolving GALAHAD package TRIMSQP.
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