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ABSTRACT

We address the main issues when porting existing codes from serial to parallel computers
and when developing portable parallel software on MIMD multiprocessors (shared
memory, virtual shared memory, and distributed memory multiprocessors, and networks
of computers). We discuss the use of numerical libraries as a way of developing portable
and efficient parallel code.

We illustrate this by using examples from our experience in porting industrial codes and
in designing parallel numerical libraries. We report in some detail on the parallelization
of scientific applications coming from Centre National d’Etudes Spatiales and from
Aérospatiale, and we illustrate how it is possible to develop portable and efficient numerical
software by considering the parallel solution of sparse linear systems of equations.
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1 Introduction

One of the common problems for application scientists is the porting of codes from serial
to parallel computers. Since most of the existing software has been developed on serial
computers, exploiting application parallelism without totally rewriting or redesigning
existing codes and algorithms is crucial if parallel computers are to be accepted and
used by industry. It is also vital that new mathematical software is designed for efficient
execution on parallel computers since the availability of portable and efficient parallel
numerical libraries, which can be used as building blocks, is crucial for both simplifying
application software development and improving reliability.

One of the primary concerns of the European Centre, CERFACS, that was established
in Toulouse in 1987, is the interaction of scientific research with industry. From the
start, the Parallel Algorithm Project at CERFACS has had a strong programme in the
development of algorithms and the design of software for parallel computers. This has
been coupled with heavy involvement in what is now called technology transfer effected
by encouraging the use of these techniques by the industrial partners of CERFACS. This
has been done both through training courses and by advice and consultation on actual
industrial codes of the partners. In this paper, we show that similar building blocks and
methodology can be used both in the design of new mathematical software and in the
porting of industrial codes. We use as an example the development of codes for parallel
computers for the solution of both full and sparse linear equations and the porting of some
industrial codes from the CERFACS partners Aérospatiale and CNES.

In this work, we have been involved with different kinds of tasks of increasing
complexity :

e Porting existing codes to parallel computers : only local changes are made in the code
(use of compiler directives, modifications at loop level, ...), there is no change in the
global solution technique, except possibly the substitution of some computational
kernels (linear system solution for example). This is the fastest way to obtain
some benefits of parallelization but it obviously does not lead to the most efficient
parallelization.

e Developing a parallel code : in this case one has to use a solution technique suitable
for parallelization that may be very different from that used on a serial computer
(use of domain decomposition for PDE problems for example).

e Developing portable and efficient parallel numerical software : obviously portability
and efficiency issues are fundamental and complicate the design of the code. For
example, the data distribution on a distributed memory machine should not prevent
the use of convenient data allocation schemes for the user.

Some of the main factors to be considered before porting industrial applications to
parallel computers are the following :

e the suitability of the code for implementation on a parallel computer (the solution
technique may be inherently serial),

e the scalability of the code (this dictates its suitability for implementation on
massively parallel computers),

e the suitability of the application for functional or data parallelism (important issue
for implementation on SIMD computers),



e the amount of effort to be spent in parallelizing the code.

Moreover, there is a large variation in programming environments depending on
whether the target machine is a shared memory multiprocessor (where automatic
parallelization and loop-level parallelism are available), a distributed memory
multiprocessor where message passing or less often virtual shared memory are available,
or an SIMD computer.

We work in a close relationship with industrial partners and have been involved in
several studies on porting some of their applications to parallel computers. We discuss
in particular two studies performed for Centre National d’Etudes Spatiales (CNES),
Toulouse, France ([7]), and Aérospatiale, Toulouse, France ([10]). The aim of these
contracts was to evaluate the performance of a selection of application codes on a range
of parallel computers: ALLIANT FX/80, ALLIANT FX/2800, BBN TC2000, CRAY-2,
CONVEX (€220, and networks of workstations.

2 A simplified view of high-performance computing today
Todays high-performance computers can be divided into two classes :

o General scientific computers : these are the conventional high performance
computers capable of handling efficiently a wide range of applications. Automatic
parallelization is generally available, and they support multiprogramming and time-
sharing (RISC workstations, shared memory computers with a moderate number of
processors including minisupercomputers and vector supercomputers).

e Massively parallel computers : they are characterized by a more limited applicability
compared to the current vector supercomputers for example. This typically arises
from novel features in the architecture or from limitations in the software (application
software, programming tools, ...). They are very competitive in peak performance
with the conventional supercomputers and may achieve an interesting price to
performance ratio on suitable applications. This class of computers includes both
physically distributed memory architectures (both virtual shared memory computers
and explicit message passing architectures (multicomputers)) and SIMD computers.

Some of the main architectural factors influencing the performance of a computer are
the following ([30]) :

e the memory bandwidth and the latency for accessing data in the memory,

e the relative cost of computing and communication (for remote access on a virtual
shared memory computer or for exchanging a message on a multicomputer),

e the synchronization costs,

e the vector start-up time for a vector processor based architecture.

Note that these are only some of the main factors. For example, the I/O requirements
of an application are often ignored, while they may be one of the main bottlenecks in
performance. Any mismatch in the design of an architecture will penalize the application
performance irrespective of the efforts of the algorithm designer.

Some other factors that may affect the performance are application dependent :

e The type of parallelism that can be exploited within the application. It can be either
functional or data parallelism.



e Task granularity.

e Scalability which imposes limitations on the number of processors that can be
efficiently exploited.

e Load balancing.

e Communication needs which may have a great impact on the performance. Locality
of references to data is crucial for efficient implementation on distributed memory
architectures.

e Regularity of treatment is important for the vector performance and for efficient
implementation on SIMD computers.

Clearly, the solution technique has a great impact on these factors (especially on the
global and local communication requirements, particularly crucial on distributed memory
architectures).

2.1 High-performance CPUs

Vector processors are commonly used in supercomputers. Recently very fast RISC
processors which also can process vectors efficiently have come on to the market ([15]).
They are often more efficient than vector processors on scalar applications. We report
in Table 1 the performance of some current RISC processors on the double precision
100-by-100 and 1000-by-1000 LINPACK benchmarks ([17]). We also record their peak
performance.

Computer LINPACK | LINPACK Peak
100*100 | 1000*1000 | performance

DEC 3000 500X AXP 39.8 133.2 200

IBM RS/6000—580 38.1 105.0 125

HP 9000/755 41.0 107.0 200

SGI Crimson 16.0 32.0 50

SUN SPARC 10/41 7.3 22.4 40

Table 1: Performance in MFlops of RISC workstations on the double precision LINPACK
benchmarks

2.2 Use of building blocks

As we have previously discussed, it is very important to use standard building blocks when
designing or porting codes. They are extremely useful for simplifying the design of codes
while guaranteeing portability and efficiency. Two of the most important such building
blocks are Fast Fourier Transforms (FFTs) and Basic Linear Algebra Subprograms
(BLAS). We will consider the former when discussing the porting of codes in Section
4. We now discuss the latter in this subsection.

Different levels of BLAS are available. The level terminology arises from the fact
that if the vectors and matrices involved are of order N, the Level 1 BLAS provides
vector computations of order O(N) ([27], [28]), the Level 2 BLAS provides matrix-
vector computations of order O(N?) ([14]), and the Level 3 BLAS provides matrix-matrix
computations with O(N?3) operations ([12], [13]).



The architecture of high-performance computers usually involves a memory hierarchy
(main memory, local memory, vector and scalar registers, ...). All the arithmetic
computations are performed at the top level of this hierarchy. Therefore the key to
efficiency is to keep active data as close as possible to the top of hierarchy. The use
of higher Level BLAS provides this capability. The increased granularity of higher Level
BLAS also allows more efficient parallelization depending on the synchronization overheads
([9]). We report in Table 2 the performance of some manufacturer-supplied routines from
the BLAS using 64-bit arithmetic (DAXPY, DGEMV and DGEMM on ALLIANT and
IBM, and SAXPY, SGEMV, SGEMM on the CRAY-2). A tuned manufacturer-supplied
version of the BLAS is today available on most high-performance computers and, if not,
a standard Fortran implementation is available on the netlib electronic server ([11]).

Level 1 BLAS

Level 2 BLAS

Level 3 BLAS

Computer DAXPY/SAXPY | DGEMV/SGEMV | DGEMM/SGEMM
ALLIANT FX/80 (1 proc.) 3.3 4.0 13.0
ALLIANT FX/80 (8 proc.) 17.5 31.9 89.4

CRAY-2 (1 proc.) 121.0 316.5 437.5

IBM 3090E/VF (1 proc.) 26.0 60.0 80.0

Table 2: Performance in Mflops of BLAS routines on some computers

3 Methodology for porting codes and portability

3.1 Methodology for industrial

computers

porting applications to parallel

In most of our studies on porting codes, we have used an incremental approach ([7],
[10]). First, the code is parallelized on shared memory multiprocessors (where compilers
have automatic vectorization and parallelization capabilities). Then, on the basis of
the scalability and data locality properties of the code, we decide whether to port the
application to distributed memory computers (whether virtual shared or message passing)
or even to networks of computers. This methodology for porting codes can be described
as follows :

e Step 0 : Start with a portable code (standard Fortran or C)

e Step 1 : Use automatic vectorization and parallelization. Profile the code in order
to identify the most-time consuming parts of the code.

e Step 2 : Clean up the code. Use loop level tuning and tuned computational kernels.

e Step 3 : Manual parallelization of the code. This may require changing parts or all
of the solution technique.

e Step 4 : Decide whether it is sensible to port the code to massively parallel
computers or to networks of workstations.

The gains from cleaning up a code and using appropriate compilation directives may
be significant, especially on codes written before the availability of vector computers.
Cleaning up a code may involve the following operations :



1. Suppression of some subroutine calls

[\

. Tuning the vectorization and the parallelization at loop-level :

e Switch some loops (parallel outer, vectorial inner)
e Precompute the loop invariants

e Check and possibly change the dimensions of the arrays
3. Check and possibly modify I/0

4. Identification of building blocks (BLAS, FFT, ...)

3.2 Portability problems

Since standards both for Fortran and C exist, it should be easy to write portable code.
However, in practice, problems often arise when porting codes. They may come from poor
or non-standard implementations of Fortran or C by the vendor, but often they come from
the design of the code (for example use of binary files).

The most frequent portability problems are the following :

Use of non-standard Fortran or C

I/O portability problems : use of binary files, non-standard I/O procedures (random
1/0,...)

e Non IEEE arithmetic (for example on CRAY and CDC computers)

Implicit typing of variables

The use of different arithmetics by different vendors may cause noticeable differences
in the number of iterations required for convergence of iterative methods. We consider the
solution of a linear system used in a 3D transonic aerodynamic code ([10]). The number
of iterations required for convergence of a preconditioned conjugate gradient code and the
residuals on three computers are given by :

1. CRAY XMP : 15 iterations, residual = 0.21718x107°
2. CRAY 2 : 17 iterations, residual = 0.61356x107®
3. CONVEX (€220 : 15 iterations, residual = 0.88515x107°

It is interesting to note the influence of the arithmetic on the convergence rate and on
the precision achieved.

3.3 Fortran developments

Some new derivatives of Fortran or extensions to Fortran are available (Fortran 90,
Fortran D, High Performance Fortran, and the Parallel Computing Forum extensions)
that incorporate features to aid in the exploitation of parallel computers :

e Arrays extensions for data parallelism
e Parallel constructs (such as parallel DO-loop)

e Data distribution directives for distributed memory computers (including SIMD)



Fortran 90 incorporates many new features ([23]). The main one of interest here is
array extensions. For example, it is possible to write : A = B 4+ C where A, B, and C are
arrays. There also exists new intrinsic functions that are applicable to arrays. There is
obviously scope for exploiting data parallelism within these operations. This means that
the underlying data parallelism of Fortran 90 could possibly be efficiently supported on
architectures such as shared memory architectures and some SIMD computers (MasPar
and Thinking Machine computers have provided several Fortran 90 constructs for some
time).

Since data distribution is crucial on multiprocessors where the latency for accessing
remote data is high, it can be seen that the main drawback of Fortran 90 is that it does
not offer ways of specifying an efficient data distribution.

This is the reason why High Performance Fortran, which is a superset of Fortran
90, was initially proposed ([26]). It incorporates data distribution directives similar to
those available within Fortran D. HPF Fortran also provides the FORALL statement that
can be used to specify identical sequences of operations on elements of arrays permitting
simultaneous execution.

The data programming style, already used on SIMD computers, can obviously be
supported on MIMD computers. It often scales up to large numbers of processors and can
be used on many applications.

Parallelizing applications using message passing is surprisingly more portable since
message passing can be emulated on shared and virtual shared memory computers, and
since it is the programming paradigm used on multicomputers and networks of computers.
Some message passing libraries are available on a wide range of computers such as PVM
([24]), and P4 ([6]). There is currently an international collaboration to define a standard
for message passing : the MPI initiative ([16]).

4 Description of the codes

The first part of the studies performed for CNES and Aérospatiale was to evaluate the
cost of porting codes to the target computers. The second part concerned the performance
obtained by tuning and parallelizing these codes on the target machines. The conclusion
of these studies concerned recommendations for a methodology for both porting and
developing codes on parallel computers, a performance analysis of the target computers,
and comments and recommendations related to the numerical algorithms encountered.
Note that the initial parallelization of the applications was always performed on shared
memory multiprocessors.

The benchmark of application software from CNES involved the following types of
applications ([7]) :

e Two signal processing codes : frequency multiplex demodulation of a signal and
telecommunication

e Solution of linear least-squares problems
e Computation of antenna reception patterns
e Teledetection

The benchmark of application software from Aérospatiale involved two aerodynamic
codes and one structural engineering code ([10]).

We will examine in more detail in the following subsections the solution of linear
least-squares problems and the parallelization of the structural engineering and of the



aerodynamic codes from Aérospatiale. In the remainder of this subsection we briefly
discuss the porting of the other codes.

The first signal processing code from CNES performs the frequency multiplex
demodulation of a signal. This mainly involves calculations such as trigonometric functions
and filtering operations. The second one is a library that simulates the distortions
of a signal during its transmission through a set of devices. It can be applied to
telecommunications, television, radar,.. The main computational task is a 1D FFT.
On both codes, the vectorization was improved by rewriting loops and using compiler
directives, and for the telecommunication code using a vectorizable 1D FFT. We have
been able to achieve significant gains compared with the initial version of the code. These
gains mainly arise from improvements in the vectorization. Parallelism is only exploited
at loop-level and is not particularly efficient in either case.

The computation of antenna reception patterns is more interesting. The numerical
method involves the solution of integral equations using boundary finite elements and the
solution of a full complex linear system of equations for computing the surface currents.
Most of the improvements were due to the use of a block algorithm from the LAPACK
library ([5]) in the linear solution step.

The teledetection application consists of a statistical data analysis to identify the main
crop zones from satellite images. The image pixels are transformed into a signal using FFT.
Then a statistical data analysis is performed on the signals. Since the treatment on each
pixel is independent, the code is embarrassingly parallel. Practically, the parallelization
is effected at the row level within blocks of 40 image rows that are loaded from the disk
at each step. The I/O required for loading part of the image is the main limiting factor
for performance. We achieved speed-ups of approximatively 20 on the computational part
and 5 on the whole code on 24 processors of the BBN T C2000.

4.1 Out-of-core solution of linear least-squares problems

We consider the solution of large full linear least-squares problems. These are solved by
using a Cholesky factorization of the normal equations. One use of this software is in the
computation of the spherical harmonics of the earth potential from measurements of the
gradients of this field. The calculation is carried out in two steps :

e Forming the normal equations

e Cholesky factorization

The normal equations system is full and is partitioned into blocks that are stored on
disk. The initial version of the software was entirely written in terms of calls to Level
1 BLAS and LINPACK. Rewriting the software in terms of calls to Level 3 BLAS and
to the LAPACK Library ([5]) provided a substantial improvement in performance. The
parallelization is straightforward because parallel versions of the BLAS are available on
some computers. Note that the parallelization in this case is restricted to single blocks. We
report in Table 3 the results obtained. The speed-ups achieved are reported in parentheses.

In the initial version of code for forming the normal equations, the computation of
At A was performed using dot products that represent 47% of the execution time. The
rest of the execution time was spent in I/O. In the Level 3 BLAS version, the matrix-
matrix multiplication (GEMM) used instead of the dot products, only requires 0.5% of
the execution time. The Cholesky factorization step has the same behaviour. The I/0O is
therefore the main bottleneck after substitutions of the computational kernels.



Forming A!.A Cholesky factorization
Computer Procs | Initial | Tuned Initial | Tuned
ALLIANT FX/80 1 532 110 259 79
8 | 181(2.9) | 28(3.9) | 132 (1.9) | 35 (2.3)
CONVEX C220 1 159 103 103 94
CRAY-2 1 25 9 17 8

Table 3: Execution time in seconds and speed-up of the initial version (Level 1 BLAS
and LINPACK) and of the tuned version (Level 3 BLAS and LAPACK) of the out-of-core
linear least-squares solver

4.2 Panel method

We consider the parallelization of a 3D code ([10]) that computes flow around an aircraft
in a perfect fluid. The solution technique is a panel method using a mesh surface. The
surface of the aircraft is divided into panels. Then, the singularities are computed on
each panel. The interactions and the contributions of the panels are assembled into a
so-called influence matrix. Then the velocity is computed around the aircraft from the
vector of singularities. This requires the solution of a nonlinear system of equations using
Gauss-Seidel and LU factorization. The computation of the coefficients of the influence
matrix is independent. Thus the calculation is easily parallelizable using appropriate data
structures. We report in Table 4 the results we obtain on a range of shared memory
computers. The speed-ups achieved by the tuned parallel version over the tuned serial
version are reported in parentheses. The test problem has 1537 panels for the wings and
fuselage and 225 panels for the wake.

Initial Version Tuned Version
Computer Procs Serial Serial | Parallel
ALLIANT FX/80 | 8 8391 6766 | 2202 (3.1)
CONVEX C220 2 1691 808 580 (1.4)
CRAY-2 4 140 148 | 77 (1.9)

Table 4: Execution time in seconds of initial and parallel versions of panel method

The speed-ups are somewhat disappointing. The calculation of the influence matrix
is totally parallelized while the rest of the application cannot be efficiently parallelized
(the parallelism is restricted to loop-level within blocks of the matrix that are loaded from
disk).

Amdahl’s law gives an upper bound to the achievable speed-up :

Sp = GFI=T)

where p is the number of processors, f the fraction of code parallelized, and S, is the
theoretical speed-up for p processors. Infinite speed-up (theoretical speed-up using an
infinite number of processors) is given by 1/(1 — f) .

Using Amdahl’s law, we can compare in Table 5 the effective speed-ups obtained and
the theoretical speed-ups predicted by Amdahl’s law on the ALLIANT FX/80 on the



execution of the whole code. We also report the speed-ups on INFLUV, the procedure
that performs the calculation of the influence matrix which is entirely parallelized. Note
that the effective speed-up exceeds the theoretical one using 4 processors on the ALLIANT
FX/80 because the theoretical estimate does not include any allowance for parallelizing

other parts of the code than in INFLUV,

Number of processors
Speed-ups 2 procs. | 4 procs. | 8 procs.
Effective speed-up 1.7 2.6 2.7
Theoretical speed-up 1.7 2.5 3.4
Speed-up on INFLUV 2.0 3.7 6.4

Table 5: Effective and theoretical speed-ups of panel method on ALLIANT FX/80

4.3 Flutter calculation

We consider a flutter calculation from Aérospatiale. After cleaning up the code and
other optimizations at loop-level (using compiler directives and rewriting some loops), we
obtained a tuned version that was much more efficient than the initial one. The code is
organized into a set of nested loops :

Loop on the mach numbers
Loop on the structural modes
Loop on the velocity
Compute frequency and damping
End loop
End loop
End loop

The two outer loops are parallelizable since the calculations for each mach number
and for each mode are independent. We have only parallelized the loop on the modes
since often the application is only for one mach number. Because of the scalability of this
application (the degree of parallelism is equal to the number of modes) and the very good
data locality (calculation for each mode requires only local data after an initialization
step), this application has been successfully parallelized on a range of shared memory
and virtual shared memory computers, and on networks of computers (a network of IBM
RS/6000-320 connected by Ethernet and a cluster of IBM RS/6000 950, 550, and 530
connected by SOCC) using the PVM message passing package. We report in Table 6 the
gains in execution time achieved from tuning and parallelizing the codes. The calculation
involves 38 modes. We report in parentheses the speed-ups achieved by the tuned parallel
version over the tuned serial version.

The speed-ups are very satisfactory. The effect of implementing an appropriate
strategy for handling load balancing efficiently is crucial for the performance. Since the
solution times for each mode are unbalanced and unpredictable, a dynamic load balancing
scheme was implemented. We have simply taken the self-scheduling strategy used to
manage loop-level parallelism on shared memory computers, while on the BBN and on
clusters of workstations we have used a master/slave paradigm.



Initial version Tuned version
Computer Procs Serial Serial | Parallel
ALLTANT FX/80 | 8 5100 1717 | 326 (5.3)
BBN TC2000 19 - 2994 | 202 (14 8)
CONVEX C220 2 1919 216 | 119 (1.8)
CRAY-2 4 624 45 | 15 (3.0)
IBM RS/6000-320 8 - 622 93 (6.7)
Cluster RS/6000 3 - 235 | 89 (2.6)

Table 6: Execution time in seconds and speed-up of initial and tuned versions of the flutter
calculati on application

4.4 2D explicit Navier-Stokes solvers

We consider the parallelization of a 2D explicit Navier-Stokes solver in turbulent viscous
flow. The solution technique uses time averaged equations and a zero equation turbulence
model. The discretization uses finite volumes. The time integration uses a 3rd order
explicit Runge-Kutta method with local time stepping.

The structure of the computations within the code is fairly simple. Most of the
calculations for updating the variables have the following structure :

DO 10 k=1,nvar
DO 20 j=1,Dim_y
DO 30 i=1,Dim_x
update(X(i,j,k))

30 CONTINUE
20 CONTINUE
10 CONTINUE

The parallelization of these calculations is straightforward using loop-level parallelism.
We report in Table 7 the execution times obtained on one test case (the grid involves 3718
points) on the ALLTANT FX/80, the CONVEX €220, and the CRAY-2.

‘ Computer ‘ Procs ‘ Serial ‘ Parallel ‘

ALLIANT FX/80 | 8 5406 | 1479 (3.6)
CONVEX (220 2 1113 | 832 (1.3)
CRAY-2 4 236 | 172 (1.4)
IBM RS/6000-950 | 1 1020 -

Table 7: Execution time in seconds of the 2D explicit Navier-Stokes solver

The speed-up is not very good. There are several explanations :
e The granularity of the loops parallelized is too fine for efficient parallelization.

e The loops involve strides different from 1 (typically a function of the grid size). This
may increase the cache miss ratio dramatically and thus decrease the execution rate.
This may be less dramatic on architectures with an interleaved memory such as the

10



CRAY-YMP or the CONVEX but, even there, some grid dimensions may lead to
strides causing memory bank contention.

The poor data locality of that code should not lead to an efficient implementation on
distributed memory computers, but it could be a good candidate for implementation on
SIMD computers since the parallelism exploited is basically data parallelism. It would be
more efficient to exploit coarser grain parallelism by using domain decomposition. This
is illustrated by considering the performance of another explicit 2D Navier-Stokes/Euler
solver developed at CERFACS by Luc Giraud and Marco Manzini ([25]).

Each processor solves for one subdomain. We report in Table 8 the uniprocessor
execution time and the speed-ups achieved on a range of computers. The results are
obtained using the BBN Fortran extensions for virtual shared memory, and using the PVM
and the P4 message passing packages on the BBN and on a network of IBM RS/6000-320
(connected using Ethernet). The results reported correspond to the first ten iterations of
a simulation on a 200X 100 grid using 64-bit arithmetic.

‘ H # domains = # procs ‘

| Computer | 1 | 2 | 4 | 8 | 16 | 20 |
ALLIANT FX/SO 348.1sec | 1.79 | 3.31 | 5.61 - -
BBN Fortran 429.0sec | 1.98 | 3.91 | 7.61 | 13.70 | 16.14
P4 BBN 429.0 sec | 1.99 | 3.83 | 6.67 | 13.98 | 16.76
PVM RS6000 140.5 sec | 1.83 | 3.39 | 5.54 - -
P4 RS6000 140.5 sec | 1.92 | 3.73 | 7.11 - -

Table 8: Speed-ups on a 200 X 100 grid of the first ten time marching steps

We report in Table 9 the average computing time per cell. It demonstrates that, with
such an implementation, the use of distributed memory architectures and of networks of

computers is competitive with the use of conventional minisupercomputers such as the
CONVEX (C220.

Convex vectorial 677.5 usec
20 procs BBN Fortran || 132.9 usec
20 procs BBN P4 128.0 usec
PVM : 8 RS6000 126.9 usec
P4 : 8 RS6000 98.8 usec

Table 9: CPU time per cell per timestep on a 200 x 100 grid (psec)

This approach is also scalable : Giraud and Manzini report impressive speed-ups on
the 128 nodes BBN TC2000 configuration at Lawrence Livermore National Laboratory.

5 Design of mathematical software

In this section, we consider the development of mathematical software on parallel
computers, using as particular examples codes for the solution of linear equations. As
in the case of porting industrial codes, we will make heavy use of building blocks such as

the BLAS.

11



There is a kind of symbiotic relationship between numerical algorithm designers and
vendors of high performance computers. On the one hand, the availability of new machines
stimulates the development of new (or the refurbishment of old) algorithms. On the other
hand, it is necessary to have new algorithms for the efficient use and eventual acceptance
of such machines. The basic problem with designing efficient codes is to ensure that the
arithmetic pipes do not suffer data starvation and that data is near the top level of the
memory hierarchy when it is required, say in the cache or registers in a shared memory
machine or in the local memory in a distributed machine. One main way this is achieved
is through the use of higher level BLAS. In general, most parallel algorithms adopt some
kind of partitioning and/or blocking strategy to enable reuse of data and localization of
the data requirement.

We consider the effect of using Level 2 and Level 3 BLAS in the solution of linear
equations in the following subsections, first when the coefficient matrix is full, then when
it is sparse.

In summary, the basic techniques in designing mathematical software for parallel
computers are:

e partitioning and/or blocking (for example, domain decomposition, partitioned LU)
e reuse of data (for example, use of explicit copying)

e exploitation of multiple levels of parallelism (see forthcoming example of sparse
solution techniques)

e use of building blocks (for example, use of BLAS)

We note that fine tuning may be machine dependent but these general paradigms are not.

5.1 Solution of full systems

We showed the performance of some of the BLAS routines on a range of computers in
Section 2.2. We would now like to realize this performance in designing codes for the
solution of the linear system

Az =b. (1)

There are several ways to do this. All involve partitioning the matrix and performing
the elimination operations in batches. One algorithm is to factorize the matrix by blocks
of columuns, using Level 2 BLAS within the block which has previously been updated by
all the previously factorized matrix using the Level 3 BLAS routines TRSM and GEMM.

We do not want to go into the details of the implementation here but refer the reader
to Daydé and Duff ([8]) for further information. We show in Table 10 a summary of
results obtained by Daydé and Duff ([8]) where, for each machine, the same code, all
in Fortran, has been used. This is clearly at least competitive with the manufacturer’s
Library, normally written in assembler. We also compare in that table two types of
parallelization : in the Parallel BLAS version, the parallelism is only exploited within
the Level 3 BLAS, while in the Parallel LU version, additional freedom is obtained by
parallelization over the BLAS. The use of parallel BLAS kernels is more and more common
for exploiting parallelism while maintaining portability. Of course, this approach captures
only part of the potential parallelism. The Parallel LU version is more efficient at the
price of a decreased portability.
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Block LU factorization Manufacturer’s Library
Computer Procs | Serial | Parallel BLAS | Parallel LU | Routine Performance
ALLIANT FX/80 8 12 65 62 PDGEFA 39
CRAY-2 4 379 1027 1072 SGEFA 353
IBM 3090E-400 3 64 132 183 DGEF 72
IBM 3090J-600 6 89 294 418 DGEF 97

Table 10: Performance in MFlops of the LU factorization on shared memory
multiprocessors using 1000-by-1000 matrices

5.2 Solution of sparse systems

When the coefficient matrix in (1) is sparse, it is not immediately obvious how we can
take advantage of the BLAS which are only defined and implemented for full matrices.
An obvious way to do this is to observe that if LU factorization is performed on a sparse
matrix, the reduced partially-factorized matrix becomes increasingly dense due to fill-in
and thus, at some point in the sparse factorization we could switch to using full code. This
switching technique has been incorporated in MA48, a recent Harwell Subroutine Library
code for general sparse unsymmetric systems ([20]), and provides gains of between factors
of 3 and 20 over the earlier MA28 code when run on a set of sparse test problems ([19]).
Much of this gain comes from the use of tuned versions of the BLAS. However, by a careful
design of the sparse code, we can make better use of the BLAS.

We will use a multifrontal approach in designing our algorithm for the solution of
sparse sets of equations. The details of such an approach are not necessary to understand
this paper but further background can be obtained from the original papers by Duff and
Reid ([21], [22]). We now describe the features of multifrontal methods that are needed to
follow the subsequent discussion. As is common in sparse elimination, the factorization is
split into a symbolic phase, which performs an analysis using only the sparsity pattern of
the matrix, and a numerical factorization phase.

In a multifrontal method, the sparse factorization proceeds by a sequence of
factorizations on small dense matrices, called frontal matrices. The frontal matrices and
a partial ordering for the sequence are determined by a computational tree where each
node represents a full matrix factorization and each edge the transfer of data from child
to parent node. This tree, which can be obtained from the elimination tree ([18], [29]), is
determined solely by the sparsity pattern of the matrix and an initial pivot ordering that
can be obtained by standard sparsity preserving orderings such as minimum degree. When
using the tree to drive the numerical factorization, eliminations at any node can proceed as
soon as those at the child nodes have completed. This gives flexibility for the exploitation of
parallelism, which we refer to in the following as tree parallelism. Normally, the complete
frontal matrix cannot be factorized but only a few steps of Gaussian elimination are
possible, after which the remaining reduced matrix (the Schur complement) needs to be
summed (assembled) with other data at the parent node before further factorizations can
take place. Thus the frontal matrices can be written

Fll F12
Fl, Fp

where the matrix Fi; is factorized and the Schur complement Fyo —FSFl_llFlz is assembled
with other Schur complements and original data at the parent node. Note that the
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elimination is done using full linear algebra and direct addressing so that we can use
the BLAS. All the indirect addressing is confined to the assembly.

We have developed a parallel multifrontal code for the solution of symmetrically
structured unsymmetric equations. The results in this section are from runs with this
code, called MUPS, and experimental versions of this code ([1]7 [2], [4])

If we only take advantage of tree parallelism, the speed-up is very disappointing. The
actual speed-up depends on the problem but is typically only 2 to 3 irrespective of the
number of processors. This poor performance is caused by the fact that there is no tree
parallelism at the root of the tree and very little close to it. When this is combined with
the fact that much of the computation is done in nodes near the root (Amestoy and Duff
([1], [3]) show that typically 75% of the work is performed in the top three levels of the
computational tree), the reason for the poor performance is quite evident. To avoid this
bottleneck, it is necessary to obtain further parallelism within the large nodes near the
root of the tree (so-called node parallelism). This is done simply by using parallel versions
of the BLAS in the factorizations within the nodes. When we combine both tree and node
parallelism the situation becomes much more encouraging and we show typical speed-ups
for a range of computers in Table 11. A medium size sparse matrix, BCSSTK15 from the
Harwell-Boeing set ([19]), is used to illustrate our discussion. This is a structural analysis
matrix of order 3948 with 117816 nonzeros. A minimum degree ordering is used in the
analysis and the number of floating-point operations for the factorization is 443 million.

multifrontal factorization

(1) (2)

Computer nprocs | Mflops (speedup) Mflops (speedup)
Alliant FX/80 8 15 (1.9) 34 (4.3)
IBM 3090E/3VF 3 83 (1.9) 105 (2.4)
IBM 30907 /6VF 6| 126 (2.1) 227 (3.8)
CRAY-2 4| 316 (1.8) 404 (2.3)
CRAY Y-MP 6| 529 (2.3) 1119 (4.8)

Table 11: Performance summary of the multifrontal factorization on matrix BCSSTK15.
In columns (1) we exploit only parallelism from the tree; in columns (2) we combine the
two levels of parallelism.

MUPS is designed for shared memory multiprocessors but it was not too difficult to
develop a version that could run on the virtual shared memory environment of the BBN
TC2000 ([4]). However, because access to memory on this machine is not uniform (remote
access is not cached by default and takes about 3.5 times the time of local access for a
read, and 3.0 for a write), the performance of the shared memory code was not good. It is
necessary to pay more attention to data locality in order to get acceptable performance and
we show, in Table 12, two versions of the BBN multifrontal code. Version 1 is the relatively
straightforward adaptation of the code while version 4 represents many refinements to this,
including explicit copying of data to local memory so that it can be cached and effectively
reused during the computation so reducing the amount of remote access. The results in
Table 12 show quite clearly that it is still vital to respect data locality when using virtual
shared memory. If one does so, then good performance can be obtained. We plan to test
this same code on another virtual shared memory machine, the KSR-1.
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Number of processors
1 2 4 8 16 26
Version 1 | 328 227 151 105 103 95
Version 4 | 216 155 86 55 36 31

Table 12: Times in seconds for multifrontal code on BBN TC2000 on matrix BCSSTK15.

6 Conclusion

There are some industrial codes that are good candidates for easy parallelization. Some
other codes require a change of solution techniques or a reorganization of the calculations.
Nevertheless, we have seen that the gains achieved do not always come from parallelization
but may come from cleaning up codes or from vectorization.

Most of the complications that arise when porting industrial codes to parallel
computers come from the lack of maturity in programming environments (languages,
debuggers, performance analyzers,..) and algorithm design (since most of the codes have
been developed on serial machines).

Virtual shared memory is a very convenient feature that simplifies the porting of
existing codes. It also demonstrates how shared memory can scale to hundreds of
processors. But data locality is still crucial for efficiency. Therefore, most of the
tuning aims at finding a good data distribution which is exactly the same problem as
on multicomputers using message passing.

Massively parallel computers are increasingly considered as an alternative to
conventional high performance computers. They compare very favourably in peak
performance with shared memory computers of a similar cost. However, the application
performance depends to a large extent on the ratio of the bandwidth to the computing
power which tends to be poor compared with shared memory computers. There are still
many research issues concerning the effective use of massively parallel computers as a
production facility, some of them much more general (for example ability to handle a large
number of users).

The use of heterogeneous networks of computers as a computing resource is quite
attractive, because it is cost-effective and because of the availability of programming
environments such as PVM that can also be used within a single parallel computer. But,
from our experience, it is restricted to applications where the amount of communication
is small compared with the computation.

Parallelizing compilers may one day be capable of generating efficient parallel code for
multicomputers (and networks of computers) from sequential code but they still have a
long way to go.
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