
RAL-93-072

MA48, a Fortran code for direct solution of sparse unsymmetric linear
systems of equations

by

I. S. Duff and J. K. Reid

Abstract

We describe the design of a new code that supersedes the Harwell
Subroutine Library (HSL) code MA28 for the direct solution of
sparse unsymmetric linear systems of equations. The principal
differences lie in a new factorization entry that includes row
permutations for stability without an overhead of greater
complexity than that of the factorization itself, switching to full
processing including the use of all three levels of BLAS, better
treatment of rectangular or rank-deficient matrices, partial
refactorization, and integrated facilities for iterative refinement
and error estimation.

Categories and subject descriptors: G.1.3 [Numerical Linear Algebra]: Linear systems (direct
methods), Sparse and very large systems.

General Terms: Algorithms, performance.

Additional Key Words and Phrases: sparse unsymmetric matrices, Gaussian elimination, block
triangular form, error estimation, BLAS.

Central Computing Department,
Rutherford Appleton Laboratory,
Oxon OX11 0QX.

October 1993.

CONTENTS

1 Introduction …………………………………………………………………… 1

2 The MA50 package …………………………………………………………… 3
2.1 MA50A: analyse……………………………………………………… 3

2.1.1 Main description……………………………………………… 3
2.1.2 Markowitz pivoting ………………………………………… 6
2.1.3 Drop tolerances ……………………………………………… 7
2.1.4 Singular and rectangular matrices …………………………… 7

2.2 MA50B: factorize …………………………………………………… 8
2.2.1 First factorization …………………………………………… 9
2.2.2 Drop tolerances ……………………………………………… 11
2.2.3 Subsequent factorizations …………………………………… 11
2.2.4 Singular and rectangular matrices …………………………… 11
2.2.5 Insufficient storage …………………………………………… 12

2.3 MA50C: solve………………………………………………………… 12
2.4 MA50D: compress the data structure ………………………………… 13
2.5 MA50E, MA50F, MA50G, MA50H: solving full sets of linear

equations ……………………………………………………………… 13
2.6 MA50I: initialization ………………………………………………… 14

3 The MA48 Package …………………………………………………………… 15
3.1 MA48A: analysis …………………………………………………… 15
3.2 MA48B: factorization………………………………………………… 18
3.3 MA48C: solve………………………………………………………… 18
3.4 MA48D: solution of block system …………………………………… 20
3.5 MA48I: control parameter initialization……………………………… 21

4 Performance results …………………………………………………………… 21
4.1 Density threshold for the switch to full code ………………………… 24
4.2 The choices within the full code …………………………………… 25
4.3 The choice of strategy for pivot choice ……………………………… 27
4.4 The block triangular form …………………………………………… 27
4.5 Comparison with calling MA50 directly …………………………… 30
4.6 Iterative refinement and error estimation …………………………… 30
4.7 Comparison with MA28 ……………………………………………… 31

5 Complex versions …………………………………………………………… 33

i

Appendix A. Solving full sets of linear equations …………………………… 34
A.1 MA50E: factorization using Level 1 BLAS ………………… 35
A.2 MA50F: factorization using Level 2 BLAS ………………… 35
A.3 MA50G: factorization using Level 3 BLAS ………………… 36
A.4 MA50H: solution …………………………………………… 36

Appendix B. The specification document for MA48 ………………………… 37

Appendix C. The specification document for MA50 ………………………… 50

References …………………………………………………………………… 61

ii

1 Introduction
This report describes a collection of Fortran subroutines for the direct solution of a sparse
unsymmetric set of linear equations

Ax = b. (1.1)

It is intended primarily for the case that is square and nonsingular, but there are some facilities
for rectangular and rank-deficient cases.

For the specification of the matrix A, we follow the practice of MA28 (Duff 1977, Duff and
Reid 1979) and require the values of the entries and their row and column indices to be specified,
in any order, as A(k), IRN(k), ICN(k), k = 1, 2, ..., NE. We use the term entry rather than nonzero
because sometimes a value may happen to be zero.

While this data structure is very convenient for the user, it does not allow efficient processing.
MA48 therefore sorts the entries so that those in column 1 precede those in column 2, which
precede those in column 3, etc. We have chosen to work by columns instead of rows (MA28
works by rows) because this makes it much easier to switch to full-matrix processing, given the
column-major ordering used by Fortran. It also means that the inner loops of the code to solve
equation (1.1) once the matrix has been factorized will vectorize more readily because they
involve adding a multiple of one vector to another, rather than a dot product (see Table 2, in
Section 4).

Since computer memories are now much larger than they were when MA28 was written, we
have adopted a design philosophy of requiring more storage when this leads to worthwhile
performance improvements. An example of this is to construct a map array when first permuting
a matrix of a given pattern. This means that subsequent matrices can be permuted by a single
vectorizable loop of length the number of entries.

As well as using the same initial data structure, MA48 follows MA28 in seeking to permute a
square matrix to block triangular form, which is done by calling the Harwell Subroutine Library
(HSL) code MC21 to permute entries onto the main diagonal and the HSL code MC13 to
symmetrically permute to the block form. Holding the matrix by columns makes it natural to
permute to the block upper triangular form

A A11 12

A22

PAQ = A . . . , (1.2)33

. . .

. .

A ll

rather than to block lower triangular form. The blocks A , i = 1, 2, ..., l are all square. If the matrixii

is reducible (that is, if l > 1), many blocks are often of very small order, particularly one. For
efficiency, we merge adjacent blocks of order one and note that the resulting diagonal block is
triangular and so does not need factorization. We also merge adjacent blocks of order greater
than one until they have a specified minimum size. This latter merging does affect the sparsity of
the subsequent factorization and is performed solely to avoid procedure-call overheads for small
blocks.

1

If the matrix is rectangular or square but structurally singular (there is no set of entries that can
be permuted onto the diagonal), we treat the matrix as a single block. Block triangularization can
be extended to these cases (see, for example, Pothen and Fan 1990), but time did not permit us to
incorporate such an extension here.

Iterative refinement was not included in the original design of MA28, but was added later in
the form of an additional subroutine. We have taken the opportunity in MA48 to build iterative
refinement into the solve subroutine as an option. We also provide options for calculating
estimates of the relative backward error and of the error in the solution (Arioli, Demmel, and
Duff 1989).

A separate HSL package, MA30, was provided with MA28 for users willing to order their
matrix entries by rows. It was called by MA28 to perform the fundamental tasks of matrix
factorization and actual solution. We have followed the same model for the new code, with MA50
providing the fundamental facilities. One significant change is that MA50 is passed just one block
of the block triangular form at a time which leads to worthwhile simplifications. It also has the
advantage that it will be straightforward to multitask since the factorization of each diagonal
block is an independent operation. For efficiency of execution of MA50, duplicate entries are not
permitted there, but they are permitted by MA48 (they are summed).

MA28 and MA30 make extensive use of COMMON for parameters that control the actions or
provide information for the user. Default values are set by BLOCK DATA so that the user has to
take action only for any controlling parameter for which the default value is unsuitable or any
information parameter really wanted. This format is not well-matched to the requirements of
parallel processing, where several copies of the routines may be executing at once. We have
therefore changed to having array arguments for this purpose, with an initialization routine to
provide default values. We have found this to be more convenient when MA48 calls MA50, too,
since now MA48 has its own versions of the arrays and does not have to save and restore the data
in the case when the user is interspersing calls to MA48 with direct calls to MA50.

The subroutines are named according to the naming convention of the Harwell Subroutine
Library (Anon 1993). We describe the single-precision versions, whose names all commence
with MA48 or MA50 and have one more letter. The corresponding double-precision versions have
the same names with an additional letter D.

The heart of the package lies in MA50. This is where the actual factorization is performed and
so we begin by describing this in Section 2. MA48 provides sorting facilities and calls to the
block triangularization and iterative refinement subroutines of the Harwell Subroutine Library as
well as calls to MA50 itself. It is expected that most users will call MA48 rather than MA50. The
interface is more user friendly and there are more checks on the input data. We describe it in
Section 3. Section 4 is devoted to our experience of the actual running of the codes. The
specification documents are included as appendices. The code itself is available from AEA
Technology, Harwell; the contact is Libby Thick, Theoretical Studies Department, AEA
Technology, 424 Harwell, Didcot, Oxon OX11 0RA, tel (44) 235 432688, fax (44) 235 436579,
email libby.thick@aea.orgn.uk, who will provide details of price and conditions of use.

2

2 The MA50 package

MA50 accepts an m×n sparse matrix whose entries are stored by columns. For column j,
j = 1, 2, ..., n, the values and corresponding row indices of the entries are stored contiguously in A
and IRN, say in A(k), IRN(k), k = k , k +1, ..., l . We do not allow repeated indices within aj j j

column, since knowing that there are no duplicates allows us to write more efficient code for
handling fill-ins. The columns must be contiguous, that is, k = l + 1, j = 2, 3, ..., n.j j−1

There are four subroutines that are called directly by the user:

Initialize. MA50I provides default values for the arrays CNTL and ICNTL that together control
the execution of the package.

Analyse. MA50A is given a matrix A and finds permutations P and Q suitable for the triangular
factorization PAQ = LU, where L is block lower triangular and U is unit upper triangular.
Only the final block of L is of order greater than unity. This block is intended for
full-matrix processing and MA50A chooses its size. MA50A aims to preserve sparsity and
control numerical stability. There is an option for dropping small entries from the
factorization and an option for providing Q together with a recommendation for P.

Factorize. MA50B accepts a matrix A together with recommended permutations and size for the
final block. It performs the factorization PAQ = LU and the factorization of the final block
of L, including additional row permutations when needed for numerical stability. Options
exist for subsequent calls for matrices with the same sparsity pattern to be made faster on
the assumption that exactly the same permutations are suitable, that no change has been
made to the leading columns of PAQ, or both.

Solve. MA50C uses the factorization produced by MA50B to solve the equation Ax = b or the
Tequation A x = b.

A significant change from MA30 is the inclusion of row interchanges for stability in the
factorize subroutine, based on the work of Gilbert and Peierls (1988), which allows these to be
included without an increase in overall complexity. In turn, this has allowed us to simplify the
analyse subroutine so that it provides the permutations without the actual factors. This saves
storage during analyse since only the active submatrix need be stored and will often save time
since the vectors that hold the active columns are shorter and data compressions are much less
likely to be needed.

2.1 MA50A: analyse

MA50A chooses row and column permutations suitable for the factorization

PAQ = LU. (2.1.1)

At each pivotal stage, the reduced matrix is updated and then the pivotal row and column are
discarded. Once the reduced matrix becomes sufficiently dense for the switch to full processing,
the whole reduced matrix is discarded since the remaining ordering is not based on any sparsity
considerations. Thus MA50A does not provide the actual factors.

2.1.1 Main description

In this subsection, we describe the most important case, where the matrix is square and
nonsingular, the default pivotal strategy is in operation, and the option for dropping small entries
is not in operation. We defer the other cases to the following subsections.

3

The column-oriented storage scheme is suitable for the active processing of the matrix
provided we do not insist that the columns remain contiguous and supplement it by also holding
the pattern by rows.

The row-oriented storage is set up as follows:

(i) sweep the column-oriented storage to count the numbers of entries in the rows;

(ii) accumulate the counts to give pointers to just beyond the row ends; and

(iii) sweep the column-oriented storage again, storing the column indices in appropriate
positions for each row while decrementing the pointers.

The opportunity is taken to check for duplicate entries. They will never be present when MA50A
is called from the MA48 package, but we need to allow for independent calls. The additional
overhead for MA48 is not severe. The check is done efficiently by initializing the integer work
array IW to zero and setting IW(i) = j when an entry for row i in column j is found. If the value of
IW(i) is already j, a duplicate will have been identified; in such a case, a message is optionally
printed and an immediate return is made with an error flag set.

For stability, each pivot is required to satisfy the column threshold test

|a | ≥ u max |a | (2.1.2)pj ij
i

within the reduced matrix, where u is a threshold (with default value 0.1). We also require pivots
to be greater than an absolute tolerance with default value zero.

For sparsity, we follow the recommendation of Zlatev (1980) to search the columns of the
reduced matrix in order of increasing numbers of entries and limit the search to a given number
of columns (with default value 3). Actually, he recommended a limit by rows, but this was in the
context of a row-oriented algorithm. We say that the Markowitz cost of an entry of the reduced
matrix is the product of the number of other entries in the row of the reduced matrix and the
number of other entries in the column. Zlatev looks for the least Markowitz cost among entries
that satisfy the stability criteria in the columns searched.

In order to be able to find quickly which columns to search, we maintain doubly-linked chains
of columns with equal numbers of entries. The storage needed for the links and their headers is
m + 2n integers. They are constructed by inspecting the columns in reverse order and placing
each in turn at the head of the chain for its number of entries. Searching in reverse order ensures
that the chains are in forward order, which gives an initial bias towards keeping to the natural
ordering.

We allow the user the option of specifying that all pivots be chosen from the main diagonal. It
should be noted that this restriction may mean significant loss of sparsity. We implement it by
searching the columns in the same order but restricting the search to the diagonal entry, if any. A
special-purpose data structure could allow more efficient execution of this option, but we judge
that it is sufficient to offer comparable efficiency to that of the ordinary case. If the restriction to
diagonal entries and the stability test (2.1.2) together mean that no pivot can be found, we
abandon the attempt and signal that the switch to full-matrix processing be made at this point.
The full-matrix processing (see section 2.5) uses row interchanges and pays no particular
attention to the diagonal.

There is an option for specifying that a given number of columns at the end of A are also at the

4

end of PAQ. This allows for rapid refactorizations when entries in only these columns change.
We refer to them as late columns. This rule may be inconvenient for the user, but it makes the
code simple and saves storage for the calls from MA48 since only one integer is needed for each
block of the block triangular form. In MA48 itself, we provide a general facility in which any set
of columns may be labelled as the only ones to change.

We also allow the user to specify the column permutation Q together with a recommended row
permutation P. In this case, it is convenient to work with the data structures of a one-column
Zlatev search, so we require the number of Zlatev columns to be 1. The entries in the specified
column that satisfy the stability test (2.1.2) are candidates for the pivot and we take the one that is
earliest in the recommended row sequence.

The main elimination loop begins with a check on the density of the reduced matrix. If the
matrix is full or the ratio of its number of entries to its total size is at least as great as a threshold
with default value 0.5, an exit from the loop is executed. This exit corresponds to the switch to
full-matrix processing in the factorize subroutine MA48B.

Assuming that the density is low enough to continue, we now look for the next pivot. If Q has
been specified, a simple search of the given column is made. Otherwise, a search is made of the
columns in order of increasing numbers of entries. During this search, we maintain a record of
the candidate pivot that satisfies the threshold test, is greater than the pivot tolerance, and has
least Markowitz cost. If two entries have the same Markowitz cost, we prefer the one whose
numerical value has a larger ratio to the largest entry in its column. We first execute a loop to find
the least number MINC of entries in a column. By looping from the previous count (or 0 initially),
the overheads of this loop are kept low.

Once the pivot has been found, the active columns (the pivotal column and any column with
an entry in the pivot row) are removed from their column-ordering chains, and the pivot is moved
to the front of the pivot column.

The integer work array IW is used for flags when adding multiples of the pivot column to other
columns in the main elimination loop. It is initialized to zero and reset to zero after each use.
Here, for each entry of the pivot column, say with row index I, we set IW(I) to the position of
the entry within the column in packed storage.

The entries of the pivot column are now removed from the row-oriented storage.
Unfortunately, this requires a row search for each entry. Once found, the entry is overwritten by
the final entry of the row and the final entry is given the artificial column index 0 as a flag that
the storage is available for later use.

Each active column, other than the pivot column, is now updated. A search of the column is
made for the pivot row entry. Once this has been found, the multiplier can be calculated, the
entry overwritten by the final entry of the column, and the final entry is given the artificial row
index 0 as a flag that the storage is available for later use.

Unless the pivot column is a singleton, the active column is now updated and the necessary
revisions to the rest of the data structure are made. For each entry of the active column, say with
row index I, a positive value of IW(I) tell us that the entry needs to be revised because the
pivot column has an entry with row index I. IW(I) also indicates where the corresponding
entry of the pivot column is stored. Once the revision is done, IW(I) is negated to flag that it has
been done.

5

By counting the number of revisions done for the active column, we know whether all entries
of the pivot column have been used. If so, there is no fill-in and the only remaining action for the
active column is to restore the signs of IW ready for the next active column. If there is fill-in, we
look at the end of the column to see if there is room for the fill-ins; if there is not enough, we also
look at the front of the column to see if together there is enough room at the front and back;
failing this, we see if there is room in the free space at the end of the data structure; failing this,
we compress the data structure by calling MA50D and then try again; if even this fails, we leave
MA50A with an error message. Unless enough space is available at its end, the column has to be
moved to its new position.

There follows a loop through the pivot column to add the fill-ins. An entry with row index I
has been used if IW(I) is negative and does not cause a fill-in; all that is needed is to restore the
sign of IW(I). Otherwise, the fill-in value is calculated and the new entry is placed at the end of
the active column and an addition is made to the row-oriented storage. This addition is made at
the end of the row, if possible, or at the front if that is possible. Otherwise, we see if there is room
to copy the row to the end of the data structure; failing this, we compress the data structure by
calling MA50D and then try again; if even this fails, we leave MA50A with an error message.

Once all the active columns have been updated, a loop through the pivot row frees this part of
row-oriented storage and places each active column that still has one or more entries at the front
of its new column-ordering chain. Note that this means that columns with the same number of
entries are no longer in their natural order. To have maintained this ordering would have been too
expensive.

A loop through the pivot column now resets IW to zero and removes the column from the
column-oriented storage. The main elimination loop is completed by recording which column
was chosen as pivotal.

The main elimination loop is usually left through the test on the density of the reduced matrix.
There remains only the tasks of completing the permutation vectors and inverting the column
permutation (MA50B needs to have easy access to the columns in pivotal order).

2.1.2 Markowitz pivoting

For sparsity, we also offer the strategy of Markowitz (1957). To obtain this, the user must set
the number of Zlatev columns to zero. The pivot is chosen to minimize the Markowitz cost over
all entries that satisfy inequality (2.1.2) and the pivot tolerance. In order to be able to find such a
pivot quickly, we maintain doubly-linked chains of rows with equal numbers of entries as well as
columns. MA28 (see Duff and Reid 1979) held a single chain for each length, which began with
rows and continued with columns. Any link from a row to a column or vice-versa was negated, as
was the header pointer if no rows were present. Checking the signs and resetting them
appropriately when a row or column enters or leaves the chain complicates the code and slows its
execution. We have therefore decided in MA50 to use separate chains. This increases the storage
for the links and their headers slightly, by min(m,n) to 3(m+n) integers. As we did for the
columns, we construct the chains of rows with equal numbers of entries in forward order to give
an initial bias towards keeping to the natural ordering.

As with the Zlatev strategy, we allow the user to specify that all pivots be chosen from the
main diagonal. We implement this by leaving unchanged the choice of each row or column to be
searched but restricting the search to the diagonal entry, if any.

6

If Q has not been specified, a search is made of the columns and rows in order of increasing
numbers of entries. MINC now holds the least number of entries in a row or column. We first
search the columns with MINC entries, then the rows with MINC entries, then the columns with
one more entry, then the rows with one more entry, and so on. Each loop is left as soon as it can
be determined that further executions could not find a pivot with a better Markowitz cost. Thus,

2the loop on columns with l entries can be left if the candidate pivot has cost no more than (l−1)
since all rows with less than l entries will have been searched already. Similarly, the row loop can
be left if the candidate pivot has cost no more than l(l−1). The row searches are generally more
expensive than the column searches because a single column scan is need for the stability test for
any entry of a column but a separate scan is needed of the column of any entry tested in a row
search. We therefore do such a scan only if the entry has lower Markowitz cost than the
candidate.

This procedure usually ensures that the pivot with the best Markowitz cost is found quickly.
Our original intention was to offer this strategy by default, since it is a more thorough search than
Zlatev’s and is what MA28 does. Unfortunately, it can occasionally be very slow. In one case,
provided by Norm Schryer of Bell Laboratories (private communication) and discussed at the
end of Section 4.3, the code reached a situation where there were hundreds of columns of count
MINC and the best pivot had Markowitz cost MINC*(MINC-1). For each such pivot all those
hundreds of columns were searched, and the code was intolerably slow. This is our reason for
making the Zlatev strategy our default.

2.1.3 Drop tolerances

There is an option for dropping (that is regarding as having the value zero and removing from the
data structure) any entry of the original matrix or a reduced matrix if its absolute value is less
than a tolerance. If this option is active (the tolerance changed from its default value zero), the
first action of MA50A is to drop any such small entries from the original matrix. Note that
activating this option may be inappropriate if such entries might be less small during a later
factorization of a matrix of the same pattern.

Whenever the entries of a column are updated, a separate loop is used to remove any entry
with absolute value below the tolerance from the column and also its column index from the
row-oriented storage. Using a separate loop avoids overheads in the case without drop tolerances,
which we expect to be the usual one. In the loop that handles fill-ins, each fill-in value is checked
against the drop tolerance and is added to the data structure only if it is sufficiently large.

2.1.4 Singular and rectangular matrices

It is straightforward to factorize a singular or rectangular matrix and we decided that MA50
should do this. If it finds r pivots, its factorization can be written in the form

L U Wr r rP A Q = , (2.1.3)M E Ir

where L is lower triangular of order r, U is unit upper triangular of order r, and all the elementsr r

of E are less than the pivot tolerance or the drop tolerance (see Section 2.1.3). Replacing E by 0
corresponds to perturbing the elements of A by at most the pivot or drop tolerance and gives us a
rank r matrix. The corresponding set of equations is

7

L U L W x br r r r 1 1= , (2.1.4)M U M W x br r r r 2 2

and we solve this by solving

L U x = b (2.1.5)r r 1 1

and setting x = 0. If the whole system is consistent, this will be a solution. If the whole system2
is underdetermined, the choice of 0 for x means that the solution has a reasonably small norm,2
though in general it will not be of minimum norm.

A key problem is the identification of the rank r. It can quite easily happen that it is
overestimated by this procedure and the user should verify the solution, for example by using the
iterative refinement option of MA48. An overestimate leads to equation (2.1.5) being
ill-conditioned and usually having a solution of large norm.

At any stage of the MA50A processing, we may encounter a row or column that is either
structurally or numerically zero. Such a row or column is ordered immediately without choosing
a pivot. The natural place to put it is at the end of the pivot sequence, as in (2.1.3), and this is
done for the rows. It cannot be done for the columns since this may put a column that is not ‘late’
among the late columns. Also, MA50B needs to be able to tolerate being unable to pivot in any
column since it is likely to be receiving different numerical values. Therefore, MA50A orders a
column in which it cannot find a pivot in the same way as one in which it finds one. It is placed
in the next pivotal position or the next position among the ‘late’ columns. In both cases, we
effectively continue with a matrix with one less row or column.

A row or column is regarded as numerically zero if all its entries are less than the pivot
tolerance. If the pivot tolerance is less than the drop tolerance, it will never come into play since
any small enough entries will already have been dropped. It may, however, be important when
the drop tolerance is zero.

Any row found to be of zero length is immediately ordered and is not placed in a chain. When
the Zlatev strategy is in use, no chains of rows with equal numbers of entries are constructed for
the original matrix, but we still look for zero-length rows and order them at once. Since MA50B
works column by column, it cannot recognize zero rows until its processing is complete. It
therefore includes zero rows in the part that it processes as a full matrix. When choosing the point
for switching to full-matrix processing in MA50A, we need to add the number of zero rows to the
number of active rows in order to calculate the number of entries needed in full storage.

2.2 MA50B: factorize

MA50B is given an m×n sparse matrix A, recommended permutations, and the number of
columns p to be processed as packed sparse vectors. It calculates the actual factorization

PAQ = LU, (2.2.1)

where L is block lower triangular and U is unit upper triangular. Only the final block of L is of
order greater than unity. The permutations and the value of p may have been calculated by a prior
call of MA50A, but any choice is acceptable. We provide an option for the special case Q = I.
This is used by MA48 since the column permutations for the blocks of the block triangular form
and the permutations chosen by MA50 within the blocks can be integrated into a single overall
permutation, thereby saving storage.

8

Once one matrix has been factorized, other matrices may be factorized more economically if
only the numerical values have changed or if the changes are confined to late columns.

2.2.1 First factorization

We begin by considering a first factorization when the rank is n. The operations are performed
column by column because the technique of Gilbert and Peierls (1988) then allows row
interchanges to be introduced while ensuring that the organizational overheads are proportional
to the number of floating-point operations. It also means that the factorization, including fill-ins,
can be built progressively by columns with very simple data management.

A packed vector with an associated vector of row indices holds the upper-triangular part of
column k of U (excluding the diagonal), for k = 1, 2,..., n. Similarly, a packed vector holds the
lower-triangular part of column k of L (including the diagonal), for k = 1, 2,..., p. The final block
of L is held by columns as a full matrix, together with a single vector of row indices. These are
packed together in the order: column 1 of U, column 1 of L, column 2 of U, column 2 of L,...,
column p of U, column p of L, column p+1 of U, column p+2 of U,..., column n of U, final block
of L. This allows the use of just two vectors to indicate where each packed column is stored and
how many entries it has (we hold the positions of the ends of the vectors). The only data
management needed is for the full part to be generated at the end of the arrays and moved
forward once all the entries of U have been found.

To understand the technique of Gilbert and Peierls, it is convenient to regard the packed
representation of L as a representation of the product

L = D L D L ...D L D (2.2.2)1 1 2 2 p p n

where each D , k = 1, 2,..., p, is diagonal and equal to the unit matrix except in position (k,k), eachk

L is lower triangular and equal to the unit matrix except below the diagonal in column k, and Dk n

is equal to the unit matrix except in the final block of order n−p. To calculate column k of L and
U requires the premultiplication of column k of PAQ by

−1 −1 −1 −1L D ...L D , l = min(k−1, p) (2.2.3)l l 1 1

−1 −1In the sparse case, many of these operations may be omitted since the application of L D to ai i

vector whose i–th component is zero does not alter the vector. Furthermore, there is freedom to
reorder them provided no modification of component i is performed after the application of

−1 −1L D . Thus, any order suffices for the entries of column k of L, but the list of entries ofi i

column k of U needs to be ordered. We choose to ensure that j precedes i if L has an entry in rowj

i and use a backward loop to do the actual operations later. Gilbert and Peierls construct such lists
of entries using a stack to record the active columns, as shown in Figure 1.

At any one moment, the stack will consist of k, j , j , ..., j , where j < j < ... < j , and L has1 2 t 1 2 t
entries L , L , ... If column j of L has no further entries, all its entries (if any) must havej j j j t2 1 3 2

already have been placed in L-list or U-list. It is therefore safe now to add j to the U-list and wet
can backtrack to column j .t−1

When the inner loop revisits a column j, it starts at the next entry from the last encountered
during the previous visit. Thus each entry of column k of A and each entry of each column of L
that is involved in the column k calculation is visited just once and the overall complexity is that
of the number of entries involved.

For efficient execution of the actual floating-point operations, we load the entries of column k

9

 set stack, U-list, and L-list to be empty
 push k on stack
 do until stack empty
 copy stack top to j
 do i = each unsearched index of column j
 if (i not in U-list or L-list) then
 if (i > k) then
 add i to L-list
 else
 push i on stack; cycle outer do
 end if
 end if
 end do
 add j to U-list and pop stack
 end do

Figure 1. Pseudocode for the Gilbert-Peierls algorithm

of A into a real work vector W that has previously been set to zero. Appropriate multiples of the
active columns of L are added into this vector in the order given by traversing the U-list
backwards. Once this has been done, the entries of the upper-triangular part of the column can be
unloaded into the packed vector using the known pattern in the U-list and the entries of W reset to
zero ready for their next use. At the same time, each row index is replaced by the corresponding
position of the row in the row order because this is needed for the forward and back-substitution.
The other entries of the column are now treated similarly, except that the indices are left as
original row indices. A search for the pivot is included for columns 1, 2,..., p. The pivot is the
entry that lies earliest in the recommended row order among those that satisfy the pivot tolerance
and threshold test (2.1.2). So that it can be found easily, it is moved to the leading position in the
packed vector. The row is recorded as having been pivotal in column k.

A very worthwhile improvement to the Gilbert-Peierls algorithm has been suggested by
Eisenstat and Liu (1993). Suppose that column k is the first column updated by column j. Any
entries of column j that lie beyond k in the pivot sequence will also be entries in column k. We
place these physically at the end of column j and mark the boundary. When a later column l is
updated by column j, it is also updated by column k, so the entries beyond the boundary in
column j are not needed to find the pattern of column l. Thus, when the operations for column k
have been completed and the pivot chosen, we examine all the columns active in the step looking
for columns not already marked and involving the pivot row. For any such column, the entries
are physically reordered and the column is marked.

The columns of the final block of L, corresponding to columns p+1,..., n of A, need only a
single vector of row indices. This is constructed when column p+1 is reached and corresponds to
all the rows not so far ordered. We run through the rows in order, i = 1, 2,..., m placing each in
turn in the vector if it has not been ordered. This makes the indices monotonic, which allows an
in-place sort during the solution (see Section 2.3). For each remaining column, we need to apply
the operations of the first p pivotal steps and find the sparsity pattern of the U-part. This is done
efficiently by the Gilbert-Peierls algorithm, as for the previous columns. The differences are that
no pivot need be chosen and the single vector of row indices of the full block is used to unload
the L-part of the column.

Once the processing of column n is complete, the full block is moved forward to its final
position. It is then factorized by full-matrix processing, see Section 2.5. The resulting
factorization has the form

10

L U Vp p p , (2.2.4)M F Ip

where L is a p×p lower-triangular matrix, U is a p×p unit upper-triangular matrix, M has pp p p
columns, and V has p rows.p

2.2.2 Drop tolerances

If the option for dropping small entries is active, checks are made as the entries are unloaded
from the work vector W following the updating of column k. For efficient execution in the default
case, we use separate loops for the default and non-default cases. In the default case, no entries
are dropped, not even those with the value zero. This is in order to ensure that the correct
structure is generated for a subsequent matrix having the same pattern but different numerical
values.

If any entries are dropped from column k, it cannot be relied upon to supply any of the pattern
of an earlier column j, so the technique of Eisenstat and Liu (1993) is not applicable. We keep a
logical variable DROP to flag this and do not mark and set boundaries for any columns active in
the step. If any column that would have been treated is active in a later pivotal step in which no
entries are dropped, the technique may be applied then.

2.2.3 Subsequent factorizations

MA50B has an integer argument JOB that must be given the value 1 when an initial factorization
is wanted. For a subsequent factorization, if drop tolerances are not in use, if the pattern is
unchanged, and if the pivotal sequence is numerically stable for the new values, the factorization
may be accelerated by not needing to find the pattern and choose the pivots. The user must set
JOB to 2 for this option. Separate code is executed, but the algorithm is unchanged from that
used for calculating the numerical values during the first factorization. An error return is made if
any pivot is smaller than the pivot threshold.

The user may specify that only a certain number of late columns have changed values so that
processing can be confined to these columns, because the factorization in the leading columns
will be exactly as previously. If the pattern is unchanged and the previous pivot sequence is
expected to be satisfactory, this processing may be that of the previous paragraph (JOB must be
set to 2 for this option). Otherwise, the processing may be exactly as for the first factorization,
with Gilbert-Peierls calculation of the pattern and pivoting within each column (JOB must be set
to 3 for this option).

2.2.4 Singular and rectangular matrices

If the rank is less than n, we may fail to find a pivot for column k. The L-part may be null or all
its entries may be smaller than the pivot or drop tolerance. This is handled by recording the
L-part of the column as null and not recording any row as pivotal. The rest of the reduction is
effectively treated as if column k were omitted.

The column by column processing makes it impossible to recognize a zero row until all
columns have been processed. It would have been possible to remove such rows from the full
matrix before passing it to the full-matrix factorization subroutine, but we felt that coding this
was not justified given that the full-matrix code needs anyway to handle the possibility of zero
rows occurring during its processing. We note that MA50A takes into account that zero rows are
handled explicitly when choosing the point for switching to full-matrix processing, which can
even mean that p is given the value n. Also, the user may set p to the value n if all-packed
processing is wanted. Thus the code has to allow for the possibility of the final block having

11

some rows but no columns. We need the vector of row indices, but do not actually call the
full-matrix factorization subroutine.

To explain the mathematics, it is convenient to permute each column in which no pivot is
found to just ahead of the columns holding the full block, though we emphasize that in the actual
code these columns are left in place. This gives us the factorization

U V Wq q qLq I . (2.2.5)M 0 Fq I

It is also convenient (see Section 2.3) to regard this as the factorization

L U V Wq q q q . (2.2.6)M I 0 Fq

2.2.5 Insufficient storage

If the user provides insufficient storage for the factorization, a serious attempt is made to
calculate how much is needed for a successful factorization. This is done by retaining the first p
columns of L so that processing of column k can take place as in the successful case, but
discarding the rest of the factorization. A count is kept of the number of discarded entries. Of
course, there may be insufficient storage to finish the factorization even in this mode, in which
case it is not possible to provide a value for the amount of additional storage that is sure to be
adequate. We return the value that is sufficient for the factorization to proceed to the same point
without any discards.

2.3 MA50C: solve

MA50C uses the factorization produced by MA50B to solve the equation

Ax = b (2.3.1)

or the equation
TA x = b. (2.3.2)

In the square nonsingular case, this involves simple forward and back-substitution using the
factorization (2.2.4). We use a work vector W to avoid altering b. Note that the row indices stored
for L are those of the original matrix, whereas those for U are of the permuted matrix. MA50H is
called for full-matrix processing of the final block. It is helpful that the row indices of the full
block are monotonic, as noted in the penultimate paragraph of Section 2.2.1. When solving
Ax = b, this permits an in-place sort for loading the required components of the right-hand side;

Twhen solving A x = b, it permits an in-place sort for placing the solution in the required
positions.

The permutation Q is treated separately. When solving Ax = b, the solution is permuted just
Tbefore return and when solving A x = b, the right-hand side is permuted on entry. We provide

an option for these permutations to be omitted when Q = I, which is the case when MA50C is
called from MA48 since the column permutations are integrated into an overall column
permutation.

The rectangular or rank-deficient case is not so straightforward. For (2.3.1), we use the form
(2.2.6) and begin by solving the system

L y bq 1 1= (2.3.3)M I y bq 2 2

12

by forward substitution and then solve the system

x1 yU V W 1q q q x = (2.3.4)2 y0 F 2x3

by back-substitution. Mathematically, we solve Fx = y , set x = 0, and then solve3 2 2
U x = y − W x , but the two final steps are merged in the coding since the columns areq 1 1 q 3
interspersed. We traverse the columns backwards either calculating a component of x and doing
the corresponding back-substitution updating, or setting a component of x to zero.

For (2.3.2), we use the form (2.2.5) and begin by solving the system

TU y bq 1 1
TV I y = b (2.3.5)q 2 2
T y bW I 3 3q

by forward substitution, and then we solve the system

T T yL M 1q q x1 = y (2.3.6)0 2x2T yF 3

by back-substitution. Here, we ignore the middle block row.

2.4 MA50D: compress the data structure

Only in the analysis subroutine can the storage become fragmented so that data compression
(garbage collection) may be necessary. Subroutine MA50 called both for the column-oriented and
row-oriented storage. The logical argument REALS controls whether real values are to be moved
along with integer values or not. For definiteness, we will describe the action for the
row-oriented file.

The processing consists of an initialization loop of length n, followed by a loop that moves the
wanted entries forward, of length equal to the size of the array. The initial loop moves the first
entry of each row to the vector IPTR and replaces it by the negation of the row index. This
enables the start of each row to be recognized in the scan that follows, since all the row indices
are positive and any free location has been given the value 0. This scan now takes place. It skips
any free locations and moves the row indices forward. The first entry of each row is restored
from IPTR and the corresponding element of IPTR is set to hold its position.

2.5 MA50E, MA50F, MA50G, MA50H: solving full sets of linear equations

For sufficiently dense matrices, it is more efficient to use full-matrix processing and we therefore
switch to this towards the end of the factorization. We had hoped to use the LAPACK routines
SGETRF and SGETRS for this purpose, but their treatment of the rank-deficient case is
unsatisfactory since no column interchanges are included. For example, the matrix

0 1 1
A = 0 1

0

will be factorized as A = LU with L = I and U = A, which is of no help for solving the consistent
set of equations

13

0 1 1 2
0 1 x = 1 .

0 0

On the other hand, interchanging columns 1 and 3 gives

1 1 0 1 1 1 0
AQ = 1 0 0 = 1 1 −1 0

0 0 0 0 0 1 0

and the reduced set of equations

x1 1 0 23
−1 0 x = −1 .2

0 0x1

The value of x is arbitrary and we may choose 0. By back-substitution, we then get the solution1

0
x = 1 .

1

Another reason for rejecting SGETRF is that it tests only for exact zeros. We test for exact
zeros by default, but wish to offer the option of a test against a threshold. The final factorization
will be as if we had started with a matrix whose entries differ from those of A by at most the
threshold.

In our early tests, we found that factorization routines using Basic Linear Algebra Subroutines
(BLAS) at Level 1 (Lawson et al. 1979) and Level 2 (Dongarra et al. 1988) sometimes
performed better than those at Level 3 (Dongarra et al. 1990), and have therefore included them
all. They are, respectively, MA50E, MA50F, and MA50G. A parameter controls which of them is
called. In the tests reported in Section 4, we found that the Level 3 versions performed best on all
three of our test platforms, so the default parameter value chooses them.

MA50H solves a set of equations using the factorization produced by MA50E, MA50F, or
MA50G, whose output data are identical. Each actual forward or back-substitution operation
associated with L or U is performed either with the Level 2 BLAS STRSV or by a loop involving
calls to SAXPY or SDOT. An argument controls which of these happens. Unlike the case for
factorization, the logic is very similar for the two cases, so there is no need for separate
subroutines.

We defer a more detailed description of our modifications of the LAPACK subroutines to
Appendix A.

2.6 MA50I: initialization

Subroutine MA50I provides default values for the arrays CNTL and ICNTL that together control
the execution of the package. Their purposes and default values are given in Appendix C.

14

3 The MA48 Package

We anticipate that most users will access the codes described in this report through calls to the
MA48 subroutines. The data interface is much simpler than that of MA50. MA48 accepts an m×n
sparse matrix whose entries are stored in any order, as A(k), IRN(k), ICN(k), k = 1, 2, ..., NE.
Multiple entries are permitted and are summed. Any entry with an out-of-range index is ignored.

There are four subroutines that are called directly by the user:

Initialize. MA48I provides default values for the arrays CNTL and ICNTL that together control
the execution of the package.

Analyse. MA48A prepares data structures for factorization and chooses permutations P and Q
that provide a suitable pivot sequence and optionally permute the matrix A to block upper
triangular form. There is an option for dropping small entries from the factorization, an
option for limiting pivoting to the diagonal, and an option for providing Q together with a
recommendation for P. Any set of columns may be specified as sometimes being
unchanged when refactorizing.

Factorize. MA48B factorizes a matrix A, given data provided by MA48A. On an initial call, it
performs additional row permutations when needed for numerical stability. Options exist
for subsequent calls for matrices with the same sparsity pattern to be made faster on the
assumption that exactly the same permutations are suitable, that no change has been made
to certain columns of PAQ, or both.

Solve. MA48C uses the factorization produced by MA48B to solve the equation Ax = b or the
Tequation A x = b with the option of using iterative refinement. Estimates of both

backward and forward error can also be provided.

The data structure is arranged so that the user with a single problem to solve can provide the
matrix to MA48A, pass the MA48A output data on to MA48B, and finally pass the MA48B output
data and the vector b to MA48C. Further calls to MA48C can then be made for other vectors b.
The first of a sequence whose matrices have the same pattern is treated similarly, and for
subsequent matrices MA48B can be called with just the array of reals having a different value.
For efficient performance of the sorting needed for the later factorizations, we use a map array so
that a single vectorizable loop is all that is needed. Note also that a representation of both the
original matrix and its factorization is needed by MA48C since it performs iterative refinement.

3.1 MA48A: analysis

The action of MA48A is controlled by the argument JOB, which must have one of the values:

1 Unrestricted pivot choice.

2 Column permutation provided by the user, together with a recommended row permutation.

3 Pivots to be restricted to the diagonal.

The subroutine first checks the validity of the scalar data and, if JOB=2, of the permutations. If
there is a problem, it prints a message and exits. If the data checks are passed, informative
printing is optionally performed, followed by initializations and the generation of a linked list
that holds the entries of each column as a chain. A vector of length n is needed for the headers but
the links themselves can be held in JCN, overwriting the column indices. During this loop, a

15

check is made on whether any entry has a row or column index outside its permitted range. Such
an entry is not placed in a linked list but is flagged by setting its JCN component to zero.
Messages are optionally printed for the first 10 such entries.

An attempt is made to order the matrix to block triangular form as long as the matrix is square,
the minimum block size (default value 10) is less than n, and JOB=1. It is conventional (see, for
example, Chapter 6 of Duff, Erisman, and Reid 1986) to do this in two stages: first find a column
permutation such that the permuted matrix has entries on its diagonal and then find a symmetric
permutation that permutes the resulting matrix to block triangular form. We use the HSL
subroutines MC21A and MC13D for these two stages.

Since MC21A requires the structure of the matrix by columns, we begin by constructing it by
using the linked list by columns to run through the entries of each column in turn. For the sake of
efficiency, the new list of indices is constructed in a separate part of the array. While this takes
place, duplicates are identified efficiently with the help of an integer flag array, in a similar
fashion to that discussed in Section 2.1.1. The duplicates are not added to the column structure,
of course. MC21A uses a depth-first search algorithm with look ahead and is described by Duff
(1981a, 1981b). If it fails to permute entries onto the whole of the diagonal, the matrix must be
structurally singular and the block triangularization is abandoned.

If the matrix is structurally nonsingular, MC13D is used to symmetrically permute the resulting
matrix to block triangular form. It employs the algorithm of Tarjan (1972) and is described by
Duff and Reid (1978a, 1978b). The block sizes are calculated from the pointers to block starts
provided by MC13D. Adjacent blocks of size one are amalgamated into triangular blocks in a
single pass that amalgamates the current block with the previous one if the current block is 1 × 1
and the previous block is either 1 × 1 or is itself an amalgamation of 1 × 1 blocks. The triangular
case is indicated by negating the block size. A second pass through the blocks is made to merge
the current block with its predecessor (which may itself be a merged block) if the predecessor is
of size less than the minimum block size.

Since permutations for the block triangular form may conflict with the user’s permutations or
may move diagonal entries away from the diagonal, we do not perform block triangularization if
JOB has the value 2 or 3.

The final step of block triangularization is to set the permutation arrays.

The user may specify that, for some refactorizations, changes are confined to a set of columns
identified by zero entries in the array IW. These columns must be placed at the end of any
non-triangular block in order that MA50 handles them appropriately as ‘late’ columns. If the
column sequence has been specified (JOB=2), all we can do is scan for the first of the set of
columns and treat all subsequent columns as if they too were columns that change. The
appropriate value is recorded for MA50A. If no column sequence is specified (JOB=1 or JOB=3),
the IW array is checked for each block in turn and the columns of the set are moved to the end of
the block. The permutation arrays are adjusted accordingly and the number of late columns in
each block recorded for subsequent use by MA50A. Note that the late-column convention in
MA50 not only leads to simplifications in MA50 but also limits the MA48 storage overhead for
this feature to one integer per block.

A reordered copy of the input matrix is now constructed in positions NE+1 to 2*NE of A and
IRN. The columns are placed in the chosen order and the diagonal blocks are separated from the
rest. The columns are accessed through the column links set up earlier, the diagonal blocks are

16

stored from position NE+1 up and the off-diagonal parts of each column from position 2*NE
down. As the entries are placed in position, JCN(1:NE) is overwritten by the mapping array,
which holds the new positions. Duplicates are identified in a similar way to previously, but here
the numerical values are accumulated with the help of a pointer for each i to the position of the
most recent entry for row i. Finally IRN(NE+1:2*NE) is copied to IRN(1:NE) so that MA50
can work within IRN(NE+1:2*NE).

The factorization now proceeds block by block starting with the last block and working
backwards. This order allows the rest of arrays A, IRN, and JCN to be used as workspace by
MA50. Note that the blocks processed late are given more ‘elbow-room’ than those processed
early. No action, other than recording the pivot ordering, is performed for triangular blocks
(which have been flagged appropriately), but the others are passed to MA50A. The row indices
have to be shifted so that they refer to positions within the block rather than within the whole
matrix and similarly the pointers to column starts must be shifted to refer to the subarray. If the
column sequence and a recommended row sequence have been specified (JOB=2), they too must
be shifted so that they refer to positions within the block. On return from MA50A, the
permutations that it has calculated must be shifted back.

After completing all calls to MA50A, the row indices are revised to those of the permuted
matrix and are reordered to the new column order. Also the map array is revised to correspond.
This is done for the sake of simplicity in MA48B and MA48C. MA48B does not have to be
concerned with the permutations since it works entirely with the permuted matrix and MA48C
has only to apply one permutation to the incoming vector and the other to the outgoing solution.
This revision is performed out of place by first copying the indices back from positions 1 to NE to
NE+1 to 2*NE. The columns are then scanned in the new order. For each column, the part
corresponding to the diagonal block is accessed before the part corresponding to the off-diagonal
block. We now know how many entries there are in the diagonal blocks, NZD, so we can start the
off-diagonal blocks from NZD+1 and do not need to work backwards. The permuted value for
each row index in turn is placed in the next available location in IRN(1:NZD) or
IRN(NZD+1:NE) and the entry in IRN(NE+1:2*NE) holding the unpermuted row index is
set to the position to which the permuted row index has just been written. After processing all the
columns, the permutation arrays are then updated to include the permutations from MA50A and
the map array is updated using the information in IRN(NE+1:2*NE) and the previous map
values in JCN(1:NE). Any invalid entries will have been flagged with a zero value in JCN and
are now given the map value NE which is a harmless position and allows the mapping to be
performed by MA48B without any test for invalid entries. We flag the presence of multiple
entries by negating JCN(1), since a more expensive mapping loop is needed in this case.

The main storage requirement is for the arrays A, IRN, and JCN, whose length LA must be at
least 2*NE and which we recommend to be of length at least 3*NE. The reason for the 2*NE
lower limit is the use of out-of-place sorting prior to block triangularization, following block
triangularization, and following the call to MA50A. We have made this choice for the sake of
efficiency and because, for most problems, more storage is needed when the diagonal blocks are
being analysed by MA50A. The original matrix is preserved unaltered in A(1:NE) so that it can
be passed to MA48B and so that MA48B can treat it in exactly the same way as a matrix with the
same pattern but changed numerical values. IRN(1:NE) holds the permuted row numbers and
JCN(1:NE) holds the map array. Locations NE+1 onwards are therefore available to hold the
diagonal blocks waiting to be processed and the working space for MA50A. By working from the

17

back, we are able to give successively more space to each block, but often there is only one block
or one of the blocks is very large so that more than NE locations from NE+1 onwards are likely to
be needed.

3.2 MA48B: factorization

MA48B factorizes a sparse matrix, given data from MA48A and possibly changed numerical
values for the entries. The action of the subroutine is controlled by the argument JOB that must
have one of the values:

1 Initial call, with pivoting.

2 Faster subsequent call for changed numerical values, using exactly the same pivot
sequence.

3 Faster subsequent call for changed numerical values only in certain columns, with fresh
pivoting in those columns.

After simple data checks on the scalar data and optional informative printing, MA48B first uses
the map array in JCN to place the real input array (which must be in the same order as the
corresponding array passed to MA48A) immediately in the correct order for the factorization. We
first copy A(1:NE) to A(NE+1,NE*2) and then map back to the appropriate positions in
A(1:NE). Separate code is executed according to whether or not duplicates were found by
MA48A. With duplicates, A(1:NE) is initialized to zero and used to accumulate the result.
Without duplicates, no initialization is needed and the values can be placed directly in position.

Having reordered the data in this very easy way, it is now a simple matter to work through the
block triangular structure, calling the factorize routine MA50B for each non-triangular diagonal
block. We also call the factorize routine MA50B for any triangular diagonal block that has a
diagonal entry smaller than the pivot threshold CNTL(4) (MA50B has facilities for including
interchanges in such a case). The row indices have to be shifted so that they refer to positions
within the block rather than within the whole matrix and the pointers to column starts must be
shifted to refer to the subarray. On return form MA50B, these shifts must be reversed. It might be
thought that these shifts should be done once and for all by MA48A, but they are needed in their
original form by MA48C for iterative refinement. The factors found are placed in A and IRN
immediately following the sorted input matrix, and now it is natural to work forwards. Once all
the diagonal blocks have been processed the factorized matrix is optionally printed in a readable
format.

3.3 MA48C: solve

MA48C solves a system of equations, given data from MA48B. The action of the subroutine is
controlled by the argument JOB that must have one of the values:

1 No iterative refinement or error estimation.

2 No iterative refinement but with estimation of relative backward errors.

3 With iterative refinement and estimation of relative backward errors.

4 With iterative refinement and estimation of relative backward errors and relative error in
the solution.

18

We separate the tasks of solution using the block triangular factorization from permutation of the
incoming vector, iterative refinement, error estimation, and permutation of the solution. The
former task is performed by a separate routine MA48D. For the special case where there is only
one block and it is not triangular, we save procedure call overheads by calling MA50C directly
rather than calling MA48D.

MA48C begins with simple data checks on the scalar data and optional informative printing,
and then permutes the right-hand side vector appropriately into a work vector.

If no iterative refinement or error estimation has been requested (JOB=1), the permuted
solution is computed by calling MA50C or MA48D, as appropriate.

Otherwise, the iterative refinement and error estimation is performed on the permuted system
so the code is uncluttered by permutations. The initial solution is set to zero and the permuted
right-hand side stored to enable the residual calculation. In the iterative refinement loop, the
residual equations

(k) (k)Ax = r = b − Ax
or (3.1)

T (k) T (k)A x = r = b − A x
(k)where x is the current estimate of the solution, are solved using MA48D or MA50C as

appropriate, and the solution to these residual equations is used to correct the current estimate.
We then use the theory developed by Arioli, Demmel, and Duff (1989) to decide whether to stop
the iterative refinement. In the following discussion, modulus signs round a matrix or vector
indicate the matrix or vector, respectively, obtained by setting all entries equal to the modulus of
the corresponding entry of the matrix or vector.

In Arioli et al. (1989), the scaled residual

(k)|r |ω = max (3.2)1 (k)i |A| |x | + |b| i

(k)is used as a measure of the backward error, in the sense that the estimated solution x can be
shown to be the exact solution of a set of equations

(A + δA)x = b + δ b

where the perturbations δA and δ b are bounded according to

δA ≤ ω |A| and δ b ≤ ω |b|.1 1

This follows directly from the work of Oettli and Prager (1964) and Skeel (1980). Sparsity,
however, can cause an added complication since it is possible for the denominator in (3.2) to be
zero or very small. We follow the theory developed by Arioli et al. (1989) by monitoring the
denominator. If nvar is the number of variables in the equation, τ is 1000 times machine

(k)precision, A is row i of A, and the denominator is less than nvar τ(|b| + ||A || ||x ||), wei. i i. ∞ 1
(k) (k)replace the denominator by |A| |x | + ||A || ||x || , define ω as before for the equations withi i. ∞ max 1

large denominators, and define ω as2

(k)r iω = max2 (k) (k)i |A| |x | + ||A || ||x ||i i. ∞ max

for these other equations. The calculated backward error is then the sum of ω and ω and the1 2

19

iterative refinement is terminated if this is at roundoff level or has not decreased sufficiently from
the previous iteration step. The amount of decrease required is given by the parameter CNTL(5).
If the refinement is being terminated, the solution is set to either the current or previous iterate,
depending which had the lower value for ω + ω ; otherwise, the current estimate is saved and1 2
we proceed to the next step of iterative refinement.

MA48C now optionally proceeds to estimate the error in the solution, using the backward
errors just calculated and an estimate of the condition number obtained by using the HSL norm
estimation routine MC41, which uses a method based on that developed by Hager (1984),
incorporating the modifications suggested by Higham (1987). Condition numbers are estimated
corresponding to the two ω s. That corresponding to ω is given by1

(1) (k) (1)−1 |A | |x |+|b ||A |
0 ∞κ = ,ω (k)1 ||x ||∞

(1)where |b | are the components of b corresponding to the equations determining ω , and that1
corresponding to ω by2

0−1|A | (2) (k) (2)|A | |x |+f ∞κ = ,ω (k)2 ||x ||∞

(2) (2) (k)where f = |A |e||x || , with e the vector of all 1s. In each case, the norm in the numerator is of∞
−1 −1

1 2the form |||A |g|| which is equivalent to ||A G|| , with G = diag{g , g , ...}, whence the∞ ∞
subroutine MC41 can be applied directly.

||δ x||∞The bound for the error in the solution , , is then given by||x||∞

ω κ +ω κ .1 ω 2 ω1 2

All that remains is to permute the solution appropriately and exit.

3.4 MA48D: solution of block system

MA48D solves a system of equations using the block structure and calls to MA50C for each
non-triangular diagonal block.

For the solution when the matrix A is not transposed, the block form is block upper-triangular
and the blocks are solved in reverse order. For each block, either MA50C is used or a simple
triangular system is solved and then the new values are substituted in earlier equations using the
off-diagonal parts of the columns in the current block. Because of the column-oriented storage,
the inner loop of the back-substitution for the triangular diagonal blocks and for the off-diagonal
blocks involves the addition of a multiple of one vector to another with indirect addressing for
the vector being accumulated.

For the transposed problem, the system is block lower-triangular and the solution starts with
the (1,1) block and goes forward through the block form. Now the forward substitution loops are
dot products with indirect addressing of one of the vectors, which are less likely to vectorize well
(see Table 2 in Section 4).

20

3.5 MA48I: control parameter initialization

Subroutine MA48I provides default values for the arrays CNTL and ICNTL that together control
the execution of the package. In many cases, these values are used to set the corresponding
parameters of MA50. Their purposes and default values are given in Appendix B.

4 Performance results

For performance testing, we have taken two subsets of the problems in the Harwell-Boeing
collection (see Duff, Grimes, and Lewis 1989 and 1992). The first subset is summarized in Table
1 and was chosen to be representative of the kinds of problems likely to be solved by our codes.

Case Identifier Order Number Description
of entries

1 SHL 400 663 1712 Basis matrix obtained after the application by J. K.
Reid of 400 steps of the simplex method to a linear
programming problem. This matrix is a
permutation of a triangular matrix.

2 FS 541 1 541 4285 A matrix that arose in FACSIMILE (a stiff ODE
package) in solving an atmospheric pollution
problem involving chemical kinetics and two-
dimensional transport.

3 FS 680 3 680 2646 Mixed kinetics diffusion problem from radiation
chemistry. 17 chemical species and one space
dimension with 40 mesh points.

4 MCFE 765 24382 Radiative transfer and statistical equilibrium in
astrophysics.

5 BCSSTK19 817 6853 Part of a suspension bridge.
6 ORSIRR 2 886 5970 Oil reservoir simulation.
7 WEST0989 989 3537 Chemical engineering plant model.
8 JPWH 991 991 6027 Circuit physics model.
9 GRE 1107 1107 5664 Matrix produced by the package QNAP written by

CII-HB for simulation modelling of computer
systems.

10 ERIS1176 1176 18552 Large electrical network.
11 PORES 2 1224 9613 Oil reservoir simulation. Matrix pattern is

symmetric.
12 BCSSTK27 1224 56126 Buckling analysis, symmetric half of an engine

inlet from a modern Boeing jetliner.
13 NNC1374 1374 8606 Model of an advanced gas-cooled nuclear reactor

core.
14 BP 1600 822 4841 Basis matrix obtained after the application of 1600

steps of the simplex method to a linear
programming problem.

15 WATT 1 1856 11360 Petroleum engineering problem.
16 WEST2021 2021 7353 Chemical engineering plant model.
17 ORSREG 1 2205 14133 Oil reservoir simulation.
18 ORANI678 2529 90158 Economic model of Australasia.
19 GEMAT11 4929 33185 Initial basis of an optimal power flow problem with

2400 buses.
20 BCSPWR10 5300 21842 Eastern US Power Network – 5300 Bus.

Table 1. The matrices used for performance testing.

21

We have used the Table 1 matrices to choose default values for parameters and to judge the
performance on

(i) one processor of a Cray YMP-8I/8128 using Release 5.0 of the cf77 compiling
system with the option –Zv (maximum vectorization) and vendor-supplied BLAS,

(ii) a SUN SPARCstation 1 using Release 4.1 of the f77 compiler with the option –O
(optimization) and Fortran 77 BLAS, and

(iii) an IBM RS/6000 model 550 using Release 2.3 of the xlf compiler with the option –O
(optimization) and vendor-supplied BLAS.

We believe that these are representative of the likely runtime environments, but it must be
stressed that other platforms, other compilers, or other implementations of the BLAS may require
different parameter values for good performance. Also, tuning for particular requirements may
be worthwhile; for example, the choice of density threshold for the switch to full code is affected
by whether a single problem is to be solved or many problems with the same pattern are to be
solved.

We have been hampered somewhat by the variability of the cpu timers on the IBM RS/6000
and the SUN. To alleviate this, we have embedded each call to MA48 in a loop of length 1000
that is left as soon as the accumulated time exceeds one second and the average time is then
calculated. We can judge the repeatability of the timings by the variation of the analysis time
when variations of the block size used for the BLAS are made since this does not affect the
analysis phase. Occasional individual variations could be as high as 25% on the IBM RS/6000
and 20% on the SUN. The median change over the twenty problems could be as high as 3% on
the IBM RS/6000 and 8% on the SUN. The Cray is much better with all times within 1%. The
IBM RS/6000 and the SUN figures presented here were obtained with runs on lightly loaded
machines to avoid such extreme variations, but we rely mainly on the Cray times for our
conclusions.

Case Array Analyse Fact. Analyse Fast Solve Solve
Tsize reqd + Fact. Fact. Ax = b A x = b

1 3424 0.012 0.000 0.012 0.000 0.0007 0.0014
2 20229 0.123 0.051 0.175 0.023 0.0013 0.0021
3 7120 0.044 0.017 0.061 0.006 0.0010 0.0017
4 111853 0.762 0.281 1.043 0.175 0.0039 0.0052
5 35507 0.247 0.104 0.351 0.044 0.0021 0.0034
6 61014 0.383 0.139 0.522 0.082 0.0023 0.0036
7 8992 0.069 0.026 0.095 0.008 0.0021 0.0037
8 70973 0.331 0.128 0.458 0.097 0.0029 0.0047
9 72140 0.382 0.170 0.552 0.102 0.0037 0.0054

10 49920 0.176 0.086 0.263 0.042 0.0026 0.0044
11 63840 0.382 0.154 0.536 0.084 0.0030 0.0046
12 216228 1.499 0.561 2.060 0.329 0.0059 0.0085
13 78056 0.483 0.208 0.690 0.108 0.0048 0.0075
14 9682 0.059 0.018 0.076 0.008 0.0022 0.0036
15 167763 1.315 0.504 1.820 0.344 0.0071 0.0100
16 19317 0.150 0.056 0.206 0.017 0.0043 0.0076
17 298348 1.753 0.886 2.639 0.703 0.0092 0.0157
18 182012 0.901 0.263 1.163 0.148 0.0083 0.0130
19 89295 0.595 0.236 0.831 0.073 0.0121 0.0208
20 100810 0.742 0.305 1.047 0.114 0.0115 0.0191

Table 2. Performance on Cray with default settings.

22

Case Array Analyse Fact. Analyse Fast Solve Solve
Tsize reqd + Fact. Fact. Ax = b A x = b

1 3424 0.06 0.01 0.07 0.01 0.009 0.010
2 20364 0.99 0.56 1.55 0.38 0.040 0.030
3 6823 0.27 0.12 0.39 0.06 0.017 0.016
4 111875 10.56 7.34 17.90 6.42 0.175 0.131
5 37518 2.61 1.20 3.81 0.85 0.072 0.053
6 65625 3.59 4.06 7.65 3.68 0.121 0.090
7 8986 0.35 0.15 0.50 0.06 0.022 0.021
8 69726 2.34 5.13 7.47 4.81 0.120 0.095
9 72140 4.19 4.83 9.02 4.40 0.138 0.103

10 49920 1.27 1.23 2.50 0.98 0.071 0.056
11 65984 3.68 3.01 6.69 2.56 0.126 0.091
12 218066 23.76 12.32 36.08 10.67 0.353 0.240
13 76941 4.68 3.89 8.57 3.26 0.151 0.113
14 9682 0.28 0.11 0.39 0.06 0.025 0.023
15 169546 20.19 13.69 33.88 12.40 0.330 0.234
16 19314 0.79 0.34 1.12 0.15 0.051 0.046
17 285175 27.23 38.36 65.59 36.47 0.530 0.383
18 182012 10.58 7.10 17.68 6.39 0.292 0.250
19 89329 3.70 1.76 5.46 0.92 0.180 0.153
20 102676 5.60 3.40 9.00 2.36 0.228 0.182

Table 3. Performance on SUN with default settings.

Case Array Analyse Fact. Analyse Fast Solve Solve
Tsize reqd + Fact. Fact. Ax = b A x = b

1 3424 0.013 0.001 0.013 0.000 0.0007 0.0008
2 20364 0.173 0.057 0.231 0.032 0.0033 0.0034
3 6823 0.052 0.016 0.068 0.007 0.0016 0.0017
4 111875 1.900 0.483 2.383 0.353 0.0111 0.0114
5 37518 0.453 0.132 0.586 0.071 0.0066 0.0058
6 65625 0.590 0.236 0.826 0.180 0.0075 0.0074
7 8986 0.071 0.023 0.093 0.008 0.0024 0.0022
8 69726 0.427 0.236 0.663 0.208 0.0067 0.0066
9 72140 0.635 0.308 0.942 0.202 0.0089 0.0088

10 49920 0.232 0.118 0.350 0.082 0.0050 0.0049
11 65984 0.680 0.204 0.884 0.172 0.0078 0.0076
12 218066 3.800 0.945 4.745 0.730 0.0220 0.0249
13 76129 0.975 0.307 1.283 0.187 0.0103 0.0107
14 9682 0.060 0.019 0.079 0.012 0.0028 0.0029
15 169546 3.120 1.030 4.150 0.800 0.0229 0.0217
16 19314 0.160 0.050 0.210 0.020 0.0051 0.0056
17 285175 4.500 1.780 6.280 1.550 0.0312 0.0300
18 182012 2.190 0.410 2.600 0.312 0.0191 0.0171
19 89329 0.685 0.224 0.909 0.100 0.0177 0.0177
20 102676 1.080 0.393 1.473 0.193 0.0220 0.0213

Table 4. Performance on IBM RS/6000 with default settings.

For all three environments, we have chosen the value 0.5 for the density threshold for the
switch to full code and Level 3 BLAS with block size 32. We are able to use the same defaults
because the performance is very flat around the optimum values, as the results later in this
section demonstrate. Tables 2, 3, and 4 summarize the performance of the code with these default
values.

The effect of our use of Level 3 BLAS in the full code is most apparent in the solve phase.
Since we have chosen a column orientation for the storage of numerical values of the matrix and
factors, the solution of the equations Ax = b will be performed using a SAXPY kernel in the

23

Tinnermost loop while the solution of A x = b uses an SDOT operation. On the Cray, the former is
more efficient than the latter and this is clearly reflected in the fact that the times for solving the
system are up to 50% less than for the solution of the transposed equations. This was one of the
reasons why we chose column orientation in the first place. On the IBM, the different relative
performance of the two Level 1 BLAS means that times for solution of the system and its
transpose are about the same while on the Sun the position is reversed with the faster SDOT
routine giving a faster solution time for the transposed equations.

We examine the relative performance when a single parameter is changed by means of the
median, upper-quartile and lower-quartile ratios over the 20 problems. We use these values rather
than means and variances to give some protection against stray results caused either by the timer
or by particular features of the problems. We remind the reader that half the results lie between
the quartile values. Full tables of ratios are available by anonymous ftp from
numerical.cc.rl.ac.uk (130.246.8.23) in the file pub/reports/ma48.tables.

4.1 Density threshold for the switch to full code

Which value is best for the density threshold for the switch to full code depends on the relative
importance of analysis time as opposed to factorization time and to the importance of storage.
Any reduction will save time in the analyse phase since no further sparsity processing is
performed once the threshold is reached. Usually, there is a penalty in the need for more storage.
Too low a value leads to such an increase in factorize time that we lose even if only a single
problem is to be solved. We have also been influenced in our choice of default value by the
convenience of a single value on all platforms. Our value of 0.5 is based on slightly different
priorities on the three platforms.

Table 5 shows the effect of decreasing the value of the density threshold for the switch to full
code to 0.4. The factorization times are increased, though only slightly for the first factorization
on the Cray. A smaller value may be preferred if a single problem is to be solved, as may be
judged from the sum of the analyse and factorization times (see Table 5). Table 6 shows similar
effects from the further reduction to 0.3. For the SUN, this is too low even if only a single
problem is to be solved.

Array Analyse Fact. Analyse Fast Solve Solve
Tsize reqd + Fact. Fact. Ax = b A x = b

Cray lower q. 1.03 0.90 0.99 0.94 1.02 1.00 0.99
median 1.09 0.96 1.01 0.97 1.09 1.00 1.00
upper q. 1.11 0.98 1.05 0.99 1.13 1.02 1.03

SUN lower q. 1.02 0.85 1.05 0.98 1.08 1.03 1.02
median 1.09 0.91 1.12 1.00 1.18 1.06 1.07
upper q. 1.11 0.98 1.24 1.02 1.28 1.09 1.10

IBM lower q. 1.02 0.80 1.02 0.85 1.04 0.93 0.97
median 1.09 0.89 1.04 0.92 1.08 0.98 0.99
upper q. 1.11 0.94 1.07 0.97 1.15 1.03 1.03

Table 5. Results with density threshold value 0.4 divided by those with value 0.5.

24

Array Analyse Fact. Analyse Fast Solve Solve
Tsize reqd + Fact. Fact. Ax = b A x = b

Cray lower q. 1.03 0.89 0.99 0.94 1.02 0.99 0.99
median 1.09 0.96 1.01 0.97 1.08 1.00 1.00
upper q. 1.11 0.97 1.05 0.99 1.15 1.01 1.02

SUN lower q. 1.09 0.68 1.20 1.00 1.32 1.10 1.07
median 1.23 0.76 1.39 1.04 1.59 1.18 1.18
upper q. 1.26 0.93 1.56 1.07 1.65 1.24 1.22

IBM lower q. 1.09 0.66 1.09 0.79 1.23 0.97 1.00
median 1.23 0.78 1.18 0.89 1.35 1.01 1.02
upper q. 1.26 0.89 1.27 0.97 1.39 1.06 1.07

Table 6. Results with density threshold value 0.3 divided by those with value 0.5.

Array Analyse Fact. Analyse Fast Solve Solve
Tsize reqd + Fact. Fact. Ax = b A x = b

Cray lower q. 0.93 1.02 1.00 1.01 0.97 1.00 1.00
median 0.96 1.04 1.02 1.04 0.99 1.00 1.00
upper q. 0.99 1.10 1.03 1.08 0.99 1.01 1.01

SUN lower q. 0.92 1.03 0.86 1.00 0.82 0.93 0.94
median 0.96 1.11 0.92 1.01 0.90 0.97 0.96
upper q. 0.99 1.19 0.98 1.04 0.95 0.99 0.99

IBM lower q. 0.92 1.01 0.94 0.99 0.91 0.92 0.97
median 0.96 1.05 0.98 1.03 0.95 0.98 1.00
upper q. 0.99 1.14 1.02 1.08 0.97 1.01 1.01

Table 7. Results with density threshold value 0.6 divided by those with value 0.5.

Array Analyse Fact. Analyse Fast Solve Solve
Tsize reqd + Fact. Fact. Ax = b A x = b

Cray lower q. 0.89 1.04 1.01 1.03 0.95 1.00 0.93
median 0.91 1.08 1.03 1.07 0.98 1.00 1.01
upper q. 0.99 1.18 1.06 1.14 0.99 1.01 1.01

SUN lower q. 0.88 1.04 0.83 1.01 0.76 0.90 0.91
median 0.93 1.18 0.87 1.06 0.83 0.94 0.95
upper q. 0.98 1.36 0.96 1.09 0.89 0.98 0.96

IBM lower q. 0.88 1.01 0.90 1.00 0.87 0.94 0.97
median 0.93 1.09 0.96 1.06 0.92 0.96 1.00
upper q. 0.98 1.31 1.01 1.19 0.94 1.01 1.01

Table 8. Results with density threshold value 0.7 divided by those with value 0.5.

Tables 7 and 8 show the effect of increasing the value of the density threshold for the switch to
full code. On the Cray, the performance is very flat, a credit to its success nowadays in
vectorizing loops with indirect addressing. The IBM RS/6000 performance is also rather flat. For
the SUN and the IBM, there is a loss of performance for the single problem, but some reduction
in factorization time. It is unlikely that there would be such reduction in factorization time with
optimized versions of the BLAS, not currently available to us.

4.2 The choices within the full code

We have available to us Level 1 BLAS, Level 2 BLAS, and Level 3 BLAS with a choice of block
size. Tables 9 and 10 demonstrate that there is some advantage in using Level three BLAS on all
three platforms.

25

Fact. Analyse Fast Solve Solve
T+ Fact. Fact. Ax = b A x = b

Cray lower q. 1.03 1.01 1.09 1.07 1.07
median 1.13 1.04 1.24 1.18 1.21
upper q. 1.26 1.06 1.43 1.30 1.40

SUN lower q. 1.01 1.00 1.06 1.02 1.00
median 1.19 1.08 1.22 1.04 1.00
upper q. 1.33 1.15 1.37 1.07 1.01

IBM lower q. 1.00 0.99 1.08 0.98 0.96
median 1.22 1.04 1.33 1.09 1.05
upper q. 1.53 1.09 1.76 1.18 1.07

Table 9. Results with Level 1 BLAS divided by those with Level 3 BLAS and block size 32.

Fact. Analyse Fast Solve Solve
T+ Fact. Fact. Ax = b A x = b

Cray lower q. 1.00 1.00 0.99 1.00 1.00
median 1.15 1.04 1.17 1.00 1.00
upper q. 1.22 1.06 1.33 1.01 1.00

SUN lower q. 0.99 1.00 1.01 1.00 1.00
median 1.04 1.02 1.05 1.00 1.00
upper q. 1.12 1.05 1.13 1.01 1.01

IBM lower q. 1.08 1.04 1.03 0.98 1.02
median 1.21 1.07 1.23 1.03 1.06
upper q. 1.33 1.11 1.41 1.08 1.10

Table 10. Results with Level 2 BLAS divided by those with Level 3 BLAS and block size 32.

Fact. Analyse Fast Solve Solve
T+ Fact. Fact. Ax = b A x = b

Cray lower q. 1.01 1.01 1.02 1.00 1.00
median 1.02 1.01 1.03 1.01 1.00
upper q. 1.04 1.02 1.05 1.01 1.01

SUN lower q. 0.98 0.99 0.98 1.00 1.00
median 0.99 1.00 0.99 1.00 1.00
upper q. 1.00 1.00 1.00 1.01 1.01

IBM lower q. 1.01 0.98 0.99 0.95 0.98
median 1.04 1.00 1.03 0.99 1.00
upper q. 1.08 1.01 1.08 1.04 1.05

Table 11. Results with Level 3 BLAS with block size 16 divided by those with block size 32.

Fact. Analyse Fast Solve Solve
T+ Fact. Fact. Ax = b A x = b

Cray lower q. 1.00 1.00 1.00 1.00 1.00
median 1.00 1.00 1.00 1.00 1.00
upper q. 1.01 1.01 1.02 1.01 1.00

SUN lower q. 1.00 1.00 1.00 0.99 1.00
median 1.03 1.01 1.03 1.00 1.00
upper q. 1.07 1.03 1.08 1.01 1.01

IBM lower q. 0.98 0.99 0.97 0.94 1.00
median 1.00 1.00 1.01 1.00 1.04
upper q. 1.05 1.03 1.06 1.04 1.07

Table 12. Results with Level 3 BLAS with block size 64 divided by those with block size 32.

26

The performance is very flat as the block size is varied around the size 32. Table 11 shows that
with block size 16 we get slightly worse performance on the Cray and on the IBM and unchanged
performance on the SUN. Table 12 shows that with block size 64 we get slightly worse
performance on the SUN and IBM and unchanged performance on the Cray. We have chosen 32
for the default block size because it appears to be near optimal in all three cases and because of
the convenience of having the same value on the different machines.

4.3 The choice of strategy for pivot choice

We have followed the recommendation of Zlatev (1980) that the search for pivots be limited to
three columns. We have found that, compared with the Markowitz strategy, this does indeed save
worthwhile analyse time without significant loss of sparsity in the factors, as Table 13 illustrates.
To check the sensitivity of the choice of number of columns, we have also tried two- and
four-column searches. The results in Table 13 show that there is little sensitivity.

Array Analyse Fact. Analyse Fast Solve Solve
Tsize reqd + Fact. Fact. Ax = b A x = b

Markowitz lower q. 0.93 1.51 0.89 1.38 0.86 0.97 0.96
median 0.99 2.10 0.97 1.76 0.96 0.99 0.99
upper q. 1.04 4.18 1.02 3.20 1.02 1.00 1.00

Zlatev 2-col. lower q. 1.00 0.95 0.99 0.96 0.99 1.00 0.99
median 1.00 0.97 1.01 0.98 1.01 1.00 1.00
upper q. 1.03 1.00 1.02 1.01 1.04 1.00 1.00

Zlatev 2-col. lower q. 0.99 1.00 0.98 1.00 0.99 0.99 1.00
median 1.00 1.03 1.00 1.02 1.00 1.00 1.00
upper q. 1.04 1.06 1.01 1.04 1.04 1.01 1.01

Table 13. Cray results with different pivot strategies divided by
those with Zlatev’s 3-column search.

The example provided by Norm Schryer of Bell Laboratories (private communication), which
was mentioned in Section 2.1.2, illustrates the possibility of very slow Markowitz processing.
The problem is of order 138409 and has 434918 entries. The largest block of the block triangular
form has order 63554 and dominates the analysis time. Compiling as usual on the SPARCstation
1, but running on a SPARCstation 10 in order to get a feasible run, we found that the analyse time
increased from 82 seconds to 8901 seconds when we switched to the Markowitz option. The
factorization time was 15 seconds and the solve time was 0.02 seconds.

4.4 The block triangular form

Table 14 shows the statistics produced by MA48 on the block triangular form, namely

(i) the order of the largest non-triangular block on the diagonal of the block triangular
form,

(ii) the sum of the orders of all the non-triangular blocks on the diagonal of the block
triangular form, and

(iii) the total number of entries in all the non-triangular blocks on the diagonal of the
block triangular form (these are the entries that are passed to MA50 for analysis).

27

Case Order Order of Sum of Number Number of entries
largest block of entries in non-triangular
block orders diagonal blocks

1 663 0 0 1712 0
2 541 540 540 4285 3744
3 680 235 235 2646 1434
4 765 697 765 24382 24342
5 817 817 817 6853 6853
6 886 886 886 5970 5970
7 989 720 720 3537 2622
8 991 846 846 6027 5562
9 1107 1107 1107 5664 5664

10 1176 1174 1176 18552 18552
11 1224 1224 1224 9613 9613
12 1224 1224 1224 56126 56126
13 1374 1318 1318 8606 8350
14 822 217 392 4841 1997
15 1856 1728 1728 11360 11104
16 2021 1500 1500 7353 5495
17 2205 2205 2205 14133 14133
18 2529 1830 1830 90158 47823
19 4929 4578 4578 33185 31500
20 5300 5300 5300 21842 21842
Table 14. Statistics on the block triangularization.

Case Identifier Order Number Description
of entries

21 FS 680 1 680 2646 Mixed kinetics diffusion problem from radiation
chemistry. 17 chemical species and one space
dimension with 40 mesh points.

22 SHL 400 663 1712 Basis matrix obtained after the application by J. K.
Reid of 400 steps of the simplex method to a linear
programming problem. This matrix is a
permutation of a triangular matrix. (Also case 1.)

23 BP 1600 822 4841 Basis matrix obtained after the application of 1600
steps of the simplex method to a linear
programming problem. (Also case 14.)

24 IMPCOL D 425 1339 Matrix extracted from a run of the chemical
engineering package SPEED UP modelling a nitric
acid plant.

25 IMPCOL E 225 1308 Matrix extracted from a run of the chemical
engineering package SPEED UP modelling a
hydrocarbon separation problem.

26 WEST0497 497 1727 Chemical engineering plant model.
27 WEST2021 2021 7353 Chemical engineering plant model. (Also case 16.)
28 WEST0989 989 3537 Chemical engineering plant model. (Also case 7.)
29 MAHINDAS 1258 7682 Economic model of Victoria, Australia.
30 ORANI678 2529 90158 Economic model of Australasia. (Also case 18.)

Table 15. The matrices used for testing the block triangular form.

For comparison, we also show the matrix order and the number of entries in the matrix. It may be
seen that there are only six (cases 1, 3, 7, 14, 16, and 18) where less than 75% of the entries lie in
the diagonal blocks. Seven of the matrices (cases 5, 6, 9, 11, 12, 17, and 20) are irreducible, while
several more are nearly so. We felt that more than six very reducible cases would be needed to
judge the block triangularization, so we constructed another set of matrices from the
Harwell-Boeing collection, summarized in Table 15. The block triangularization statistics for
this collection are shown in Table 16.

28

Case Order Order of Sum of Number Number of entries
largest block of entries in non-triangular
block orders diagonal blocks

21 680 235 235 2646 1434
22 663 0 0 1712 0
23 822 217 392 4841 1997
24 425 199 199 1339 562
25 225 47 78 1308 403
26 497 92 206 1727 769
27 2021 1500 1500 7353 5495
28 989 720 720 3537 2622
29 1258 589 589 7682 4744
30 2529 1830 1830 90158 47823

Table 16. Statistics on the block triangularization for the second collection.

Table 17 shows that worthwhile gains are available from block triangularization, though only
in one case is the gain dramatic and this is because the matrix is a permutation of a triangular
matrix. There are some worthwhile storage gains, too.

Case Array Analyse Fact. Analyse Fast Solve Solve
Tsize reqd + Fact. Fact. Ax = b A x = b

21 1.19 1.13 1.59 1.25 1.33 1.16 0.86
22 1.20 2.18 161.51 3.30 40.96 1.70 1.12
23 1.36 1.28 2.31 1.52 1.51 0.77 0.77
24 1.33 0.94 2.00 1.15 1.68 1.07 0.86
25 1.23 0.91 2.87 1.24 1.65 0.83 0.73
26 1.39 1.24 2.19 1.45 1.70 1.03 1.00
27 1.14 0.93 1.28 1.02 1.23 0.97 0.96
28 1.15 0.95 1.27 1.04 1.22 0.97 0.97
29 1.23 1.08 1.54 1.21 1.33 1.03 0.91
30 1.31 1.20 1.96 1.37 1.68 0.98 0.90

lower q. 1.19 0.94 1.54 1.15 1.33 0.97 0.86
median 1.23 1.10 1.98 1.24 1.58 1.00 0.91
upper q. 1.33 1.24 2.31 1.45 1.68 1.07 0.97

Table 17. Cray results without block triangularization divided by
those with it.

We found that the technique of merging blocks smaller than a threshold size came into
operation in only two cases when the threshold value was 10, our tentative default. In both cases,
there was a loss of performance, see Table 18. In the absence of further data, we have changed
our default value to 1. Note that the runs reported in Sections 4.1, 4.2, and 4.3 used the value 10.
This is not likely to affect the conclusions about other aspects of the code, particularly since only
one case is affected (case 14, which is also case 23).

Case Array Analyse Fact. Analyse Fast Solve Solve
Tsize reqd + Fact. Fact. Ax = b A x = b

Cray 23 1.00 1.08 1.19 1.10 1.16 1.00 0.98
25 1.00 1.14 1.47 1.19 1.21 1.08 1.03

IBM 23 1.00 1.14 1.16 1.15 1.18 0.96 1.01
25 1.00 1.08 1.33 1.14 1.09 1.16 1.06

Table 18. Results with amalgamation threshold 10 divided by those
without block amalgamation.

29

4.5 Comparison with calling MA50 directly

A user with a matrix that is irreducible or only slightly reducible may wish to consider calling
MA50 directly, provided the less convenient interface is acceptable and the additional facilities of
iterative refinement and error estimation are not required. Comparisons are shown in Table 19.
Note that the cases that we noted as being significantly reducible (cases 1, 3, 7, 14, 16, 18)
constitute the upper quartile of factorization ratios. Overall, judging by the median ratios, using
MA50 directly displayed a need for less storage and a reduction in analysis time, but an increase
in both factorization times.

Case Array Analyse Fact. Analyse Fast Solve Solve
Tsize reqd + Fact. Fact. Ax = b A x = b

1 0.70 1.72 164.21 2.85 40.79 1.67 1.10
2 0.79 0.92 1.01 0.95 0.92 0.99 0.99
3 0.94 0.97 1.57 1.14 1.44 1.15 0.84
4 0.92 0.72 1.10 0.82 1.19 0.91 0.95
5 1.01 0.97 1.16 1.03 1.24 1.03 1.01
6 0.81 0.68 0.87 0.73 0.81 0.95 0.93
7 0.76 0.81 1.27 0.94 1.21 0.96 0.96
8 1.14 0.67 1.24 0.83 1.24 1.09 1.02
9 0.91 0.96 1.06 0.99 1.04 0.98 0.98
10 0.63 0.54 1.00 0.69 1.02 0.98 0.98
11 0.76 0.82 1.01 0.87 0.93 1.00 1.00
12 0.75 0.72 1.00 0.80 0.98 0.98 1.01
13 0.87 0.79 0.95 0.84 0.97 0.89 0.92
14 0.86 1.10 2.32 1.38 1.50 0.77 0.76
15 0.98 0.79 1.04 0.86 1.06 0.99 0.97
16 0.76 0.80 1.28 0.93 1.21 0.96 0.95
17 0.67 0.74 0.73 0.74 0.66 0.92 0.73
18 0.81 1.04 1.94 1.24 1.70 0.98 0.90
19 0.65 0.72 1.03 0.81 0.99 0.87 0.87
20 0.81 0.82 1.03 0.88 1.04 1.00 0.99

lower q. 0.75 0.72 1.01 0.82 0.98 0.93 0.91
median 0.81 0.80 1.05 0.88 1.05 0.98 0.96
upper q. 0.92 0.97 1.28 1.01 1.24 1.00 1.00

Table 19. Cray results with MA50 divided by those with MA48.

4.6 Iterative refinement and error estimation

Table 20 summarizes the performance when the following options for the solve subroutine
MA48C are invoked:

(i) Calculate the solution without iterative refinement but with the calculation of the
relative backward errors.

(ii) Calculate the solution with iterative refinement and calculation of the relative
backward errors.

(iii) Calculate the solution with iterative refinement, calculation of the relative backward
errors and estimation of the ∞–norm of the relative error in the solution.

30

Relative Also iterative Also relative error
backward errors refinement in solution

T T TAx = b Ax = b Ax = bA x = b A x = b A x = b
lower q. 1.77 2.18 3.74 4.69 10.93 8.71
median 1.88 2.39 5.32 5.21 12.08 9.13
upper q. 1.98 2.53 5.83 6.68 13.03 10.53

Table 20. Cray results with iterative refinement and error estimation divided by those without.

At first glance, the increase in time for the solve options seems rather high. However, the
overall times are still far smaller than factorization or analysis times and there can be
substantially more work because of these options. The amount of extra work will depend on the
ratio of the number of entries in the factors to the number in the original matrix since the latter
corresponds to the work in calculating a residual. Indeed, to obtain the backward error estimate,
three “residuals” are calculated which is clearly itself as expensive as a solution if the factors are
three times denser than the original. Option (i) involves one of these “residual” calculations and a
second solve so it could well be two to three times the cost of the straightforward solution, as we
see in Table 20. Option (ii) will depend on the number of iterations of iterative refinement. This
is usually very low (around 2) but there are several simple loops of length N in addition to the
extra solutions and “residual” calculations. Thus a factor of around 5 over straight solution is
quite expected. The increase to a factor of around 10 for option (iii) can also be predicted since
there are usually about six solutions required to calculate the appropriate matrix norms.

Our advice is to use JOB = 1 if some other means is available for checking the solution and
JOB = 2 if not. Only in cases when the user is anxious about the accuracy of the solution need
JOB = 3 or 4 be required.

4.7 Comparison with MA28

Finally, we show comparisons with MA28 on the three computing environments. MA28 always
produces a factorization when it performs an analysis and its only form of factorization is without
pivoting. The MA28 analysis time is therefore strictly comparable with the sum of the analysis
and factorization times of MA48. However, analysis alone or factorization with pivoting may
also be needed by the user, so we also use the MA28 analysis time to compare separately with the
the analysis and first factorization times of MA48.

31

Case Array Analyse Fact. Analyse Fast Solve
size reqd + Fact. Fact.

1 0.50 1.38 196.73 1.37 154.50 3.90
2 0.69 2.64 6.36 1.87 2.04 3.14
3 0.71 2.35 6.20 1.70 3.43 3.22
4 0.62 6.15 16.67 4.49 2.02 1.42
5 0.66 3.92 9.29 2.76 1.81 2.27
6 0.68 4.30 11.81 3.15 1.82 2.18
7 0.54 3.64 9.46 2.63 3.06 2.33
8 0.91 16.51 42.68 11.90 3.54 2.13
9 0.65 7.81 17.50 5.40 1.64 1.74

10 0.42 3.98 8.13 2.67 3.29 2.48
11 0.68 8.68 21.52 6.18 1.82 2.32
12 0.63 4.64 12.40 3.38 2.23 1.59
13 0.98 21.39 49.73 14.95 2.49 1.84
14 0.59 1.65 5.49 1.27 3.81 1.93
15 1.53 29.64 77.33 21.43 2.74 1.96
16 0.54 6.62 17.61 4.81 3.03 2.35
17 0.51 5.40 10.68 3.59 0.96 1.44
18 0.58 6.22 21.31 4.81 5.53 1.75
19 0.58 1.84 4.63 1.31 3.38 2.22
20 0.60 3.10 7.55 2.20 2.03 2.36

lower q. 0.50 2.87 7.84 2.03 1.92 1.79
median 0.69 4.47 12.10 3.26 2.61 2.20
upper q. 0.71 7.21 21.41 5.11 3.41 2.35

Table 21. Cray results with MA28 divided by those with MA48.

Case Array Analyse Fact. Analyse Fast Solve
size reqd + Fact. Fact.

1 0.50 2.06 21.67 1.88 18.33 1.48
2 0.68 2.14 3.77 1.37 1.59 0.80
3 0.74 2.31 5.17 1.60 2.22 1.91
4 0.62 3.06 4.40 1.80 1.31 0.67
5 0.63 3.29 7.16 2.25 1.27 0.73
6 0.63 2.96 2.61 1.39 1.07 0.70
7 0.54 3.66 8.30 2.54 2.00 1.15
8 0.93 21.82 9.95 6.84 2.60 1.04
9 0.65 5.99 5.19 2.78 1.06 0.66

10 0.42 3.37 3.48 1.71 1.74 0.75
11 0.66 7.74 9.46 4.26 1.27 0.71
12 0.62 1.90 3.66 1.25 1.67 0.64
13 1.00 22.81 27.44 12.46 2.20 0.95
14 0.59 1.68 4.36 1.22 2.81 0.94
15 1.51 21.71 32.01 12.94 6.63 1.26
16 0.54 6.79 15.68 4.74 1.84 1.03
17 0.53 2.26 1.61 0.94 0.65 0.52
18 0.58 3.33 4.96 1.99 2.20 0.70
19 0.58 1.90 3.99 1.29 2.02 1.01
20 0.59 3.04 5.01 1.89 1.07 0.86

lower q. 0.50 2.20 3.88 1.38 1.27 0.70
median 0.68 3.17 5.09 1.89 1.79 0.83
upper q. 0.74 6.39 9.71 3.52 2.21 1.03

Table 22. SUN results with MA28 divided by those with MA48.

32

Case Array Analyse Fact. Analyse Fast Solve
size reqd + Fact. Fact.

1 0.50 1.58 35.71 1.52 61.22 2.74
2 0.68 2.65 8.04 2.00 1.86 1.11
3 0.74 2.50 7.98 1.90 4.16 1.40
4 0.62 3.72 14.61 2.96 2.55 1.21
5 0.63 3.62 12.38 2.80 2.12 0.85
6 0.63 4.14 10.34 2.95 1.94 1.23
7 0.54 3.54 11.00 2.68 2.44 1.17
8 0.93 24.59 44.45 15.83 5.77 1.94
9 0.65 7.45 15.38 5.02 2.18 1.02

10 0.42 3.71 7.30 2.46 2.67 1.16
11 0.66 8.12 27.06 6.24 2.33 1.32
12 0.62 2.69 10.84 2.16 2.82 1.20
13 1.01 19.56 62.02 14.87 4.18 1.62
14 0.59 1.33 4.12 1.01 1.68 0.99
15 1.51 26.07 78.97 19.60 9.21 2.14
16 0.54 6.69 21.61 5.11 3.50 1.14
17 0.53 2.90 7.33 2.08 1.37 0.89
18 0.58 3.08 16.46 2.60 7.23 1.09
19 0.58 2.00 6.12 1.51 3.30 1.04
20 0.59 2.92 8.01 2.14 1.81 0.85

lower q. 0.50 2.67 7.99 2.04 2.03 1.03
median 0.68 3.58 11.69 2.64 2.61 1.16
upper q. 0.74 7.07 24.33 5.06 4.17 1.36

Table 23. IBM results with MA28 divided by those with MA48.

5 Complex versions

We have made complex versions of MA48 and MA50. They are called ME48 and ME50 and keep
Tclose to the real versions. In ME48C and ME50C, we offer the solution of Ax = b, A x = b, or

HA x = b, and have therefore used an integer argument KIND in place of the logical argument
TRANS. Since this is the only significant change to the interface, we do not include copies of the
specification documents in Appendices A and B.

Extensive use is made of complex absolute values, particularly in connection with iterative
refinement, so we decided against using the BLAS ICAMAX and IZAMAX, which return
max(|re(x)|+|im(x)|) instead of max(|x |). We believe that any efficiency gain from changing toi i i

i i
such an absolute value would be slight on modern hardware, and would not justify the
algorithmic changes and possible confusion of the user.

33

Appendix A. Solving full sets of linear equations

For the full-matrix processing we use towards the end of the factorization, we need to consider
the solution of dense systems

Ax = b, (A.1)

where A is of order m by n. The mathematical notation used in this appendix is independent of
that of the main part of the paper. The matrix A here is the matrix F of equation (2.3.4) and the
vector b is the vector y . We feel that it is easier to understand the ideas using uncluttered ‘local’2
notation. For consistency with LAPACK (Anderson et al., 1992), we work here with a
factorization in which the lower-triangular matrix has a unit diagonal.

We had hoped to use the LAPACK routines SGETRF and SGETRS for this purpose, but their
treatment of the rank-deficient case is unsatisfactory since no column interchanges are included.

Our factorization algorithm proceeds as follows. At a typical stage, we look at a column for a
pivot and either find one and perform the pivotal operations or interchange the column with the
last column that has not already been interchanged. At the start of step k, we have the
factorization

L U V Wk k k kP A Q = , (A.2)k k M I S 0k k

where P and Q are permutation matrices, L is unit lower triangular and of order j − 1, U isk k k k k

upper triangular of order j − 1, and W has k − j columns. Initially, k = 1; j = 1; P and Q arek k k 1 1 1
identity matrices; L , M , and W have no columns; U and V have no rows; and S = A. We1 1 1 1 1 1
find the largest entry of the first column of S . If this is nonzero, we interchange rows to make itk

the leading entry of S and perform the pivotal operations; otherwise, we interchange the firstk

and last columns of S . In the former case, j has the value j + 1; in the latter case, j has thek k+1 k k+1
value j . The row interchange is also performed in M and the column interchange is alsok k

performed in V . The final factorization isk

L U WP A Q = . (A.3)M I 0

Solving A x = b consists of the steps

c = P b (A.4)

d cL 1 1= (A.5)M I d c2 2

e dU W 1 1= (A.6)0 e d2 2

x = Q e. (A.7)

We solve (A.6) by setting e = 0 and finding e by back-substitution through U. This means that2 1
d is not needed so that in (A.5) we need only forward substitute through L to find d .2 1

TSimilarly, solving A x = b consists of the steps

Tc = Q b (A.8)
T d cU 1 1= (A.9)T d cW 0 2 2

34

T T e d1 1L M = (A.10)e dI 2 2

Tx = P e. (A.11)
THere, d is calculated by forward substitution through U and d is set to zero. In turn, this1 2

Tmeans that e is zero and e is calculated by back-substitution through L .2 1

Note that neither M nor W is used in either case.

There is no real loss of generality in setting the undetermined coefficients of the solution to
zero. If other values are required, say those of the vector y, we may solve the equation

T TAx = b − Ay or , A x = b − A y

to yield a solution x + y with the desired components.

Another reason for rejecting SGETRF is that it tests only for exact zeros. We test for exact
zeros by default, but wish to offer the option of a test against a threshold. When this option is
active, if the largest entry of the first column of S is below the threshold, we set the nonzerok

entries of this column to zero. The effect is as if we had changed the corresponding entries of A
by the same amounts. The final factorization will be as if we had commenced with a matrix
whose entries differ from those of A by at most the threshold.

A.1 MA50E: factorization using Level 1 BLAS

MA50E performs the factorization using Level 1 BLAS. The argument PIVTOL is used to pass
the pivot tolerance from MA50B. Step k begins with the form shown in equation (A.2) with each
submatrix overwriting the corresponding submatrix of A in the obvious way except that V andk

VkS have not been calculated. The value of j is held in the variable J. The first column of isk k Sk
calculated from the corresponding column of A by J-1 calls of the BLAS routine SAXPY, each

Lkof which adds a multiple of a column of . The BLAS routine ISAMAX is used to find theMk
largest entry of the first column of S . If it is greater than the pivot threshold PIVTOL, the BLASk

routine SSWAP is used to interchange two rows of M and S while bringing the pivot to thek k

leading position in S , the BLAS routine SSCAL is used to divide the column by the pivot, and Jk

is incremented. If the first column of S has no element greater than PIVTOL, the BLAS routinek
VkSSWAP is used to interchange the first and last columns of array , and J is left unchanged.Sk

A single array IPIV of length N suffices to encode both P and Q. When a pivot is chosen for
column J, IPIV(J) is set to the index of the row from which it came. When a pivot is not
chosen and column J is interchanged with column L, IPIV(L) is set to –J. The rank may be
determined later from the signs.

A.2 MA50F: factorization using Level 2 BLAS

MA50F performs the factorization using Level 2 BLAS and is based on the LAPACK subroutine
SGETF2. It has exactly the same argument list as MA50E and its input and output data are
identical to those of MA50E. Step k begins with the form shown in equation (A.2), but now only
the submatrix S has not been calculated. The first column of S is calculated with a call of thek k

Level 2 BLAS routine SGEMV to multiply M by the first column of V . The Level 1 BLASk k

ISAMAX and SSWAP are used to find the pivot and perform the appropriate row or column

35

interchange, as in MA50E. If a pivot is found, the Level 2 BLAS SGEMV is used to form the last
row of V . It does this by subtracting the first row of M times V , excluding its first column,k+1 k k

from the first row of S , excluding its first entry.k

A simple calculation shows that the number of operations performed within a step outside the
Level 2 BLAS is O(m + n).

A.3 MA50G: factorization using Level 3 BLAS

MA50G performs the factorization using Level 3 BLAS and is based on the LAPACK subroutine
SGETRF. Apart from the additional argument NB that specifies the block size, MA50G has the
same argument list as MA50E and MA50F, and its other input and output data are identical to
theirs. The matrix is processed in blocks of NB columns, apart from the final block which may
have less columns. The processing of a block begins with the form shown in equation (A.2), now
with all submatrices calculated. The leading NB columns of S are treated in just the same way ask

A itself is treated by MA50F, except that when no entry of a column is big enough to be a pivot,
an interchange is made with the last column of S rather than the last column of the block. At thek

completion of the block (that is, when NB pivots have been found), the row interchanges
generated within it are applied to the other columns of M and S (column by column to avoidk k

data movement), and the operations of the block are applied to the remaining columns of V andk

S using the Level 3 BLAS STRSM and SGEMM.k

A simple calculation shows that the total number of operations performed outside the Level 3
BLAS is O(n(NBm + n)).

Note also that the column interchange that follows a failure to find a pivot does not usually
lead to a reduction of the block size, since a column from outside the block is brought in.
However, this is not the case for the final block, where the block size is reduced by one for each
such interchange.

A.4 MA50H: solution
TMA50H solves a set of equations A x = b or A x = b using the factorization produced by MA50E,

MA50F, or MA50G, whose output data are identical. Each actual forward or back-substitution
operation associated with L or U is performed either with the Level 2 BLAS STRSV or by a loop
involving calls to SAXPY or SDOT. An argument controls which of these happens. Unlike the
case for factorization, the logic is very similar for the two cases, so there is no need for separate
subroutines.

MA50H begins by finding the rank r by searching IPIV from the back for a positive value. We
expect this search to be short on the assumption that a rank much less than min(m,n) is unusual.

If A x = b is to be solved, we first apply r interchanges to the incoming vector to produce the
vector c of equation (A.4). The row operations encoded in L are applied to calculate d from c ,1 1
see equation (A.5). Back-substitution through U is used to calculate e and e is set to zero, see1 2
equation (A.6). Finally, the column interchanges, if any, are applied, see equation (A.7).

TA similar sequence of steps is applied when A x = b is to be solved.

For the Level 1 BLAS code, we have followed the lead of LAPACK in accessing L and U by
columns with SAXPY inner loops such as

B(1:K-1) = B(1:K-1) – A(1:K-1,K)*B(K)

36

T Twhen solving A x = b, and accessing L and U by rows with SDOT inner loops such as

DOT_PRODUCT(A(1:K-1,K),B(1:K-1))

in order to access contiguous elements of the array A.

Appendix B. The specification document for MA48

In this appendix, we include a copy of the specification document for MA48. The code itself is
available from AEA Technology, Harwell; the contact is Libby Thick, Theoretical Studies
Department, AEA Technology, 424 Harwell, Didcot, Oxon OX11 0RA, tel (44) 235 432688, fax
(44) 235 436579, email libby.thick@aea.orgn.uk, who will provide details of price and
conditions of use.

37

Appendix C. The specification document for MA50

In this appendix, we include a copy of the specification document for MA50. The code itself is
available from AEA Technology, Harwell; the contact is Libby Thick, Theoretical Studies
Department, AEA Technology, 424 Harwell, Didcot, Oxon OX11 0RA, tel (44) 235 432688, fax
(44) 235 436579, email libby.thick@aea.orgn.uk, who will provide details of price and
conditions of use.

50

References

Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A.,
Hammarling, S., McKenney, A., Ostrouchov, S., and Sorensen, D. (1992). LAPACK users’
guide. SIAM, Philadelphia.

Anon (1993). Harwell Subroutine Library Catalogue (Release 11). Theoretical Studies
Department, AEA Technology, Harwell.

Arioli, M. Demmel, J. W., and Duff, I. S. (1989). Solving sparse linear systems with sparse
backward error. SIAM J. Matrix Anal. Appl. 10, 165-190.

Dongarra, J. J., Du Croz, J., Duff, I. S., and Hammarling, S. (1990). A set of Level 3 basic linear
algebra subroutines. ACM Trans. Math. Softw. 16, 1-17.

Dongarra, J. J., Du Croz, J., Hammarling, S., and Hanson, R. J. (1988). An extended set of
Fortran Basic Linear Algebra Subprograms. ACM Trans. Math. Softw. 14, 1-17 and 18-32.

Duff, I. S. (1977). MA28 – a set of Fortran subroutines for sparse unsymmetric linear equations.
Report AERE R8730, HMSO, London.

Duff, I. S. (1981a). On algorithms for obtaining a maximum transversal. ACM Trans. Math.
Softw. 7, 315-330.

Duff, I. S. (1981b). Algorithm 575. Permutations for a zero-free diagonal. ACM Trans. Math.
Softw. 7, 387-390.

Duff, I. S. and Reid, J. K. (1978a). An implementation of Tarjan’s algorithm for the block
triangularization of a matrix. ACM Trans. Math. Softw. 4, 137-147.

Duff, I. S. and Reid, J. K. (1978b). Algorithm 529. Permutations to block triangular form. ACM
Trans. Math. Softw. 4, 189-192.

Duff, I. S. and Reid, J. K. (1979). Some design features of a sparse matrix code. ACM Trans.
Math. Softw. 5, 18-35.

Duff, I. S., Erisman, A. M., and Reid, J. K. (1986). Direct methods for sparse matrices. Oxford
University Press, London.

Duff, I. S., Grimes, R. G., and Lewis, J. G. (1989). Sparse matrix test problems. ACM Trans.
Math. Softw. 15 1-14.

Duff, I. S., Grimes, R. G., and Lewis, J. G. (1992). Users’ guide for the Harwell-Boeing sparse
matrix collection (Release 1). Report RAL-92-086 Rutherford Appleton Laboratory,
Oxfordshire.

Eisenstat, S. C. and Liu, J. W. H. (1993). Exploiting structural symmetry in a sparse partial
pivoting code. SIAM J. Sci. Stat. Comput. 14, 253-257.

Gilbert, J. R. and Peierls, T. (1988). Sparse partial pivoting in time proportional to arithmetic
operations. SIAM J. Sci. Stat. Comput. 9, 862-874.

Hager, W. W. (1984). Condition estimators, SIAM J. Sci. Stat. Comput. 5, 311-316

Higham, N. J. (1987). Fortran codes for estimating the one-norm of a real or complex matrix,
with applications to condition estimation. ACM Trans. Math. Softw. 14, 381-396.

Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T. (1979). Basic linear algebra
subprograms for Fortran use. ACM Trans. Math. Softw. 5, 308-325.

61

Markowitz, H. M. (1957). The elimination form of the inverse and its application to linear
programming. Management Sci. 3, 255-269.

Oettli, W. and Prager, W. (1964). Compatibility of approximate solution of linear equations with
given error bounds for coefficients and right-hand sides. Numerische Math. 6, 405-409.

Pothen, A. and Fan, C-J. (1990). Computing the block triangular form of a sparse matrix. ACM
Trans. Math. Softw. 16, 303-324.

Skeel, R. D. (1980). Iterative refinement implies numerical stability for Gaussian elimination.
Math. Comp. 35, 817-832.

Tarjan, R. E. (1972). Depth-first search and linear graph algorithms. SIAM J. Computing 1,
146-160.

Zlatev, Z. (1980). On some pivotal strategies in Gaussian elimination by sparse technique. SIAM
J. Numer. Anal. 17, 18-30.

62

