RAL-91-056

Computing selected eigenvalues of sparse unsymmetric matrices
using subspace iter ation

by
. S. Duff and J. A. Scott

ABSTRACT

This paper discusses the design and development of a code to calculate the eigenvalues of alarge
sparse real unsymmetric matrix that are the right-most, left-most, or are of largest modulus. A
subspace iteration algorithm is used to compute a sequence of sets of vectors that converge to an
orthonormal basisfor the invariant subspace corresponding to the required eigenvalues. Thisagorithm
is combined with Chebychev acceleration if the right-most or left-most eigenvalues are sought, or if
the eigenvalues of largest modulus are known to be the right-most or left-most eigenvalues. An option
exists for computing the corresponding eigenvectors. The code does not need the matrix explicitly
since it only requires the user to multiply sets of vectors by the matrix. Sophisticated and novel
iteration controls, stopping criteria, and restart facilities are provided. The code is shown to be efficient
and competitive on a range of test problems.

Centra Computing Department,
Atlas Centre,

Rutherford Appleton Laboratory,
Oxon OX11 0QX.

August 1993.

1 Introduction

We are concerned with the problem of computing selected eigenvalues and the corresponding
eigenvectors of alarge sparse real unsymmetric matrix. In particular, we are interested in computing
either the eigenvalues of largest modulus or the right-most (or left-most) eigenvalues. This problem
arises in a significant number of applications, including mathematical models in economics, Markov
chain modelling of queueing networks, and bifurcation problems (for references, see Saad 1984).
Although algorithms for computing eigenvalues of sparse unsymmetric matrices have received
attention in the literature (for example, Stewart 1976a, Stewart and Jennings 1981, Saad 1980, 1984,
1989), there is a notable lack of general purpose robust software. The best-known codes are SRRIT
(Stewart 1978) and LOPSI (Stewart and Jennings 1981). Both SRRIT and LOPSI use subspace
iteration techniques and are designed to compute the eigenvalues of largest modulus. Many real
problems, however, require a knowledge of the right-most eigenvalues. For example, common
bifurcation problems involve computing the eigenvalue A of largest real part (the right-most
eigenvalue) of a stability matrix and then detecting when Re(A) becomes positive as the matrix
changes (see example 2 in Section 3).

In the Harwell Subroutine Library, routine EA12 uses a subspace iteration method combined with
Chebychev acceleration (Rutishauser 1969) to calculate the eigenvalues of largest modulus and the
corresponding eigenvectors of alarge sparse real symmetric matrix. There is no analogous routine in
the Harwell Subroutine Library for the unsymmetric problem. In the NAG Library, routine FO2BCF
calculates selected eigenvalues and eigenvectors of real unsymmetric matrices by reduction to
Hessenberg form, followed by the QR algorithm and inverse iteration for selected eigenvalues whose
moduli lie between two user-supplied values. This routine is intended for dense matrices since all the
entries of the matrix (including the zero entries) must be passed by the user to the routine, which stores
the matrix as atwo-dimensional array, making it unsuitable for large sparse matrices. Since it was the
intention that EB12 should provide a code for unsymmetric problems that was analogous to the
Harwell code EA12 for symmetric problems, EB12 uses subspace iteration techniques and in the
design of the code we have not considered employing any of the other methods for computing sel ected
eigenvalues and eigenvectors of large unsymmetric matrices such as Arnoldi’s method and the
unsymmetric Davidson's method which have been discussed recently in the literature (for example,
see Saad 1980, Ho 1990, Ho, Chatelin, and Bennani 1990, and Sadkane 1991).

This paper describes the agorithms employed by EB12 and illustrates the use of EB12 on
representative test problems. In Section 2 we introduce the algorithms and discuss some of the design
features of the code. The results of using EB12 to find selected eigenvalues and the corresponding
eigenvectors of a set of test examples taken from practical problems are presented in Section 3. These
results illustrate the effect of varying the code's parameter values and demonstrate the superiority of
Chebychev accel erated subspace iteration over simple subspace iteration for those problems where the
right-most (or left-most) eigenvalues coincide with those of largest modulus. Concluding remarks are
made in Section 4.

2 Thealgorithm
Let A bearea nxn matrix with eigenvalues A, A,,..., A, ordered so that
A]Z]A,]=..2[A,- (2.1)

Let X be a subspace of dimension mwith m<n (in general, m<<n). If |A,|>|A,,.,| then, under mild
restrictions on X, as k increases, the subspaces A*X tend toward the invariant subspace of A
correspondingto A, A,,..., A, (aproof is provided by Stewart 1975). The class of methods based on
using the sequence of subspaces AX, k=0,1,2,... includes subspace (or simultaneous) iteration
methods. In the special case m=1, the subspace iteration method reduces to the power method in
which the dominant eigenvector of A is approximated by a sequence of vectors A*x k=0,1,2,...
Subspace iteration methods are particularly suitable when the matrix A is large and sparse, since this
class of methods only requires the multiplication of sets of vectors by A.

Starting with an nxm matrix X, whose columns form a basis for X, the subspace iteration method
described by Stewart (1976a) for a real unsymmetric matrix A generates a sequence of matrices X,
according to the formula

AXy = X1 Ry (2.2)

where R,,, is an upper triangular matrix chosen so that X,,, has orthonorma columns. This
corresponds to applying the Gram-Schmidt orthogonalisation process to the columns of AX,. It is
straightforward to verify the relationship

A*X =X, R,R\; Ry, (2.3)
so that the columns of X, form abasis of A*X. Convergence of thei th column of X, to thei th basis
vector of the invariant subspace of A corresponding to A,, A,.,..., A, islinear with convergence ratio

max{[A;/A,_;|, |Ai.1/A; [}, which may be intolerably slow. A faster rate of convergence may be achieved
by performing a*“ Schur-Rayleigh-Ritz" (SRR) step (Stewart 1976a) in which

B, =X/ AX, (2.4)
is formed and reduced by a unitary matrix Z, to the real Schur form
T.,=Z/B.Z,, (2.5)

where T, is ablock triangular matrix, in which each diagonal block (T,);; is either of order 1 or isa
2x 2 matrix having complex conjugate eigenvalues, with the eigenvalues ordered along the diagonal
blocks in descending order of their moduli. The matrix X, is then replaced by Xk:Xka. For an
arbitrary matrix X, if [A,_;|>|A;|>|A;,4|, the i th column of)Zk will in general converge to thei th
basis vector of the invariant subspace of A corresponding to A,, A,,..., A, linearly with convergence
ratio |A,,.,/A;|. Thus convergence is faster and the first columns of X « tend to converge more quickly
than the later columns. If the r eigenvalues of A of largest moduli are required, it is usual to iterate
with m (m>r) trial vectors, the additional vectors being called guard vectors. The slowest rate of
convergence will be for the r th basis vector, which has a convergence ratio |A,,.,/A,|.

The purpose of the orthogonalisation of AX, (2.2) is to maintain linear independence among the
columns of AX,. To reduce overheads, it should not be done until there is reason to believe that some
columns have become linearly dependent. Thus, in practice, AX . is replaced by A'X, for some|>1
(I=1(k)), and each iteration of the subspace iteration algorithm then consists of four main steps:

1. Compute A'™X, .

2. Orthonormalise A'®X, .
3. Perform an SRR step.
4. Test for convergence.

From the computed eigenvalues of T,, the corresponding eigenvectors of T, can be determined by a
simple back-substitution process (see Peters and Wilkinson 1970). The eigenvectors of T, can be used
to obtain approximate eigenvectors of A corresponding to the converged eigenvalues. To see this, let
w; denote the eigenvector of T, corresponding to A;. Then

T W, =A;w;. (2.6)
From (2.4) and (2.5),

T =X, AX,, (2.7)
and hence

X (AX, W, = A, X, w,)=0. (2.8)

A~

It follows that if y, =X, w;, then ask increases, (y;, A;) convergesto thei th eigenpair of A.

As already noted, in practice the simple subspace iteration algorithm uses A' in place of A. One
possible way of improving the convergence rate achieved by the subspace iteration algorithm is to
replace A' by an iteration polynomial p,(A). The use of Chebychev polynomials to accelerate the
convergence of subspace iteration was suggested by Rutishauser (1969) for symmetric problems. For
the unsymmetric problem, Saad (1984) discussed how the technique can be extended to find the
right-most (or left-most) eigenvalues of areal unsymmetric matrix and to accelerate the convergence
of the simple subspace iteration algorithm when the eigenvalues of largest moduli are also the
right-most (or left-most) eigenvalues. We use many of the ideas proposed by Saad. Suppose we want
to find the r right-most eigenvalues A, A,,..., A, of A. Let E(d, c, a) denote an ellipse with centre d,
foci d—c and d+c, magjor semi-axis a, and which is symmetric with respect to the real axis (since A is
real the spectrum of A is symmetric with respect to the real axis) so that disreal and a and ¢ are either
rea or purely imaginary. Suppose E(d, ¢, a) contains the set S of unwanted eigenvalues A,,;, A,.,,...,
A The Chebychev accelerated iteration algorithm then chooses the iteration polynomia p,(A) to be
the polynomial given by

T[(A-d)/c]

p,(A)= TIA, —d)c] (2.9

where T,(A) is the Chebychev polynomial of degree | of the first kind. This choice is made since the
maximum modulus of p,(A) within the ellipse is small compared to its modulus on the sought-after
eigenvalues. The denominator T,[(A, —d)/c] in (2.9) isascaling factor and A, istermed the reference
eigenvalue (Ho 1990 and Ho, Chatelin, and Bennani 1990). In practice, since A, is not known, it is
replaced by some approximation y, caled the reference point; this is discussed in Section 2.7.
Associated with each eigenvalue A; £Sis a convergence factor

=D+ (A~ ~c?)

(A, —d)+((A, —d)2-c?)?| (2.10)

R (d,c)=

The choice of d,c,a which give an ellipse E(d,c,a) enclosing all A; €S and which minimises
T:;\)S(R;(d, c) defines the optimal ellipse.

Forming p,(A) explicitly may be avoided by computing the columns of the matrix p,(A)X, using
the three-term recurrence relation for Chebychev polynomials

Tos () =2AT, (D) =T, (D), g=1.2,... (2.11)

with T,(A) =1, T,(A)=A. To see how (2.11) is used, for an arbitrary vector z,, let z, =p,(A)z,.
Defining 04,y = Po/Pga With pg =T, [(A, —d)/c], it follows from (2.11) that the vector z, may be
computed for g=1,2,... using the recurrence

_ 591
Zgy = 2?(A —d1)z, =041 04Z44 (2.12)
where

o = 1
+1 T o
2o, -0,

(2.13)
o

with g, =c/(A, —d) and zlz?l(A—dI)zo. We note that if ¢ is purely imaginary, provided the

reference point y used to approximate A, is real, the above recursion can be carried out in real

arithmetic since in this case the scalars o; are purely imaginary and hence o,,,,/c and 0, 0, arereal.

It can be shown (Saad 1984) that if E(d, c, &) isthe optimal ellipse and p, (A) defined by (2.9) isused
in the subspace iteration algorithm in place of A', convergence is to the invariant subspace
corresponding to the eigenvalues of A outside the ellipse and the convergence rate for the i th basis
vector is ! where

_ a+(a2—c2)%

5, l<ism, (2.14)
a, +(a’ -c?)’

i
where E(d, ¢, a;) isthe ellipse with centre d, foci d—c and d +c, and major semi-axis a; which passes
through A,. If the m+1 right-most (or left-most) eigenvalues are also the m+1 eigenvalues of largest
modulus, the convergence rate 17; can be much better than the value |A ., /A, |' achieved by the simple
subspace iteration algorithm. The effect of this faster rate of convergenceisillustrated in Section 3 and
is exploited in EB12 by employing Chebychev polynomials when the r right-most (or left-most)
eigenvalues are sought and when the r eigenvalues of largest modulus are also the r right-most (or
left-most) eigenvalues. The use of Chebychev polynomials is one way in which EB12 is a more
genera and flexible code than the codes LOPSI and SRRIT, which are only able to compute the
eigenvalues of largest modulus.

Implicit in the above brief discussion of subspace iteration, there are many practical questions such
as how to choose the subspace dimension m for a given value of r, how to start the iteration process,
how to choose the degree | of the iteration polynomial p,(A), how to orthonormalise a set of vectors,
how to construct the optimal ellipse E(d, ¢, @), and how to test for convergence of an eigenvalue. We
shall discuss these and other questions and how we deal with them in EB12 in some detail in later
sections. However, omitting these problems for the present, the algorithm employed by EB12 has the
following genera structure.

1. Sart: Choose the subspace dimension m and an nx m matrix X with orthonormal columns. Set
=1, p(A)=1

2. lteration: Compute X O p,(A)X.

3. SRR step: Orthonormalise the columns of X. Compute B =X "AX. Reduce B to real Schur form
T=2"BZ , where each diagonal block T;, iseither of order 1 or isa2 x 2 matrix having complex
conjugate eigenvalues, with the eigenvalues ordered along the diagonal blocks. Set X 0 XZ.

4. Convergence test: If the first r columns of X is a satisfactory set of basis vectors spanning the
invariant subspace corresponding to the r sought-after eigenvalues of A then stop, else
determine the degree | of the iteration polynomial p,(A) for the next iteration. If the eigenvalues
of largest modulus are required and they are also the right-most (or |eft-most) eigenvalues, or if
the right-most (or left-most) eigenvalues are required, find the dlipse E(d,c,a) update the
reference point y, and set p, according to equation (2.9) with A, replaced by y. Otherwise, set
pA)=A"

Goto 2.

In the following subsections we discuss how this algorithm isimplemented in EB12. In Section 2.1 we
describe the overall design of EB12 and, in particular, the use of reverse communication. In Section
2.2 the dimension m of the iteration subspace, which is a parameter which must be set by the user, is
considered. The initial matrix X chosen by EB12 is discussed in Section 2.3. In Section 2.4 the
convergence criterion is given. The determination of the degree | of the iteration polynomial is
discussed in Section 2.5. In Section 2.6 the locking strategy employed by EB12 is outlined. In Section
2.7 the calculation of the dlipse is considered, and in Section 2.8 we discuss the computation of
eigenvectors once the sought-after eigenvalues have been determined.

2.1 Overall control and design
The code EB12 is written in FORTRAN 77 and has two entries:
(d) EB12A (EB12AD in the double precision version) calculates the selected eigenvalues of A.

(b) EB12B (EB12BD in the double precision version) uses the basis vectors calculated by EB12A to
calculate the eigenvectors corresponding to the computed eigenvalues. Optionally, the scaled
eigenvector residuals (see equation (2.36)) are computed.

EB12 does not require the user to supply the matrix A explicitly. Each time EB12 needs a set of
vectors to be multiplied by A, control is returned to the user. This allows full advantage to be taken of
the sparsity and structure of A and of vectorisation or paralelism. It aso gives the user greater
freedom in cases where the matrix A is not available and only the product of A with vectorsis known.
Within the code EB12, only dense linear algebra operations are performed and for efficiency these
exploit the BLAS (Basic Linear Algebra Subprograms) kernels. This includes the use of both level 2
BLAS routines (Dongarra, Du Croz, Hammarling, and Hanson 1988) and the level 3 BLAS routine
_GEMM (Dongarra, Du Croz, Duff, and Hammarling 1990) to perform matrix-matrix multiplications
of the form B=X"Y, where Y =AX has been computed by the user. In addition to using BLAS
routines, during the Schur-Rayleigh-Ritz step (see (2.4), (2.5)), EB12A employs the EISPACK
routines ORTHES and ORTRAN to reduce B = X T AX to Hessenberg form H (Wilkinson and Reinsch

1971), which is then reduced to the real Schur form T =V "HV using amodified version of the routine
HQRS3 given by Stewart (1976b). We have modified the routine HQR3 so that the diagonal blocks of T
are ordered with the eigenvalues appearing in descending order of their moduli if the simple subspace
iteration algorithm is being used, and in descending (or ascending) order of their rea parts if
Chebychev acceleration is being employed. This ordering is convenient so that we can “pick-off” the
eigenvalues in turn as they converge (see Section 2.4).

2.2 Thenumber of trial vectors

The user must supply EB12 with the number r of required eigenvalues and the dimension m of the
iteration subspace to be used. The value of the parameter misimportant. It influences the effectiveness
of EB12 since the amount of storage required by the code and the number of matrix-vector
multiplications at each iteration depends upon m, which implies that, for a specified r, m should not be
chosen unnecessarily large. But if mistoo small, the number of iterations required for convergence
may be high. The number of trial vectors m must therefore be chosen with some care. The value of m
must exceed r, the number of sought-after eigenvalues, to provide some guard vectors. For the simple
subspace iteration algorithm, m must be at least r+1. If Chebychev polynomials are employed, in order
to be able to construct the €ellipse at each iteration and to allow for complex conjugate pairs of
eigenvalues, EB12 normally requires m to be at least r+2 , but if the r+1 right-most (or left-most)
eigenvalues are known to be real, m may equal r+1 (see Section 2.7 for more details). In practice, it is
advisable to take m larger than this minimum value (see the discussion following equation (2.5)). In
typical runs, we have taken m to be about 2r, but the best value for m for a given r is
problem-dependent. At any stage of the computation, the user is able to increase (or decrease) the
value of mand restart EB12. The results of employing different values of m for a given r for our test
problems are presented in Section 3.

For some problems, if r eigenvalues are sought, it can be advantageous to run EB12 with r replaced
by r,, where r, exceeds r. The parameter m must then be chosen to satisfy m=r,+1 for simple
subspace iteration and m=r , +2 for subspace iteration with Chebychev acceleration. The computation
may be terminated once r eigenvalues have converged. This strategy may be useful if, for example,
some of the unwanted eigenvalues of A havereal partswhich are almost equal to thereal part of one or
more of the wanted eigenvalues. Thisisdiscussed further in Section 2.7 and isillustrated in Example 2
of Section 3.

2.3 Thestarting matrix X

EB12A alows the user to supply an initial estimate of the r basis vectors which span the invariant
subspace corresponding to the sought-after eigenvalues of A. If the user wishes to supply an estimate,
on the first entry to EB12A the estimated values should be stored in the first r columns of X. The
remaining m-r guard vectors are generated using the Harwell Subroutine Library random number
generator, FAO1AS, which generates random numbers in the range [-1,1]. The resulting set of m
vectors is then orthonormalised using the modified Gram-Schmidt algorithm (see, for example, Golub
and Van Loan 1989). The implementation of the modified Gram-Schmidt agorithm employed in
EB12 uses level 2 BLAS kernels and was written by VVan Loan (1989).

If the user does not wish to supply an estimate of the initial basis, anormalised random vector, X, is

6

generated using FAO1AS and control is passed to the user for the matrix-vector multiplication Ax;. In
the next call to EB12A AXx, is orthonormalised with respect to x, using the modified Gram-Schmidt
algorithm to give x,. The process is repeated until X,, X,,..., X, have been computed. The resulting set
of orthonormal vectors x,, X,,..., X, ae taken to be the columns of the starting matrix X. This choice
of starting matrix amounts to using one step of Arnoldi’s method (see, for example, Saad 1980). In
general we found that this starting matrix yielded better results than were obtained using a starting
matrix with random orthonormalised columns (that is, fewer matrix-vector multiplications and fewer
iterations were required for convergence). This was particularly true when Chebychev acceleration
was employed since in this case the use of Arnoldi’s method on the first step provided better initial
ellipse parameters than were obtained from a random starting matrix. If the user has some prior
knowledge of the spectrum of A and feels that one step of Arnoldi’s method is unlikely to provide a
good starting matrix, arandom starting matrix may be employed by placing random vectorsin the first
r columns of X.

2.4 Theconvergence criterion

We test for convergence after an SRR step. The convergence criterion used in EB12A essentialy
amounts to demanding that the relation

AX=XT (2.15)
isamost satisfied. In particular, the i th column of X is considered to have converged if the following
inequality is satisfied

IAX =XT);ill; < EPS(2) JI(AX);il, (2.16)

where EPS(2) is a convergence parameter. The user is asked to assign to the parameter EPS(1) avalue
in the range (u, 1.0), where u is the machine precision. If the user supplies a value which is out of
range, EB12A issues awarning and sets EPS(2) to the default value 4/u; otherwise, EPS(2) isinitially
set equal to EPS(1).

EB12A requires the columns of X to be accepted in the order i=1, 2,...,r so that column j is only
tested for convergenceif the preceding columnsi =1, 2,...,j—1 have all converged. If columnsj and j+1
of X correspond to a complex conjugate pair of eigenvalues, then (2.16) must hold simultaneously for
i=jandi=j+1. If j-1 eigenvalues have converged, then until the j th eigenvalue is accepted, the code
monitors the scaled residual R; given by

R; = [I(AX =XT); [I/II(AX); - (2.17)

Let A;(K) and R; (k) denote, respectively, the computed approximation to the j th eigenvalue and the
corresponding scaled residual on the k th iteration. For all k sufficiently large, the scaled residuals
should satisfy

R (k+1) <R (K). (2.18)

R (k+1)>R (k) >EPS(2) (2.19)

and

A, (k+2) - A, (K)] < EPS(2)[L0% Omax (|, (k+1)], 1A, (K1), (2.20)

then EB12A accepts A, (k+1), issues a warning that the convergence tolerance requested by the user
was not achieved, and sets EPS(2) to the value for which (2.16) is satisfied for i =j.

EB12A also checks for slow convergence. Convergence of the j th eigenvalue is considered to be
intolerably slow if, for some k,

R;(k+1) <EPS(2) 102, (2.219)
and
Ri(k+1) < max R (k-1), (2.21b)
1=0,1,2,3
and
Rj(k+1)20.90max R;(k-1). (2.21¢)
1=0,1,2,3

In this case, EB12A again accepts A, (k+1), issues a warning, and sets EPS(2) to the value for which
(2.16) is satisfied for i =j. If EB12A does return with EPS(2) # EPS(1) (or EPS(2) #+/u if EPS(1) was
supplied out of range), the requested accuracy can often be achieved by increasing m and recalling
EB12A. .

25 Thedegreel of p,(A)

At each iteration, EB12A must determine the degree | of the iteration polynomial p,(A) to be used on
the next iteration. We want to ensure that | is chosen so that the columns of p,(A)X remain linearly
independent. Bjorck (1967) showed that the modified Gram-Schmidt algorithm applied to a matrix
X =[Xq,X5,..., X,,] Produces a computed orthonormal matrix X which satisfies

X'X=I+E, [E|l,=uk,(X), (2.22)
where k,(X) = max ||Xy||,/ min |[Xy]|, is the condition number of X and u is the machine precision.

Ivil, =1 Ivll, =1

Thus the modified Gram-Schmidt algorithm should only be used to compute orthonormal bases when
the vectors to be orthonormalised are reasonably independent. Let I(K) denote the degree of the
iteration polynomial on the k th iteration. We use (2.22) to obtain an estimate of «,(X) and then use
this to try and ensure that I(k+1) will not be chosen so large that some of the columns of p, .y (A)X
become linearly dependent. In particular, we require I(k+1) <1, where

_ D) x (1 +[logy,(k,(X) X107, k,(X) < 10°

= S(k) x (1+10g,,(K,(X)x1079) 2, k,(X)>109, (2.23)

1
with gq=3. This bound, which we have not seen in the published literature, was chosen to ensure |
varies from I(K) in a controlled manner. If k,(X) isnot large, so that the columns of X are reasonably
linearly independent, |, will be greater than I(k), but if k,(X) islarge, |, issmaller than I(k). The value
of q=3 was selected as a result of our numerical experiments. Provided the other restrictions on |
discussed in the remainder of this section are imposed, our results were not found to be very sensitive
to changing the value of qto 2 or 4, but larger values of q sometimes led to an unnecessary amount of
work being done before the ellipse is updated, while smaller values sometimes caused an SRR step to
be performed unnecessarily early.

When Chebychev acceleration is used, it is necessary to restrict the degree of the iteration
polynomial when the current ellipse is not a good ellipse, since otherwise (2.23) may lead to a large
number of matrix-vector multiplications being performed before there is an opportunity to update the
elipse. The restriction EB12A imposes on the degree of the iteration polynomial for both the simple
subspace and Chebychev accelerated algorithms is taken from Stewart and Jennings (1981) and is
[(k+1)<I, with

|, =0.5x%(1+log,,(u™)/log,,(ratio)), (2.24)

where ratio is the ratio of the convergence rates of the slowest and fastest converging eigenvalue. If
the ellipse is poor, ratio islarge and |, will be small but as the algorithm converges, |, increases and
our numerical experiments found that the degree of the iteration polynomial isthen governed by (2.23)
rather than (2.24).

Near convergence, if (2.23) and (2.24) are used to determine I(k) and its value is large, the iteration
polynomial may yield approximate eigenvalues which are more accurate than required by the
convergence criterion. In this case, unnecessary matrix-vector multiplications may be performed. To
avoid this we monitor the scaled residual R, for ther th eigenvalue, which is given by equation (2.17)
with j=r. For values of R, close to EPS(2) we want to restrict |. As a result of our numerical
experiments, in EB12A we set I(k+1) <I,; where

I3 =tx(1+log,o(R,/EPS(2)))). (2.25)

with t=40. Our numerical results were not very sensitive to the choice t=40; similar results were
obtained for t =30 and t =50, but larger values of t did not prevent unnecessary multiplications and, if
t was too small, more iterations were needed for convergence. For some of our test problems, if only a
small number of eigenvalues were required, the savings resulting from limiting | near convergence
were significant. For example, for Example 2 of Section 3 with n=400, if the two left-most
eigenvalues were required and m=>5 was chosen, the restriction (2.25) gave a saving of more than 50
per cent in the number of matrix-vector multiplications required.

When the simple subspace algorithm is used, if |A,|>1 the entries of the matrix A'X will grow as|
increases. Let X, (|[X,]l, =1) be the first column of X. Then

Alx, =A1x, +2 (2.26)

for some z. To prevent overflow, for the smple subspace iteration agorithm we require |(k+1) <l,
where |, satisfies

A} |<MC1072, (2.27)

where M is the overflow limit. This givesabound on |, of

log,,M -2
l,<——. 2.28
*~ log,o(A,) (229
If i eigenvalues have already converged, the restriction (2.28) becomes
log,,M -2
|, < 9w (2.29)

* logyg (i)
Since A, is not known, the current estimate of A;,; isused in (2.29). For the Chebychev accelerated

9

algorithm it is not necessary to impose the restriction (2.28) (or (2.29)) since the iteration polynomial
(2.9) is scaled so that the matrix entries do not overflow.

Weremark that Stewart and Jennings (1981) impose amaximum value LMAX on the degree| of the
iteration polynomial p,(A) used in their code LOPSI (see also Saad 1984). In particular, they suggest
using LMAX =20. We have considered imposing a restriction | <LMAX in EB12A but have found
that it usually led to poorer results. We report on this further in Section 3.

2.6 Theuse of locking

Computation time may be reduced when several eigenvalues are desired by using a “locking”
technique. The idea behind locking techniques, which are sometimes also termed implicit deflation
techniques (see, for example, Stewart 1976a and Saad 1989), is to exploit the fact that the initial
columns of X tend to converge before the later ones. Once the basis vectors X, X,,..., X; corresponding
to Ay, A,,..., A; (1<i<r) have satisfied the convergence criterion (2.16), they are “locked” and no
further computations are carried out with these vectors. On the next and subsequent iterations, an
iteration subspace of dimension m—i is used to find the next eigenvalue. To consider in more detail the
locking technique employed in EB12A, suppose i basis vectors have converged and let X =(X, X,),
where X, is the nxi matrix containing the vectors which have converged. On subsequent iterations,
EB12A forms (X, p,(A)X,). This can lead to significant savings in the number of matrix-vector
multiplications if several eigenvalues are required. These savings are illustrated in Section 3. At the
orthogonalisation step, further savings are made since the columns of X, are already orthonormal. In
the Schur-Rayleigh-Ritz step, the matrix B=XTAX has the form

T X 1AX
B=(% ! 2), (2.30)
(szAxl X, AX,

where T,, =X]AX isanixi block upper triangular matrix. Since the columns of X, have converged
AX,=X,T, +E; (2.31)

for some matrix E; with norm dependent upon the convergence parameter EPS(2) (as in (2.16)).
Assuming X, X, issmall (since the columns of X, have been orthogonalised with respect to those of
X ,) and assuming X E, is small, we can work with the partly triangularized system

~ T
B=<gﬂ S;AXZ), B, =XJAX,. (2.32)

Thus it is only necessary to reduce the (m-i) x (m-i) matrix B, to real Schur form.

Locking may cause some of the computed eigenvalues to appear out of order. To avoid this and to
overcome the errors which are introduced by treating X, AX, as zero, once EB12A has tentatively
accepted the first r columns of X as basis vectors for the invariant subspace corresponding to the
desired eigenvalues, the locking device is switched off. EB12A then takes the computed nx m matrix
X and restarts the iterative process. The convergence criterion (2.16) must be satisfied simultaneously
forj=1,2,...,r. In al of our numerical experiments only one iteration with the unlocked system was
necessary.

This locking technique differs from that described by Stewart and Jennings (1981) since their

10

technique finds all the eigenvalues of the mxm matrix B in equation (2.30) at each iteration and, if i
basis vectors have already converged, only the vector x;,; (and x;,, for a complex conjugate pair) is
tested for convergence. Since the matrix B changes with each iteration, the eigenvalues A4, A,,..., A; of
B and the corresponding basis vectors X, X,,...,X; Which passed the convergence test on iteration k
could fail the test on subsequent iterations. There is therefore a danger that eigenvalues and basis
vectors which do not satisfy the convergence criterion will be returned. Moreover, when sorting the
eigenvalues, Stewart and Jennings have to prevent vectors that are not locked from changing positions
with locked vectors. They do this by computing the eigenvalues in an unordered sequence (using the
EISPACK routine HQR2) and then artificialy increasing the modulus of each eigenvalue
corresponding to alocked vector immediately prior to sorting. After sorting they restore the values of
the eigenval ue estimates.

2.7 Constructing the elipse

When Chebychev acceleration is used, we want to find the optimal ellipse E(d, c,a) enclosing the
unwanted eigenvalues A, j 2r+1. Manteuffel’s technique (1975, 1977, 1978) for doing thisin the case
of the solution of linear systems has been adapted by Saad (1984) to the unsymmetric eigenvalue
problem. Manteuffel’s algorithm does not allow a complex reference eigenvalue A, in equation (2.9)
so Saad replaces A, by areal reference point y and, in particular, on the k th iteration Saad takes y to
be the point on the real line which has the same convergence ratio as A, with respect to the ellipse
found on the (k-1) st iteration. The best ellipse for the k th iteration is then determined to minimise the
maximum convergence factor R; (d, c) given by equation (2.10) with A, replaced by y. When A, isred,
y=A,.Sinceingenera y#A,, the elipse found using Saad’ s method is only an approximation to the
optimal ellipse. Nevertheless, our experience is that this approximation generally works well and so
EB12A uses Saad’s choice of y.

EB12A usesthe eigenvalue estimates A, 1<j <m, computed on iteration k to construct a sequence
of ellipses E¥(d, ¢, @), k=1,2,... using the following procedure. Here it is assumed that the r right-most
eigenvalues are required.

for k:=1step 1 until sdo
begin
If k=1, set p,(A) =1; otherwise let y be the point on the real line with the same convergence
ratio as A& with respect to E**(d, ¢, a) and define p, (A) using (2.9) with A, replaced by y.
Compute the eigenvalue estimates A, 1<j<m, using steps 2 and 3 of the basic iteration
algorithm of Section 2.
if the convergence criterion (2.16) is satisfied for i =1, 2,...,r go to exit
else definethe barrier b=Re(A) and the set of unwanted eigenvalues S‘={A" : Re(A) <b}.
Construct the positive convex hull K¥ containing S* and the points (x, y) on the previous
hull K** for which x<b.
Find the best ellipse EX(d, ¢, a) using the algorithms of Manteuffel (1975, 1977) and
Saad (1990).
end
end
exit:

11

We observe that if A® is real (respectively, complex), S¢ will usually be nonempty provided
mz=r+1 (respectively, m=r+2). Thusin general the number of trial vectors m must satisfy m=r+2.

Manteuffel (1975, 1977) describes and implements an algorithm for finding the ellipse EX(d, ¢, a)
using the positive convex hull K* (see also Ashby 1985). In EB12A, we follow the procedure
described by Manteuffel but we have modified his code.

We remark that it is necessary to use the previous hull K¥* when constructing K*. Suppose the
right-most eigenvalues are sought. Typically, during the first few iterations, the ellipse E¥(d, c, a) will
not contain the actual left-most eigenvalues of A. Since p, (A) issmall for eigenvaluesinside the ellipse
compared with those lying outside the ellipse, convergence will be towards the left-most (unwanted)
eigenvalues as well as to the right-most eigenvalues. At some stage, the computed left-most
eigenvalues will lie within a hull which contains the actual left-most eigenvalues of A and, provided
al subsequent hulls contain these computed left-most eigenvalues, convergence will be to the
sought-after right-most eigenvalues.

Some of the ellipses EX(d,c,a) may contain wanted eigenvalues, which will slow convergence
down. Thisis likely to be a problem if there is a cluster of eigenvalues near A,. In this case, it can be
advantageous to set r to be larger than the actual number of required eigenvalues (see Section 2.2). The
effect of choosing a larger value of r is to move the barrier b to the left (or right). If more than one
eigenvalue (or more than one pair of complex conjugate eigenvalues) is required, once they have all
converged, we recall EB12A with r set to the actual number of required eigenvalues to overcome the
errors introduced by locking. Thisisillustrated in Example 2 of Section 3.

2.8 Computing the eigenvectors

Once EB12A has successfully computed the required eigenvalues of A, the user may call EB12B to
compute the corresponding eigenvectors. EB12B computes the eigenvectors w; of the block triangular
matrix T using back-substitution and then takes the approximate eigenvectors of A to bey; = Xw; (see
(2.8)). The computed eigenvectors y; are normalised. If thei th eigenvalue is complex with positive
imaginary part, on exit from EB12B thei th and (i+1) th columns of amatrix Y will hold the real and
imaginary parts of the i th eigenvector, respectively. Since the (i+1) th eigenvector is the complex
conjugate of the i th eigenvector, working with complex arrays is avoided. When computing the
eigenvectors of T using back-substitution, we found it was necessary to set al the entries in the lower
triangular part of T (except those in the 2 x 2 diagonal blocks corresponding to complex eigenvalues)
to zero. If we did not do this, the small off-diagonal entriesin the matrix T computed by EB12A could
cause large errorsin the computed eigenvectors of A.

Suppose X = (X, X,) where the r columns of X ; have converged and T, =X, AX,. Theresiduals
for the computed eigenvectors of A will be small if the residuals for the corresponding eigenvectors of
T,, are smal. To demonstrate this, let w (|jw||, =1) denote the computed eigenvector of T,;
corresponding to the computed eigenvalue A and let r ; be the residual vector

r,=T, w-Aw. (2.33)

The corresponding approximate eigenvector of A isgiven by y=X,w, and from (2.31) and (2.33) we
have

12

E,w=AX,Ww-X;T;Ww=Ay-Ay—-X,r,. (2.34)
Hence, since X ; has orthonormal columns,
IAY = Ayl <NE o llo +Ir o[l (2.39)

The inequality (2.35) shows that provided ||E, ||, and |Ir,||, are small, the residual for the computed
eigenvector of A will be small. If the scaled eigenvector residuals

IAY; = Ayl
[[GN7D] PR

are required, the user must compute AY, where Y has columnsy,, y,,..., ¥, and recall EB12B.

1<i<r, (2.36)

2.9 Useof EB12to obtain other parts of the spectrum

The code EB12 can be used to find parts of the spectrum other than that corresponding to the
eigenvalues of largest modulus or the right-most (or left-most) eigenvalues of A. If, for example, we
wish to compute agroup of interior eigenvalues, say those closest to p (that is, those for which |A —p|is
smallest), we can use the simple subspace iteration algorithm option in EB12 and replace A by
(A-pl)™. In this case, on each return to the user, a matrix-matrix multiplication U= (A -pl)™W,
with W of order nx (m-i) (i isthe number of locked vectors), must be performed. Thisis equivalent to
solving the system of equations

(A-phHU=W. (2.37)

If A islarge the solution of the system (2.37) may itself be quite time-consuming but note that, if a
direct method of solution is used, the decomposition of A —pl into triangular factors needs only to be
done once for avalue of the shift p. Having performed the decomposition, on each return to the user it
is only necessary to perform relatively cheap forward and backward substitutions. In practice, p may
be an approximation to arequired eigenvalue of A, in which case it may be advantageous to update the
value of the shift as the computation proceeds and consequently several factorizations may be
required. However, if the shift p is suitably chosen, the matrix B=(A —pl)™ will have a spectrum
with much better separation properties than the original matrix A and the subspace iteration algorithm
applied to B should require far fewer iterations for convergence than when it is applied to A. Thus, the
rationale behind using a so-caled shift-and-invert strategy is that the additional cost of the
factorizations is amply repaid by the reduction in the number of iterations required by using B in place
of A. Note that if the shift p is complex, the use of complex arithmetic in the subspace iteration
algorithm may be avoided by replacing the complex operator (A—pl)™ by the real operator
Re[(A-pl)™] (see Saad 1989). The user must form the LU decomposition of the matrix (A -pl)™
and every time U=Re[(A —pl)]W is required, must perform forward and backward solves in the
usual way and take the real part of the resulting matrix to yield the matrix U whichisreturned to EB12.

The code EB12 can also be used for the generalised eigenvalue problem Kx =AM X. In this case, on
each return to the user it is necessary to solve a system of the form

MU=KW. (2.38)
If a direct method of solution is used, the factorization of M needs only be done once for the entire

calculation. To gain faster convergence, the shifted and inverted operator (K —pM) ™M may be used.

13

3 Numerical experiments

The code EB12 has been tested on a number of problems. In this section, we describe the results of
using EB12 to calculate sel ected eigenpairs for three representative test examples. In each example the
convergence parameter EPS(1) (see Section 2.4) was set to 10™°. The numerical experiments were
performed on a SUN SPARCstation using double precision (i.e. u=2.220446110*°). The number of
iterations required is defined to be the number of times the iteration polynomial p,(A)X is computed.
Throughout this section, r, m, and |, denote, respectively, the number of eigenpairs sought, the
number of trial vectors used, and the highest degree of the iteration polynomial used by EB12A. All
CPU timings are in seconds.

Example 1. Thefirst problem is taken from Stewart and Jennings (1981), who use this problem to
illustrate the effectiveness of their subspace iteration code LOPSI. The matrix is a stochastic matrix
obtained during the application of Markov modelling techniques to the analysis and evaluation of
computer systems. The matrix is of order 163 and has 1207 nonzero entries. Table 3.1 compares the
convergence characteristics for different numbers of trial vectors for the simple subspace iteration
algorithm and for the Chebychev accelerated algorithm. For this example, the eigenvalues of largest
modulus are also the right-most eigenvalues, so the two algorithms may be compared directly.

Table 3.1. A comparison of the simple subspace iteration algorithm and the
Chebychev accelerated algorithm for Example 1 (right-most eigenvalues).

Matrix-vector : CPU
products Iterations time
r m
Simple Chebychev Simple Chebychev Simple Chebychev Simple Chebychev
5 7 2348 1037 10 14 121 55 47.2 289
5 8 1810 991 7 6 114 85 39.3 25.7
5 10 2128 958 7 6 101 60 48.9 28.6
10 15 4089 2034 11 9 94 75 105.6 70.4
10 20 3129 2304 9 8 69 39 120.1 99.8

The eigenvector corresponding to the dominant eigenvalue A; =1 isknown to have all its elements
of equal value. In al the tests using this problem, we used the option offered by EB12A for supplying
an initial estimate of the r basis vectors corresponding to the sought-after eigenvalues to specify the
first basis vector with length 1 and all its elements of equal value; the initial estimate of each of the
other basis vectors for this problem was taken to be a random vector. The first basis vector passed the
convergence test on the initial iteration and was then locked. For this problem, the locking facility for
the remaining basis vectors did not come into effect until late in the computation so that most of the
savings due to the locking techniques employed by EB12A come from the first vector. If locking is
switched off, with r=10 and m=20, the simple subspace and Chebychev accelerated algorithms
required 3540 and 2820 matrix-vector products, respectively.

For this example, we observe that, in each case, the value of | ., for the simple subspace iteration
algorithm exceeded that for the Chebychev accelerated algorithm and that, with r =5, the simple

14

subspace iteration algorithm took fewer iterations to converge than the Chebychev accelerated
algorithm. However, the number of matrix-vector multiplications and the computation times for the
Chebychev accelerated algorithm were considerably less than for the simple subspace iteration
agorithm. Because of the way Stewart and Jennings (1981) present their results for this problem, it is
difficult to make a direct comparison between the results obtained by LOPSI and EB12. However,
compared with LOPSI, EB12 appears to require significantly fewer iterations and, if Chebychev
acceleration is used, the number of matrix-vector multiplications used by EB12 is aso considerably
smaller.

Example 2. The second test example is taken from Garratt, Moore, and Spence (1991) and is

concerned with the detection of Hopf bifurcation points in the parameter dependent nonlinear system
dx

a=f(x, V), f:R"xR—R", xOR", vOR. (3.2)
The set M:={(x, v) OR™!:f(x, V) =0} represents the steady-state solutions of (3.1) and it is often
important to determine the (linearised) stability of a branch of 7. If A, denotes the right-most
eigenvalue of the Jacobian matrix A =f,(x, V), then a steady-state solution is stable (unstable) if
Re(A,) is negative (positive). It is also desirable to be able to detect a Hopf bifurcation point, that is a
point of I~ where Re(A;) changes sign as v varies. Example 2 arises from a pair of equations of the
form (3.1) which model atubular reactor (see equations (1)—(5) of Heinemann and Poore 1981), and
which are discretised using simple central differences. We have taken n to be 200 and 400 and the
parameter v (the Damkohler number) to be 0.23. With this value for v the steady-state solution is
stable (see Garratt et al.1989). The matrix A is banded and has 796 and 1596 nonzero entries when
n=200 and 400, respectively. For n=200, the right-most eigenvalue is (approximately)
—0.83285+ 1.5926i and the left-most eigenvalue is —7850.5+1.2049i. For n=400, the right-most
eigenvalue is —0.04345+ 1.5806i and the left-most eigenvalue is —31689.56 + 1.05784i. Although it is
the right-most eigenvalue that is of practical importance, we shall aso use EB12 to calculate the
left-most eigenvalue since the left-most eigenvalue is also the eigenvalue of largest modulus, which
allows us to compare the simple subspace algorithm with the Chebychev accelerated algorithm. The
results are given in Table 3.2.

In Table 3.2 we see that, when n=200 and the simpl e subspace iteration algorithm is used, for each
valueof m, |, =78. In thisexample |A,|= 7850 and the degree of the iteration polynomial is limited
by (2.28), which prevents overflow. Similarly, when n=400, (2.28) limits the degree of the iteration
polynomial used by the simple subspace iteration algorithm to 68. There is no corresponding limit for
the Chebychev accelerated algorithm, which again gives much better results than the simple subspace
iteration agorithm. In particular, when n=400, r=2, and m=5, the simple subspace iteration
algorithm requires more than 21 times as many matrix-vector multiplications, 15 times as many
iterations, and 18 times as much CPU time as the Chebychev accelerated algorithm.

In Table 3.3 we present some results for Example 2 for the Chebychev accelerated algorithm used to
find the right-most eigenvalues. We observe that for n=200 and m=8, fewer matrix-vector products
and less CPU time are required for convergence when r =4 than when r =2. In fact, with m=8, the
right-most pair of complex conjugate eigenvalues is found after 2541 matrix-vector products and 76.6
seconds CPU time. Thisis an example which illustrates that it can be advantageousto set r to be larger
than the number of eigenvalues actually required. The results we obtained for Example 2 using EB12
compare favourably with those obtained by Garratt (1991) using Chebychev accel eration techniques.

15

Table 3.2. A comparison of the simple subspace iteration agorithm and the
Chebychev accelerated algorithm for Example 2 (left-most eigenvalues).

Matrix-vector . CPU
products Iterations max time
n r m
Simple Chebychev Simple Chebychev Simple Chebychev Simple Chebychev
200 2 4 9763 1179 38 7 78 111 236.0 32.8
200 2 5 9674 969 31 6 78 99 238.2 274
200 2 8 11023 1623 24 7 78 64 284.2 49.3
400 2 5 43759 2069 139 9 68 96 2158.0 115.4

Table 3.3. Convergence results for the Chebychev accelerated subspace iteration
algorithm for Example 2 (right-most eigenvalues).

Matrix-vector . CPU

n r products Iterations max time
200 2 4 3575 10 224 96.7
200 2 6 3401 10 148 924
200 2 8 4127 10 139 115.9
200 4 6 4075 13 167 111.3
200 4 8 2881 11 125 87.4
400 2 4 13439 27 239 699.5
400 5 7489 15 230 398.3
400 2 8 8887 18 237 483.1

Example 3. The third test problem is another example of Markov chain modelling and is used by
Saad (1984). This example models a random walk on a (j+1) x (j+1) triangular grid. Following Saad,
we take j =30, so that the order of the matrix is n=496. For this problem, matrix-vector products Ax
can be performed by a simple subroutine without explicitly forming the matrix A. Since EB12 returns
control to the user for all matrix-vector products, it is particularly convenient for solving problems of
this kind. In this problem, the eigenvalues of largest modulus are 1 and -1 and the right-most
eigenvalueis 1.

In Table 3.4 we give convergence results for obtaining the dominant pair of eigenvalues A=x1
using the simple subspace iteration algorithm for various values of the parameter m. In Table 3.5 we
present results for the Chebychev accelerated subspace iteration algorithm, but in this case only the
right-most eigenvalue A =1 is obtained. The numbersin parentheses in the second column of Table 3.5
are the figures reported by Saad (1984). The difference in the number of matrix-vector products used
by EB12 and by Saad is mainly attributable to the fact that Saad uses different criteriafor choosing the
degree | of the iteration polynomia and, following Stewart and Jennings (1981), Saad imposes a
maximum degree on the iteration polynomial. For this example, EB12 performs consistently better
than the code used by Saad.

16

Table 3.4. Convergence results for the simple subspace iteration algorithm for

Example 3 (r =2).

Matrix-vector : CPU

m products Iterations e time

3 3407 19 116 161.0

4 1819 9 144 88.0

6 1721 6 129 88.3

8 1819 8 94 103.1

10 1739 7 54 108.1

Table 3.5. Convergence results for the Chebychev accelerated subspace iteration
algorithm for Example 3 (right-most eigenvalue).

Matrix-vector . CPU

m products Iterations time
3 371 (-) 5 48 21.6

4 419 (-) 5 42 251

6 527 (645) 5 39 35.1

8 567 (903) 6 23 45.9

10 669 (909) 6 25 60.4

From Tables 3.1-3.5 we see that, in general, the best results are obtained by choosing a value of m
which is larger than the minimum allowed value. We also observe that, in most of the examples,
increasing the number of trial vectors reduces (or keeps constant) the number of iterations required for
convergence but the total number of matrix-vector multiplications needed may increase. Even if the
number of matrix-vector multiplications needed decreases as m increases, the CPU time may increase
since the order of the matrix which must be reduced to real Schur form is m. However, when the order
of the matrix nislarge, most of the CPU time isin the matrix-vector multiplication stage, and the total
CPU time taken is dependent upon the efficiency with which these multiplications can be carried out.
In particular, the time taken depends upon whether the user is able to exploit the structure of the matrix
and vectorisation or parallelism.

We remarked in Section 2.5 that Stewart and Jennings (1981) impose a maximum value LMAX on
the degree | of the iteration polynomial p,(A) used in their code LOPSI. For all our test examples we
found that the maximum degree used by EB12 exceeded the value LMAX =20 suggested by Stewart
and Jennings. With the restriction | <LMAX =20, the Chebychev accelerated algorithm applied to
Example 2 with n=200, r =2, and m=4 required 7043 matrix-vector products and 86 iterations for
convergence. This compares unfavourably with the corresponding result of 3575 matrix-vector
products and 10 iterations given in Table 3.3. Further numerical experiments for this and other test
examples using a range of values for LMAX led us to conclude that, in general, the results are worse
when arestriction LMAX isplaced on .

In Section 2.9 we discussed the use of EB12 to compute eigenvalues of the matrix A other than

17

those which are right-most, left-most, or are of largest modulus. We may, for example, have an
approximation p to an eigenvalue of A and want to obtain a more accurate approximation. In this case
we would replace A by (A-pl)™ and employ the simple subspace iteration algorithm, solving
equation (2.37) on each return to the user. We have performed some numerical experimentsto do this
for the matrix in Example 1. In these experiments we used the Harwell Subroutine Library routine
MAZ28AD to factor the matrix (A —pl) once, and on each return the factors created by MA28AD were
used by MA28CD to solve (2.37). Full details of the MA28 package may be found in Duff (1977). We
observed that for this example EB12 converged very quickly. Typicaly if an approximation to a (real)
eigenvalue inside the spectrum was known to two decimal places, setting r =1 and m=6, convergence
with EPS(2) equal to 107> (see equation (2.16)) was achieved in only one or two iterations. The
computed eigenvalues agreed with those given in Table | of Stewart and Jennings (1981).

4 Concluding remarks

The purpose of this paper was to discuss the design and devel opment of the code EB12 for computing
selected eigenvalues and the corresponding eigenvectors of a real unsymmetric matrix A. Existing
codes LOPS| (Stewart and Jennings 1981) and SRRIT (Stewart 1978) use subspace iteration
techniques to compute the eigenvalues of largest moduli. EB12 uses a subspace iteration algorithm,
combined with Chebychev acceleration if either the right-most (or left-most) eigenvalues are required
or it is known that the eigenvalues of largest moduli are also the right-most (or left-most) eigenvalues.
EB12A worksin terms of the Schur vectors of A and a second optional entry, EB12B, is used to obtain
the eigenvectors once the Schur vectors have converged.

An important design feature of the code EB12 is that control is returned to the user each time a
matrix-vector product Ax needs to be formed. This use of reverse communication makes the code
suitable for large sparse problems and gives flexibility over the way in which the matrix is stored and
matrix-vector products are performed. Another feature of the code is that it employs a new locking
technique which is designed to reduce the number of matrix-vector multiplications required for
convergence when more than one eigenvalue is required. The use of locking has been found to be
efficient in practice.

The user of EB12 must choose the dimension m of the iteration subspace. This is an important
parameter which effects the efficiency of the algorithm. We have provided the user with some
guidance regarding the choice of mand, in addition, if a poor choice is made, we have designed EB12
so that the computation can be restarted at any stage with adifferent value of mwhile taking advantage
of the basis vectors which have already been computed.

The usefulness of the code EB12 has been illustrated on a number of representative practical
problems. The numerical results show that subspace iteration combined with Chebychev acceleration
issignificantly superior to simple subspace iteration when the right-most (or left-most) eigenvalues are
aso those of largest modulus. The results also show that the efficiency of our subspace iteration
algorithm (with or without Chebychev acceleration) is very dependent upon how the agorithm
chooses |, the degree of the iteration polynomial. In particular, we found that imposing a maximum
value on |, as suggested by other authors (for example, Stewart and Jennings 1981 and Saad 1984),
could lead to a considerable degradation of the results. We have introduced new criteriafor choosing |

18

which are designed to prevent the columns of the iteration matrix from becoming dependent, to limit
the number of unnecessary matrix-vector multiplications, and, for the simple subspace iteration
algorithm, to prevent overflow. In addition, we have used new stopping criteria designed to terminate
the computation if the residuals increase close to convergence or if convergence becomes intolerably
dow. In either case, EB12A issues awarning message and the user then has the option of restarting the
computation with an increased number of trial vectors.

5 Availability of the code

EB12 is written in standard FORTRAN 77. The code will be included in Release 11 of the Harwell
Subroutine Library. Anyone interested in using the code should contact the authors for licence details.
The specification sheet (write-up) for EB12 is also available from the authors.

6 Acknowledgments

The authors would like to acknowledge work done on the early development of EB12 by C.F. Van
Loan and S. Considine. The authors would aso like to thank T.J. Garratt, Y. Saad, JK. Reid, M.
Sadkane, and S. Godet-Thobie for helpful discussions. In addition, we are grateful to T.J. Garratt for
supplying the data for the test example 2.

7 References

Ashby, S.F. (1985). Chebycode: A Fortran implementation of Manteuffel’s adaptive Chebyshev agorithm.
M.Sc. Thesis, Department of Computer Science, University of Illinois at Urbana-Champaign, lllinois.

Bjorck, A. (1967). Solving linear least squares problems by Gram Schmidt orthogonalisation. BIT, 7, 1-21.

Dongarra, J.J., Du Croz, J., Duff, 1.S., and Hammarling, S. (1990). A set of Level 3 Basic Linear Algebra
Subprograms. ACM Trans. Math. Softw. 16, 1-17.

Dongarra, J.J., Du Croz, J., Hammarling, S., and Hanson, R. (1988). An extended set of Fortran Basic Linear
Algebra Subprograms. ACM Trans. Math. Softw. 14, 1-17.

Duff, I.S. (1977) MA28 aset of Fortran subroutines for sparse unsymmetric matrices. Harwell Report AERE
R.8730, HM SO, London.

Garratt, T. J. (1991) Private communication.

Garratt, T. J., Moore, G., and Spence, A. (1991). Two methods for the numerical detection of Hopf bifurcations.
In: Bifurcation and chaos: analysis, algorithms and applications (eds R. Seydel, F. W. Schneider, and H.
Troger). Birkhauser, 119-123.

Godet-Thobie, S. (1991) Private communication.

Golub, G.H. and Van Loan, C.F. (1989). Matrix Computations. Second Edition. John Hopkins Univ. Press,
London.

Heinemann, R. F. and Poore, A. B. (1981). Multiplicity, stability, and oscillatory dynamics of the tubular reactor.
Chemical Engineering Science 36, 1411-1419.

Ho, D. (1990). Tchebychev acceleration technique for large scale nonsymmetric matrices. Numerische Math. 56,
721-734.

19

Ho, D., Chatelin, F., and Bennani, M. (1990). Arnoldi-Tchebychev procedure for large scale nonsymmetric
matrices. Mathematical Modelling and Numerical Analysis 24, 53-65.

Manteuffel, T. A. (1975). An iterative method for solving nonsymmetric linear systems with dynamic estimation
of parameters. Ph.D. Thesis, Technical Report UIUCDCS-75-758 Department of Computer Science,
University of lllinois a Urbana-Champaign, Illinois.

Manteuffel, T.A. (1977). The Tchebyshev iteration for nonsymmetric linear systems. Numerische Math. 28,
307-327.

Manteuffel, T.A. (1978). Adaptive procedure for estimating parameters for the nonsymmetric Tchebyshev
iteration. Numerische Math. 31, 183-208.

Peters, G. and Wilkinson, J.H. (1970). Eigenvectors of rea and complex matrices by LR and QR
triangularizations. Numerische Math. 16, 181-204.

Rutishauser, H (1969). Computational aspects of F. L. Bauer's simultaneous iteration method. Numerische Math.
13, 4-13.

Saad, Y. (1980). Variations on Arnoldi’s method for computing eigenelements of large unsymmetric matrices.
Linear Alg. and its Applics. 34, 269-295.

Saad, Y. (1984). Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems. Math.
Comp. 42, 567-588.

Saad, Y. (1989). Numerica solution of large nonsymmetric eigenvalue problems. Computer Physics
Communications 53, 71-90.

Saad, Y. (1990). Private communication.

Sadkane, M. (1991) On the solution of large sparse unsymmetric eigenvalue problems. Tech. Report
TR/PA/91/47, CERFACS, Toulouse.

Stewart, G. W. (1975). Methods of simultaneous iteration for calculating eigenvectors of matrices. In: Topicsin
Numerical Analysis |l (ed. J. H.H. Miller), Academic Press, 169-185.

Stewart, G. W. (1976a). Simultaneous iteration for computing invariant subspaces of non-Hermitian matrices.
Numerische Math. 25, 123-136.

Stewart, G.W. (1976b). ALGORITHM 506. HQR3 and EXCHNG: Fortran subroutines for calculating and
ordering the eigenvalues of areal upper Hessenberg matrix. ACM Trans. Math. Softw. 2, 275-280.

Stewart, G. W. (1978). SRRIT — A FORTRAN subroutine to cal cul ate the dominant invariant subspaces of areal
matrix. Technical Report TR-514, Univ. of Maryland.

Stewart, W. J. and Jennings, A. (1981). A simultaneous iteration algorithm for real matrices. ACM Trans. Math.
Softw. 7, 184-198.

Van Loan, C.F. (1989). Private communication.
Wilkinson, J. H. and Reinsch, C. (1971) Handbook for Automatic Computation. Vol. I1. Springer-Verlag.

20

