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1, Introduction

An excellent algorithm for calculating the least squares solution of

the overdetermined system of linear equations

n
é a x = b i=1,2’---’ m, o!l.l!..l..(l_)

J=1 i3 4 1?

(m > n) is described by Golub (1965), and an Algol listing is given by
Businger and Golub (1985), It exploits the fact that the required solution

is also the least squares solution of the system,

QAE = QR’ II..IICIIQIIC(Z)

where Q is any mxm orthogonal matrix, by finding an orthogonal transformation
that causes QA to be an upper triangular matrix. This upper trianguler
matrix 1s obtained by a sequence of n elementary transformations, which we

write as:

A(l) A
P N feereereeean(3)
QA - A(n+1) ’

(x)

and the matrix P ia calculated 8o that all the elements of the firat k

(k+1) that are below the diagonal are equal to zero. Each matrix

columns of A
(k)
P ig of the form

P(k)zl-ﬁk g(k) E(k)T, P 9

the orthogonality of P(k) being obtained by the condition

2
g, o™, = 2 ceerrrnena(8)

k

Wilkinson (1965) gives an error analysis of this type of calculation,
and shows in his equation (45.3) on page 180 that the calculated components
of QA differ from their true values by small multiples (depending on the

preclsion of the computer) of ”A L. One purpose of this paper is to extend
Wilkinson's results, because they are not suitable for a situation that
occurs frequently in date fitting problems. We are referring to the éase
when some of the data to be fitted 1s much more accurate than the remalning
data, so, to take account of the difference in precislion, some of the rows

of A are scaled so that their elements are much larger than those of the



remaining rows., In this case the value of the number||A|E is dominated by
the large rows, but, if the number of very accurate observations is less
than n, the required solution has an important dependence on the less pre-
cise data. Therefore we would prefer any error bounds or estimates to
reflect the scaling of the rows of A; such bounds are derived in Sections
3, 4 and 5 of this paper,

In obtaining these bounds we find that the ordering of the columns of
A 1s important; our results depend on the strategy that Golub recommends,
A discussion of the ordering of both rows and columns is given in Section
6, and it indicates that Golub's algorithm should be extended to include
gome row interchanges, Although this result is presented as a conclusgion
of the thecretical analysis, really the theoretical analysls is a consequence
of the need for row interchanges, for the work in this paper was begun when
Golub's algorithm failed on a real problem,
2., Golub's algorithm

We quote the details of Golub's algorithm that are needed for our error
analysis.

The strategy for ordering the columns of the matrix A 1s applied before
(k)

each elementary transformation P 18 calculated., It depends on the numbers
m 2
k k
= 3 {aid)] , J =k,k+,...m, ceesnessa(8)

J i=k
and we let the largest be 1(2). If q = k then no interchanges take place,
but otherwise the unknowns :m:‘j are reordered so that the li:i-ll and qEE columns
of A(k) are interchanged. This process does not introduce any errors so,

in order to simplify our notation, we suppose that the metrix A is such that

no column interchanges are necessary. Therefore we have the inequalities

2 m 2
k (x
2 iaik)l > 15 i“u)} , J >k ereeeeee(T)

Next the transformation P(k) is applied both to A(k) and to the current

right-hand side vector of the equations, The numbers

m 2 3
o =1,% @)} ereeenn(8)



(k) .-1
Bk = (c‘z + o‘klakk’) esssseneal(9)

(k

are evaluated, and the components of u ) (see equation (4)) are set to

uik) = 0, 1c¢k
5 = @+ a8 aten @) ceeeenena(10)
ui(k) = aill:) , 1>k .
We obtain the numbers
= e wTA creeeena (1)

k) (k)

where the notation A( represents the JEE column of A , and we calculate

the elements of A{k+1)fyom the equations

ail;+1) - ai‘;) , J <k

aij*l) = ail‘;) y 1<k, 3k

e = -G eten (al) e 12)
ait+1) = 0 , 1 >k
0,0

For the right-hand sides of the equations we let

(1)

b =
' cererasesea(13)
2(k+1)___P(k) L’.(k)



b(k+1)

To calculate we obtain the number

= ()T (k)
Te = B & LA ceennanes(14)
end then we use the equations
(k+1) _ (k)
ceseasses(15)
(k+1) _ (k) (k)

1
Thus, by applying the sequence of transformations P( ), P(z),..., P(n),

we obtain a syatem of linear equations

(n+1) x = b(n+1)

=1
J=l aiJ ‘.} i » i !2!"'I m’

having an upper triangular matrix. The equations indicated by the values
i=n+1, n +2,,.., m are ignored, and the required vector x is obtained
by back substitution.

To conclude this section we derive a result that indicates why Golub's
strategy for interchanging columns is important, It is a bound on the
numbers y;k), defined by equation (11), and we will use it many times in the

error analysis,

Theorem 1

ly;k)l £ A2, ceeesenssa(16)

Proof By applying Schwarz's inequality to the definition of ygk), and

by using the statements (7),(8) and {5) we obtaln the inequality
(k) (k) m (k)2 %
iyd |« P “‘-E. Hz Lz @y ]

(k)u
£ o By u-‘i .

(x)
“2. e (1)

= 26k /IIE
Also from the definitions (10) and (8) we have the ldentity

lg(k) “22 = 20 (<rk +|a.13:),), veensenesel(18)



which implies the inequality

lfg‘k)llz > V2 o eea..(19)

Therefore the theorem is apn immediate consequence of the inequality (17).

Note that for J > k Golub's algorithm includes the equation

k+1 k k k
R 2 i veveeeens(20)

k th
so the theorem bounds the multiple of g( ) that is added to the j== column

of A(k). An operation like equation (20) can cause any errors to grow
persistently as k ranges from 1 to n, so the column interchanges are justi-
fled by the fact that they 1imit the multipliers ygk).

(k)

3. The errors of the transformation P

In the error analysis we assume that we are using a floating-point
computer on which 211 the operations of addition, subtraction, multiplication,
division, extractlon of square roots and rounding to single precision are
performed with relative errors no greater than e, and we omit terms of order
52. We also assume that a subroutine is available for the double-length
accumulation of inner products, followed by roundoff to single precision.

To distinguish computed numbers from those that would result from exact
arithmetic, we attach "bars" to numbers that are calculated; for example
;k and E(k) are computed guantities,

The intention of Sections 3, 4 and 5 is to bound the total error of
the calculation in a way that reflects the scaling of the rows of A. We
state our results in terms of the greatest numbers that oceur in each row

of A during the operation of the algorithm, namely

—{k)
= 4 = max a
e M

' y 1= 1,2,...,m, N ¢}

We find that the calculated vector x is the exact least squares sclution of
a system of linear equations that is little different from the system (1),

and we bound the differences between corresponding matrix elements aij by

multiples of ai. In fact these multipliers are of order nz, which is

pPleasing because equations (16) and (20) suggest that we might have had terms
of order (1 + y2)U.



+
In this section we bound the errors in A(k 1) that are caused by the

(k)

calculation when the matrix A is exsct, and we use the notation

A(k) = I(k.'-l) - A(k+1) . .l..l.lll(zz)

The effect of errors in A(k) is treated in Section 4,

By using the double-length scalar product routine, we calculate q (see
equation (8)) to a relative accuracy of €, so, because a square root halves

a relative error, we obtain the result

|5k - ol < %e o, eeeeae..(23)

-1
The error is ﬁk (see equation (9)) is bounded by the inequality

B;I—E;ISEB;1+S o'i +ecrk|a(k)| eaia(k)l
= € o (20, +§|a(k)]) ) crereeela(24)
and for the error 1n ul(ck) (see equation (10)) we have the bound
ﬁ'l({k) -u £ ’uik) t + € ay
eGo + ol ). ieeeeren(25)
(k)

However in bounding the error in y‘j we depart from the Algol listing of
Businger and Goluh (1965), because we can gain some accuracy by dividing
by B; in expression (11), instead of calculating ﬁk and multiplying. Thus,

using the inner product routine, the error in y( k) is at most
—-(k) _ (k) (k) z (k)
5 aor |y | )
+E - &
%{ (2 N +| 8y ) lakj ‘, vessnress(268)

(k)

the second term being & consequence of the error in u . Therefore, from



Theorem 1, the inequality (7) and the definition (8), we obtain the regsult

—(k S5
l y; ) . y}k) < 2v2¢e + eﬁkok {(24@ + E)ok + (_ V2 + 1)' (k) , veranes(27)

which, because of the inequality

laf;)l;:cr erveenee..(28)

k
and the definition (9), gives the very simple bound

S0 gk)l <

Yy s(-—-wfz *'71' . tieereseenaas(29)

We now obtain bounds for the elements of the error matrix AFk) (see
equation (22)), and find immediately from equation (12) that several elements

are zero:

J <k

5 ()

iy =0 i<k, 32k P ¢< (¢}

1>k, J=k.

Also equation (23) gives the result

iAS:)lS

EC crirvansanneal3l)

kl

and from equation (29) and Theorem 1 we obtain (for 13k, j » k) the bound

RPN T B I | W]

H

2
€ [I §.15+1) + (-ag\rz-‘-g-)lufk)'}' llll.'l..l.-(az)

k
For the case 1 =k, J> k there is also an error from ui ), 8o using

equation (25) as well we find the inequality

,A;lj)l <eila (k+1) + &z l“,fk),f +evz G o+l agx) l)' veesa(33)

We oxpress the results (31) - (33) in terms of the numbers & , defined by

1,
equation (21), using the inequalities

g fa srrrsrecaaas (34)



(k+1)

(derived from the expression for 8 in equation (12)),

lu?)ys a 1>k P & 3

i’

(derived from equation (10)), and

luif) < 2a eerereseess(38)

k,

which follows from the statements (10) and {(34). Thus we obtain the bounds

\
2 eq

(k)
| Bk | $ 3

| aﬁj"s e (15 V2 +

)

) ak ? J >k -o.l.oc..t.l(37)

(x)| 23 11
lﬁij < 6(4 V2 + 4)@1 , 1>k, 3>k /.

In the next section we also require bounds on the numbers “ﬂg{)ﬂz’
where again the single subscript indicates a column of a matrix., From

equations (30), (31) end (19) we obtain the results

" A(‘jk)l‘z = 0 , J<k

_ ceseensseesa(38)
H Aék)nz P -2—1/2 € llg“‘)"z

but 1t is more difficult to derive our bound for J >k, We use equations
(30), (32), (33) and (28) to calculate the inequality

|| &‘;’ﬂzse[z;ﬁ R0 LI IOREY U IS PR R EENRNCY
1=k

snd from the fact that Euclidean norms are invariant under orthogonal

transformations, and from equations (7), (8) and (19), we find the bound
| 23 7 | | 2
I.‘.\ngef(4 \f2+4)“2 2+(2\f2+1)0'k}

< E (2T5{2 +24—1) l]g(k)" 3> k. AP € 10D

This completes the analysis of a single transformation P(k), and we

2 ’

use the results (30), (37), (38) and (40} to obtain the bounds for the

whole calculation,

-8 -



4, The error of the sequence of transformations

In our notation for the analysis of the errors of the sequence of

(n) ,(n-1) pt1)

transformations P » We make a slight change from the

nomenclature of the last section, Now we let P(k) (k=1,2,...,n) be the

orthogonal transformation that would be obtained from the computed matrix X(k)
1f exact arithmetic were used, and in place of equation (22) we write

() _ gles1) | L0 (k)

A Creerananse. (41)

The purpose of this section 18 to bound the elements of a metrix A
having the property that the final computed matrix I(n+1) would be obtained
by an exact application of the algorithm to the overdetermined system of

linear equations

A+ 8 x = b+, veersennan.(42)
~(n+1)
Therefore & 1s related to A and A by the equation
A+b = QD Ceeveeneen..(43)

where {1 is an exactly orthogonal matrix, Different choices of (] provide

different error matrices 4, and, in order that A i1s zero if the calculation

of‘K(n+1) ia exact, we define A by the equation

{n) P(n—l).

A+a= P P(I);'l 2 (n+1)

(1) (2) p(n) X(n+1)

= p P P ¥ l..ll.-.-.ll(44)

(k)

the last line being a consequence of the symmetry of P . It is possible
that the error bounds of this section can be improved by a different choice
of .

To bound the elements of 4 we use equation (41) to express the right-

(k)

hand slde of equation (44) in terms of A and A (k=1,2,...,n), which gives

the identity

(1)

A+4A = P (2

p(2) p(®) A(n) (1) (2) p{n-1) Z(n)

+ P P .o

(1) _(2) (k) (k) + Z(I)

= Z. P P, ..P A teereeaeenss(45)



from which we deduce the equation

-]

A = 1 P(l) P(ZJ...P(k) (k)- loo-----nono(46)

Our results for the total error from the sequence of transformations are
obtained from equation (46) and the inequalities of the last section.
th
In the k— term of the sum (46), we substitute expression (4) in place

of some of the orthogonal matrices, obtaining the result

p(1)p(2)

LN ] " e

P(k)ﬁ(k) - iI 2(1)2(1)1‘} {P(Z)P(s) P(k)A(k)}

_ﬂl

p(2)p(3) ) (k) g 2(1)2(1)'1‘ p(2)5(3) (k) (k)

s e -8

1

AU 3 (), (@T @) (a42)
q=1

p(K) A(k).

L]

--l.--.-.-¢u0(47)
k
Thus, using equation (5) and the orthogonality of the transformations P( ),

we deduce the inequality

| 1,(1)},(2)._.F,ck)ﬁ(k)‘i‘1

(k) k (q) (q)T_(q+1)_(q+2) (k) (k)
5\6 1J+q§15qlug,lgq plattipla+s) ' p Aj'
5‘A(k) e lfj B | u(cia), H}.E(q)ﬂ2 "P(q+1)P(q+2)“.P(k)A(l;)llz

q=1

k
- ] A by *2 Ila“;)"z & |u(‘j)‘/ "9.(“”2_’ tererernne..(48)

We simplify the inequality (48) by removing the term[lg(Q)”z from the
summation. We do this by noting that inequality (7} gilves the result

Gq)ak’q <k’ 1100-001-101(49)

go from statement (19) we deduce the inequality

" Efq)”g > V2 Ty zilg(k)uz/JE , 4 < k, teeesasennse(B50)

-10 -



the last line being a consequence of equations (8) and (18), Thus from

expression (48) we find the bound

p‘“p‘z)...p“‘)A“‘)‘iJ slaﬁ’g) . Na, ﬂa(;‘)uzfllg(‘",lL, cereeeerens (51)

(k)

where Rf is defined by the equation

k-1
(k) _ (g) ()|,
0'17‘1 = 2V2 q§1|u1 |+2,ui ’, _ ceereraenaeal(B2)
aquations (10), (21) and (36) give the result

2Y2 (i+1) , 1<k

(KD

PR 2V2 (k-1) +4 , 1=k cessnensacss(B3)

2v¥2 (k-1) + 2 , 1 >k,

To summarise the lnequalities that we have obtained so far, we combine

expressions (46), (51), (30), (37), (38) and (40) and write

IAUIS IUiJJ'viJ]E"'i’ N €5
where
/ 23 11 9
(—4—1/2 ""'Z") (1 - 1) + (15¥2 +3), 199
U= { GVzePa-neg 1=y rieeee..(38)
Evz iy, 1y,
and
v, - §v2 A+ Eva L 2 N e venaneeens(56)
k=1

The theorem of this sBection states thatl Ai ! is not greater than a

certain multiple of Sai‘ and for simplicity the iultiplier is independent
of 1 and J., Therefore we now seek the best value of this multiplier that
can be obtained from expressions (53),{54),(55) and (56),

Clearly both ‘UiJ and viJ are greatest when j = n, but the value of 1
that ylelds the required multiplier is not obvious., However it is apparent

- 11 -



that Uin is an increasing function of i1 for 1 ¢ n-1, and it is not difficult

to show that if expression (53) is an equality then V n is an increasing

i
function of 1 for 1 < n-2, Therefore we consider the details of four

separate cases and derive the results

$n) + (-1-5—1- + %’_’ v2), 1=n-2

(v, +V, ) < ¢(n) + (24 + 1472), i=n-1 R ¢ X0
p) + & - 2y, 1=
)+ E-3w), i
where
pm) =022 + Lz +n-R + 2 v, l8)

Thus we obtain the theorem

Theorem 2
To first order in € the accumulation of errors in calculating I(n+1)
by Golub's algorithm is so small that the elements of the matrix 4, defined

by the equation

A | - 0%y,  eeereneeee (59)
are bounded by the inequality
2,35 21 85 5
|Au|\< in (5 +-;-w/2) -nlg -3 Y2) + (24 + 14 V2) e a,. ceeeas(80)

5, The error in the solution of the equations

To complete the error analysis we must consider the sequence of calcula-
- -(2 —
ted right-hand side vectors 2(1), R( ),..., 2(n+1) (see equation (15)), and
we must treat the back-~substitution stage of the algorithm, in which x is

determined from the equation

I(n+1),§ - -l;(n+1)-

~r

.....-......(61)

If it happens thatH‘Euz is8 so small that both the inequalities

(k
“i = mﬁxlbi )|\< Gi’ i=1’2’.l.,m ....0!.!.!!-(62)

- 12 -



and

vy = T (k)2 ,3
S I R € DO I LI

# k" k=1’2l".,n o-----o-o-(ea)

hold, then we have already carried out much of the analysis of the errors

of the vectors E{k), because we can regard Efk) 88 an additional column of
A(k). However 1f the aumber
= a vy /O
p max [mix(Hi/ i) , mﬁx( k/ k)] sessevssns (B4)

exceeds one, then to make the inequalities (62) and (63) hold we could
scale the original right-hand side vector b by the factor é-l. As a result
the numbers ¥, (see equation (14)) and bi(k+1) would be scaled by pﬂl, and
the slze of any errors in the vectors g(k) would also be scaled by the same
amount, Therefore, instead of carrying out this scaling, we may anticipate
its effect by including the factor P 1n our error bounds. For example,
using the definition

é(k) - P(k) E(k) _ 'I;(k-i-l)

b

? o---co-oo-(65)

we obtain from equations (30) and (37) the bounds

0, 1<k

4
i

9
£ € p(15v2 +§~)a.k, 1 =k vesrssenes (88)
€ p(gfﬁﬁ + %50(&, i >k,

and from expression (40) we find the inequality

. i |
” Q(k).’lz £ P (gfwfz + E})il-‘i(k)“r reerrenss.(67)

To calculate bounds on the components of Q + defined in equation (42),

we find by the argument that led to equation (46) the result

p(1)P(2) (k),ﬁ(k),

.top lc.nu-.c--(es)

2 - 3
k=1
and instead of equation (51) we obtain the bound

p{1Ip(2) | plie) i) L < ‘5(‘1‘” + 2o, ! _Q(k)ﬂz/"g(k)ﬂz. Ceerenee . (69)

- 13 -



Therefore the inequality corresponding to statement (54) is

\61\ 's Isi +Ti }epa'ii ---t-o.-oo(70)
where
23 11 9
(waz +5 -1+ (15 ¥2 +3), 1sn
8, = N £ 9
(%?-42 + é}) n , 1i>n
and
- Eya L2, B W
T, = (FV2+5) 3 M. P &4 2]

k=1

Again it happens that our final bound is derived from the case i = n-1, and
we calculate that the elements of the vector § are bounded by the inequality
|5115 {RZ(%g+ﬂi_2_) + n(42 +132) + (24 + 14v2)} epa,  L.......  (73)
Wilkinson (1965) gives the error analysis of a back-subgtitution process

on pages 247 and 248 of his book. From his work we conclude that the computed

solution of the equations (81) is the exact least squares solution of a system

~(n+1) +

a g x = po)

~ ~ L

l.l....-.l(74)

where, to first order in €, the elements of E are bounded by the inequelity

|Eij|se IES“” 8, eevernesa(75)

6i being the Kronecker - delta.

J

We absorb these errors into our enalysis by supposing that each ortho~

gonal transformation P(k) causes an extra error of €0, in the matrix element

k
E(tzl). Therefore in the equalities (37) and (38) the case j = k becomes
0|, 8
lAkk 7%

cseesenss.(78)

(k) 5 (k)
lﬁklz 3 2{25“ u "2

- 14 -



80, instead of the middle line of expression (55) and expression (56), we

now have the equatiocns

23 11 5
Uii = (";" 2 o+ T)(i-—l) + -2-
5 (9 . 25 21, 4=1 (k)
= - A —_ o
Y13 e oL 4)k§1 A C eereeee (D)

More calculation shows that in the new bounds that replace the inequality
(57), the case 1 = n-1 remains dominant. Thus we obtain the main theorem

of the error analysis,

Theorem 3
The calculated vector'z obtained by Golub's algorithm 1s the exact

least squares solution of a system of equations

(A+Hx = b+h cerensens.(78)

-~

where the elements of E_are bounded by the inequality {73), and where the
elements of 4 are bounded by the inequality

la lcqa228 .20 27 _ 5
8, s {n° G+ ~ \fz)-n(4 -5 V2) + (24 + 14 V)] €ay  eerereiln.(79)

ai being defined by equation (21).

6. The need for row interchanges

As we said in the introduction, the theorems we have glven were derived
because Golub's algorithm failed on 2 real problem, sc the main purpose of
this section is to recommend a modification to the algorithm, This modifi-
cation is a strategy for interchanging rows of the matrix A(k), and we note
that the theorems proved so fer do not depend on any particular ordering of
the rows.

The fact that Golub's algorithm will sometimes give poor accuracy is
illustrated by the matrix

o 2 1
10° 10° 0
A= ..........(w)
108 o 10°
B 0 1 1 .
A

- 15 -



Using exact arithmetic we calculate that A(z) is the matrix

-10%v2 ~10°472 —10%/v2
0 5106-v2 —5106-1/42
A® - . . .. (81)
o -310 V2 310 -1/v2
o 1 1 .

However, 1f five-declimal floating-point computation is used, the terms - V2
and ~-1/¥y2 in the second and third rows are lost, which 1s equivalent to the
loss of all the information present 1in the first row of A. This loss of
information is disastrous because the number of rows of A conteining large
elements 1= less than the number of components of x, 80 there is a substantial
dependence of the required vector on the first and fourth rowa of A.

Theorem 3 shows that Golub's algorithm would have worked well if the
numbers Gl, 02, Ga and a4 were of an acceptable size, but in the case of the
example

a = 10%2 cerneaaaeevss.(82)

which is much larger than the elements in the first row of A. Therefore the
theorem suggests, correctly, that there may be loss of accuracy. It also
shows that the difficulty would not occur if we can prevent the elements of
every row of A(k+1) from being much larger than those of the corresponding
rows of A(k); fortunately we can achieve thils aim by making some row inter-

changes.

Already from equations (10) and (20) we have the result

(k+1)
A

k
g = maxl aid)l, i<k, ceesneanss(83)

J

max |

J

and from Theorem 1 and equations (10) and (20) we deduce the inequality

max | a(k+1)’_< (V2 + 1) max i a(k)| , 1> k, ceeeee(84)
i] - 13
J J
Therefore just the kEB row of A(k+1) is critical. We ensure that it is

not much larger than the kEE row of A(k) by exploiting the following theorem:

- 16 -



Theorem 4

If the inequality

(k) (k),
’ kk rd aik iy} >k! n..-----o-(a5)
holds, then we have the bound
max‘ (k+1) | ¢ v maxl o], cereereees(86)
J
Proof Since P(k) is an orthogonal transformation that leaves the first

(k-1) components of 8 vector unchanged, we find the inequality

l (k+1) , m
4 £ 2y

ICEY ‘2 3
. 1] J

- on | a2 it

creveeee..(87)
Ze

All the components of the sum are zero if J <k, so from equations (7) and
(8) we obtain the result

' (k+1) |

kj - $ k., ternsennes (88)

From statements (8) and (85) the inequality
) |
akk II.I......(BQ)

holds, so the theorem is a consequence of statement (88).

Therefore the modification that we recommend Just provides the inequality

(85), After the columns of A( ) have been ordered for the calculation of
P(k), we obtain the largest number in the sequence i] (k)] N it; Kk cany
Ia;:)|}, say it is’ a ], and we interchange the k== and q— rows of A(k)
if q # k,

Thus in place of the matrices (80) and (81) we have

106 106
o 2

A - . ererenss.(90)
10 o




and

-10%v2 -10%/v2 -106/42\
0 2 1
A®) = 6 . e (81)
4] -10" /N2 107 /42
0 1 1

so the previous loss of accuracy is avoided.
In the modified algorithm the inequalities (83), (84) and (88) provide
the bound

e $ 1+ 42)5—1 vm max | a(l)l ’ tensvrases(82)
1 13
J
but if this bound is attained and n is large, Theorem 3 is not very useful.
Therefore we carried out some numerical experiments to eéstimate typical

values of the ratio

| (1)|
ﬂ_': max & /max 1 a ! -300-00100(93)
i [y J 1) L.

We used one hundred 20x10 matrices whose elements were

10p
= 8] T YYEERE RN
aij 1 1 qij ’ (94)
where Py and qu are pseudo-random numbers from the distribution thet 1is
uniform over [-1, 1]. We found that in all cases the value of the ratio (93)
was less than five, so it seems that the error bounds are sufficiently small
to be useful in many real calculations. However the last row of the

pathoclogical matrix

1 -0,99 —0.99 = ~-0.98 ... -0.99 -0.99

o 0.1 -0.008  -0.099 ..., =-0.099 ~0.009

0 0 0.01 -0.0099 ... ~0.0098 -0.0099

0 0 0 0.001 ... -0.00099 -0,00098

! ; | SRS : i

' i i ! ~ ' y

0 o 0 ) o™ g eaxto P
\\}O—n—lo 10—n—10 10-n—10 10—n~10 . 1o-n—10 10-n-10

n
shows that the ratio can approach the value 2 .
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The same matrices (84) were also used to try a different strategy for
column interchanges, namely to arrange the columns so that ipn place of

statement (7) we have the inequality

(8 (0012 [0 |
121: *1k k::;‘m ik

> [§ Ia(l:; PR . nax | ail;)' , 3>k, veeo(95)
1=k kgigm

but the results did not justify the extra work required to follow this
alternative. The reason we tried it is that if inequality (95) holds, and
if the recommended row interchanges are made, then in place of Theorem 1

we can derive the result

| y 00

; ! g1, R — - 1))

80 the theoretical results corresponding to inequalities (80), (73), (79)
and (92) would contain smaller numbers.

To complete this paper we must remark on the importance of the scaling
of the columns of the matrix A, The point to notice 1s that the error

bounds of Theorems 2 and 3 are moderate multiples of the numbers £ a

’
and &, 1s governed by the largest elements of the iEE row of the matiices
I(l), K(z),..., X(n+1). Therefore 1f x‘j is scaled so that for 1 =1,
2,,..,m the element aij i1s much smaller than the other elements of the LEE
row of A, then the bounds on 4, . will be rather unsatisfactory, Careful

1J
scaling of columns can avoild this happening, and before applying Golub's

algorithm the variables x, should be chosen so that the n numbers

J

max [Pidlfm;xlaikll . 3 =1,2,...,n, cesereesss(87)

are all close to one.
Remember that in a least squares problem there 18 no freedom to scale
the separate rows of A, which is the motivation for the character of our

error bounds,
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