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Abstract

We consider so-called “matrix stretching” technique that make structured unassembled
linear systems larger, but sparser. Our solution technique combines a direct factorization of
the leading block diagonal submatrix of the stretched system, with a preconditioned conjugate
gradient solution of the Schur complement system which results from the factorization of the
diagonal blocks.

We show that matrix stretching is an effective technique, particularly for ill-conditioned
systems. The Schur complement is often considerably better conditioned than the whole
system. The main challenge is to find a suitable preconditioner for this matrix. We consider
a range of preconditioners, including those proposed by Chan, and band approximations. We
also study the use of some Element-by-Element preconditioners such as EBE and the recently
introduced Subspace-by-Subspace preconditioner.

We report on experiments using structured problems and examples from the Harwell-
Boeing sparse matrix collection. We also report on some preliminary parallel experiments
that show how stretching improves the parallelisation of the linear solver.

1 Introduction

Stretching, a sparse matrix preprocessing technique that makes matrices sparser but, at the same
time, larger was first introduced by Grear (1990). He proposed two general stretching techniques,
simple row and column stretching, and studied their efficacy on the factorization of arrow-head
matrices. Alvarado (1997) showed that such techniques are an effective way of treating matrices
with dense rows or columns before forming their LDU or QR factorizations. Similar ideas have
been developed by Vanderbei (1991) and Andersen (1996) for solving the Schur complements
arising from interior point methods in the context of linear programming.

In this paper, we apply matrix stretching to the solution of a linear systems of “finite-element”
type without assembling the coefficient matrices from its “elements”. This requires that we in-
troduce extra variables to recouple the “element” blocks of the matrix. The resulting enlarged
system is a sparse “augmented system”, which can be solved using a range of direct and iterative
methods.

To be precise, we consider the solution of the symmetric system of linear equations of the form

Bx =0, (1.1)
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2 DESCRIPTION OF THE STRETCHING ALGORITHM 2

where B can be expressed as
n

B= Z;Bi, (1.2)

and where each symmetric elementary matrix B; only involves a small subset of the variables x.
We let B’ be the matrix obtained from by B; by removing its zero rows and columns. Note that
we do not assume that each B; is positive definite, merely that it is non-singular.

Linear systems of the form (1.1)—(1.2) arise when solving the Newton equations for the un-
constrained minimization of a partially separable function (Griewank and Toint, 1982a, 1982b),
and from finite-element methods for the solution of partial-differential equations (see, for instance,
Zienkiewicz, 1977).

The stretched system we obtain is an augmented system of the form

(& 5)(5)=(%) &

where B® is block diagonal and A is very sparse. The diagonal blocks of B® are the B*. The
matrix A is used to recouple the B; when they share variables. As we shall shortly show, the
required solution @ may easily recovered from 5.

The solution % to (1.3) also solves the quadratic programming problem

minimize g(z%) = 1(x%, B*z%) — (b°,@°) subject to ATz® =0,

xS cR™

(1.4)

where n; is the dimension of BS and (:,-) denotes the Euclidean inner-product (see for instance
Gill, Murray and Wright, 1981). The augmented system (1.3) or the quadratic program (1.4) may
be solved in many ways (see for instance Gill et al., 1981), and we choose the well-known Schur
complement approach. That is, we perform a block decomposition of the coefficient matrix

B® A
(5 4) "

by factorizing each of the the diagonal blocks of B®, and use the method of preconditioned
conjugate gradients (PCG) to solve the remaining linear system which results following elimination
of these leading blocks.

2 Description of the stretching algorithm

2.1 Introduction: a simple example

We consider the solution of Bx = b where B is structured as

8 1 1 xl b,

1 81 B b,

11811 zs | =1 b |. (2.6)
1 81 4 b,
11 8 s bs

Additionally, we assume that B is composed of two elements B, and B, — B, involves variables
Ty, Ty, T3, while B, involves x3, x4, 5. Thus

8 1 1
B'=|1 8 1 and B?=
1 1 4

— =
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(Such an example might arise, for instance, if the linear system is the Newton equation arising from
the unconstrained minimization of the partially separable cost function f(z) = f!(z)+ f?(x) with
fHz) = fY(z,, 25, 23) and f?(z) = f%(z3,24,75). In this case, b is the negative of the gradient
of f, B is the Hessian of f, and B" and B’ are respectively the projected Hessians of f! and f2
onto the variables used by f' and f?.) The “overlap” in this simple example only involves the
variable z3.

Since we do not want to assemble B, we expand—or stretch—the system Bz = b as follows.
Let B® be the matrix obtained by expanding B without assembling the overlapping parts, ie,

8§ 1 1
1 81
s 1 1 4
B = 4011 (2.7)
1 81
1 1 8
Our aim is to replace (2.6) by a system in which (2.7) is a submatrix. We look for a new solution
vector (z,%, -, z¢°)T, where we identify
Ty =T1°, Ty =1x°, T, =x5° and x5 = x4° (2.8)

since these unknowns do not occur in the overlap. We also require that
T3 = T3 = T,. (2.9)
In addition, if we let
25 +3° +4z3° = w; and 4z’ + z5° + x6° = A, (2.10)

then the third equation in (2.6) requires that

Wi+ Ay = bs. (2.11)
Combining (2.6)—(2.10) and eliminating w; using (2.11) then yields the symmetric augmented
system
8 1 1 2,5 by
18 1 2,5 by
11 +1 255 by
4 011 -1 5 | =] o |. (2.12)
1 81 xs55 b,
1 1 8 z6° bs
41 -1 A 0

2.2 The stretching algorithm

The general algorithm for building the required stretched system is simple. Suppose B is of order
n. We then construct a system of the form

B,® A, xS b;
BQS A2 :Eg bg
: o= (2.13)
B, A, x, b,
AT A7 ... AL 0 A 0

using the algorithm described in Algorithm 2.1.
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Algorithm 2.1: The stretching algorithm

‘Initialization of B® ‘
For each element 2 =1, --,n,
B: is the matrix B"*
‘Initialization of A and b° ‘
For each variable 1 =1,---,n

Compute list, the list of elements possessing z.
If ¢ is shared by deg(i) elements,
create (deg(z)-1) columns for each A; for j = 1,n,.
list(1) is the first element possessing 7
Let k be the row of Blsist(l) associated with variable z.
Set the (deg(¢) — 1) columns of row k of A1y to 1.
Set the corresponding value in b° to b;.
For j =2,---,deg(1)
Let k be the row of Blsist(j) associated with variable 2.
Set column 7 — 1 of row k of A, to —1
Set the corresponding value in b° to 0.

Having solved the stretched system, we simply recover x from x5, by setting @; to its value in
one of the blocks involving it. A number of comments are in order.

1. We start the stretching process for variable ¢ with the first element in which it is involved.
Other strategies may prove more effective, and further experiments are required.

2. It is easy to compute the number of variables involved in the augmented system. Let n, be
the number of variables shared by several elements, deg(7) the number of elements in which
the 7*" variable appears, and n, (i) the number of variables involved in element 7. Then the
augmented system involves n+ > :°, 2(deg(i) — 1) variables, of which Y7}, (deg(7) — 1) make

up A. The matrix A has n, </ Y™ n,(i,) rows and .72 (deg(i) — 1) columns, while B®

ie=1
is of order Y3;'_, n,(4;); A has 2 33i', (deg(7) — 1) nonzeros (two nonzeros per column).

3. If we are solving a sequence of problems of the same form (1.2), we only need to construct
A for the first such problem. For subsequent problems, we merely update the nonzeros of

b° and B®.

2.3 A further example

In Figure 2.1, we consider a 6 x 6 matrix composed of 4 elements. Here, element 1 uses variables
1, 2, 3, 4, 5 and 6, element 2 uses 2, 3 and 4, element 3 uses 3, 4, 5 and 6, and element 4 uses
variables 4 and 5.

When using the method described, we obtain the augmented system illustrated in Figure 2.2.
Here, B® is a 15 x 15 matrix composed of the 4 unassembled elements, A is a 15 x 9 matrix with
18 nonzeros, and A is a vector of 9 elements.



Figure 2.1: The initial matrix and its elements.
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Figure 2.2: The stretched system.
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3 The solution of stretched linear systems

The Schur complement method (see Haynsworth, 1968 and Axelsson, 1996) takes advantage of
the structure of the system (2.13). The method is formalized as Algorithm 3.1.

Algorithm 3.1: The Schur complement algorithm on the stretched system‘

1. Vi €1,..,n,, solve B;*z; = b;° (using the LD LT factorization from
LAPACK, see Anderson, Bai, Bischof, Demmel, Dongarra, Croz,
Greenbaum, Hammarling, McKenney and Sorensen, 1990)

2. Use the PCG method to solve SA = s, where the n, by n, Schur
complement § = 37, AT(B,*)"'A; and s = Y1, AT z;

3. Solve B;°z;% = b° + A;A (using LAPACK)

4. Yk € 1,..,n, recover z; from its value in x;°, where (e.g.) B;® is
the last element involving .

This approach offers great opportunities for parallelisation since Steps 1 and 3 can be computed
element-wise in parallel. Moreover, one hopes, in Step 2, to exploit parallelism within the PCG
iteration — conjugate gradients (CG) are chosen since we may not want to form S. We use the
LDLT factorization of the elements formed during the step 1 to compute the Schur complement.
We then obtain

S = Z A7 (B®)7'A; = Z 887, (3.14)
1=1 =1

where n, is the dimension of B® in (1.3). This decomposition proves to be useful during the
construction of all but the probing-vector preconditioner we consider in the next section. The
remaining ingredient is, of course, the choice of preconditioner.

4 Preconditioning the Schur complement

We have used a number of different preconditioners. These include
e probing-vector preconditioners — the Chan diagonal and band preconditioners,
e traditional band preconditioners, and
¢ Element-by-Element (EBE) and Subspace-by-Subspace (SBS) preconditioners.

‘We consider each in some detail.

4.1 Probing-vector preconditioners

The aim here is to estimate values of .S merely by forming products of S with appropriate vectors.
This avoids the need to explicitly form S.
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4.1.1 The Chan diagonal preconditioner

The simplest preconditioner is simply the diagonal of S. The exact diagonal A(S) could be
obtained from n, matrix-vector products with columns of the identity matrix. However, the cost
of this strategy is usually prohibitive. As an alternative, Chan and Goovaerts (1988) propose
approximating this diagonal by the product of the Schur complement with p (p < n,) so-called
probing vectors. The 7** probing vector, v;, has ones in positions 7 + kp, k = 0,1, -, and zeros
elsewhere. The resulting diagonal preconditioner M is obtained as

A(S)ii ~  (Svy); = M, ;
A(S)ispiry = (Svi)isp = Migig,
A(S)i+2p,i+2p =~ (Svi)i+2p = Mi2t2p
for 2 = 1,...,p. Any negative diagonal elements so formed are subsequently replaced by -

€, is the of the machine precision — which appears, empirically, to be a satisfactory value.

4.1.2 The Chan band preconditioner

The idea behind the Chan diagonal preconditioner is easily generalized to finding band approxim-
ations (see, for instance, Chan and Mathew, 1992). To this end, suppose S is a symmetric band
matrix. We then compute S using values obtained from the products of S with vectors {v; };c7.
Although computing the minimum number of vectors required is an NP hard problem for general
matrices (Coleman and Moré, 1984), a number of satisfactory heuristics have been proposed (see
for instance, Curtis, Powell and Reid, 1974, Powell and Toint, 1979, and Coleman and Moré,
1984). In particular, if S has a semi-bandwith of g, only 2q + 1 probing vectors are required; the
example
a1 G2
Qg1 A2z QG23
Q32 Q33  (A3q
Q43 Q44 Qg5
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shows how this is achieved for tridiagonal matrices.

We shall denote the matrix computed by this strategy as P(S,q). Since, our matrix S is
generally not a band matrix, we only get an approximation of the band of S. This approximation
may only be useful if S is diagonal dominant, but the approximation generally improves as ¢ is
increases. As the matrix we require is also is symmetric, we need to symmetrize P(S,q). Several
strategies have been proposed for imposing symmetry of the computed approximation (see Chan
and Mathew, 1992 for an exhaustive list). That by Keyes and Gropp (1987, 1989) requires only
q + 1 probing vectors. However, we prefer to use the alternative

Psy'rn(s7 q)’Lj =

P(8,q)i; it |P(S, q)i;| = min{|P(S,q);, |P(S,q);l},

P(S,q);: if |[P(S, q);i| = min{|P(S, q);;1, [P(S, q);i}-
where P(S, q) is still the initial version described above. Although this strategy may require more
probing vectors, it has the advantage of preserving the diagonal dominance of S. Once, we have
calculated this approximation to the band of S, we use the LDLT (modified) band factorization
method from the LANCELOT package (see Conn, Gould and Toint, 1992) to form its factors.
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4.2 Traditional band preconditioners

We might equally assemble a band submatrix of the Schur complement, and factorize it using the
LANCELOT band factorization. Unlike the probing vector preconditioners, the band submatrix
computed in this way is the exact band restriction of the Schur complement S.

4.3 Element-by-Element preconditioners

We can construct the elements of the Schur complement as the sum )<, S; where S; = ATB'A,;
and then form an EBE preconditioner based upon the unassembled structure of the Schur com-
plement. Alternatively, we can use the decomposition

S=3"85,=Y ss?, (4.15)
=1 =1

where the s;sT are rank-one contributions to the elements S;.

Element-By-Element (EBE) preconditioners were introduced by Hughes, Levit and Winget
(1983) and Ortiz, Pinsky and Taylor (1983) and have been successfully applied in a number of
applications in engineering and physics (see, for example, Hughes, Ferencz and Hallquits, 1987,
and Erhel, Traynard and Vidrascu, 1991), and in the solution of partially separable linear systems
(see Daydé, L’Excellent and Gould, 1997b). A detailed analysis of this technique for certain
problems arising from partial-differential equations is given by Wathen (1989).

Let A(S) and A(S;) be the diagonal parts of S and S; respectively. Then we obtain the EBE

preconditioner

Te n 1

Pgor = A(S)'? {HLiHDi H L?}A(S)l/zy
1=1 1=1 1=n,
where L; and D; are the LDLT factors of the Winget terms

4.4 Subspace-by-Subspace preconditioners

More recently, Daydé, Décamps and Gould (1997a) have introduced a class of so-called Subspace-
by-Subspace (SBS) preconditioners. These techniques consist of regrouping the rank-one terms in
(4.15), and forming and applying a QR factorization of the each of the resulting low-rank matrices.
If we use the decomposition of the Schur complement into n;, rank-one terms as indicated by (3.14),
we may rewrite S as

S = A(S)Y? (I + i E) A(S)H2, (4.16)

where EL = Wz_I7 Wz = D.L+hzhr;r, DL = I—A(S)il/zA(SiS;-T)A(S)il/27 and hz = A(S)71/2Si_
If, instead, we group together the rank-one terms into r,, sets, we obtain

S = A(S)Y/? (I+ ZEj) A(S)1/? (4.17)
j=1

where E; = W; — I, W, = D; -|—PI]-I{;‘~F7 H; = [hj,...,h; ] and D; = I — A(S)~'/?

Yin [A(s;sT)]A(S)"1/2. Replacing the summation in (4.17) by a product, an approximation

S
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of S is
P, =A(S) 2 [[W;A(8)2
j=1

To use this as a preconditioner, we merely need to be able to invert the matrices W ;. To this
end, we can use the factorization of the diagonal matrix D, to obtain

w, =D;*{1+C;CT} D",

where C; = Dj_l/zI-Ij. Thus we must factorize matrices — omitting the indices — of the form
I+ CC", where I is a n, x n, matrix and C a n, x | matrix (n, is the dimension of the Schur
complement S, while [ is the number of rank-one terms grouped together). One approach is to
assemble the whole n, by n, matrix and use a LDL7T factorization — this is essentially what the
EBE methods mentioned earlier do. However, since this ignores the inherent structure, we might
instead use the QR factorization of the rank-l matrix

C':Q(l:), where Q:(Y Z),

Q@ and R are, respectively, n, X n, orthonormal and k X k triangular matrices, and Y is the leading
n, X k submatrix of . We then have that

ro Lo\ r.(L" 0\, r T
I1+CC _Q<0IQQ OIQ—MM
where LL" =T+ RR" and
_ L o T
M=Q ( 0o I ) Q
Using the orthonormality of the columns of @, it immediately follows that the action of the inverses
of the matrices M and M” on the vector v can be expressed as

1 L T L™ Y”
e = o9 )en-(r 2)(4 ) (%)

= (I+ Y(L_1 — I)YT) v and
My = (I+Y(L"-DY")ov.

As (I+CC*)"' = M~TM ™', there is no need to assemble the matrix M to solve M 'v. A
possible preconditioner is then

P, = A8 ][ [DY*M;M]D}?| A(S)?

j=1
but, to preserve symmetry, we prefer the Subspace-by-Subspace preconditioner

Pgps = A(S)Y? H [Di*M;]

1
j=1 J=7n

[MID}?] AS), (4.18)
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which results from a simple reordering of the product in P;.

To find M ‘v and M Tv, it is sufficient to compute the Y part of Q in the QR factorization
of C. Thus we use a QR factorization based on the modified Gram-Schmidt algorithm (see
for instance Golub and Loan, 1989), rather than a factorization based on Givens rotations or
Householder transformations.

A simple calculation shows that the QR factorization is less expensive than assembling the
total matrix I + CCT and using a LDLT factorization so long as k is less than (v/5 — 2) x n,.

5 Experiments with matrix stretching

In this section, we investigate whether matrix stretching is an effective means of solving systems of
the form (1.1)—(1.2). We first consider an artificial problem, which allows us to investigate isolate
different aspects of the technique. We then consider its effect on practical problems.

5.1 Experiments on structured matrices with specified values

We experiment on block diagonal matrices with overlapping between two consecutive blocks. The
blocks are constructed using random values so that each block has eigenvalues between 107!
and 10°. The percentage of overlap (number of variables shared by two elements over the total
number of variables) is set to 10%, 20%, and 30%. Characteristics of the test examples are given
in Table 5.1.

10% overlap 20% overlap 30% overlap

n. || 10| 50 | 100 || 10 | 50 | 100 || 10 | 50 | 100
n || 91 | 451 | 901 || 82 | 402 | 802 || 73 | 353 | 703
ng | 9| 49 | 99 || 18 | 98 | 198 || 27 | 147 | 297

Table 5.1: Test problem characteristics. Key: n, is the number of elements used, and n, the
number of variables of the initial problem, n, the number of variables in the Schur complement.

We compare the following methods:
1. CG on the initial system without preconditioning (cg none);
2. the same method with a diagonal preconditioner (cg diag);
3. the Schur complement method on the stretched system (Schur none); and
4. the Schur complement method with the Chan diagonal preconditioner (Schur diag).

The CG and its preconditioners are available with the PAREBE package (Daydé, L’Excellent and
Gould, 1997¢). The stopping criteria for all the methods is chosen so that |B  — b|| < 10~ ||b]|.
For our experiments, the number of probing vectors used with the Chan diagonal preconditioner
is 10% of the dimension of the Schur complement.

We give our results In Table 5.2. We report the number of iterations, the CPU time, the
residual error (||Bx — b||./||B||«||bl|~), and the component-wise error (max;_;, |&; — x;|/|%;]
where & is the theoretical solution and & the computed one).

The time and number of iterations of the CG method increase as the number of elements
increases. This is less the case when using the Schur complement method with and without
preconditioning. The residual and component-wise errors are slightly better in the case of the CG
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10% of overlap
N, Method #its | Time (s) | Residual CW error
10 CG NONE 237 1.00 0.8 x 1071° | 0.7 x 10~
Schur NONE 11 0.05 0.2x107° | 0.3 x 107"
CG DIAG 225 0.69 0.1 x107° | 0.7 x10°¢
Schur Chan 18 0.08 0.1x10°% | 0.5x10°*
50 CG NONE 602 9.00 0.6x 107 | 0.3x10°°
Schur NONE | 175 2.10 0.1 x10° | 0.4x107*
CG DIAG 561 8.50 0.4x107° | 0.1 x10°
Schur Chan 19 0.37 0.8x 1077 | 0.2x10°°
100 | CG NONE 696 21.0 0.5x107% | 0.2x10°®
Schur NONE | 472 11.0 0.3 x107% | 0.5 x107*
CG DIAG 687 21.0 0.4x107° | 0.3x10°°
Schur Chan 22 0.93 0.5x107% | 0.5 x10°°
20% of overlap
10 CG NONE 215 0.63 0.8 x1071° | 0.1 x 107°
Schur NONE 24 0.09 0.3x10°7 | 0.8 x 10~
CG DIAG 188 0.58 0.1x107° | 0.9x 10"
Schur Chan 30 0.12 0.3x 10713 | 0.6 x10°12
50 CG NONE 530 7.70 0.6x107° | 0.4x10°
Schur NONE | 582 7.20 0.2x107% | 0.7x 1073
CG DIAG 481 7.10 0.3x 107 | 0.8 x10°
Schur Chan 42 0.73 0.3x10°% | 0.6 x10~*
100 | CG NONE 602 16.0 0.3x107° | 0.5 x 10
Schur NONE | 1464 36.0 0.5x10°% | 0.7x10°*
CG DIAG 517 15.0 0.4x107° | 0.9x10°°
Schur Chan 53 1.90 0.2x107% | 0.3 x107*
30% of overlap
10 CG NONE 179 0.56 0.1 x107° | 0.5x 1076
Schur NONE 50 0.14 0.6x10°% | 0.6 x10°°
CG DIAG 153 0.44 0.1x107° | 0.1x10°°
Schur Chan 32 0.13 0.2x107% | 0.4x 107"
50 CG NONE 428 5.70 0.3x107° | 0.3x10°
Schur NONE | 1146 16.0 0.2x10°°% | 0.8 x10°*
CG DIAG 324 4.30 0.3x10°% | 0.3x10°°
Schur Chan 69 1.20 0.4x10°% | 0.1 x 103
100 CG NONE 499 13.0 0.4x 107 | 0.7x10°
Schur NONE | 3384 90.0 0.2x107°% | 0.3x 1073
CG DIAG 401 11.0 0.4x107° | 0.4x10°°
Schur Chan 75 2.80 0.1x107% | 0.1 x 1073

11

Table 5.2: Number of iterations, execution time, residual, and component-wise error of CG applied
to the initial system and on the stretched system relatively to the number of elements and the

degree of overlap.
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method. As the percentage of overlap increases to 30%, the execution times for the preconditioned
Schur complement method and PCG applied to the initial system are very similar, while the
Schur complement approach without preconditioning performs poorly. As one might expect, as
the percentage of overlap increases, the Schur complement approach becomes less and less effective
because of its increased size.

5.1.1 Preliminary parallel experiments

In Table 5.3, we study the parallel potential of the stretching method on our artificial examples
without preconditioning. We give the execution time in seconds for solving the problem with
n. equal to 10 using one processor (1 Proc) and eight processors (8 Proc) of an Alliant FX/80.
The cg none method is parallelised using a coloring algorithm (see Daydé et al. (1997¢)). The
speed-ups achieved using matrix stretching are almost double that achieved by CG on the initial
system, and are close to 6 on the 8 processors of the ALLIANT FX/80, a very good result for
such a computer. This clearly demonstrates the potential for parallelisation of matrix stretching
techniques.

Execution time (s)

Solver Percent. Over. | 1 Proc | 8 Proc | Speed Up
cg none 10 % 17.0 5.4 3.2
on 20 % 14.0 4.1 3.4
initial system 30 % 11.0 3.1 3.5
Schur none 10 % 2.6 0.5 5.7
on 20 % 5.8 1.0 5.9
stretched system 30 % 8.2 1.4 5.9

Table 5.3: Preliminary parallel experiments on the Alliant FX/80.

5.2 Experiments on matrices from the Harwell-Boeing collection
5.2.1 Description of the test problems

We have also experimented on some of the unassembled matrices available from the Harwell-Boeing
collection (see Duff, Grimes and Lewis, 1989, 1992). Since only the structure of these problems is
available, the numerical values of the elemental matrices have been set to random values, in the
same way as in the previous section.

We have generated, for the three structures CEGB2802, LOCK3491, and MAN5976, four test prob-
lems with increasing condition numbers. These problems are termed CEGB2802-1, CEGB2802-2,
CEGB2802-3, and CEGB2802-4 for CEGB2802, and similarly for the other problems.

In order to have an efficient Schur complement method, the size of the Schur complement
should ideally be much smaller than the size of the initial problem. For this reason, we have
used element amalgamation in our test problems. This is achieved with the merge algorithm
introduced by Daydé et al. (1997b, 1997¢). In this algorithm, elements are amalgamated until a
certain threshold is reached. The lower the threshold, the smaller is the Schur complement, as we
illustrate in Figure 5.3 for our three classes of test problems. For our experiments, the threshold
used by the amalgamation algorithm is —10°.

The characteristics of the problems used in our tests are given in Table 5.4.
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Evolution of %Ts with respect to the merging thresold
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Figure 5.3: Size of the Schur complement with respect to the amalgamation threshold on the test
problems (expressed as 100n,/n).

Problem n n. | min | maz | aver K n, | %T, Kg

CEGB2802-1 | 2694 | 12 | 267 | 432 | 290.3 | 2.1 x 10?2 | 789 | 29.3 | 9.4 x 10?
CEGB2802-2 | 2694 | 12 | 267 | 432 | 290.3 | 1.1 x 10* | 789 | 29.3 | 2.7 x 10°
CEGB2802-3 | 2694 | 12 | 267 | 432 | 290.3 | 5.2 x 10° | 789 | 29.3 | 8.6 x 10*
CEGB2802-4 | 2694 | 12 | 267 | 432 | 290.3 | 2.3 x 10" | 789 | 29.3 | 3.4 x 10°
LOCK3491-1 | 3416 | 11 | 281 | 468 | 377.1 | 3.8 x 102 | 732 | 21.4 | 1.2 x 10?
LOCK3491-2 | 3416 | 11 | 281 | 468 | 377.1 | 1.2 x 10* | 732 | 21.4 | 1.2 x 10®
LOCK3491-3 | 3416 | 11 | 281 | 468 | 377.1 | 4.3 x 10° | 732 | 21.4 | 5.4 x 10*
LOCK3491-4 | 3416 | 11 | 281 | 468 | 377.1 | 1.5 x 10" | 732 | 21.4 | 1.3 x 10°
MAN5976-1 | 5882 | 22 | 226 | 445 | 331.7 | 1.7 x 10%? | 1416 | 24.1 | 8.0 x 10!
MAN5976-2 | 5882 | 22 | 226 | 445 | 331.7 | 8.8 x 103 | 1416 | 24.1 | 1.9 x 103
MAN5976-3 | 5882 | 22 | 226 | 445 | 331.7 | 4.6 x 10° | 1416 | 24.1 | 5.7 x 10*
MAN5976-4 | 5882 | 22 | 226 | 445 | 331.7 | 1.8 x 107 | 1416 | 24.1 | 1.9 x 10°

Table 5.4: Characteristics of the test problems. Key: n is the number of variables used in the
initial problem; n, is the number of blocks in the initial system; min, maz and aver are respectivly
the minimum, maximum and average size of the blocks in the initial system; x is the condition
number of the problems; n, is the number of variables used for the Schur complement; %T; is the
percentage 100 n, / n; and kg is the condition number of the Schur complement
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5.2.2 Numerical experiments

We compare the following solution techniques:
e Solution of the initial system Ba = b:

CG Diag — PCG with a diagonal preconditioner, and
CG EBE — PCG with the Element-by-Element preconditioner EBE.

e Solution of the stretched system (1.3):

NONE — unpreconditioned CG applied to SA = s,

CHANd — PCG with the Chan diagonal preconditioner applied to SA = s,
CHAND — PCG with the CHAN band preconditioner applied to SA = s,
EBE — PCG with an EBE preconditioner applied to SA = s,

SBS — PCG with a Subspace-by-Subspace preconditioner applied to SA = s,
Band — PCG with a band preconditioner applied to SA = s, and

Dir — a direct solver applied to SA = s.

When solving the initial system (1.1) by an iterative method, we stop as soon as
[Bx — b < 107° ||b]|;

when we solve the stretched system (1.3) using Algorithm 3.1, Step 2 is terminated as soon as
ISA = sll <107 [|s]|.

In our experiments, the number of probing vectors used for the Chan diagonal preconditioner is
0.1n,, and the semi-bandwidth of the approximation of the Schur complement for the Chan band
preconditioner is 0.2n,. For the band preconditioner, we report results using a matrix of semi-
bandwidth of 0.2n,, while the number of rank-one terms regrouped in the Subspace-by-Subspace
preconditioner is also 0.2n,. Other values were tried for the various preconditioners but those
reported here achieved the best compromise over all the problems considered in our experiments.

In the Tables 5.5, 5.6, and 5.7, we report the results of the tests performed on our test set.
Ttotal gives the total time required to solve the linear system, T'conv gives the time to solve the
system involving the Schur complement, Tcons is the construction time for the Schur complement
preconditioner and Iter gives the number of iterations required to solve the Schur complement
system. The experiments were performed on a SUN workstation with a 125 MHZ HyperSPARC
processor.

We make the following observations. Firstly, solving the systems using CG without precon-
ditioning is the least effective method of all. Unfortunately, the Chan diagonal preconditioner
also appears to be both rather costly and ineffective for these general matrices. Its banded sister
is rather more effective, but is in general even more costly. The Band 20% method performs a
comparable number of iterations, but is slightly cheaper than the Chan variant.

Secondly, the EBE preconditioner appears to be reliable and efficient with all our test problems,
for both the initial and stretched systems. However, the cost of constructing the preconditioner
may be high, the method only pays off overall for the more ill conditioned problems. (Daydé et al.
1997b) observed a similar behaviour under more general circumstances. The main drawback when
using this preconditioner on the Schur complement is that its memory requirements are sometimes
prohibitive, since it is necessary to compute the unassembled structure of the Schur complement
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CEGB2802, Threshold = -1e-5, n = 2694, ny, = 789
System Preconditioner CEGB2802-1 CEGB2802-2 | CEGB2802-3 | CEGB2802-4
Stretched Ttotal 17.5 66.4 282.4 609.6
NONE Tconv 14.3 63.3 279.3 606.5
Tcons 0.0 0.0 0.0 0.0
Iter 92 408 1822 3945*
Ttotal 23.0 40.5 91.7 169.2
CHANd Tconv 9.2 26.5 76.8 165.2
Tcons 10.7 10.8 11.4 10.9
Tter 59 169 446 969
Ttotal 41.3 42.6 47.0 134.0
CHANbD Tconv 0.9 1.6 2.4 92.3
20% Tcons 37.1 37.8 40.9 38.5
Iter 4 7 11 448
Ttotal 10.9 13.4 17.5 21.0
EBE Tconv 2.7 4.8 8.1 12.1
Tcons 0.5 0.5 0.5 0.5
Iter 14 24 38 62
Ttotal 17.0 20.6 28.5 39.9
SBS Tconv 5.5 8.9 16.0 28.0
20% Tcons 4.8 4.8 5.0 4.9
Iter 14 24 40 76
Ttotal 13.2 13.4 14.8 107.6
Band Tconv 1.0 1.3 1.6 94.7
20% Tcons 5.2 5.3 5.6 5.6
Iter 4 6 7 451
Ttotal 24.7 24.9 24.6 23.7
Dir Tfact 6.2 6.5 6.3 6.4
Tcons 15.3 15.3 15.1 14.2
Iter 1 1 1 1
Initial CcG Ttotal 5.5 25.3 132.9 668.3
Diag Tter 47 234 1245 6150
CG Ttotal 6.6 15.7 58.1 241.7
EBE Iter 13 48 211 915

Table 5.5: A comparison of the preconditioners on variants of CEGB2802.

from the rank-one contribution terms. An extreme example is when one element involves all the
variables, as then the EBE method will require more memory than a direct solver.

When this occurs a Subspace-by-Subspace preconditioner may be particularly appropriate
since its storage requirements will then be significantly lower. It is very close to EBE in terms
of the number of iterations required for convergence, but, for the examples here, rather more
expensive to use. We do not report here variations in the number of rank-one terms, n,, which are
grouped together for SBS — n,, is fixed to 0.2n, in table 5.7. Empirically, this value has proved to
be generally effective, but for MAN5976, the construction time crucially depends on n,, and a value
of n, = 0.05n, proves to be better for the three first condition numbers (Ttotal decreases from
178.2 to 34.6 seconds for the problem MAN5976-1 with n, = 0.05n,). Since this preconditioner has
only recently been proposed, it is clear that further experimentation is needed really to assess its
effectiveness. For the cases considered here EBE appears to have an edge on SBS.

Thirdly, it is clear here that the direct factorization of the Schur complement is a very appealing
alternative when it is feasible. In our experiments it is often the best option, but EBE proves to
be almost as competitive. We would not expect that, for larger problems, the method will not
be as attractive, as the Schur complement, while having considerable hidden structure, is quite
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LOCK3491, Thres = -1e-5, n = 3416, ny; = 732
System Preconditioner LOCK3491-1 LOCK3491-2 | LOCK3491-3 | LOCK3491-4
Stretched Ttotal 27.1 74.0 204.6 582.0
NONE Tconv 22.7 69.6 200.2 577.1
Tcons 0.0 0.0 0.0 0.0
Iter 91 280 806 2105
Ttotal 30.5 46.5 104.3 351.9
CHANd Tconv 11.4 26.2 83.8 331.4
Tcons 14.6 15.6 15.9 15.7
Iter 43 97 314 1287
Ttotal 57.5 64.2 98.9 125.0
CHANbD Tconv 2.2 4.5 41.1 69.5
20% Tcons 50.8 55.1 53.0 51.0
Iter 7 14 133 232
Ttotal 16.1 20.4 24.5 31.6
EBE Tconv 4.1 7.5 12.0 19.9
Tcons 0.5 0.5 0.5 0.5
Iter 14 24 40 65
Ttotal 24.3 33.2 40.0 56.5
SBS Tconv 7.1 14.0 22.5 39.7
20% Tcons 7.0 7.9 7.0 6.7
Iter 14 25 43 80
Ttotal 18.5 20.9 57.4 86.5
Band Tconv 2.2 3.8 40.1 69.0
20% Tcons 6.2 6.3 6.4 6.2
Iter 7 12 133 229
Ttotal 29.8 29.8 29.9 31.9
Dir Tfact 5.0 5.0 5.1 5.4
Tcons 20.4 20.4 20.5 22.0
Iter 1 1 1 1
Initial CcG Ttotal 6.7 26.3 92.4 270.2
Diag Tter 40 161 569 1678
CG Ttotal 8.7 13.6 23.0 40.8
Ebe Iter 11 23 47 92

Table 5.6: A comparison of the preconditioners on variants of LOCK3491.

often dense. The limitation of these “direct” preconditioners lies in the fact that they do not take
advantage of the structure of the Schur complement.

Finally, from a numerical point of view, the matrix stretching approach is highly interesting
because of the observation we made in Table 5.4 that the Schur complement is, for the examples
we considered, always better conditioned than the initial matrix. We noted that by amalgamating
more and more of the elements from the problems CEGB2802 and LOCK3491, the condition number
of the Schur complement also improved. Once the condition number of the initial problem is large
enough, matrix stretching appears to be more efficient than directly attacking the initial system.

6 Conclusions

In this paper, we have demonstrated the advantages of using a block stretching method in com-
bination with a Schur complement solution approach. Such a method can be applied on the
symmetric unassembled matrices arising from finite element problems or from partially separable
optimization. The main benefit of matrix stretching appears to be that on ill-conditioned systems,
the condition number of the Schur complement is lower than that of the initial system, and thus
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MAN5976, Thres = -1le-5, n = 5882, n, = 1416
System Preconditioner MAN5976-1 | MAN5976-2 | MAN5976-3 | MANH976-4
Stretched Ttotal 38.2 135.6 501.6 1695.8
NONE Tconv 32.7 130.1 496.1 1690.2
Tcons 0.0 0.0 0.0 0.0
Iter 84 337 1287 4368
Ttotal 72.6 121.7 264.5 1177.3
CHANd Tconv 24.5 74.3 217.1 1132.0
Tcons 42.1 41.5 41.5 39.7
Tter 59 181 543 2913
Ttotal 174.5 179.7 293.6 480.4
CHAND Tconv 3.7 9.6 125.0 314.0
20% Tcons 165.0 164.3 162.7 160.9
Iter 6 17 231 588
Ttotal 25.4 33.3 49.4 80.6
EBE Tconv 8.3 16.7 32.8 63.9
Tcons 0.9 0.8 0.9 0.8
Tter 17 36 73 136
Ttotal 178.2 181.4 212.7 279.1
SBS Tconv 19.7 38.9 80.8 112.2
20% Tcons 143.9 127.6 118.0 152.7
Iter 17 38 83 161
Ttotal 40.0 42.6 45.2 368.9
Band Tconv 3.7 5.9 9.5 331.0
20% Tcons 22.2 224 21.7 22.8
Iter 6 10 17 573
Ttotal 67.6 67.6 68.2 71.6
Dir Tfact 31.6 31.7 32.3 34.4
Tcons 304 30.5 30.4 31.6
Iter 1 1 1 1
Initial CG Ttotal 12.2 51.0 196.4 632.0
Diag Iter 44 187 720 2482
CG Ttotal 14.3 28.1 59.8 124.6
EBE Tter 13 36 86 190

Table 5.7: A comparison of the preconditioners on variants of MAN5976.

less sophisticated preconditioned may be required. The other main benefit of matrix stretching
is obviously its potential for parallelisation, since the diagonal blocks within the stretched system
can be factorized independently. The challenge is to make sure that the iterative solution step
on the Schur complement is also effectively parallelised, and EBE and SBS preconditioners seem
ideal in this respect.

Naturally, we do not expect such an approach to be efficient on all kinds of partially separable
linear systems, but believe that we have demonstrated that, at least in some cases, there is
considerable benefit to be gained from stretching. Amalgamation algorithms such as the ones
described in (Daydé et al. 1997b) are of great importance since they may provide a decrease in
size of the Schur complement. The most difficult problem is still to identify efficient preconditioners
for the Schur complement. The Element-by-Element preconditioners, particularly the Subspace-
by-Subspace one, offers some opportunity of taking advantage of the hidden structures within the
Schur complement.

Further experiments on real problems from the Harwell-Boeing collection and from the CUTE
collection of optimization problems (see Conn et al., 1992 and Bongartz, Conn, Gould and Toint,
1993) are currently being performed.
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