
Coarrays in Fortran 2008

John Reid, ISO Fortran Convener,
JKR Associates and

Rutherford Appleton Laboratory

The technical content of Fortran 2008 was
decided at the meeting in November 2008.
It is now in Final CD ballot.

Coarrays remain the major extension from
Fortran 2003, but there have been
considerable changes since the first PGAS
conference in 2005.

The aim of this talk is provide a fresh
overview of all the features.

PGAS 2009,
Washington,

7 October 2009.

Design objectives

Coarrays are the brain-child of Bob Numrich
(Minnesota Supercomputing Institute, formerly
Cray).

The original design objectives were for

A simple extension to Fortran

Small demands on the implementors

Retain optimization between synchronizations

Make remote references apparent

Provide scope for optimization of
communication

A subset has been implemented by Cray for some
ten years.

Coarrays have recently been added to the g95
compiler.

2

Summary of coarray model

SPMD – Single Program, Multiple Data

Replicated to a number of images (probably as
executables)

Number of images fixed during execution

Each image has its own set of variables

Coarrays are like ordinary variables but have
second set of subscripts in [] for access
between images

Images mostly execute asynchronously

Synchronization: sync all, sync images,
sync memory, lock, unlock, allocate,
deallocate, critical construct

Intrinsics: this_image, num_images,
image_index, atomic_define, atomic_ref

Full summary: WG5 N1787 (Google WG5)

3

Examples of coarray syntax

real :: r[*], s[0:*] ! Scalar coarrays
real :: x(n)[*] ! Array coarray
type(u) :: u2(m,n)[np,*]
! Coarrays always have assumed
! cosize (equal to number of images)

real :: t ! Local
integer p, q, index(n) ! variables

:
t = s[p]
x(:) = x(:)[p]
! Reference without [] is to local part
x(:)[p] = x(:)
u2(i,j)%b(:) = u2(i,j)[p,q]%b(:)

4

Implementation model

Usually, each image resides on one processor.

However, several images may share a processor
(e.g. for debugging) and one image may execute
on a cluster (e.g. with OpenMP).

A coarray has the same set of bounds on all
images, so the compiler may arrange that it
occupies the same set of addresses within each
image (known as symmetric memory).

On a shared-memory machine, a coarray might be
implemented as a single large array.

On any machine, a coarray may be implemented
so that each image can calculate the memory
address of an element on another image.

5

Synchronization

With a few exceptions, the images execute
asynchronously. If syncs are needed, the user
supplies them explicitly.

Barrier on all images
sync all

Wait for others
sync images(image-set)

Limit execution to one image at a time
critical

:
end critical

Limit execution in a more flexible way
lock(lock_var[6])

p[6] = p[6] + 1
unlock(lock_var[6])

These are known as image control statements.

6

The sync images statement

Ex 1: make other images to wait for image 1:
if (this_image() == 1) then

! Set up coarray data for other images
sync images(*)

else
sync images(1)
! Use the data set up by image 1

end if

Ex 2: impose the fixed order 1, 2, ... on images:
me = this_image()
ne = num_images()
if(me==1) then

p = 1
else

sync images(me-1)
p = p[me-1] + 1

end if
if(me<ne) sync images(me+1)

7

Execution segments

On an image, the sequence of statements
executed before the first image control statement
or between two of them is known as a segment.

For example, this code reads data on image 1 and
broadcasts them.
real :: p[*]

: ! Segment 1
sync all
if (this_image()==1) then ! Segment 2

read (*,*) p ! :
do i = 2, num_images() ! :

p[i] = p ! :
end do ! :

end if ! Segment 2
sync all

: ! Segment 3

8

Execution segments (cont)

Here we show three segments.

On any image, these are executed in order,
Segment 1, Segment 2, Segment 3.

The sync all statements ensure that Segment 1
on any image precedes Segment 2 on any other
image and similarly for Segments 2 and 3.

However, two segments 1 on different images are
unordered.

Overall, we have a partial ordering.

Important rule: if a non-atomic variable is
defined in a segment, it must not be referenced,
defined, or become undefined in a another
segment unless the segments are ordered.

9

Atomic subroutines

call atomic_define(atom[p],value)
call atomic_ref(value,atom[p])

The effect of executing an atomic subroutine is as
if the action occurs instantaneously, and thus does
not overlap with other atomic actions that might
occur asynchronously.

It acts on a scalar variable of type
integer(atomic_int_kind) or
logical(atomic_logical_kind).

The kinds are defined in an intrinsic module.

The variable must be a coarray or a coindexed
object.

10

Spin-wait loop

Atomics allow the spin-wait loop, e.g.
use, intrinsic :: iso_fortran_env
logical(atomic_logical_kind) :: &

locked[*]=.true.
logical :: val
integer :: iam, p, q

:
iam = this_image()
if (iam == p) then

sync memory
call atomic_define(locked[q],.false.)

else if (iam == q) then
val = .true.
do while (val)

call atomic_ref(val,locked)
end do
sync memory

end if

Here, segment 1 on p and segment 2 on q are
unordered but locked is atomic so it is OK.
Image q will emerge from its spin when it sees
that locked has become false.

11

Dynamic coarrays

Only dynamic form: the allocatable coarray.
real, allocatable :: a(:)[:], s[:,:]

:
allocate (a(n)[*], s[-1:p,0:*])

All images synchronize at an allocate or
deallocate statement so that they can all
perform their allocations and deallocations in the
same order. The bounds, cobounds, and length
parameters must not vary between images.

An allocatable coarray may be a component of a
structure provided the structure and all its
ancestors are scalars that are neither pointers nor
coarrays.

A coarray is not allowed to be a pointer.

12

Non-coarray dummy arguments

A coarray may be associated as an actual
argument with a non-coarray dummy argument
(nothing special about this).

A coindexed object (with square brackets) may be
associated as an actual argument with a non-
corray dummy argument. Copy-in copy-out is to
be expected.

These properties are very important for using
existing code.

13

Coarray dummy arguments

A dummy argument may be a coarray. It may be
of explicit shape, assumed size, assumed shape,
or allocatable:
subroutine subr(n,w,x,y,z)

integer :: n
real :: w(n)[n,*] ! Explicit shape
real :: x(n,*)[*] ! Assumed size
real :: y(:,:)[*] ! Assumed shape
real, allocatable :: z(:)[:,:]

Where the bounds or cobounds are declared, there
is no requirement for consistency between
images. The local values are used to interpret a
remote reference. Different images may be
working independently.

There are rules to ensure that copy-in copy-out of
a coarray is never needed.

14

Coarrays and SAVE

Unless allocatable or a dummy argument, a
coarray must be given the SAVE attribute.

This is to avoid the need for synchronization
when coarrays go out of scope on return from a
procedure.

Similarly, automatic-array coarrays
subroutine subr (n)

integer :: n
real :: w(n)[*]

and array-valued functions
function fun (n)

integer :: n
real :: fun(n)[*]

are not permitted, since they would require
automatic synchronization, which would be
awkward.

15

Structure components

A coarray may be of a derived type with
allocatable or pointer components.

Pointers must have targets in their own image:

q => z[i]%p ! Not allowed
allocate(z[i]%p) ! Not allowed

Provides a simple but powerful mechanism for
cases where the size varies from image to image,
avoiding loss of optimization.

16

Program termination

The aim is for an image that terminates normally
(stop or end program), to remain active so that
its data is available to other executing images,
while an error condition leads to early termination
of all images.

Termination is normal or error and occurs in
three steps: initiation, synchronization, and
completion. Each image completes the kind of
termination that it initiates.

Data on an image terminating normally is
available to others until they all reach the
synchronization.

If an image hits an error condition or executes
all stop, it and all other images that have not
initiated termination initiate error termination.

17

Input/output

Default input (*) is available on image 1 only.

Default output (*) and error output are available
on every image. The files are separate, but their
records will be merged into a single stream or one
for the output files and one for the error files.

To order the writes from different images, need
synchronization and the flush statement.

The open statement connects a file to a unit on
the executing image only.

Whether a named file on one image is the same
as a file with the same name on another image is
processor dependent.

A named file must not be connected on more than
one image.

18

Optimization

Most of the time, the compiler can optimize as if
the image is on its own, using its temporary
storage such as cache, registers, etc.

There is no coherency requirement while
unordered segments are executing. The
programmer is required to follow the rules.

The compiler also has scope to optimize
communication.

19

Recent changes

Locks have been added.

Atomics have been added.

Concept of ‘segments’ has been added.

Careful consideration given to termination.

While a ‘core’ set remains in Fortran 2008, the
following features have moved into a separate
Technical Report on ‘Enhanced Parallel
Computing Facilities’:
1. The collective intrinsic subroutines.
2. Teams and features that require teams.
3. The notify and query statements.
4. File connected on more than one image,

unless default output or default error.

20

A comparison with MPI

A colleague (Ashby, 2008) recently converted
most of a large code, SBLI, a finite-difference
formulation of Direct Numerical Simulation
(DNS) of turbulance, from MPI to coarrays using
a small Cray X1E (64 processors).

Since MPI and coarrays can be mixed, he was
able to do this gradually, and he left the solution
writing and the restart facilites in MPI.

Most of the time was taken in halo exchanges and
the code parallelizes well with this number of
processors. The speeds were very similar.

The code clarity (and maintainability) was much
improved. The code for halo exchanges,
excluding comments, was reduced from 176 lines
to 105 and the code to broadcast global
parameters from 230 to 117.

21

Advantages of coarrays

Easy to write code – the compiler looks
after the communication

References to local data are obvious as
such.

Easy to maintain code – more concise than
MPI and easy to see what is happening

Integrated with Fortran – type checking,
type conversion on assignment, ...

The compiler can optimize communication

Local optimizations still available

Does not make severe demands on the
compiler, e.g. for coherency.

22

References

Ashby, J.V. and Reid, J.K (2008). Migrating a
scientific application from MPI to coarrays. CUG
2008 Proceedings. RAL-TR-2008-015, see
http://www.numerical.rl.ac.uk/

reports/reports.shtml

Reid, John (2008). Coarrays in the next Fortran
Standard. ISO/IEC/JTC1/SC22/ WG5 N1787, see
ftp://ftp.nag.co.uk/sc22wg5/N1751-N1800

WG5(2008). Final CD revision of the Fortran
Standard. ISO/IEC/JTC1/SC22/ WG5 N1787, see
ftp://ftp.nag.co.uk/sc22wg5/N1751-N1800

23

