

PDE-constrained optimisation: why is it so challenging and some methods to overcome these challenges

Sue Thorne (née Dollar) STFC Rutherford Appleton Laboratory

Uppsala, May 2010 - p.1/21

In collaboration with

- Nick Gould (STFC Rutherford Appleton Laboratory)
- Tyrone Rees (Oxford)
- Andy Wathen (Oxford)

PDE-constrained optimization

Given f and boundary condition g, calculate u, where

$$\mathcal{L}u = f, \quad \alpha_1 u + \alpha_2 \frac{\partial u}{\partial n} = g \text{ on } \partial \Omega$$

on some domain Ω

PDE-constrained optimization

Given f and boundary condition g, calculate u, where

$$\mathcal{L}u = f, \quad \alpha_1 u + \alpha_2 \frac{\partial u}{\partial n} = g \text{ on } \partial \Omega$$

on some domain Ω

Suppose given g and an approximation \hat{u} to u on some domain $\hat{\Omega} \subset \Omega$. Want to calculate f such that $u \approx \hat{u}$: distributed control

PDE-constrained optimization

Given f and boundary condition g, calculate u, where

$$\mathcal{L}u = f, \quad \alpha_1 u + \alpha_2 \frac{\partial u}{\partial n} = g \text{ on } \partial \Omega$$

on some domain Ω

- Suppose given g and an approximation \hat{u} to u on some domain $\hat{\Omega} \subset \Omega$. Want to calculate f such that $u \approx \hat{u}$: distributed control
- Suppose given f and an approximation \hat{u} to u on some domain $\hat{\Omega} \subset \Omega$. Want to calculate g such that $u \approx \hat{u}$: boundary control

Different target temperatures

Reduce recirculation

$$\min_{u,f} \frac{1}{2} \|\omega(x) (u - \hat{u})\|_{2}^{2} + \beta \|f\|_{2}^{2}$$

subject to

$$\mathcal{L}u = f \text{ in } \Omega$$
$$u = g \text{ on } \delta \Omega$$

Here

$$\omega(x) = \left\{ \begin{array}{ll} 1 & x \in \hat{\Omega} \\ 0 & \text{otherwise} \end{array} \right.$$

Discretize:

$$\mathbf{u}_{\mathbf{h}} = \sum u_j \phi_j, \quad \mathbf{f}_{\mathbf{h}} = \sum f_j \phi_j$$

$$\min_{\mathbf{u}_{h},\mathbf{f}_{h}}\frac{1}{2}\left\|\boldsymbol{\omega}(x)\left(\mathbf{u}_{h}-\widehat{u}\right)\right\|_{2}^{2}+\beta\left\|\mathbf{f}_{h}\right\|_{2}^{2}$$

subject to

$$\begin{array}{rcl} \mathcal{L}\mathbf{u}_{\mathbf{h}} & = & \mathbf{f}_{\mathbf{h}} \text{ in } \Omega \\ \mathbf{u}_{\mathbf{h}} & = & \mathbf{g} \text{ on } \delta \Omega \end{array}$$

Let $\mathcal{L} = -\nabla^2$

$$\begin{aligned} \|\omega(x) \left(\mathbf{u}_{\mathbf{h}} - \widehat{u}\right)\|_{2}^{2} &= \int_{\Omega} \omega(x) \left(\mathbf{u}_{\mathbf{h}} - \widehat{u}\right)^{2} \\ &= \sum_{i} \sum_{j} u_{i} u_{j} \int_{\Omega} \omega_{i} \omega_{j} \phi_{i} \phi_{j} - 2 \sum_{j} u_{j} \int_{\Omega} \omega_{j} \phi_{j} \widehat{u} + \int_{\widehat{\Omega}} \widehat{u}^{2} \\ &= u^{T} \overline{M} u - u^{T} b + c \\ \|\mathbf{f}_{\mathbf{h}}\|_{2}^{2} &= f^{T} M f \\ Ku &= M f \end{aligned}$$

where M is the mass matrix, K is the stiffness matrix, $\bar{M} = WMW$ and $W = \text{diag}(\omega_i)$

$$\min_{u,f} \frac{1}{2} u^T \bar{M} u - u^T b + c + \beta f^T M f$$

subject to

$$Ku - Mf = d$$

$$\min_{u,f} \frac{1}{2} u^T \overline{M} u - u^T b + c + \beta f^T M f + l^T \left(Ku - M f - d \right)$$

Optimality conditions:

$$\begin{bmatrix} \beta M & 0 & -M \\ 0 & \bar{M} & K^T \\ -M & K & 0 \end{bmatrix} \begin{bmatrix} f \\ u \\ l \end{bmatrix} = \begin{bmatrix} 0 \\ b \\ d \end{bmatrix}$$

Direct vs Iterative Methods

	Direct Methods		Iterative Methods
	Black box	\checkmark	Large problems
	Robust (large $\kappa(A)$?)	\checkmark	Preconditioning – convergence
×	Memory with large problems?	\times	Iterative method?
		×	Preconditioner?

Definition: let $\kappa(\mathcal{A}) = ||\mathcal{A}||_2 ||\mathcal{A}^{-1}||_2$ be the condition number of \mathcal{A}

$$H = \left[\begin{array}{cc} A & B^T \\ B & 0 \end{array} \right]$$

If A is symmetric and positive definite, then $\lambda(A) \in I^- \cup I^+$, where

$$I^{-} = \left[\frac{1}{2} \left(\lambda_{\min}(A) - \sqrt{\lambda_{\min}^{2}(A) + 4 \|B\|^{2}}\right), \frac{1}{2} \left(\|A\| - \sqrt{\|A\|^{2} + 4\sigma_{\min}^{2}(B)}\right)\right],$$

$$I^{+} = \left[\lambda_{\min}(A), \frac{1}{2} \left(\|A\| + \sqrt{\|A\|^{2} + 4 \|B\|^{2}}\right)\right],$$

[Rusten and Winther 1992]

$$H = \left[\begin{array}{cc} A & B^T \\ B & \mathbf{0} \end{array} \right]$$

If A is symmetric and positive semi-definite, then $\lambda(H) \in I^- \cup I^+$, where

$$I^{-} = \left[\frac{1}{2}\left(\lambda_{\min}(A) - \sqrt{\lambda_{\min}^{2}(A) + 4 \|B\|^{2}}\right), \frac{1}{2}\left(\|A\| - \sqrt{\|A\|^{2} + 4\sigma_{\min}^{2}(B)}\right)\right],$$

$$I^{+} = \left[\frac{l(A, B)}{2}, \frac{1}{2}\left(\|A\| + \sqrt{\|A\|^{2} + 4 \|B\|^{2}}\right)\right],$$

l(A, B) defined in Dollar 2009 (revised)

If A scaled so that $\lambda_{\max}(A) \leq 1$, then $l(A, B) = Z^T A Z$, where BZ = 0 (Simoncini talk 2008)

$$H_{\beta} = \begin{bmatrix} 2\beta M & 0 & -M \\ 0 & \bar{M} & K^{T} \\ -M & K & 0 \end{bmatrix}$$
$$= H_{0} + \begin{bmatrix} 2\beta M & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

10¹⁵ 10¹⁴ h = 1/8 h = 1/8 **-** h = 1/16 **-** h = 1/16 10¹² • · • · h = 1/32 • • • h = 1/32 10¹⁰ 10¹⁰ O(h⁻⁶ к(А) $\widehat{\underbrace{V}}_{2}$ 10⁸ **Ο**(β⁻ Ο(β) Ο(β) 10⁶ Ο(β 10⁵ 10⁴ 10² c₁h⁴ 10⁻⁵ $c_2^{h^{-2}}$ $c_4 h^{-2} 10^5$ 10⁻¹⁰ c₃ β 10⁵ 10⁻¹⁰ <mark>0.5</mark> β 10¹⁰ 10⁻⁵ 10¹⁰

$\hat{\Omega}$	$\hat{\Omega}_1$	$\hat{\Omega}_2$	$\hat{u}(x,y) _{\hat{\Omega}_1}$	$\hat{u}(x,y) _{\hat{\Omega}_2}$
$\hat{\Omega}_1 \cup \hat{\Omega}_2$	$\left[0,rac{1}{2} ight]^2$	$\Omega/\hat{\Omega}_1$	$(2x-1)^2 (2y-1)^2$	0
$\hat{\Omega}_1 \cup \hat{\Omega}_2$	$\left\{ (x,y) : (x - \frac{5}{8})^2 + (y - \frac{3}{4})^2 \le \frac{1}{25} \right\}$	$\partial \Omega$	2	0

 $\hat{\Omega}=\Omega$

 $\hat{\Omega} \neq \Omega$

$\hat{\Omega}$	$\hat{\Omega}_1$	$\hat{\Omega}_2$	$\hat{u}(x,y) _{\hat{\Omega}_1}$	$\hat{u}(x,y) _{\hat{\Omega}_2}$
$\hat{\Omega}_1 \cup \hat{\Omega}_2$	$\left[0,rac{1}{2} ight]^2$	$\Omega/\hat{\Omega}_1$	$(2x-1)^2 (2y-1)^2$	0
$\hat{\Omega}_1 \cup \hat{\Omega}_2$	$\left\{ (x,y) : (x - \frac{5}{8})^2 + (y - \frac{3}{4})^2 \le \frac{1}{25} \right\}$	$\partial \Omega$	2	0

10¹⁵ 10¹⁴ h = 1/8 h = 1/8 **-** h = 1/16 **-** h = 1/16 10¹² • · • · h = 1/32 • • • h = 1/32 10¹⁰ 10¹⁰ O(h⁻⁶ к(А) $\widehat{\underbrace{V}}_{2}$ 10⁸ **Ο**(β⁻ Ο(β) Ο(β) 10⁶ Ο(β 10⁵ 10⁴ 10² c₁h⁴ 10⁻⁵ $c_2^{h^{-2}}$ $c_4 h^{-2} 10^5$ 10⁻¹⁰ c₃ β 10⁵ 10⁻¹⁰ <mark>0.5</mark> β 10¹⁰ 10⁻⁵ 10¹⁰

$\hat{\Omega}$	$\hat{\Omega}_1$	$\hat{\Omega}_2$	$\hat{u}(x,y) _{\hat{\Omega}_1}$	$\hat{u}(x,y) _{\hat{\Omega}_2}$
$\hat{\Omega}_1 \cup \hat{\Omega}_2$	$\left[0,rac{1}{2} ight]^2$	$\Omega/\hat{\Omega}_1$	$(2x-1)^2 (2y-1)^2$	0
$\hat{\Omega}_1 \cup \hat{\Omega}_2$	$\left\{ (x,y) : (x - \frac{5}{8})^2 + (y - \frac{3}{4})^2 \le \frac{1}{25} \right\}$	$\partial \Omega$	2	0

 $\hat{\Omega}=\Omega$

 $\hat{\Omega} \neq \Omega$

Effect of ill-conditioning on direct methods

Consider solving As = b with backward-stable method, then

 $||\Delta s||_2 \le \mathbf{u}\gamma_N \kappa(\mathcal{A})||s||_2$

Consider solving As = b with backward-stable method, then

 $||\Delta s||_2 \le \mathrm{u}\gamma_N\kappa(\mathcal{A})||s||_2$

Consider solving As = b with backward-stable method, then

 $||\Delta s||_2 \le \mathrm{u}\gamma_N\kappa(\mathcal{A})||s||_2$

Consider solving As = b with backward-stable method, then

 $||\Delta s||_2 \le \mathbf{u}\gamma_N \kappa(\mathcal{A})||s||_2$

For large β , \mathcal{A} has

- n eigenvalues that are $\mathcal{O}(\beta) \to \text{correspond to } \mathbf{f}$
- $\square 2n$ eigenvalues that are independent of $\beta \rightarrow$ correspond to u and l

Distributed control - iterative methods

$$\min_{u,f} \frac{1}{2}u^T M u - u^T b + c + \beta f^T M f$$

subject to

$$Ku - Mf = d$$

$$\begin{bmatrix} 2\beta M & 0 & -M \\ 0 & \bar{M} & K^T \\ -M & K & 0 \end{bmatrix} \begin{bmatrix} f \\ u \\ l \end{bmatrix} = \begin{bmatrix} 0 \\ b \\ d \end{bmatrix}$$

$$\begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix} = \begin{bmatrix} b \\ d \end{bmatrix}$$

Write

$$x = Yx_y + Zx_z,$$

where columns Z span nullspace of B and [Y, Z] spans \mathbb{R}^n

$$BY x_y = d,$$

$$Z^T A Z x_z = Z^T (b - A Y x_y),$$

$$Y^T B w = Y^T (b - A x).$$

If $Z^T A Z$ is SPD, then use PCG with preconditioner $Z^T G Z$.

$$\|e_k\|_{Z^T A Z} \le 2 \|e_0\|_{Z^T A Z} \left(\frac{\sqrt{\kappa((Z^T G Z)^{-1} Z^T A Z)} - 1}{\sqrt{\kappa((Z^T G Z)^{-1} Z^T A Z)} + 1}\right)^k$$

Remove references to Z by making substitutions (Gould, Hribar, Nocedal, 2001):

Choose initial point x satisfying Bx = dCompute r = Ax - bSolve $\begin{bmatrix} G & B^T \\ B & 0 \end{bmatrix} \begin{bmatrix} g \\ v \end{bmatrix} = \begin{bmatrix} r \\ 0 \end{bmatrix}$ Set p = -grepeat Set $\alpha = r^T g/p^T Ap$ Set $x = x + \alpha p$ and $r^+ = r + \alpha Ap$ Solve $\begin{bmatrix} G & B^T \\ B & 0 \end{bmatrix} \begin{bmatrix} g^+ \\ v^+ \end{bmatrix} = \begin{bmatrix} r^+ \\ 0 \end{bmatrix}$

Set
$$\beta = (r^+)^T g^+ / r^T g$$

Set $p = -g^+ + \beta p$, $r = r^+$ and $g = g^+$
until converged

Remove references to Z by making substitutions: Choose initial point x satisfying Bx = dCompute r = Ax - bSolve $\left|\begin{array}{ccc} G & B^T \\ B & 0 \end{array}\right| \left|\begin{array}{ccc} g \\ v \end{array}\right| = \left|\begin{array}{ccc} r \\ 0 \end{array}\right|$ Set p = -qrepeat Set $\alpha = r^T q / p^T A p$ Set $x = x + \alpha p$ and $r^+ = r + \alpha A p$ Solve $\begin{bmatrix} G & B^T \\ B & 0 \end{bmatrix} \begin{bmatrix} g^+ \\ v^+ \end{bmatrix} = \begin{bmatrix} r^+ \\ 0 \end{bmatrix}$ Set $\beta = (r^+)^T g^+ / r^T g$ Set $p = -g^+ + \beta p$, $r = r^+$ and $g = g^+$ until converged

Uppsala, May 2010 - p.11/21

Solve $\begin{vmatrix} G & B^T \\ B & 0 \end{vmatrix} \begin{vmatrix} x \\ v \end{vmatrix} = \begin{vmatrix} 0 \\ d \end{vmatrix}$ Compute r = Ax - bSolve $\begin{vmatrix} G & B^T \\ B & 0 \end{vmatrix} \begin{vmatrix} g \\ v \end{vmatrix} = \begin{vmatrix} r \\ 0 \end{vmatrix}$ Set p = -grepeat Set $\alpha = r^T q / p^T A p$ Set $x = x + \alpha p$ and $r^+ = r + \alpha A p$ Solve $\left|\begin{array}{cc} G & B^T \\ B & 0 \end{array}\right| \left|\begin{array}{c} g^+ \\ v^+ \end{array}\right| = \left|\begin{array}{c} r^+ \\ 0 \end{array}\right|$ Set $\beta = (r^+)^T q^+ / r^T q$ Set $p = -g^+ + \beta p$, $r = r^+$ and $g = g^+$ until converged

Solve $\begin{vmatrix} G & B^{T} \\ B & 0 \end{vmatrix} \begin{vmatrix} x \\ v \end{vmatrix} = \begin{vmatrix} 0 \\ d \end{vmatrix}$ Compute r = Ax - bSolve $\begin{vmatrix} G & B^T \\ B & 0 \end{vmatrix} \begin{vmatrix} g \\ v \end{vmatrix} = \begin{vmatrix} r \\ 0 \end{vmatrix}$ Set p = -g and y = -vrepeat Set $\alpha = r^T q / p^T A p$ Set $x = x + \alpha p$ and $r^+ = r + \alpha A p$ Solve $\left|\begin{array}{cc} G & B^T \\ B & 0 \end{array}\right| \left|\begin{array}{c} g^+ \\ v^+ \end{array}\right| = \left|\begin{array}{c} r^+ \\ 0 \end{array}\right|$ Set $\beta = (r^+)^T q^+ / r^T q$ Set $p = -q^+ + \beta p$, $r = r^+ - B^T v^+$, $y = y - v^+$ and $q = q^+$ until converged

(Dollar 2005) Can be generalised to

$$\left[\begin{array}{cc} A & B^T \\ B & -C \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} c \\ d \end{array}\right]$$

Constraint preconditioners

$$\mathcal{A} = \begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix} \qquad \mathcal{P} = \begin{bmatrix} G & B^T \\ B & 0 \end{bmatrix}$$

Constraint preconditioners

$$\mathcal{A} = \begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix} \qquad \mathcal{P} = \begin{bmatrix} G & B^T \\ B & 0 \end{bmatrix}$$

Theorem (Keller, Gould, Wathen, 2000): If $A, G \in \mathbb{R}^{n \times n}$ are symmetric and $B \in \mathbb{R}^{m \times n}$ has full row rank, then $\mathcal{P}^{-1}\mathcal{A}$ has

 $\blacksquare 2m$ eigenvalues at 1

remaining n - m are defined by

$$Z^T A Z x = \lambda Z^T G Z x,$$

where the columns of $Z \in \mathbb{R}^{n \times (n-m)}$ span nullspace of B. If G is nonsingular, then these eigenvalues interlace the eigenvalues of $G^{-1}A$. The Krylov subspace wrt $\mathcal{P}^{-1}\mathcal{A}$ has dimension at most n - m + 2

$$\mathcal{A} = \begin{bmatrix} 2\beta M & 0 & -M \\ 0 & \bar{M} & K^T \\ -M & K & 0 \end{bmatrix} \qquad Z = \begin{bmatrix} M^{-1}K \\ I \end{bmatrix}$$
$$Z^T A Z = 2\beta K^T M^{-1} K + \bar{M}$$

$$\mathcal{A} = \begin{bmatrix} 2\beta M & 0 & -M \\ 0 & \bar{M} & K^T \\ -M & K & 0 \end{bmatrix} \quad Z = \begin{bmatrix} M^{-1}K \\ I \end{bmatrix}$$

$$Z^T A Z = 2\beta K^T M^{-1} K + \bar{M}$$

$$\mathcal{A} = \begin{bmatrix} 2\beta M & 0 & -M \\ 0 & \bar{M} & K^T \\ -M & K & 0 \end{bmatrix} \quad Z = \begin{bmatrix} M^{-1}K \\ I \end{bmatrix}$$

$$Z^T A Z = 2\beta K^T M^{-1} K + \bar{M}$$

$$\mathcal{P} = \begin{bmatrix} 2\beta M & 0 & -M \\ 0 & 0 & K^T \\ -M & K & 0 \end{bmatrix}?$$

$$Z^T G Z = 2\beta K^T M^{-1} K$$

$ar{M}=M$	$\bar{M} \neq M$
$1 + \frac{ch^4}{2\beta} \le \lambda \le 1 + \frac{C}{2\beta}$	$1 + \frac{\bar{c}h^4}{2\beta} \le \lambda \le 1 + \frac{\bar{C}}{2\beta}$
$c \leq \bar{c} \leq \bar{C} \leq C$	$\lambda = 1$

Biros and Ghattas (2000)

$$\mathcal{A} = \begin{bmatrix} 2\beta M & 0 & -M \\ 0 & \bar{M} & K^{T} \\ -M & K & 0 \end{bmatrix} \quad Z = \begin{bmatrix} M^{-1}K \\ I \end{bmatrix}$$

$$Z^T A Z = 2\beta K^T M^{-1} K + \bar{M}$$

$$\mathcal{P} = \begin{bmatrix} 0 & 0 & -M \\ 0 & 2\beta K^T M^{-1} K & K^T \\ -M & K & 0 \end{bmatrix}?$$

 $Z^T G Z = 2\beta K^T M^{-1} K$

$\bar{M} = M$	$\bar{M} \neq M$
$1 + \frac{ch^4}{2\beta} \le \lambda \le 1 + \frac{C}{2\beta}$	$1 + \frac{\bar{c}h^4}{2\beta} \le \lambda \le 1 + \frac{\bar{C}}{2\beta}$
$c \leq \bar{c} \leq \bar{C} \leq C$	$\lambda = 1$

Numerical Example

Using bilinear Q1 elements and setting $\beta = 5 \times 10^{-5}$:

$$\mathcal{A} = \begin{bmatrix} 2\beta M & 0 & -M \\ 0 & \bar{M} & K^{T} \\ -M & K & 0 \end{bmatrix}, \quad \mathcal{P} = \begin{bmatrix} 0 & 0 & -M \\ 0 & 2\beta K^{T} M^{-1} K & K^{T} \\ -M & K & 0 \end{bmatrix}$$

Solves with M : Direct method (HSL_MA57) or 20 Chebyshev semi-iterations

- Solves with K : Direct method (HSL_MA57) or two(three) V-cycles of AMG (HSL_MI20)
- PPCG: relative tolerance 10^{-9} for $r^T Z (Z^T G Z)^{-1} Z^T r$, HSL_MI27 (soon to be released)
- Fortran 95, NAG f95 compiler
- Hardware: Dell Precision T340, single Core2 Quad Q9550 processor (2.83GHz, 1333MHz FSB, 12MB L2 Cache), 4GB RAM

Numerical Example

Using bilinear Q1 elements and setting $\beta = 5 \times 10^{-5}$:

$$\mathcal{A} = \begin{bmatrix} 2\beta M & 0 & -M \\ 0 & \bar{M} & K^{T} \\ -M & K & 0 \end{bmatrix}, \quad \mathcal{P} = \begin{bmatrix} 0 & 0 & -M \\ 0 & 2\beta K^{T} M^{-1} K & K^{T} \\ -M & K & 0 \end{bmatrix}$$

Solves with M: Direct method (HSL_MA57) or 20 Chebyshev semi-iterations

Solves with K : Direct method (HSL_MA57) or two(three) V-cycles of AMG (HSL_MI20)

PPCG: relative tolerance 10^{-9} for $r^T Z (Z^T G Z)^{-1} Z^T r$, HSL_MI27 (soon to be released)

Fortran 95, NAG f95 compiler

Hardware: Dell Precision T340, single Core2 Quad Q9550 processor (2.83GHz, 1333MHz FSB, 12MB L2 Cache), 4GB RAM

				2D	
N	τ	n	Direct	PPCG(direct)	PPCG(approx)
5	3	147	0.002	0.001 (8)	0.003 (9)
10	5	675	0.01	0.006 (8)	0.011 (9)
32	2 2	2883	0.04	0.025 (8)	0.044 (9)
64	4 11	.907	0.19	0.12 (8)	0.17 (8)
128	3 48	3487	1.59	0.55 (7)	0.72 (8)
250	5 195	5075	8.82	3.27 (6)	3.18 (8)
512	2 783	363	53.5	21.5 (6)	14.2 (8)

20

3D

			FFCO(appilox)
81	0.001	0.002 (7)	0.002 (7)
1029	0.04	0.02 (8)	0.05 (8)
10125	1.25	0.33 (8)	0.64 (8)
89373	38.0	6.61 (7)	7.32 (7)
50141	1000+	217 (5)	59.0 (6)
	81 1029 10125 89373 50141	81 0.001 1029 0.04 10125 1.25 89373 38.0 50141 1000+	81 0.001 0.002 (7) 1029 0.04 0.02 (8) 10125 1.25 0.33 (8) 89373 38.0 6.61 (7) 50141 1000+ 217 (5)

Numerical Example

Using bilinear Q1 elements and setting $\beta = 5 \times 10^{-5}$:

$$\mathcal{A} = \begin{bmatrix} 2\beta M & 0 & -M \\ 0 & \bar{M} & K^{T} \\ -M & K & 0 \end{bmatrix}, \quad \mathcal{P} = \begin{bmatrix} 0 & 0 & -M \\ 0 & 2\beta K^{T} M^{-1} K & K^{T} \\ -M & K & 0 \end{bmatrix}$$

Solves with M : Direct method (HSL_MA57) or 20 Chebyshev semi-iterations

Solves with K : Direct method (HSL_MA57) or two(three) V-cycles of AMG (HSL_MI20)

PPCG: relative tolerance 10^{-9} for $r^T Z (Z^T G Z)^{-1} Z^T r$, HSL_MI27 (soon to be released)

Fortran 95, NAG f95 compiler

Hardware: Dell Precision T340, single Core2 Quad Q9550 processor (2.83GHz, 1333MHz FSB, 12MB L2 Cache), 4GB RAM

N	n	Direct	PPCG(direct)	PPCG(approx)
8	147	0.002	0.001 (4)	0.002 (4)
16	675	0.01	0.01 (4)	0.007 (4)
32	2883	0.10	0.02 (4)	0.03 (4)
64	11907	0.35	0.10 (4)	0.13 (5)
128	48487	2.78	0.50 (5)	0.53 (5)
256	195075	16.8	3.11 (5)	2.36 (5)
512	783363	147	20.5 (5)	10.3 (5)

N	n	Direct	PPCG(direct)	PPCG(approx)
4	81	0.001	0.001 (3)	0.001 (3)
8	1029	0.05	0.02 (4)	0.03 (4)
16	10125	1.19	0.31 (5)	0.49 (5)
32	89373	59.2	6.32 (5)	6.00 (5)
64	750141	1000+	219 (5)	58.9 (5)

Behaviour of preconditioner with β

$ar{M}=M$	$\bar{M} \neq M$
$1 + \frac{ch^4}{2\beta} \le \lambda \le 1 + \frac{C}{2\beta}$	$1 + \frac{\bar{c}h^4}{2\beta} \le \lambda \le 1 + \frac{\bar{C}}{2\beta}$
$c \leq \bar{c} \leq \bar{C} \leq C$	$\lambda = 1$

$$\min_{u,g} \frac{1}{2} \|\omega(x) (u - \hat{u})\|_{2}^{2} + \beta \|g\|_{2}^{2}$$

subject to

$$\begin{array}{rcl} \mathcal{L} \mathrm{u} & = & \mathrm{f} \ \mathrm{in} \ \Omega \\ \hline \frac{\partial \mathrm{u}}{\partial n} & = & \mathrm{g} \ \mathrm{on} \ \delta \Omega \end{array}$$

Here

$$\omega(x) = \left\{ \begin{array}{ll} 1 & x \in \hat{\Omega} \\ 0 & \text{otherwise} \end{array} \right.$$

Discretize:

$$\mathbf{u}_{\mathbf{h}} = \sum u_j \phi_j + \sum \hat{u}_j \hat{\phi}_j, \quad \mathbf{g}_{\mathbf{h}} = \sum g_j \hat{\phi}_j, \quad \mathbf{f}_{\mathbf{h}} = \sum f_j \phi_j + \sum \hat{f}_j \hat{\phi}_j$$

$$\min_{\mathbf{u}_{h},\mathbf{g}_{h}} \frac{1}{2} \|\omega(x) (\mathbf{u}_{h} - \widehat{u})\|_{2}^{2} + \beta \|\mathbf{g}_{h}\|_{2}^{2}$$

subject to

$$\begin{array}{rcl} \mathcal{L} u_h & = & \mathbf{f}_h \text{ in } \Omega \\ \\ \frac{\partial u_h}{\partial n} & = & \mathbf{g}_h \text{ on } \partial \Omega \end{array}$$

$$\begin{split} \|\omega(x)\left(\mathbf{u_{h}}-\widehat{u}\right)\|_{2}^{2} &= \int_{\Omega} \omega(x)\left(\mathbf{u_{h}}-\widehat{u}\right)^{2} \\ &= \left[\begin{array}{cc} u^{T} & \widehat{u}^{T} \end{array} \right] \left[\begin{array}{cc} \overline{M}_{II} & \overline{M}_{IB} \\ \overline{M}_{BI} & \overline{M}_{BB} \end{array} \right] \left[\begin{array}{c} u \\ \widehat{u} \end{array} \right] - u^{T}b - \widehat{u}^{T}\widehat{b} + c \\ \\ \|\mathbf{g_{h}}\|_{2}^{2} &= g^{T}M_{g}g \\ \\ \left[\begin{array}{c} d \\ \widehat{d} \end{array} \right] &= \left[\begin{array}{c} K_{II} & K_{IB} \\ K_{BI} & K_{BB} \end{array} \right] \left[\begin{array}{c} u \\ \widehat{u} \end{array} \right] - \left[\begin{array}{c} 0 \\ M_{g} \end{array} \right] g \end{split}$$

$$\min_{u,\hat{u},f} \begin{bmatrix} u^T & \hat{u}^T \end{bmatrix} \begin{bmatrix} \bar{M}_{II} & \bar{M}_{IB} \\ \bar{M}_{BI} & \bar{M}_{BB} \end{bmatrix} \begin{bmatrix} u \\ \hat{u} \end{bmatrix} - u^T b - \hat{u}^T \hat{b} + c + \beta g^T M_g g$$

subject to

$$\begin{bmatrix} K_{II} & K_{IB} \\ K_{BI} & K_{BB} \end{bmatrix} \begin{bmatrix} u \\ \hat{u} \end{bmatrix} - \begin{bmatrix} 0 \\ M_g \end{bmatrix} g = \begin{bmatrix} d \\ \hat{d} \end{bmatrix}$$

$$\begin{bmatrix} 2\beta M_g & 0 & 0 & 0 & -M_g \\ 0 & \bar{M}_{II} & \bar{M}_{IB} & K_{II} & K_{IB} \\ 0 & \bar{M}_{BI} & \bar{M}_{BB} & K_{BI} & K_{BB} \\ \hline 0 & K_{II} & K_{IB} & 0 & 0 \\ -M_g & K_{BI} & K_{BB} & 0 & 0 \end{bmatrix} \begin{bmatrix} g \\ u \\ \hat{u} \\ \hat{l} \end{bmatrix} = \begin{bmatrix} 0 \\ b \\ \hat{b} \\ \hat{l} \\ \hat{l} \end{bmatrix}$$

0	0	B_1^T
0	G_1	B_2^T
B_1	B_2	0

Γ	$2\beta M_g$	0	0	0	$-M_g$		$2\beta M_g$	0	0	0	$-M_g$
	0	\bar{M}_{II}	\bar{M}_{IB}	K_{II}	K_{IB}		0	\bar{M}_{II}	\bar{M}_{IB}	K_{II}	K_{IB}
	0	\bar{M}_{BI}	\bar{M}_{BB}	K_{BI}	K_{BB}	\Leftrightarrow	0	\bar{M}_{BI}	\bar{M}_{BB}	K_{BI}	K_{BB}
	0	K_{II}	K_{IB}	0	0		0	K_{II}	K_{IB}	0	0
L	$-M_g$	K_{BI}	K_{BB}	0	0		$-M_g$	K_{BI}	K_{BB}	0	0

$$\begin{bmatrix} 2\beta M_g & 0 & 0 & 0 & -M_g \\ 0 & \bar{M}_{II} & \bar{M}_{IB} & K_{II} & K_{IB} \\ 0 & \bar{M}_{BI} & \bar{M}_{BB} & K_{BI} & K_{BB} \\ 0 & K_{II} & K_{IB} & 0 & 0 \\ -M_g & K_{BI} & K_{BB} & 0 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2\beta M_g & 0 & 0 & 0 & -M_g \\ 0 & \bar{M}_{II} & \bar{M}_{IB} & K_{II} & K_{IB} \\ 0 & \bar{M}_{BI} & \bar{M}_{BB} & K_{BI} & K_{BB} \\ 0 & K_{II} & K_{IB} & 0 & 0 \\ -M_g & K_{BI} & K_{BB} & 0 & 0 \end{bmatrix}$$

$$Z^{T}AZ = \begin{bmatrix} \hat{A} & \hat{B}^{T} \\ \hat{B} & 0 \end{bmatrix}, \quad \hat{A} = 2\beta \begin{bmatrix} K_{IB} \\ K_{BB} \end{bmatrix} M_{g}^{-1} \begin{bmatrix} K_{BI} & K_{BB} \end{bmatrix} + \bar{M}, \quad \hat{B} = \begin{bmatrix} K_{II} & K_{IB} \end{bmatrix}$$

$$\begin{bmatrix} 2\beta M_g & 0 & 0 & 0 & -M_g \\ 0 & \bar{M}_{II} & \bar{M}_{IB} & K_{II} & K_{IB} \\ 0 & \bar{M}_{BI} & \bar{M}_{BB} & K_{BI} & K_{BB} \\ 0 & K_{II} & K_{IB} & 0 & 0 \\ -M_g & K_{BI} & K_{BB} & 0 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2\beta M_g & 0 & 0 & 0 & -M_g \\ 0 & \bar{M}_{II} & \bar{M}_{IB} & K_{II} & K_{IB} \\ 0 & \bar{M}_{BI} & \bar{M}_{BB} & K_{BI} & K_{BB} \\ 0 & K_{II} & K_{IB} & 0 & 0 \\ -M_g & K_{BI} & K_{BB} & 0 & 0 \end{bmatrix}$$

$$Z^{T}AZ = \begin{bmatrix} \hat{A} & \hat{B}^{T} \\ \hat{B} & 0 \end{bmatrix}, \quad \hat{A} = 2\beta \begin{bmatrix} K_{IB} \\ K_{BB} \end{bmatrix} M_{g}^{-1} \begin{bmatrix} K_{BI} & K_{BB} \end{bmatrix} + \bar{M}, \quad \hat{B} = \begin{bmatrix} K_{II} & K_{IB} \end{bmatrix}$$

 $Z^T A Z$ indefinite \Rightarrow avoid PPCG Solve $Z^T A Z x_z = Z^T (b - A Y x_y)$ with BICGSTAB, MINRES, SQMR or...

$$\begin{bmatrix} 2\beta M_g & 0 & 0 & 0 & -M_g \\ 0 & \bar{M}_{II} & \bar{M}_{IB} & K_{II} & K_{IB} \\ 0 & \bar{M}_{BI} & \bar{M}_{BB} & K_{BI} & K_{BB} \\ 0 & K_{II} & K_{IB} & 0 & 0 \\ -M_g & K_{BI} & K_{BB} & 0 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2\beta M_g & 0 & 0 & 0 & -M_g \\ 0 & \bar{M}_{II} & \bar{M}_{IB} & K_{II} & K_{IB} \\ 0 & \bar{M}_{BI} & \bar{M}_{BB} & K_{BI} & K_{BB} \\ 0 & K_{II} & K_{IB} & 0 & 0 \\ -M_g & K_{BI} & K_{BB} & 0 & 0 \end{bmatrix}$$

$$Z^{T}AZ = \begin{bmatrix} \hat{A} & \hat{B}^{T} \\ \hat{B} & 0 \end{bmatrix}, \quad \hat{A} = 2\beta \begin{bmatrix} K_{IB} \\ K_{BB} \end{bmatrix} M_{g}^{-1} \begin{bmatrix} K_{BI} & K_{BB} \end{bmatrix} + \bar{M}, \quad \hat{B} = \begin{bmatrix} K_{II} & K_{IB} \end{bmatrix}$$

 $Z^T A Z$ indefinite \Rightarrow avoid PPCG Solve $Z^T A Z x_z = Z^T (b - A Y x_y)$ with BICGSTAB, MINRES, SQMR or... Solves with

PMINRES and Distributed Control

$$\mathcal{A} = \begin{bmatrix} 2\beta M & 0 & -M \\ 0 & M & K^T \\ -M & K & 0 \end{bmatrix}$$

	MI	INRES	PMINRES					
	$2\beta M$	0 0			0	0	-M	
P =	0	M 0		P =	0	$2\beta K^T M^{-1} K$	K^T	
	0	$0 KM^{-1}K$			-M	K	0	
	λ	= 1	$\lambda = 1$					
$\frac{1}{2}\left(1+\sqrt{5+1}\right)$	$\left(\frac{2\alpha_1 h^4}{\beta}\right)$	$\leq \lambda \leq \frac{1}{2} \left(1 + \sqrt{5} \right)$	$1 + \frac{ch^4}{2\beta} \le \lambda \le 1 + \frac{C}{2\beta}$					
$\frac{1}{2}\left(1-\sqrt{5+1}\right)$	$\left(\frac{2\alpha_2}{\beta}\right) \leq \lambda$	$\lambda \le \frac{1}{2} \left(1 - \sqrt{5} + \right)$						
	2 solve	es with M	2 solves with M					
	2 solve	es with K	2 solves with K					
5 matr	ix-vector m	ultiplications with M	3 matrix-vector multiplications with M					
2 matr	rix-vector m	ultiplications with K	3 matrix-vector multiplications with K					

Uppsala, May 2010 – p.20/21

Conclusions and Future Work

- PDE-constrained problems difficult to solve
- Avoid any solves with discretized PDE
- Use block structure
- Constraint preconditioners lead to projected iterative methods
- Mesh size independent convergence
- Regularization parameter independent convergence?
- Nonlinear PDEs, time-dependent PDEs, different regularization terms
- HSL_MA57 and HSL_MI20 are part of HSL2007, which is free for all academics
- HSL_MI27 will be part of HSL2007
- Optimal solvers for PDE-constrained optimization' Rees, Dollar, Wathen, SISC 2010
- [•] Properties of linear systems in PDE-constrained optimization. Part I: Distributed control', Dollar, RAL TR-2009-017
- ^e 'Properties of linear systems in PDE-constrained optimization. Part II: Boundary control', Thorne, RAL TR-2009-018
- [•] PDE-constrained optimization and constraint preconditioners', Thorne, RAL TR-2010-016