
Council for the Central Laboratory of the Research Councils

© Council for the Central Laboratory of the Research Councils

Enquiries about copyright, reproduction and requests for additional copies of this report should
be addressed to:

Library and Information Services
CCLRC Rutherford Appleton Laboratory
Chilton Didcot
Oxfordshire OX11 0QX
UK
Tel: +44 (0)1235 445384
Fax: +44 (0)1235 446403
Email: library@rl.ac.uk

CCLRC reports are available online at:
http://www.clrc.ac.uk/Activity/ACTIVITY=Publications;SECTION=225;

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their
reports or in any communication about their tests or investigations.

..........

.

..........

.

Prepared for the European Commission under FP6 Contract No. 01945 as a deliverable form

Deliverable
D29
D35
D36 TrustCoM Framework V2

AL1 – TrustCoM Framework

Michael D. Wilson, CCLRC
Alvaro Arenas, CCLRC

Lutz Schubert, HLRS
31/01/2006

V1.8

TrustCoM
A trust and Contract Management framework enabling secure collaborative business
processing in on-demand created, self-managed, scalable, and highly dynamic Virtual

Organisations

SIXTH FRAMEWORK PROGRAMME

PRIORITY IST-2002-2.3.1.9

Networked business and governments

D09 – TrustCoM Reference Architecture

 Page 2

LEGAL NOTICE

The following organisations are members of the TrustCoM Consortium:

Atos Origin,
Council of the Central Laboratory of the Research Councils,
BAE Systems,
British Telecommunications PLC,
Universitaet Stuttgart,
SAP AktienGesellschaft Systeme Anwendungen Produkte in der Datenverarbeitung,
Swedish Institute of Computer Science AB,
Europaeisches Microsoft Innovations Center GMBH,
Eidgenoessische Technische Hochschule Zuerich,
Imperial College of Science Technology and Medicine,
King's College London,
Universitetet I Oslo,
Stiftelsen for industriell og Teknisk Forskning ved Norges Tekniske Hoegskole,
Universita degli studi di Milano,
The University of Kent,
International Business Machines Belgium SA .

© Copyright 2006 Atos Origin on behalf of the TrustCoM Consortium (membership defined above).

Neither the TrustCoM Consortium, any member organisation nor any person acting on behalf of those
organisations is responsible for the use that might be made of the following information.

The views expressed in this publication are the sole responsibility of the authors and do not necessarily
reflect the views of the European Commission or the member organisations of the TrustCoM Consortium.

All information provided in this document is provided 'as-is' with all faults without warranty of any kind, either
expressed or implied. This publication is for general guidance only. All reasonable care and skill has been
used in the compilation of this document. Although the authors have attempted to provide accurate
information in this document, the TrustCoM Consortium assumes no responsibility for the accuracy of the
information.

Information is subject to change without notice.

Mention of products or services from vendors is for information purposes only and constitutes neither an
endorsement nor a recommendation.

Reproduction is authorised provided the source is acknowledged.

IBM, the IBM logo, ibm.com, Lotus and Lotus Notes are trademarks of International Business Machines
Corporation in the United States, other countries or both.

Microsoft is a trademark of Microsoft Corporation in the United States, other countries or both.

SAP is a trademark of SAP AG in the United States, other countries or both.

'BT' and 'BTexact' are registered trademarks of British Telecommunications Plc. in the United Kingdom,
other countries or both.

Other company, product and service names may be trademarks, or service marks of others. All third-party
trademarks are hereby acknowledged.

D09 – TrustCoM Reference Architecture

 Page 3

Deliverable datasheet

Project acronym: TrustCoM
Project full title: A trust and Contract Management framework enabling secure collaborative business processing
in on-demand created, self-managed, scalable, and highly dynamic Virtual Organisations

Action Line: AL1
Activity: 1.2
Work Package: WP27
Task:

Document title: TrustCoM Framework V2
Version: v2.0
Document reference:
Official delivery date: 31/01/2006
Actual publication date:
File name: D29_35_36 TrustCoM Framework V2 (with
comments).doc

Type of document: Report

Nature: official deliverable

Authors: Michael D. Wilson, Alvaro Arenas, Jochen Haller,

Lutz Schubert, Tobias Mahler, Joris Claessens,
Pablo Giambiagi, Ingo Weber

Reviewers: Paul Kearney, Yücel Karabulut, Stefan Wesner,
Michael D. Wilson, Jakka Sairamesh

Approved by:

Version Date Comments

V1.1 06/12/2005 New document structure

V1.2 07/01/2006 Business Model section

V1.3 10/01/2006 Introductory sections

D09 – TrustCoM Reference Architecture

 Page 4

V1.4 16/01/2006 Added comments on legal aspects; added WSLA profiles

V1.5 18/01/2006 Relationship overview, WSCDL by Ingo

V1.6 25/01/2006 Pre-final version of Relationship chapter, updated
contract section

V1.7 31/01/2006 Pre-final version of Deployment chapter, initial
Introduction to profiles section

V1.8 01/02/2006 General polishing, added WS-Trust & SAML

V1.9 08/02/2006 Reaction to comments from internal review:

Refined sections I.2, I.3

V2.0 Final Version

D09 – TrustCoM Reference Architecture

 Page 5

 Table of Content

Introduction ... 7

I The TrustCoM Conceptualisation .. 9

I.1 The TrustCoM Vision .. 9

I.2 The Trust Model in the TrustCoM Framework.. 9

I.3 The Business Model of TrustCoM .. 11
I.3.a Business Processes ... 12
I.3.b Structure of Virtual Organisations ... 16

I.4 The Contract Model of TrustCoM ... 17
I.4.a EN Contract.. 19
I.4.b VO Contracts.. 19
I.4.c Contracts and the VO lifecycle .. 20
I.4.d Examples from the TrustCoM test bed scenarios... 20
I.4.e Drafting EN and VO contracts ... 21

I.5 Usage Scenarios / VO Lifecycle Phases .. 22
I.5.a Establishment of a Virtual Organisation (Identification and Formation) 22
I.5.b Normal operational work ... 23
I.5.c Dynamic addition of an organisation during operation.. 23
I.5.d Dynamic removal of an organisation during operation.. 24
I.5.e Replacement of a participant by another during operation of the VO (Evolution)........ 25
I.5.f Dissolution of the Virtual Organisation ... 25

II The TrustCoM Architecture.. 27

II.1 From Concepts to Architecture .. 28
II.1.a Abstract Structure... 29
II.1.b The Subsystem Segmentation .. 31

II.2 The Relationships with respect to the individual VO lifecycle phases 34
II.2.a Preparation ... 35
II.2.b Identification .. 36
II.2.c Formation ... 38
II.2.d Operation.. 40
II.2.e Evolution .. 42
II.2.f Dissolution ... 46

II.3 The Relationships in the underlying EN/VO Infrastructure 48
II.3.a Setup (Formation) .. 48
II.3.b Messaging (mostly Operation) ... 50
II.3.c Reconfiguration (Evolution) .. 52

III Towards a Deployment Model .. 54
III.1.a Establishment of a Virtual Organisation (Identification and Formation) 54
III.1.b Normal operational work ... 55
III.1.c Dynamic addition of an organisation during operation.. 55
III.1.d Dynamic removal of an organisation during operation.. 56

D09 – TrustCoM Reference Architecture

 Page 6

III.1.e Replacement of a participant by another during operation of the VO (Evolution).... 57
III.1.f Dissolution of the Virtual Organisation ... 57

III.2 Deployment Overview (One possible VO Instance) .. 58
III.2.a Service Level view... 58
III.2.b Component Level view .. 60

III.3 A Potential VO Instance .. 65
III.3.a Gateway Functionalities... 66
III.3.b Main Functionalities... 67

IV Profiles ... 79

IV.1 WSLA .. 80
IV.1.a Introduction .. 80

IV.2 WS-Trust & SAML.. 84
IV.2.a Namespaces and supported specifications ... 86
IV.2.b WS-Trust .. 86
IV.2.c SAML Assertion Profile... 89
IV.2.d Custom elements .. 92

IV.3 WSCDL ... 93
IV.3.a Overview .. 93
IV.3.b WS-CDL Language Elements and Representation .. 94
IV.3.c Annotation of Trust, Security, and Contract (TSC) Tasks... 97

IV.4 XACML... 97
IV.4.a Attributes.. 98
IV.4.b Policies ... 101
IV.4.c Transport formats ... 103

IV.5 ECA-Policies ... 104

Glossary ... 106

Key to diagrams ... 109

References.. 114

D09 – TrustCoM Reference Architecture

 Page 7

Introduction
The TrustCoM project1 is developing a Framework for Trust, Security and Contract
management for dynamic virtual organisations operated through an open service
architecture. The Framework includes a way of conceptualising the Trust, Security and
Contract issues associated with dynamic virtual organisations, an architecture in which the
operating open services can be implemented and profiles of proposed and standardised
web service specifications tailored to the VO application. The project will also produce a
reference implementation of the architecture, and demonstrators whose evaluation will
show the strengths and weaknesses of the framework.
VO Management as developed for academic Grids, has previously only addressed
membership issues and has so far ignored the Trust, Security and Contract management
issues addressed in the TrustCoM framework. Consequently, these aspects of the
Framework and the architecture are novel innovations. Supply chain management systems
for large organisations do address contract development issues but do not address most of
the security and automated contract and SLA monitoring and policy enforcement issues
that are addressed by TrustCoM, so these remain innovations. Stand alone systems
address role based security, but not the contractual context that TrustCoM does, so even
the approach to this technology is innovative. The main innovations in the TrustCoM
approach are in integrating these technologies to refine a contract and ancillary SLAs
stated in business terms into deployable processes that monitor and enforce those
agreements between organisations.
This document provides an overview of the results achieved so far in order to realise the
TrustCoM framework.
The first version of the framework was produced as three individual documents (concept,
architecture & framework specifications). This second version integrates all three issues in
order to improve readability and reduce repetition.
The structure of this document follows the initial structure by first providing an insight into
the underlying ideas and concepts that guide the development process. They also specify
the requirements that define the basic structure of the framework. Section 1 of the
document presents the business model and structure of the TrustCoM VOs. The following
chapter depicts the architecture and the concepts of the individual components, i.e. how
they contribute to the overall concept of TrustCoM as detailed in the preceding section.
Since Virtual Organisations as envisaged by TrustCoM may be realised in many different
ways (cf. section 3 for details), the following chapter will describe one potential instance of
a TrustCoM VO and how the deployed components would interact to realise the
functionalities and requirements in a specific use / business case. As such this chapter will
already address some implementation issues as they are faced by Actionline 2 of the
project. Finally, chapter 4 will go into further details regarding implementation, by

1 The project is structured into Action Lines, Activities and Work Package which produce internal deliverables
as well as externally available ones such as this. Consequently, references occur in this document to these
internal project management entities which are meaningful to those within the project, but may not be to other
readers. The authors and editor ask you to tolerate these references.

D09 – TrustCoM Reference Architecture

 Page 8

elaborating the profiles of the open specifications that are adapted to meet the TrustCoM
requirements.
The document makes no claim for completeness of the TrustCoM framework as it is a
''living document" and will undergo further changes as the work in this project proceeds
and two new releases are made on a six monthly cycle until January 2007.
Most of the issues in this model have already been covered in more detail in the
documents D16, D09 and D18 during the last elaboration cycle and we will refer to these
documents rather than repeating all the information presented in them.

D09 – TrustCoM Reference Architecture

 Page 9

I The TrustCoM Conceptualisation
This section outlines the concepts used in the TrustCoM framework, these start from the
vision that TrustCoM is trying to achieve, and consist of a set of models required to support
that vision, and scenarios that put those models together during the operation of a virtual
organisation.

I.1 The TrustCoM Vision
Given the economic competitiveness of a global economy, and the conflicting desire for a
high quality of life in Europe, it was agreed by the heads of government at Lisbon in 2000
that Europe was entering a knowledge economy rather than one based on manufacturing
or agriculture. In a knowledge economy, competitive advantage comes from the flexibility of
organisations to respond to market opportunities. One mechanism to efficiently manage
such flexibility is to automate the supply chain management for large organisations, or to
provide environments to support the formation of Virtual Organisations (VO) of SME and
large organisations which can recruit sufficient resources to take advantage of the
opportunities where no organisation could alone.
Such an environment to support the formation and operation of VO has to both be trusted
itself, and provide a basis for trusting other organisations with whom business could be
done. Trust between VO members can be supported by each being transparently aware of
the obligations and performance of others, so that business risks are both mitigated, and
monitorable. The TrustCoM project pursues the goal of supporting the realisation of
dynamic virtual organisations in a secure and contract managed environment. Thus
TrustCoM envisages specific structures of collaboration between participants that actually
form the basis for the framework as described in this document.
The current presentation differs from previous documents covering this issue insofar as the
concepts have evolved during the project and have become both clearer and more
detailed. Also, the underlying concepts are now being treated with a particular focus on the
business and legal aspects of TrustCoM rather than just the technical ICT ones.
Business collaborations of the form envisaged by TrustCoM have significant impact on
legal, business and technical resources of each participant in a VO. In particular, each
participant needs to ensure the legal compliance of its interactions with other partners, the
integrity of the business process within which it is involved, its reputation with regards to
performance and service delivery, and the availability and confidentiality of its shared
resources according to its agreement with the VO.

I.2 The Trust Model in the TrustCoM Framework
Trust is an attitude of individual humans, and is applied only metaphorically to
organisations or to objects; although often, more precisely, as a metonymy where the trust
relationship holds between the individual senior managers of two organisations but is
generalised to the whole organisations. Social scientists differentiate trust in a person from
a judgement of competence in a person – the judgement that a person is competent to fulfil
a role. The residual notion of trust is usually defined in terms of the commonality of

D09 – TrustCoM Reference Architecture

 Page 10

intentions between two parties – that is, that another person is on your side. Trust becomes
important on occasions when other supports to the relationship have broken down – for
example when contracts are breached by error and the other party is willing to forego
redress, or when unexpected circumstances occur in which a party is willing to make short
term losses in order to maintain the relationship, in the uncertain expectation of receiving
long term benefit. Across the population, individuals vary considerable in the variety,
number and power of other supports to relationships. Consequently, they vary considerably
in the ease and frequency with which they must rely upon trust alone to guide them. Within
the computer mediated VO relationship, the TrustCoM framework is designed to provide
both many supports that can maintain a relationship before relying on trust, and a basis for
establishing trust itself before they fail.
A commonly attributed untrustworthiness in software is shown by web browsers that pop-
up extra windows to advertise products that the user does not want, or which transmit
personal data to another organisation against the user’s wishes for privacy. In these cases
the distrust of the software is generated by it appearing to act against the user’s interests
or intentions2. Obviously all notions of trust of a computer system are metaphoric, since it
has no intentions itself, and the intentions of neither the creator nor the owner can be
known, but only inferred from the behaviour of the system. Thus, for the software
implementation of the TrustCoM framework the trust of the user in the software, and the
organisation presented through the software will be both metaphoric and inferred from the
behaviour of the system and the organisation operating through it. Since that has been
stated, the term trust will be used from now on with reference to organisations and software
without constantly noting its metaphorical nature.
Consequently, TrustCoM is developing a framework where the behaviour of the software
and the organisation operating through it are explicitly constrained, are transparent, and
provide a basis to predict future behaviour in order to foster trust in the user. In practice the
mechanisms to constrain the behaviour are contracts and service level agreements (SLA)
linked to collaborative business process models (BPM) which between them define what
operations can be done, what access is permitted by whom and for what purpose, and
what are the consequences of breaking the agreement – the operations and their context
are clearly and securely defined. Transparency is provided by a publicly available
agreement and BPM whose operation is implemented. Both transparency and the basis to
predict future behaviour are provided by the monitoring of the performance of the BPM,
recording the time and quality of performance according to the SLA, and drawing on this as
a record to predict the competence of an organisation to fulfil its role3. The consequence of
these mechanisms is that business risks are mitigated. Consequently, reliance can be
placed on business partners because partners can be selected on the basis of a record of
their past performance in a role, and each organisation will be informed as soon as they fail
to be reliable, so that the risk can be managed.

2 Social scientists also address the complex case of judgements of trust when an individual acts against
another’s short term interests and intentions, while acting for their longer term interests. However, such cases
are too complex for consideration within the present project.
3 “A contractor's past performance record is arguably the key indicator for predicting
future performance.” (US Department of Commerce and the Office of Federal Procurement Policy) but “a
fund's past performance does not necessarily predict future results” (US Security and Exchange
Commission).

D09 – TrustCoM Reference Architecture

 Page 11

Two further terminological points arise in this context. Firstly, the term used in computing
research for recording historic performance information and using it to support decisions is
reputation management. This term has unacceptable connotations in many fields, where
such technologies are called “supplier qualification systems”, however the term reputation
management will be used in this framework although the less worrying term can be
substituted.
A second terminological confusion can arise from an idiomatic use of the term trust in
computing to refer not to the trust concept as described above, but to refer to the method of
transmitting trust. That is, a trust technology is one that transmits authority to trust the
statements (tokens or certificates) of an issuer. Consequently, a trusted entity is one where
authority to trust has been transmitted. This idiomatic restriction is perfectly consistent with
the conceptualisation above although limited to avoid the complex issues of what trust is,
or how it is brought about.

I.3 The Business Model of TrustCoM
Virtual Organisations as envisaged by TrustCoM can be regarded as the coordinated
collaboration between individual (legal) business entities that share a common goal –
generally, we may claim that such a business goal is the business opportunity the swiftly
formed virtual organisation seeks to exploit. Thus the required expertise required from
business entities, their limitations and the general requirements are implicitly defined.
Entities participating in such a VO all contribute in a defined way to this goal and need to
pool resources in order to perform their respective tasks, i.e. the overall collaboration may
be highly interactive. The collaboration during the VO’s operation phase involves the
exchange of messages realising the aforementioned level of coordinated collaborative
activities. Even though such VOs may provoke the impression to be static in realising the
goal, the actual participants may constantly change their private configurations and even
an entire entity may either be replaced or added and dispatched dynamically over time.
While the former does not necessarily have an impact on configurations of the VO itself,
the latter however does, requiring the ability that a VO is able to adapt to fundamental
organisational changes. This allows for collaborations that are highly dynamic and in
principle capable of adapting to changes in the midst of VO operation.
For TrustCoM, collaboration takes place between VO members which are, regarded just by
themselves outside the VO context, otherwise independent legal entities. They exchange
messages to connect separate business tasks contributing to the VO goal which are
encapsulated by individual web service implementations. From a high-level, global point of
view, a TrustCoM VO may thus be regarded as a coordinated interaction between
individual web services (providers). This global collaboration perspective is called the
collaboration definition or, better known in the web service world, the choreography of the
VO.

D09 – TrustCoM Reference Architecture

 Page 12

Analyst Storage Provider

RequestData

SendDataReques

ReceiveData

AnalyseData

SendResult

ReceiveResultAddres

ReceiveDataReques

RetrieveDataFromDB

SendData

ReceiveResul

StoreResultInDB

SendResultAddres

Figure 1:Sample collaboration definition as a UML activity diagram

I.3.a Business Processes
As shall be detailed in the following, we distinguish four “levels” of business processes
according to their degree of abstraction, namely:

1. the goal description
2. the collaboration definition
3. the (individual) public business processes
4. the (individual) private business processes

D09 – TrustCoM Reference Architecture

 Page 13

The Goal Description
Every Virtual Organisation pursues a specific business goal as defined by a customer or
VO initiator. Such a definition will generally be formulated abstractly without providing any
details regarding how to realise this goal - in the case of the collaborative engineering (CE)
testbed provided in WP35 to demonstrate the TrustCoM framework in operation, this goal
may be formulated as "redesign and adaptation of an aeroplane regarding onboard
entertainment". The CE testbed scenario is set in the aerospace industry and details a
plane maintenance and upgrade scenario. The scenario subset discussed here comprises
of only two participants, each playing enacting one business role. The first business role is
the one of a design analyst, the second f a storage provider. Notably this definition does
not even detail the goal but nonetheless - as will be described below - carries enough
information to form a VO.
By making use of such abstract definitions, the virtual organisation will be allowed much
more flexibility and dynamicity during execution whilst at the same time it releases any VO
initiator from the requirement of having to know execution details: even though the initiator
may specify a complete business process including all the details and requirements, we
must generally assume that he or she lacks the respective expertise, thus also addressing
the average customer as a potential initiator of a virtual organisation.
The Collaboration Definition
From the goal, an actual description of the high-level processes and the required actors
may be derived. This generally requires the help of some kind of “business expert” who
knows how to define a collaboration definition and has a good understanding of what tasks
are involved in the respective goals. The main contribution of the “business expert” is his
knowledge on how to divide the work needed to be done to achieve the VO goal. This
division leads to a separation of activities to business roles for which actors have to be
discovered. For TrustCoM it is of no particular interest for the concept how the definition is
derived from the goal statement – without loss of generality we may assume that such an
expert either provides his/her support either as a web service or feeds a public repository
with sets of potential collaboration descriptions for various goals (see Appendix, I.2b for
details).
The actual collaboration definition covers three main issues:

• a description of the involved actors, consisting of participants and their business
roles

• the requirements and restrictions

• high-level activities

• the interaction between these actors
This way, a collaboration definition provides not only all the relevant information for
reaching the goal by specifying the sequence of interactions and data-exchanges, but also
provides the relevant information for actually identifying the required actors, i.e. their
description. TrustCoM extends this concept by adding some means of deriving the
requirements from the overall restrictions as provided by the initiator – this covers e.g. how
to calculate budget-limitations for each party given the available budget or individual time
constraints on basis of the overall deadline etc.

D09 – TrustCoM Reference Architecture

 Page 14

For instance Figure 1 depicts a simple sequence of interactions between two business
roles, a design analyst and a storage provider within a collaborative engineering scenario
where they are respectively analysing aircraft designs and providing the storage to hold the
analyses. The analyst is billed by the storage provider for storage space needed for a
plane’s design data. The analyst performs analysis work on such data. To find an actor for
the role of storage provider, the role of an analyst for instance imposes a budget restriction
such as the storage space for the entire collaboration time period should not be more
expensive than 3000€. A time restriction might be that the access time to the analysis data
should not take longer than 3 seconds. The latter would then result to a bandwidth
requirement for the storage provider.
For TrustCoM, such a collaboration definition is a fully valid “collaborative business
process” comprising the global view of the entire set of participants and their business roles
and in general the only process related description the VO has to take care of on its
highest level, even though it is not a fully detailed description of all involved tasks,
interactions and as such not on the same level of detailed modelling as an executable
business process. The latter is a means to enact a certain business role in a collaboration
definition and it is up to the actor how to conform to the required sequence of message
exchanges and related requirements and restrictions. This specific sequence will be
referred to in the following sections as the business protocol.
The (Individual) Public Business Processes
Actors enacting the “business roles” in a collaboration definition conform to the required
business protocol to reach the VO goal. While keeping their assets such as internal
services and optimised processes private, they are obliged to at least expose the
communication endpoints for participating in the business protocol. Figure 2: Private and
Public Business Processes depicts this sequence of message exchanges with the
communication arrows between the “AnalysisPartner” and “StoragePartner” swimlane. This
diagram follows the line of the previously introduced example collaboration definition by
illustrating the actual private and public business processes.
Public Business Processes are the conceptual components which facilitate the controlled
exposure of only those endpoints. Those are not executable business processes, rather
the interface layer to the latter – keeping private processes protected inside the own
domain while allowing for collaboration in the VO.
The (Individual) Private Business Processes
Actors in the collaboration definition are not identical to tasks in a business process and
accordingly the actors are not the actual web services, as shall be described in more detail
in section I.3.b. An actor is a business entity, e.g. an organisation, company or department,
which aggregates services. In fact, an actor may not even publish all the tasks, web
services and resources that are involved in performing a specific “business role” due to
privacy issues. Even though a business entity is free to do so, TrustCoM supports the
issues involved in only exposing those assets in a controlled manner which are
necessary to participate in a VO. Without loss of generality we hence assume that the
actions defined in the collaboration description do not map directly to the tasks that are
actually performed by the actor, i.e. the service provider plays a “business role” in the
collaboration that implies the enactment of individual tasks internal to that actor.

D09 – TrustCoM Reference Architecture

 Page 15

Figure 2: Private and Public Business Processes

To follow the above example, Figure 2 shows the private processes for each actor in a
separate swimlane as a UML activity diagram. The “analysis partner” (business role), after
agreement on an assignment, will actually have to analyse the existing design (set of
activities in scope), e.g. analyse the requirements from the “entertainment designer”
(business role, not shown here), based on the design data provided by the
“StoragePartner” (business role). From the customer’s, as well as the other actors’ point of
view, these details are of no importance however, and will unnecessarily complicate the
overall collaboration description. Accordingly, this (individual) business process is internal
to the business role and the execution details, e.g. a BPEL private process model, may be
completely unknown outside the respective domain. Note however, that these business
processes still have to comply with the overall requirements, e.g. if the customer explicitly

D09 – TrustCoM Reference Architecture

 Page 16

stated that no subcontracting will be accepted, the business process may not involve any
tasks that have to be performed by actors that are not part of the VO etc.
In summary, the TrustCoM VO principally undergoes three phases regarding its “business
description”: (1) The customer or initiator provides a description of the goal that is to be
achieved by the VO. (2) From this goal a collaboration definition is derived that specifies
what kind of actors are required, which high-level activities they have to perform and how
they interact etc. This information will support the identification of and negotiation with
potential VO participants. (3) Each business entity that actually participates in the VO will
“convert” the respective role descriptions and requirements into individual business
processes that can be enacted it.
The business processes in (3) entail private and public processes. Since each business
entity performs this step locally, the private knowledge of highly optimised business
processes, e.g. efficiently retrieve and store design data, can be used for the private
process. The public process needs to comply with the required interaction sequence and
message types for participating with another business role, only exposing the required
interface information while hiding the private process.

I.3.b Structure of Virtual Organisations
TrustCoM aims at realising Virtual Organisations on basis of web service interaction, thus
allowing secure and coordinated interactions across enterprise boundaries. All actors in
such a VO expose their functionalities through standard web service interfaces.
However, as has already been shown by such projects as GrASP, this does not imply that
the actual processes can only be plain web services, but rather that all interaction between
those are exposed as web services. This means that in principal anything that can or is
linked to a computer can act as a participant in this VO model. This is of particular interest
to TrustCoM as it has an impact on what we mean by “participant” and “(business) role” in
a business collaboration:
Since collaborating partners are organisations who are more than just plain web services,
we need to distinguish between the VO view on participants and their actual internal
structure. The latter raises security implications regarding asset protection, privacy and
data confidentiality as well as controlled exposure of the minimal required collaboration
infrastructure. This relates to the distinction between collaboration definitions and individual
business processes as detailed in the preceding section. Accordingly we need to clarify
that even though we speak about (web) service providers interacting in a virtual
organisation, it is really “business roles” that are realised / provided by the individual
participants which again expose their functionalities as web services. From a VO-
perspective there is no real difference however, whether the web service used for
collaboration is just an interface to more complex executable processes or actually
encompassing the business role’s entire behavioural interface for the virtual organisation.
To allow full integration into the VO lifecycle, in particular to enable autonomous discovery
according to the collaboration definition, we must assume that information about the
roles the individual entities can fulfil have been published in the enterprise network. As the
functionalities are provided via web service interfaces, this process will be principally
identical to the one for publishing web services.

D09 – TrustCoM Reference Architecture

 Page 17

Figure 3: mapping between roles and actual tasks in the VO.

With this conceptual approach we ensure that any participant in the virtual organisation
maintains full control over his/her resources and thus can enforce the respective privacy
issues.

I.4 The Contract Model of TrustCoM
Virtual Organisations as envisaged by TrustCoM can be regarded as the coordinated
collaboration between business entities that share a common goal. From a legal
perspective, the virtual organisation will normally not be considered as an organisation with
legal personality, but as an instance of collaboration between the VO members. The key
means to steer this collaboration is a contract or a set of contracts between the
participating organisations. These contracts play a vital role in governing commercial
interactions between organisations. Moreover, the contracts need to be closely linked to
business processes in the e-business applications. This interplay between the legal level
and the business process level is necessary in order to facilitate the joint approach towards
the achievement of the common goal and to reduce inherent risks. This integration is
facilitated through the TrustCoM concept of General VO Agreement (GVOA). The GVOA is
a “container” of VO contracts, SLAs and policies that all partners agree to.

D09 – TrustCoM Reference Architecture

 Page 18

SL
As

P
ol

ic
ie

s

Figure 4: The Contract Model in TrustCoM

A contract is often defined as a legally binding agreement that creates an obligation to do
or not to do a particular thing.4 In the context of the TrustCoM project, our focus is on the
internal legally binding agreements between VO participants.5
Whether agreements between (prospective) VO participants can be considered as
contracts, depends on whether the parties regard them as legally binding and enforceable.
A contract is usually formed by an offer and an acceptance; sources of law (national or
international) provide detailed requirements on contract formation.6
TrustCoM has followed an approach in which two classes of VO contracts are defined:

• VO Contracts: contracts that express the general rules that each partner of a VO
must abide to. These general rules for of collaboration constitute the legal basis for
the collaboration. They define how the VO collaborates towards the achievement of
the common goal and how the partners jointly work with reducing the risks of
collaboration.

• Service level agreement (SLA): contracts that express the specific rules that
partners involved in a specific (operational) business process must abide to.

A VO contract identifies and specifies the general rules that characterise how operational
business processes are to be conducted through collaboration in a VO. On the other hand
an SLA describes Quality of Service (QoS) objectives for a specific service as agreed by
the service provider and the service consumer.

4 William P. Statsky, West's legal thesaurus/dictionary, West Publ., St. Paul 1986. One may want to add that
the contracts also may contain permissions.
5 There will also be contracts involving VO members and third parties, see e.g. Report on Consumer
Protection and contracting with 3rd parties by the ALIVE IST project http://www.vive-
ig.net/projects/alive/Documents/Consumer_Protection.zip.
6 As an example, consider the United Nations Convention on Contracts for the International Sale of Goods
(CISG) Article 14 I (1) and Article 18 I, even though they address goods and not services.

D09 – TrustCoM Reference Architecture

 Page 19

These contract types also need to be related to the different organisational levels of
collaboration. The creation of VOs may be facilitated by an Enterprise Network (EN), which
is set up as a basis for more specific collaboration in VOs. This EN will and should also be
based on a contract which should include rules about the collaboration at EN level and
about the creation of VOs. Hence, if there is a contract-based EN, both VO contract and
SLAs may be understood within the context of the EN contract.

I.4.a EN Contract
The EN contract will be drafted by the EN founding members; it will be formulated in
natural language.
A template for an EN contract is included in the Report Legal Issues in SME clusters,
provided by the Legal-IST project (legal-ist.org). An EN contract should at least cover basic
issues for collaboration, including

• EN structure
• EN governance (EN management structure, etc.)
• Outline of VOs (industry domain, VO management, etc.)
• IPR & confidentiality issues
• Data protection issues, if applicable
• Payment & Costs,
• Liability and insurance
• Jurisdiction & Choice of Law
• Dispute settlement
• Etc.

EN contracts will be defined by the EN, based on the types of VOs envisaged by the
network, taking into account the specific needs of the industry in question and based on the
requirements laid down the applicable national law. Though templates and model contracts
are available, it is not possible to draft one general EN contract for all applications. There
will be major differences between possible networks in various industries, services,
jurisdictions, etc. The more similar the VOs in the network are, the more details may be
included in the EN contract.

I.4.b VO Contracts
VO contracts may be written in natural language, but other formats may also be used. The
content of VO contracts essentially depends on the specific kind of collaboration and on the
relevant industry, (e.g. collaborative engineering in the aerospace industry or provisioning
of eLearning services). A VO contract template in natural language was provided by ALIVE
IST project (consortium agreement type of contract). More specific model contracts for
different contexts are available in legal literature.7
Amongst the issues to be addressed by the VO contract are QoS requirements, access
rights to computational resources, and trust issues (including consequences of one VO
partner’s trust level falling below threshold).

7 See, e.g., Richard Morgan and Kit Burden, Morgan and Burden on computer contracts, 7th edition Sweet &
Maxwell, London 2005.

D09 – TrustCoM Reference Architecture

 Page 20

A particular challenge in relation to VOs is the speed with which they may be expected to
be formed, potentially on a time scale on the order of minutes or seconds. Creation and
signing of VO contracts may thus need to be fully automatic.
The creation of VO contracts may be facilitated through the use of templates drafted e.g. at
EN level. EN members from a certain industry (e.g. collaborative engineering) will normally
have access to typical contract models utilized in their industry. Based on these typical
contract models, VO contract templates can be drafted by the EN founding members. In
cases where there are major differences between VO contracts in an EN, the EN may need
to draft several different VO contract templates. Some of these templates may be very
detailed, leaving only some specific matters (e.g. QoS requirements and price) for the
actual contract negotiation. The degree to which the VO templates need to be adapted
depends on how much the VO contracts differ from each other.

I.4.c Contracts and the VO lifecycle
The EN and VO contracts will also need to address the different phases of the VO lifecycle:
Firstly, in the pre-contractual stage of the VO (identification and formation), there may be
preliminary contracts (letter of intent, memorandum of understanding/preliminary contract)
regulating the creation of the VO.8 At the same time, the EN contract may include rules for
the creation of VOs, e.g. regarding the selection of prospective partners, confidentiality
duties, etc. Secondly, the operation as well as the evolution of the VO will follow the rules
laid down in the EN and/or VO contract. Thirdly, the dissolution of the VO will need to
follow the contractual rules, and VO contracts will typically include rules about the effects of
termination of the VO contract.9 A VO contract may e.g. include confidentiality duties which
will prevail even after dissolution. Similarly, liability issues may need to be addressed after
dissolution. Last but not least, if the VO is expected to generate results that may be IP
protected, then the VO contract should address IP rights and use by VO members after
dissolution. Hence, though the VO is dissolved, some contract provisions will remain valid
and will require the attention of the VO partners. The contract should therefore be available
for VO partners also after dissolution.

I.4.d Examples from the TrustCoM test bed scenarios
The TrustCoM test bed scenarios illustrate that there will be major differences between VO
contracts in different industries: The eLearning scenario envisages that there will be a
Metacampus EN contract, i.e. a rather stable contract for those participating in the
marketplace. In this scenario, VO formation needs to happen in a matter of seconds or
minutes as the user requests and then selects a learning path via the portal. Since the VOs
only differ with respect to the learning paths, the involved LCPs and end-users, most legal
issues may be covered in the EN contract. Content providers could, for example, join the
EN and agree to be bound by the EN contract when registering their services in the
eLearning EN. Nevertheless there is a need for a (rather operational) eLearning VO
contract that governs the provision of eLearning services to one end-user, based on one
learning path. Contract templates could be specified e.g. by the initial eLearning EN

8 See, e.g. ALIVE IST Project VE Model Contracts, Deliverable D 17a (2002), Section 3.
9 For further details see ibid, Section 4.6 on p. 27.

D09 – TrustCoM Reference Architecture

 Page 21

founder(s) and agreed to by each EN partner as they join the EN. This would need to be
anchored in the EN contract.
In the CE scenario, VOs will differ markedly from each other: Therefore, the EN will either
be a rather loose club of collaborators, or there will be a multiplicity of ENs, or the EN is
centralized around the CE VO. Nevertheless, there will probably be more stable contractual
relations

• between the CEVO and the Air VO, on the one hand,

• between the CE VO and a group of (potential) service providers, on the other hand.
The VO contracts between CE VO and other participants will differ based on the type of
contract, e.g. outsourcing, ASP, consultancy, software licenses, combined contracts, etc.
Model contracts and guidelines for the different contract types are available in legal
literature.10

I.4.e Drafting EN and VO contracts
EN and VO contracts will be drafted based on an assessment of the planned collaboration
at EN and VO level. This assessment should both cover positive aspects (what is the
business objective of the EN/VO and how can it be achieved) and negative aspects (risks
related to the collaboration, affecting either the common business goal or the assets of the
participants).
The drafting of some elements of the EN or VO contract will be based on the business plan
and strategy, on the specific needs of the industry in question and on specific requirements
laid down the applicable national law. This positive assessment will take into account the
envisaged VOs the VO lifecycle, the VO management structure and what in TrustCoM is
referred to as the collaboration definition. The collaboration definition includes a description
of the involved actors, specified as business roles, and restrictions on such actors. This
information constitutes the input to define a VO contract.
Moreover, the EN or VO contract needs to take into account risks related to the
collaboration. This aspect can be covered in a Legal Risk Analysis, which seeks to identify
risks related to the collaboration, affecting either the common business goal or the assets
of the participants. These risks may be identified and analysed in a structured way. This
analysis results in a list of risks, which may be prioritized according to their likelihood and
consequence value. This risk assessment serves as a basis for the drafting of rules in the
EN or VO contract. Moreover, legal risk management serves as a bridge between the
contract level and the operational technological level, including monitoring and
enforcement. In particular, legal risk management may be utilized in order to

• Identify risks that need to be taken into account when drafting the EN or VO
contract, including risks related to policies specified as described in the TrustCoM
framework;

• Identify issues of high importance within the operational part of the GVOA;

• Identify risk areas that should be monitored and rules that need to be particularly
enforced.

10 Ibid.

D09 – TrustCoM Reference Architecture

 Page 22

I.5 Usage Scenarios / VO Lifecycle Phases
Four phases of the lifecycle of a Virtual Organisation are distinguished: (1) Identification
and Discovery, (2) Formation, (3) Operation & Evolution and (4) Dissolution & Termination.
The main tasks to be performed during individual operations of the system for each phase
are describe here as scenarios.

I.5.a Establishment of a Virtual Organisation (Identification and Formation)
The first stage on VO formation is the formation of an Enterprise Network (EN) to provide a
pool of organizations who are willing to join virtual organizations. Organisations must
register with an EN register which acts like a yellow pages telephone book – listing the
organization and the services that they are willing to provide. One problem that is not well
addressed within Trustcom yet is the motivation to join an EN in a competitive
marketplace– why should an organization join one EN rather than another ? It is planned to
take guidance from other IST projects that are investigating the issues of VO breeding
environments in order to resolve this issue. The EN register and other EN and VO
infrastructure services will be hosted by a provider. Business models are presented in other
TrustCoM deliverables that show how the hosting of EN and VO services could be a
profitable business in itself, probably as added value additions to basic ISP provision.
An organization which is registered as an EN member identifies a business opportunity and
has the intention of creating a VO to meet it. They become the VO initiator, defining the
goal of the VO, and try to discover the organizations required to make up the VO to
achieve the business objective. The VO initiator will interact with a service provided by the
hosts of the EN and VO infrastructure to guide him through the creation of a VO – the VO
Management service, which is one of several VO services that will be introduced in the
scenario. .
Given a specific business objective (provided by a customer or by the VO Management
organisation itself) to be realized by a virtual organisation, the VO Management service
triggers the derivation of a business processes according to a collaboration definition by
contacting BP Enactment. The latter now queries (known) BP Template Repositories for
collaboration definition that realise the given task. Such templates contain the next highest-
level description of activities, information that is related to the roles involved in realising the
processes (i.e. descriptions of the services that fulfil the individual tasks), coordination
information (how the services have to interact) etc. which are passed to VO Management
for partner selection. It is an open issue to be addressed by the evaluation of the TrustCoM
demonstrators whether the level of description of the business objective, the collaboration
definition are defined at an appropriate abstraction for the available definition of the market
opportunity and the envisaged structure of the VO at this stage of the process. They may
be either too abstract or too concrete, in either case the mismatch between the
representations offered by the VO management services and the conceptualisation of the
human VO initiator will increase the risks of the VO failing - even at this early stage,
VO Membership Manager is invoked with the collaboration definition’s role related data
containing information11 about the structure of the service (operations, interface etc.), the

11 Further information types may be added in the course of the project

D09 – TrustCoM Reference Architecture

 Page 23

quality it has to fulfil (SLA) and its trustworthiness12. This information is passed to the
Discovery Service that for each role to be manned contacts a set of (known) repositories
and returns a (sorted) list of potential organisations that meet these requirements.
Once the Membership Manager has received this list of potential participants, the SLA
Negotiator on VO Management side is triggered to negotiate the actual terms with the
Application Service Providers (starting with the most suitable ones), until all roles are
manned. If negotiation fails to cast a specific role, i.e. if none of the respective
organisations meet all requirements, the business process to be executed by that
organisation and its requirements need re-evaluating.
As soon as all participants for the virtual organisation have been identified, VO
Management triggers distribution of the relevant information to each of the VO members –
this includes:

a) required authorisations to access other members,
b) interaction and coordination information, like what data to pass when between

services
c) VO agreements and policies, as well as
d) other configuration data (contact information, notification topics etc.).

Once all participants have confirmed their configuration, the VO manager is ready to
instantiate the VO and enact the overall collaboration definition.

I.5.b Normal operational work
With all VO members configured, BP Enactment starts the execution of the overall
collaboration definition by triggering the first Application Service Provider(s) of the workflow
and forwarding relevant execution data to it (like input values or location of data files).
Generally, the Application Service itself is responsible for triggering the execution of follow
up tasks by forwarding its output data to the Application Service Provider(s) next in the
overall collaboration definition (the relevant information, like which services to contact and
which data to pass, has been provided during VO formation for each derived BP per role –
cf. section I.5.a).
At checkpoints in the enacted business processes, the respective Application Service
provides status information to BP Enactment, thus allowing monitoring of the overall
enactment.
Execution proceeds until either failures occur (like contract breaches, destruction of
services etc. – cf. sections I.5.d, I.5.e) or the business process is finalised, in which case
dissolution of the VO is initialised (cf. section I.5.f).

I.5.c Dynamic addition of an organisation during operation
Not all Application Service Providers are necessarily identified during the formation phase
of the virtual organisation, as some tasks may only be performed after a comparatively long

12 Note that „trustworthiness“ as used in TrustCoM relates to „reputation“ of the respective service provider.
Accordingly, services that have not yet gained such a reputation need particular treatment.

D09 – TrustCoM Reference Architecture

 Page 24

period of time and hence reservation of a service for that duration is unfeasible. Under
such circumstances, the difficulty connected with the discovery process has to be
considered, as some services are less common and/or are frequently occupied – assuming
that the required service does exist at all.
Hence, such an approach is in particular sensible, if the required services are relatively
common and only needed for short intervals.
The discovery process is either triggered directly by the need for a non-manned service
arising or by a specific discovery-related activity in the collaboration definition. In the first
case, the address of a non-existent service is requested from VO Management which in
turn triggers the discovery process at BP Enactment, whilst in the second case the
identification process reflects a separate task in the business process. Likewise, the latter
case allows for discovering new services ahead of time, i.e. before they are actually
needed, hence reducing potential delays in the overall execution.
Flexibility of discovery during the actual operation of the virtual organisation is limited as
opposed to during the discovery and formation phase, since no changes in the parameters
of other service providers can be accepted in order to achieve the overall goal.
Once an Application Service Provider has been identified, it is provided with the required
configuration data, as described above (section I.5.a). All VO participants that need to
interact with this new service are informed of the change, respectively of the addition of a
new participant, by providing the contact details (including access authorisation), i.e.
Endpoint Reference Address to them. This also applies to Trusted Third Parties services
insofar as they interact with the Application Services (e.g. Message Brokering, cf. section
II.3.b).

I.5.d Dynamic removal of an organisation during operation
Similar to adding a service provider during the operational phase, an organisation may
want to free their resources again, once they are no longer needed by the VO. Accordingly,
the Application Service Provider has to be removed from the virtual organisation, if so
requested.
Again, the request is either raised directly (in this case by the Application Service Provider
him-/herself) or indirectly by the respective entry in the overall business process. In either
case, the message is forwarded to VO Management, which triggers re-configuration as
follows:
As the service provider has no further rights to access other services and should not do so
for security reasons, all respective access rights are revoked. In order to avoid further
communication and in particular forwarding of (possibly sensitive) notifications, all
references to the respective service are removed – the only communication remaining
takes place between VO Management Services and the Application Service Provider.
If a price for service usage was agreed upon, billing takes place at this time – the Log may
serve as a means for establishing the actual price. Similarly, the trustworthiness of the
service provider is updated on basis of its performance (as maintained in the Log), i.e. the
reputation gained through participation in this virtual organisation is forwarded to the Trust
Maintenance Service.

D09 – TrustCoM Reference Architecture

 Page 25

Finally, the service provider is removed from the list of VO participants at VO Management
side.

I.5.e Replacement of a participant by another during operation of the VO
(Evolution)

During the operational phase of the VO, a particular service may need replacing, due to
non-performance, contract breaching, simple “disappearance” of the service or similar
reasons. In either of these cases, the overall business process is delayed as the current
task can not be executed. Since the need for substitution generally arises after the actual
task started execution, replacement may even cause a rollback and compensation
operation in the involved BPs, as a set of tasks will (in most cases) have to start anew with
the new service.
Typically, a Policy Subsystem identifies the need for a replacement as a reaction to a
specific event, like e.g. contract breaching and notifies VO Management. The latter may
verify the correctness of data by directly requesting information from the respective
Application Service Provider.
VO Management then triggers re-configuration of the VO as described in section I.5.d
(insofar as the service is still available for contacting), i.e. it removes the service to be
replaced from the virtual organisation.
At the same time, VO Management triggers the Discovery service to identify a new service
provider that fulfils the criteria as defined for the one to be replaced. The Application
Service Provider will then be provided with the necessary information as during the
dynamic addition of an organisation (cf. section I.5.c).
Once set-up accordingly, i.e. the old service removed (all tokens and related information
revoked) and a new service configured according to the VO’s needs, BP Enactment
triggers execution of the Application Service. Since input data may have been lost during
the replacement process, BP Enactment furthermore triggers the Application Service
Providers representing the preceding tasks in the overall business to re-distribute their data
to this new service.
Note that, similar to dynamic addition of organisations (cf. section I.5.c), circumstances like
relevance of that service for the overall execution, availability of replacements etc. play a
significant role in whether a service should be replaced. Data like amount of service
providers initially identified for that role (during the discovery phase) may be crucial for
further proceeding.

I.5.f Dissolution of the Virtual Organisation
Once the overall business process has executed its final task13, respectively destruction of
the VO is triggered by VO Management (e.g. due to grave failure), the virtual organisation
may be dissolved, i.e. all partners are removed from it as described in section I.5.d.
Once all Application Service Providers have been detached, the configuration of the VO
Management Services will be reset up to the point of reuse. This means that the VO

13 Note that a virtual organisation may be maintained for more than one execution of the business process
and that not all tasks are necessarily orchestrated by BPs..

D09 – TrustCoM Reference Architecture

 Page 26

Manager may decide to maintain e.g. the collaboration definition for later execution and
keep a list of all service providers that performed well so that they may be contacted again.
Generally, however, we will consider the virtual organisation to be reset completely at this
point, i.e. any new request to a VO Management service provider will have to start a
complete new setup procedure as described in section I.5.a.

D09 – TrustCoM Reference Architecture

 Page 27

II The TrustCoM Architecture
A system as complex as the one aimed at by the TrustCoM project may not simply be
depicted within one overview diagram: besides for the mere size, the system needs to
meet high expectations with respect to dynamicity (covering all four lifecycle phases [16])
and flexibility (each service provider may adapt the framework according to its own
requirements and Virtual Organisations will need to be structured to meet the respective
business demands) – accordingly no simple diagram structure will suffice to cover all these
aspects in a way that is comprehensible for people outside of the project. We hence
decided on segmenting the architecture into (1) the more conceptual overview that
provides an insight into all potential components of TrustCoM (the “relationship model”, this
chapter) and (2) a concrete usage example of this architecture in a hypothetical business
case (the “deployment model” chapter III).
In the following we shall elaborate what we understand as the “relationship model” of
TrustCoM:
In order to meet the business requirements identified and partially repeated in chapter I
above, every service provider will need to extend his/her services with specific
functionalities in a way that realises uniform message so as to maximise interoperability. In
addition to this, management mechanisms need to be provided that enable the coordinated
interaction of these service providers to realise the collaboration of a virtual organisation.
Since each service provider will have a different infrastructure that needs to be extended
and since every virtual organisation will differ in its setup and its requirements with respect
to what mechanisms need to be supported, there can be no uniform architecture - in the
sense of component structure - representing the full framework capabilities. Instead we
shall try to cover the potential of the architecture by depicting all components and
interactions that are principally possible. Note that this implies that not all the components
depicted below will be required in order to realise the TrustCoM capabilities - rather this
strongly follows the service oriented architecture approach and thus each component may
be regarded as an optional enhancement that may be replaced/supplemented by
principally any other component that provides the same functionalities according to the
relevant standards (cf. also chapter III) or even completely omitted if the respective
functionality is considered unnecessary.
With such an approach, the links between the components as depicted in the diagrams
below can only be regarded as relationships, rather than actual interactions since a
replacement (if any) need not support the full message exchange. The details with respect
to which components and transactions need to be provided in order to realise a specific
functionality will be described in more detail in the “deployment model” (chapter III).
Consequently, the components of the diagrams may not be considered actual instances of
services, as some of them may even be completely omitted in an actual operational VO.
Instead, the components represent classes of components that may instantiated into
objects, respectively services – their relationships may thus be regarded as a
representation of their interfaces (i.e. the functionalities they expose) as well as which
services typically would invoke these. This implies that each type of class is represented
only once in the diagrams and thus that the distinction between service types that make

D09 – TrustCoM Reference Architecture

 Page 28

use of these components (cf. section II.1.a) is not visible, since the components may be
deployed on different types, according to usage.

II.1 From Concepts to Architecture
In summary, the TrustCoM framework has to respect that:

(a) a service provider may not want to support all functionalities necessary to maintain a
virtual organisation by itself, and/or may want to make use of already existing
functionalities rather than using the TrustCoM ones. Service and functionalities
hence need to be separated in a way that avoids adaptations of the respective
domains as much as possible – ideally, a service provider will just choose the
components on a “plug & play” basis, where it is completely up to him/her to
“outsource” the functionality, choose own components or even skip it completely.

(b) the internal structure of a service provider is private, meaning that the TrustCoM
framework will not modify or expose it. The service provider alone should decide
what information is available and how it is made available – this addresses in
particular monitoring related issues (as will be discussed in the SLA related
sections) and the “internal” business processes (cf. section I.3).

(c) service providers in a Virtual Organisation generally do not want to depend on other
participants, in the sense of that the respective party may manipulate them or that
they would be indirectly responsible in case of failure of the other participant.

(d) accordingly, it needs to be ensures that performance is supervised so that corrective
measurements can be taken in time, thus avoiding not only failure of the overall VO,
but also – from the individual participants’ point of view – that responsibility for the
partners that need to interact with each other does not rest on the individual. Since
the participants may never formerly have worked with each other such responsibility
will generally be refused.

(e) along the same line, sensitive data needs to be well protected and access to the
local resources restricted to those instances that require this access.

(f) the rules and policies of the Virtual Organisation and of each individual participant
need to be enforced within the VO, so as to avoid failure, data misuse, security
issues etc.

(g) for each individual participant his, respectively her own policies have the utmost
priority and may by no means be overridden by the VO, even if this implies that the
respective provider can not participate in the collaboration.

(h) where possible, some indication of the interacting parties’ reliability should be
provided.

(i) interaction takes place not only across individual organisational borders, but also
between different nations, thus implying different legal situations, corporate policies
and cultural backgrounds

In the following sections we want to outline how the architecture developed by the
TrustCoM consortium caters for these aspects with respect to the individual lifecycle
phases of a Virtual Organisation.

D09 – TrustCoM Reference Architecture

 Page 29

II.1.a Abstract Structure
TrustCoM introduces a high-level VO structure that tries to accommodate for these issues
by distinguishing services according to the type of functionality they provide to the Virtual
Organisation (cf. Figure 5). Note that this distinction has already been thoroughly
discussed in previous documents (D09, ID1.1.3 etc.).

• Application Service Providers (ASP)
Any entity that directly contributes to realising the VOs overall business objective as
codified in the collaboration definition by fulfilling one or more roles in it, is acting as an
Application Service Provider. These entities are Business Partners that are obliged to
provide the respective services by contract and that demand payment for their
contribution.
Application Service Providers are the main participants of a VO.

• VO Management Services
These services provide the functionalities to coordinate the interactions between the VO
services so as to reach a common goal, represented as a collaboration description.
Though the VO itself does not rely on the existence of a central management instance,
certain requirements imply some sort of central coordination.
The VO Manager (as a specific instance of these services) furthermore can act as the
interface between customer(s) and participants of the VO – thus it represents the
customer’s interests inside the VO.

• Trusted Third Parties (TTP)
Though Application Service Providers and VO Management Service Providers form the
main actors in a virtual organisation and in fact would suffice for enacting collaborative
workflows, additional types of services are recommended to supplement the TrustCoM
specific functionalities. This relates in particular to functionalities that can not or should
not be realised by the Application Service Providers – either due to the ASP wanting to
“outsource” the functionality, in order to maintain privacy issues or to reduce
dependencies between ASPs:

o function outsourcing
though generally not recommendable, an ASP may leave certain management
related functionalities, including the enactment of local policies, monitoring
performance and similar issues (cf. below), up to third parties that he/she trusts
to perform the respective tasks. This may also involve functionalities that the
ASP would like to make use of, but can not realise him-/herself, like logging etc.
o privacy enactment
some participants may furthermore want to remain incognito for respective
collaboration parties and as such may request means of brokering interactions
through a third party trusted by him/her
o “neutral” parties
finally, ASP and/or VO Initiator may not trust the respective other to perform
certain tasks neutrally, i.e. without cheating if profit for oneself may be gained

D09 – TrustCoM Reference Architecture

 Page 30

from this – this applies in particular to supervision of performance and its
relationship to payment. Shifting such responsibilities to third parties trusted by
both ASP and VO Initiator equally will ensure that e.g. maintenance of the
performance log is performed neutrally, without preferring the one result over the
other.

Likewise, TTP services maintain data that may be confidential, making them subject to
VO policies, agreements and in particular security issues. Accordingly, we consider
TTP services as participants of the Virtual Organisation, since their behaviour is
influenced by the requirements of the individual VOs.
Notably, all TTP functionalities may be enacted completely by either VO Management
or Application Services, thus rendering the structure of TTPs very individual to each VO
and not a general requirement, but a recommendation. In summary, Trusted Third
Parties take an intermediary position between VO Management as a representative of
the customer and the individual Application Service Providers as the main VO
participants.

• Supporting Services
As opposed to Trusted Third Parties, there will be services involved in realising the
VO’s capabilities that in themselves do not directly participate in the VO, i.e. that
provide the same unaltered functionalities to each customer, respectively VO. As
opposed to this, Supporting Services do not directly participate in the VO, yet indirectly
contributes to its functioning. In general, this concerns repository-like facilities that
maintain lists of services (as potential VO participants). These types of services
principally already exist (e.g. UDDI) and are not, respectively only minimally influenced
by a virtual organisation.

Figure 5: The service types participating in a Virtual Organisation.
According to this structure, Application Service Providers do not have to rely on other
ASPs, but rather the management and sensitive functionalities are shifted to instances
principally neutral to the individual participants. There is no restriction to all these
functionalities actually being provided by ASP participants, i.e. any TTP or VO
Management Service itself may be an ASP and the other way round.

Supporting Services

Virtual Organisation

VO

Management
Services

Application

Service
Providers

Trusted Third Parties

D09 – TrustCoM Reference Architecture

 Page 31

One of the direct implications from this categorisation is that different degrees of adaptation
requirements exist for the individual types of services: whilst generally an application
service provider would want to make use of the full trust, contract and security features,
trusted third parties will not necessary require full support, but mostly security control.
Supporting services on the other hand are generally not impacted by these functionalities
and will not integrate any of these features. This also applies to the communication layer –
see section II.3 for more information.

II.1.b The Subsystem Segmentation
From the requirements and concepts as detailed in the previous sections, we can derive a
set of functionalities that need to be provided by the TrustCoM framework that may be
categorized as described in this paragraph and that reflect the individual expertise of the
consortium. This categorisation is pursued throughout the project, so that individual
functionalities, provided as services or components, are realised as part of the respective
category, in the following also called “subsystem” of the TrustCoM framework.
With the Service Oriented Architecture approach pursued by the project, the individual
components developed within the scope of the respective subsystems are principally
usable in a stand-alone manner, as detailed in the following chapters. Since each
subsystem reflects specific types of functionalities and hence requirements, a service
provider may subsequently select individual components from each category, according to
his/her needs.
Note that each of these subsystems is described in more detail in the appendix to this
document.
VO Management
The VO Management component defines and stores details of each virtual organisation
participating in the Virtual Organisation. It is divided into three main modules responsible
for (a) lifecycle changes to the VO (“VO Lifecycle Management”), (b) maintaining the
participants in the VO (“VO membership management”) and (c) managing the General VO
Agreement (“GVOA management”). These modules interact mainly with the SLA
management component which creates and manages the detailed SLAs, and with the
Business Process Enactment and Orchestration component which defines the business
process of the VO, and enacts when the VO is in operation. The VO management
component builds upon the data in the Enterprise Network Infrastructure when a VO
manager wishes to create a VO in order to allow the business process of the VO to be
defined in the BP manager along with the roles of potential organisations, it calls the EN
Discovery Tool to discover candidate partners from within the Enterprise Network, calls the
SLA Negotiator to negotiate with a candidate partner the details of the SLA to perform a
role in the VO, then composes the legal General VO Agreement to be signed by all
partners. Once the VO is created, the VO manager calls the BP Manager to enact the
business processes of the VO. While the VO is in operation, the VO manager responds to
evolutionary changes in the VO, as partners succeed or fail to meet deadlines, quality and
other policies from the SLA, ultimately identifying replacement partners and renewing the
GVOA. When the VO terminates the VO manager closes the VO down.

D09 – TrustCoM Reference Architecture

 Page 32

Business Process Enactment and Orchestration
The subsystem catering for Business Process (BP) Enactment and Orchestration provides
generic, flexible services to be used in different application scenarios as well as for VO
Management related purposes. This subsystem provides autonomous functionalities
implementing the three phased Collaborative Business Process modelling methodology
which was defined in WP2/21.
BP enactment begins with the global view/choreography of the VO business objective, the
process and the roles required to achieve a set of goals, encoded in the collaboration
definition. The CDL++2BPEL service component takes the collaboration definition as input
and following a top-down approach, derives process views and optionally private
processes from it. The latter occurs if no pre-existing private processes have to be taken
into account.
A BP Management service offers runtime management methods for the BP engine. This
service allows for automatic deployment of derived BPs and views, as well as their
execution. Associated with engine comes a monitoring component.
On top of the operational aspects of BP creation and execution, this subsystem also takes
care of Trust, Security and Contract (TSC) Management controls for BPs. Such aspects
may be assigned at design and runtime as TSC extension roles to design time artefacts
called TSC tasks in BPs (see Appendix, section I.2 for details).
SLA Management Services
The SLA Management subsystem provides a set of services that allow autonomous
observation of individual service providers’ performance and comparing these to a set of
previously agreed upon quality of service parameters.
Accordingly, the subsystem needs to provide the functionalities to

a) negotiate SLA terms that meet both the customer’s expectation with respect to the
quality of service, as well as the service provider’s capability (and intention) to
maintain these.

b) monitor the performance of a specific service and/or its respective environment (like
the host system’s status)

c) compare the monitored information with the terms agreed upon during negotiation of
the SLA.

A member of the Enterprise Network uses this subsystem to associate SLA templates with
the services it may provide to an eventual VO. A potential consumer of the application
service uses this subsystem to negotiate and sign an SLA with the service provider. The
SLA Management subsystem assists VO Management (via the Discovery Service) in the
search for services that can meet the QoS requirements of the VO.
Upon SLA violations, the SLA subsystem generates notifications that can be picked up by
the Policy Subsystem in order to apply the proper adaptation policies.
Trust & Security Services
The subsystem for trust & security services provides services related to the establishment
and maintenance of trust relationships with a priori unknown partners from foreign security
domains.

D09 – TrustCoM Reference Architecture

 Page 33

Establishment of trust relationships is provided by Security Token Services that can issue
and validate security tokens across administrative domains, and corresponding
configuration management services that can be used to adapt the local security
configuration to dynamic changes in the VO.
Maintenance of trust relationships is provided by a reputation management services that
collects individual ratings about the prior behaviour (reputation) of Enterprise Network
members, offers a combined reputation value to interested clients, and notifies registered
VO members about sudden changes in this value due to recent activities. Also, a Secure
Audit service provides the functionality to record custom data, for example actions
performed by other partners, so that it cannot be repudiated.
Policy Control
The policy subsystem provides the means to define, deploy and enforce both access con-
trol and adaptation policies within the TrustCoM framework. Access control policies com-
prise both authorisation policies that define which entities are permitted to access services
within the TrustCoM framework and under which constraints, and delegation policies which
specify permissions on the delegation of administrative permissions. Adaptation policies
(traditionally sometimes called obligation policies) are in the form of event-condition-action
rules that define how the VO should adapt in response to failures, changes in the reputa-
tion or performance of its participants, security threats etc. For example, policies would ty-
pically dictate under which conditions the procedures for the removal of a member of the
VO should be executed in case of repeated VO breaches or significant loss of reputation.
Similarly, policies can be used to trigger reconfiguration of the service message intercep-
tors in order to add additional handling procedures such as secure auditing. Policy control
is based around two services: the policy service which receives policies from the GVOA,
deploys access control policies to the Policy Decision Point (PDP), enforces adaptation
policies and manages the policy life-cycle and the policy decision point which enforces the
authorisation and delegation policies and responds to access control queries issued by the
Policy Enforcement point which is part of the EN/VO infrastructure (cf. Appendix).
EN/VO Infrastructure
Each service provider has his/her own approach to making the functionalities of the offered
service(s) available, to managing them and to support trust, security and contract
managing features – if any. The EN/VO Infrastructure components provide the base
functionalities to allow common access and management functionalities across all
participants in a virtual organisation. This involves in particular:

a) establishing a communication layer that allows messaging and notification, and
relates the additional TrustCoM functionalities (trust, security and contract) to the
respective services

b) maintaining the actual locations of services and mapping handlers to them so that
services are accessible even when moved

c) supporting coordinated instantiation of involved services
d) exposing functionalities of services for discovery and
e) supporting discovery over a range of service-related information (WSDL, SLA etc.)

Thus the EN/VO Infrastructure may be regarded as providing TrustCoM’s base layer.

D09 – TrustCoM Reference Architecture

 Page 34

II.2 The Relationships with respect to the individual VO
lifecycle phases

In Figure 6 we provide a high-level overview over the relationships between the individual
subsystems (cf. section II.1.b). As can be seen, there is a strong coupling between the
subsystems with a very VO Management focused dependency – this reflects TrustCoM’s
approach that in order to realize secure and reliable virtual organizations, some central
management instance is recommendable.

Infrastructure support
- enables messaging/notification
- supports discovery
- maintains instances & resp. info.
- triggers instantiation
- keeps a log of important
messages

VO Management
- triggers lifecycle phases
- maintains membership information
- manages roles in the VO
- specifies context information
- defines choregraphies

BP Management
- provides collaboration definitions
- derives process views for roles
- controls individual BP engines
- leverages invocations

SLA Management
- publishes QoS information
- monitors service’ performance
- notifies violations
- maintains a „performance log“
- negotiates SLA terms

P
ro

vi
de

 S
LA

co

nt
ra

ct
s

Policy Services
- „authorises“ access to service
- enacts policies (ECA rules)
- triggers adaptation actions
- manages policies

gi
ve

 /
re

st
ric

t
rig

ht
s

Trust & Security
- issues & validates security tokens
- authenticates message senders
- negotiates T&S terms
- provides reputation information

triggers lifecycle
phases*

QoS status, SLA

provid
e perfo

rm
ance

 data

triggers evolution /
enforces policy

triggers lifecycle
phases

provide policies

provide QoS status . pr
ov

id
e

in
fo

rm
at

io
n

Prov
ide

 po
ten

tia
l p

art
ne

rs

Tr
ig

ge
r l

ife
cy

cl
e

ph
as

es

C
ol

la
bo

ra
tio

n
de

f.

trigger lifecycle phases

tri
gg

er
s

lif
ec

yc
le

 p
ha

se
s

* includes provision of configuration data etc.

Reputation

SL
A

te
m

pl
at

es

Figure 6: Overview over all subsystems and their interactions.

Note that the figure does not provide any details regarding the relationships of the
individual components to each other: since there are many such relationships possible, the
diagrams were separated according to the main lifecycle phases, respectively relating to
the main VO scenarios as depicted in section I.4, so as to allow for a better overview.
Accordingly, the relationships as represented in the following diagrams are restricted to
lifecycle phase specific issues.
Since the EN/VO Infrastructure components offers common functionalities equally to all
services in a virtual organization and partakes in most interactions, representing these
relationships in the individual diagrams would just make these more confusing. Thus the
relationship diagrams with respect to this subsystem were moved to its own section.
The general lifecycle model supporting VO is that organisations join an Enterprise Network
with minimum commitment and expense – this phase is refered to as Preparation. An
Enterprise Network member may wish to initiate a VO to respond to a market opportunity.
The VO then proceeds through the following stages of the lifecycle:

D09 – TrustCoM Reference Architecture

 Page 35

1. Identification of VO members
2. Formation of the VO
3. Operation of the VO
4. Evolution of the VO
5. Dissolution of the VO

Phases 3 and 4 take place in parallel as the VO operates and evolves during that operation
(also see section I.5).

II.2.a Preparation
Preparation for participation in a virtual organization is not really a lifecycle phase in itself;
rather it reflects the necessary steps to take in order to participate in virtual organizations
as envisaged by TrustCoM. Such steps involve mostly registration and publication
processes in order to make the provided services / resources known and hence accessible.
Thereby it is of no direct implication for TrustCoM whether these repositories are within
Enterprise Networks, i.e. where additional requirements have to be met by the services in
order to get registered, or whether these are publicly accessible, like the UDDI repository
by IBM14 and SAP15.

Figure 7: Components involved in the preparational processes.

Since every Enterprise Network will define its own registration conditions and steps in
addition to the “typical” processes, Figure 7 depicts only the most relevant, respectively

14 Currently discontinued, see http://www-306.ibm.com/software/solutions/webservices/uddi/
15 http://udditest.sap.com/webdynpro/dispatcher/sap.com/tc~uddi~webui~wdp/UDDIWebUI

D09 – TrustCoM Reference Architecture

 Page 36

most recommended publication components, namely we assume that information about the
service (be it an abstract application service, cf. section I.3, or supporting services, cf.
section II.1.a) is published in a Service Description repository (e.g. UDDI) and that
additional information regarding the quality of service it may support is available through an
SLA template repository.
In addition it may be assumed that the service is registered at a reputation management
service and has already achieved a reputation through past performances (cf. Appendix
and section I.2) – though such information is helpful for identifying services on a trust-
reputation basis (cf. below), this can not be considered a requirement as in particular SMEs
and their services new to the eBusiness domain will not have earned a reputation and
would hence be “invisible” to a Virtual Organisation that requires such information.
Without loss of generality, we furthermore assume that a business process designer has
stored typical collaboration descriptions (cf. section I.3) in an accessible business process
repository that allows users to get collaboration descriptions for a specific business goal.
Notably, this process can be easily replaced with addressing such a designer directly, the
customer providing the description him-/herself or similar solutions (see below).

II.2.b Identification
The identification phase is generally considered to be the first lifecycle phase of a virtual
organization: on basis of the abstract goal description as provided by the VO initiator,
service providers need to be identified that fulfill the requirements of the collaboration
definition CD (derived from the goal description) and the additional requirements as defined
by the initiator. Besides for the “application service providers” as defined by the CD, the VO
will need some supporting services, as well as trusted third parties to fulfill the tasks.
Notably this process may in itself be very dynamic, since each application service provider
may in itself alter the overall VO requirements, either by not fulfilling the task(s) exactly in
the way proposed by the CD, by requiring outsourced or subcontracted support e.g. by
additional TTP services (cf. section I.3) or related issues. Similarly the actual details of the
individual participants will implicitly influence each other, as e.g. the time and budget
constraints of the overall process need to be shared by, respectively distributed to all
participants (cf. negotiation below).
We consider the negotiation of contracts to be part of the Identification phase, since it does
not necessarily lead to a contract, as it may fail – in such a case, an alternative service
provider needs to be identified and would hence lead to an alteration of Identification and
Formation processes. Rather we follow the approach that the result of the Identification
phase consists in a list of service providers that will and can definitely be considered
participants of the VO once they have undergone the Formation procedures.

D09 – TrustCoM Reference Architecture

 Page 37

Figure 8: Relationships between components during Identification.

In Figure 8 all the components involved in realizing the Identification related processes, as
well as what functionalities they provide to which other component are represented:
Without loss of generality, we assume that the instantiation of a Virtual Organisation is
initiated by a customer with a particular business request (“goal description”) that he/she
passes to a VO Management Service provider. The VO Management related functionalities
may be provided by the Customer him-/herself, if he/she desires to do so, as is e.g. the
case with the CE testbed scenario. The main functionalities of VO Management in this
phase relate to generating a GVOA from the collaboration description that is provided by
the Business Process repository – this includes finding providers for the roles as defined in
the CD and negotiating individual contracts, as argued above.
We introduce a discovery service functionality that queries a set of more or less public
registries and repositories – again these could be restricted to a specific Enterprise
Network – to identify the service(s) that fulfill the requirements with respect to (a)

D09 – TrustCoM Reference Architecture

 Page 38

functionality, (b) quality of service and (c) reputation. The latter only if the service,
respectively its provider has already built up a reputation, as noted in the previous section.
If no reputation data exist, it is up to VO Management and/or customer to decide whether
the risk of integrating the respective service is worth taking regarding the role it has to play
in the overall business execution – in fact the respective role may already require such a
low reputation threshold, that the respective decision may be taken autonomously by the
VO Management services (cf. also section I.2).

II.2.c Formation
As stated above we assume that a set of service providers is available by the end of the
identification phase, that
(a) fulfill all roles of the collaboration description, as well as additionally required through
the Virtual Organisation requirements or by the service providers (cf. Identification above)
(b) are available at the time needed in the form (quality of service) needed, which has been
ensured through the negotiation process.
In order to allow for secure communication, as well as for monitoring, enactment of VO
specific policies and to enable the distributed enactment of the collaboration definition, the
services participating in the virtual organization need to be configured accordingly. The
main task of the Formation phase is thus to prepare the operation of a VO in a way that
allows for the overall (business) requirements, as stated in section I and in D09. Notably
one needs to distinguish here between (1) the configuration of the provided service
(respectively the underlying system) itself, e.g. so as to meet the agreed QoS, or to actually
deploy the necessary services etc., and (2) the configuration of the components related to
the underlying (TrustCoM) framework, i.e. providing the monitor with information what
services to supervise how, deploying the policies etc. – whilst the former are related to
actually providing the service, the latter cover the aspects with respect to that particular VO
“instance”.
In principle each service provider is responsible for configuring his/her system so as to
meet the VO requirements, and indeed has to do so regarding configuration of the actual
service ((1) above) and may do so regarding the VO specific components ((2) above), in
particular when choosing to replace them with own ones or omitting them (cf. section I.3).
Notably the TrustCoM components and mechanisms are extensions for those service
providers that can not or want not provide their own means of realizing the requirements.
The Formation phase results in a fully configured Virtual Organisation that is ready for
enactment – from now on, the service providers are actual registered members of the VO
and as such liable for providing the service in the agreed upon form (cf. chapter I).

D09 – TrustCoM Reference Architecture

 Page 39

co
nf

ig
ur

at
io

n
co

nf
ig

ur
at

io
n

Figure 9: Relationships between components during Formation.

As can be seen from Figure 9, the main relationships during this phase consist in the
distribution of VO specific information to each involved service, thus allowing the
instantiation and configuration of the respective components so as to meet the according
requirements. Notably configuration and instantiation is strongly related to the EN/VO
Infrastructure related components that are not depicted here for reasons of space (cf.
above) – please refer to section II.3 for the respective details.
In order to realise automated support for Formation, it must be assumed that each service
exposes the relevant configuration capabilities, as depicted in Figure 9. There are no
special requirements with respect to these capabilities, rather the components may register
for specific configuration information as described in the EN/VO Infrastructure section.
Accordingly not each component necessarily needs to expose its own configuration
capability, but rather some such method should be available per functional subsystem
(Policy services, Security support, Trust-related services etc.) that may take over
responsibility for passing the necessary data to all involved components, respectively
instantiating them – a particular example of this approach can be found in the SLA

D09 – TrustCoM Reference Architecture

 Page 40

Management subsystem, that uses one component (the SLA Manager) for most
interactions with other logical systems (see Appendix for details).
It has to be noted that the Configuration phase is not a single definite phase, in the sense
of that the processes involved will only be invoked once within the lifetime of the VO, rather
just like with Identification, configuration of services may be required at various stages in
the VO lifecycle:
(1) as the means to set up the VO, i.e. the second main phase of the VO.
(2) when service providers are integrated into the VO at a later stage, even when identified
during the Identification phase – e.g. when a specific service is only required for a limited
time and hence does not need to be configured for the whole lifetime of the VO. The actual
integration time hence has to be specified in some way in the collaboration description (cf.
section I.3).
(3) when service providers are replaced dynamically at runtime by other providers, i.e.
involving additional identification processes, too – this is detailed in section II.2.e.

II.2.d Operation
Once a Virtual Organisation was set up according to the requirements derived from some
overall (business) goal, the participants may principally start cooperation in a way
correlating with the general collaboration description. Such enactment will consist in
successive invocations of the individual application services, i.e. the passing and
processing of data sets between each other. Business Processes realized by such Virtual
Organisations are not restricted to simple data processing, as the actual roles to be fulfilled
by the individual participants may be front-ends to any complicated tasks, involving human
beings and any type of resources, that however communicate with other participating
entities through the means of web service based message exchange.
In accordance with what has been stated in “The Business Model of TrustCoM” (section
I.3), one has to distinguish between the VO’s view on the business process and the view of
the individual participants: whilst the former focus on the message exchange between the
service providers, but does not provide any details regarding the actual execution of the
individual roles, the latter describes the details per role and intermediate interaction
partners, but does (in itself) not allow insight into the overall process.
A straight-forward approach would hence foresee a central “business process engine” that
triggers the actors (of the overall collaboration) corresponding to the pre-defined sequence
and forwards the respective data sets accordingly. However, such an approach produces a
bottleneck in messaging, would cause unnecessary delays, in particular with huge amount
of data, and introduces a single-point-of-failure. Each participant in a virtual organisation
will have been provided with his/her role specific information of the collaboration
description during the formation phase that each participant will turn into applicable
(“internal”) business processes (cf. sections I.3, II.2.c). According to the definition of the
collaboration description, these role-specific parts will already contain the relevant contact
information, i.e. data source and destination – thus the individual business processes will
suffice for allowing “peer-to-peer” messaging.
It has to be noted here that these contact details may be considered private by the
respective correspondence partner, thus requiring a trusted third party for message

D09 – TrustCoM Reference Architecture

 Page 41

brokering (just as in the case of a central business process engine) – the process of
identifying the interaction partner is described in more detail in the sections I.5.a, II.2.b, as
well as in the Appendix, sections I.1 and I.6.d. Note furthermore that the contact
information may change during the execution of the respective provider’s service, which
will require updating of the details – see the description of the Evolution phase below.

VO Management

VO
Lifecycle
Manager

Invoke
Application specific

method

Application specific
methods

SLA Management

SLA
Manager

SLA
Evalutator

SLA
Monitor

Start

Start

SLA status

SLA status

SLA
Perfor-

mance log

Evaluation
Result

Start

Any
Service

Reference to SLA
start

SLA
document

SLA
Repos.

Tr us t & Secur it y Ser vices

Rep.
Evaluator

Evaluation
Result

Repu-
tation

Mgmt Svc.

Secure
Audit
Log

Evaluation
Result

Po l icy Ser vices

Policy
Service

Evaluation Result updated
reputation Re

pu
ta

tio
n

Updated
Reputation

QoS status

QoS status

Policy specific
Action

Policy specifc
Action

Service Status

Data Provider

Policy
Service

Disable
Access rights

Figure 10: Relationships between components and services during Operation.

Besides for the relationships between the enacting participants, i.e. the application services
and the involved supporting services, respectively trusted third parties, the QoS monitoring
plays an important role during the Operation of a virtual organisation (see Figure 10):
Services that are subject to QoS terms will be constantly supervised during their enactment
with regards to the SLAs agreed upon during the Identification of the respective service(s)
(cf. sections I.4, II.2.b and the Appendix, section I.3). This data is gathered through local
data providers that in their form and distribution fully depend upon the local infrastructure of
that service provider – as such information may be considered private by the respective

D09 – TrustCoM Reference Architecture

 Page 42

entity, these means are completely up to the service provider. Hence the respective
information does not need to be published and is thus hidden from all other participants (cf.
section I.3), since only the converted (based on the SLA parameters) data is of interest to
the VO. Notably this conversion allows for “neutralisation” of data, e.g. by converting
specific performance parameters into neutral percentage information that is meaningful for
the consumer. From the perspective of TrustCoM, the importance lies not in how the data
is gathered, as long as it is provided in a way that is computational – TrustCoM provides
best-use recommendations for these issues, e.g. by integrating the Ganglia and WMI tools,
which are not prescriptive however.
The current status of the service provider with respect to the negotiated SLA may be
distributed to different interested parties – besides for the customer, in particular policy and
reputation related services that require this information for taking SLA related actions (cf.
Evolution, section II.2.e), for updating the reputation and for other such purposes.
Policies are the main basis for taking decisions in a Virtual Organisation – not only for
triggering the evolution actions on basis of SLA violations, but also for specifying the
access right restrictions (cf. EN/VO Infrastructure description, section II.3) and describing
the general event-condition-actions in a VO (cf. Appendix, section I.5). Generally, smooth
operation of a virtual organisation does not require taking actions that depend on specific
events that take place, given that the overall collaboration description is fully specified, so
that the actions defined in a policy will mostly relate to triggering Evolution processes (cf.
section II.2.e). In relationship with the overall collaboration definition, policies may also be
exploited to steer the overall progress depending on environment conditions, like e.g.
changes in the market demand – however, without loss of generality, this may considered
Evolution, since it entails the reconfiguration of the Virtual Organisation (see below).

II.2.e Evolution
Within its lifetime, the participants and configuration of a Virtual Organisation will most
likely be subject to multiple changes, i.e. service providers may be replaced, security
settings altered, the business goal redefined etc. Though this is part of any “normal”
operation of a VO, we consider it a (sub)phase of its own as it will generally lead to partial
repetition of Identification, Formation and Dissolution processes.
The actual causes invoking such an Evolution are various and may actually change
between different VOs, as they may be (co)defined by the initiator and the Collaboration
Description. Besides for the individual ones, some common triggers may be identified that
are recommended to be considered in a Virtual Organisation:

- SLA Violations
Generally, violating the SLA contracts by not meeting specific QoS related
parameters, or – more generally – by not providing the performance as agreed upon
during negotiation, will lead to some form of compensation to be provided by the
violating party, like paying a fine. However, repeated violations or severe “contract”
breaches may lead to complete replacement of the respective service/provider,
which implies dissolution (for the specific partner), potential re-identification of
service providers (in case the alternatives were not maintained during the initial
Identification phase), new negotiation and re-formation.

D09 – TrustCoM Reference Architecture

 Page 43

Whether that member will actually be replaced depends on a number of factors
relating to the overall goals of the VO – as such, e.g. low time-constraints may be a
relevant factor for maintaining even mal-performing parties, since a replacement
may delay the overall process too much. In all cases, availability of alternative
providers will play an important role.

- Reputation drop
Since business entities will provide their services to more than one customer (or
here the virtual organisation), their performance in different relationships will feed
back on their reputation (given that they are registered at some reputation
management service in that respective business relationship). Accordingly, the
TrustCoM VO will analyse updates in the participating parties’ reputation and take
according actions once the reputation drops lower than the overall requirements
allow. Low reputation of a provider implies an increased risk of their misbehaving
with respect to performance, security issues and similar aspects, depending on the
“type” of reputation (cf. section I.2) and should hence be circumvent by the virtual
organisation as much as possible – this may imply increasing the security
thresholds, lowering access rights, etc. up to the point of replacing the service (cf.
SLA Violations above).

- Changing Location / EPR
Resources may change on behalf of the service provider, e.g. by changing the
address of the respective machine, by moving the resource to a different machine
etc. Such changes generally imply modifications of the contact specific information
alone (see EN/VO Infrastructure, section II.3) – however, more radical resource
changes, e.g. moving a resource to a non-EC state may imply changes on the
security aspects of the VO. We must assume that such restrictions, respectively
consequences are defined in the GVOA and hence the VO Policies.

- Non-responding Participants
Participants, in particular services that fail to respond within a given time to VO
specific requests (invocations) need to be considered unavailable so as not to delay
the overall processing of the VO for too long. The actual timeout delay will vary
between individual VOs and even between participants, depending on how time
critical the provided service is – as such, e.g. a frequently used calculation web
service may be more time-critical than a simple file backup service.
Non-responding parties will generally have to be replaced, as it must be assumed
that the service is down for good and hence can not take over the respective task(s)
again.

- Unassigned Roles
It may be the case that a role of the collaboration description is not assigned right
from the beginning, since it is not required for the whole duration of a Virtual
Organisation. In such a case, the (potential) Identification and integration
(Formation) of the role provider is considered Evolution.

D09 – TrustCoM Reference Architecture

 Page 44

- Lacking Role Providers
As the identification attempts (when replacing a member or when assigning a role
during operation) may not necessarily lead to actual results, i.e. if no suitable service
provider for a specific role can be identified, a collaboration may have to be
reconfigured completely. This may range from re-negotiation of individual terms up
to designing a new collaboration description – this issue is discussed up to some
degree in the section on Identification (II.2.b) above.

- Security Violations
Repeated Intrusion attempts, like repeated unsuccessful authentication or
endeavours to access restricted resources, may indicate severe attempts to breach
the security of the Virtual Organisation. Thus such attempts will require a
reconfiguration increasing the security thresholds, in particular logging of the
invocations and their sources, and may possibly even result in changing the contact
points to hinder further attempts. As such efforts may also be initiated from within
the VO (“malperforming” partners), counter-measurements, in particular fines and
potential removing of the member, need to be enacted.

- Changing Environmental Conditions / Customer Request
Since the Virtual Organisation is created to meet a specific, potentially temporary
business objective, such as covering a market niche, changes in the environment
(e.g. market niche being sufficiently covered by other enterprises) may lead to
externally triggered reconfiguration of the VO (either by customer, VO Management
or specific VO policies designed for such occasions). This does not necessarily
imply termination of the virtual organisation, as it may be possible to compensate for
the changes by adapting the collaboration description, e.g. to fill a similar, yet less
covered market niche.

Notably, changes in the structure and/or the configuration of a virtual organisation may
have an impact on other services and even the whole business process, depending on how
well the new structure/configuration meets the overall requirements: since for example a
replacement may need to be found urgently, in order to keep the time constraints, the new
service may exceed the financial budget thus requiring renegotiation with other, more
flexible providers. In the worst case, appropriate replacements for a service may not exist
thus necessitating changes in the overall collaboration description in order to find
alternative means to realise the business goals. In any case, such aspects need to be
taken into account when writing the event-condition-action rules that determine under what
circumstances a service should be replaced, or “milder” consequences will be taken (see
also Identification, section II.2.b).

D09 – TrustCoM Reference Architecture

 Page 45

Ser vice
Pr o vid er

VO Management

VO
Lifecycle
Manager

Application specific
methods

SLA
Management

SLA
Perfor-

mance log

Any
Service

Po l icy
Ser vices

Policy
Service

Replace
Member

Replacement
Information

Performance
Information

Notary SLA
Document

Interrupt,
Continue

SLA
Document

Member-
ship Mgmt

Replacement
Needs: Role Information

Dispatch
Member

Updated
Information

Integrate New
Member

SL
A

SLA

configuration

The intention of
replacing the partner

may trigger objection on
the service provider’s

behalf
Service Owner /

Administrator

Figure 11: Relationships between components, services and service providers during
Evolution.

Figure 11 shows how a policy induced replacement of a specific member relates to other
processes in the Virtual Organisation – though focussing here on replacement, the
relationships would be similar for a reconfiguration of the participants, yet without making
use of the additional steps for actually dispatching the member.
In particular with respect to “severe” measurements, like dispatching a specific party due to
SLA violations, i.e. even though the service is still existent, TrustCoM needs to take
potential errors on behalf of the VO services into account. This includes failures on behalf
of the monitoring and evaluation components, divergence of the SLA etc. The SLA
performance log, as well as the reference SLA document stored at the Notary will provide
additional information for identifying the source and “justification” of the replacement action.
During this process, execution with respect to the party in question needs to be interrupted
to avoid failure and reduce the risk of misbehaviour of e.g. “doubtful” participants, i.e. when
the respective reputation has dropped below a critical threshold. Such interruption also

D09 – TrustCoM Reference Architecture

 Page 46

involves the temporary restriction of all access rights and making security tokens invalid for
the time being.
In particular, the relationships are being identical to the ones provided for the Identification,
Formation and Dissolution phases of the Virtual Organisation (described in the according
sections), whereas the respective processes only differ with respect to how many services
are affected by the Evolution: whilst Dissolution will only affect the party to be dispatched
(in case of replacement), Identification will also be involved when a non-assigned role
needs to be manned or contracts need to be re-negotiated. Finally Formation includes all
the necessary reconfiguration steps that involve in most cases all participants for adjusting
access information, providing updated security tokens etc. (cf. section II.3).
With successful reconfiguration, enactment of the overall collaboration may continue,
though potential “rollbacks” need to be taken into account when the execution-state by the
respective provider gets lost, respectively can not be taken over, or the execution can
otherwise not simply continue from the time of interruption, e.g. due to slight changes in the
means of generating the data between the new and the replaced service (cf. appendix,
section I.2)

II.2.f Dissolution
The Dissolution phase marks the end of the VO lifecycle, though not necessarily for the
whole Virtual Organisation, but potentially only for individual participants that are not
required anymore or that will be dispatched, respectively replaced due to violations or
similar issues (cf. Evolution above). The two processes differ only slightly since dissolution
of the whole VO is conceptually similar to dispatching all its members.
For each member that is to be dispatched the respective execution needs to be halted and,
in particular for participants with low trustworthiness, their capabilities of accessing other
services and/or data needs to be restricted, so as to reduce the risk of the respective entity
inflicting potential damage upon other participants in the Virtual Organizations, or even the
whole execution. This implies that all other members are informed of the respective
changes in time to avoid problems with executing the process when interactions with the
(to be) dispatched entities are required.
Dispatched members will also want to go through the process of auditing, where it is
ensured that the entities will get paid for the service they have provided. In addition to this,
we consider reputation (and thus trustworthiness) of participants with respect to their
performance in VOs an important issue for supplementing security aspects and reducing
the overall risks of execution failure – thus auditing for TrustCoM involves assessing the
respective providers performance with respect to SLAs and other policy violations, insofar
as they are monitored by the Virtual Organization (cf. section II.2.d). Also refer to section
I.4.c for details about dissolution with respect to the VO contract.

D09 – TrustCoM Reference Architecture

 Page 47

St
op

 E
xe

cu
tio

n
R e

s t
r ic

t R
ig

ht
s

A u
di

t in
g

Figure 12: Relationships between components during Dissolution.

Functionally, the Dissolution stops all active business processes of the according service(s)
and revokes all security tokens and policies that implicitly define the access rights of the
respective service – revocation of such access rights here means that all participants in the
virtual organisation are instructed to not accept the respective tokens any more.
Furthermore, the SLA contracts with that respective service(s) are annulled and all SLA
management related services stopped, since the monitored data is no longer valid and
would cause a lot of unjustified violation messages.
Since TrustCoM is not examining means of financial auditing, as already enough systems
for this purpose exist, we only focus on the trust-related aspects of auditing, yet the setup
of the framework is flexible enough to allow integration of most SOA based auditing
systems. In order to assess the performance of the respective participant, in particular the
SLA Performance log is assessed for a history of violations (and “fulfilments”) produced by
the provider. The VO-“local” Reputation Evaluators will be capable of converting the SLA
performance information into trust values meaningful for the more global Reputation

D09 – TrustCoM Reference Architecture

 Page 48

“repositories” that can be accessed by other interested parties in the Enterprise Network or
through other means (cf. sections II.2.a, II.2.b).
Notably, any changes to the configuration will imply changes on all members involved with
the respective party, as restricting access rights, revoking tokens etc. really requires
reconfiguration of all related entities, as detailed below in the EN/VO Infrastructure section.
All changes are maintained in the GVOA.

II.3 The Relationships in the underlying EN/VO Infrastructure
As has been noted before, the EN/VO Infrastructure related processes are behaving
somewhat different from the aforescribed components, since they build the underlying
basis for uniform messaging, accessibility and coordination of interactions. As such, they
participate in some way in most interactions so as to enact their functionalities upon the
messages and are principally invisible for the service providers. These main functionalities
span support for interactions across enterprise borders (notifications, messaging, logging),
as well as deployment and management of service and component instances (service
instantiator, service instance registry and information repositories). Notably discovery sup-
port (discovery services and additional repositories) has already been discussed in section
II.2.b of this document, due to its strong usage in that phase and this will not be repeated
here, even though these functionalities logically belong to the EN/VO Infrastructure.
From a functional point of view the EN/VO Infrastructure extends the (virtual) services
exposed by the service providers with VO capabilities that will allow the entity to make use
of the functionalities summarised above. To realise these extensions in a virtual
organisation, the respective counterparts on VO Management level are required, so that
the diagrams below give no indication of the component distribution across participants and
management instances – for such information refer to chapter III.
Though the EN/VO Infrastructure follows the overall VO lifecycle, we distinguish here only
3 phases, namely Setup, Messaging and Evolution since the actual usage of the related
components overlap with the overall phases. As such, e.g. the messaging capabilities
described below will already be partially used during Formation, whilst Evolution captures
also aspects of Dissolution. This way we avoid repeating functionalities in different
diagrams – since the phases on this level are generally not explicitly triggered but implicitly
invoked through processes on the service level (section II.2), this overlap of phases does
not causes functional problems.

II.3.a Setup (Formation)
Most services in a Virtual Organisation will need to be stateful or at least individually
configured for the respective requirements, e.g. when the service is subject to QoS
parameters. As such, these services will require instantiation and configuration before they
can be used – though the instantiation details will be different between service providers
and may even be private, relevant configuration details and at least a trigger indicating
when the instances are required need to be distributed correctly. Also, TrustCoM specific
components implicitly follow the instantiation procedures.
Since these instances may change during enactment of the virtual organisation, generally
due to some Evolution processes (cf. section II.2.e), it is not sensible for services to
primarily interact with the exact Endpoint References (short EPR) since every change

D09 – TrustCoM Reference Architecture

 Page 49

would require updating all related information, like e.g. the business process. In order to
avoid this problem, TrustCoM deals with individual interaction partners on the basis of
handlers that are resolved by the message interceptor (cf. Messaging below).
Besides for direct interaction, much information distribution during operation of the VO
takes place as topic-based notifications, thus informing (a set of) interested parties of
specific events that take place in the Virtual Organisation. Types of events are
distinguished by “topics” in order to reduce amount of messaging and to allow subscribers
to pre-select only those event that are of interest to them. Even for notifications we see the
requirement of privacy, so that some messages may not be received by all participants.

In f r as t r uc t ur e
Suppo r t

VO Managemen t

VO
Lifecycle
Manager

Member-
ship Mgmt

In-
stantiator

Service
Instance
Registry

Co-
ordinator

Any
ServiceFactory Notifica-

tion Proxy

Notifica-
tion

Broker

Concerns all cross-
boundary communication

Register/
Subscribe

Registration,
Subscription Subscription

Service Information
(Handle, EPR)

Instantiation
Details

register

Instantiation

Configuration
Details

Configuration
Details

Configuration
Details

Instantiate, Configure
(incl. Subscription,

registration)
Subscription

Instance
Details
(EPR)

Instance
Details

Instance Details
(EPR)

Additional
Instances

Service Owner /
Administrator

Figure 13: EN/VO Infrastructure interactions to set up a VO.

In Figure 13 we depict the processes, respectively relationships that partake in setting up
the components for these functionalities: the instantiation process and according distri-
bution of configuration details proceeds in a coordinated way so as to avoid that instances
are required before they have been instantiated. The detailed information of these instan-
ces is provided to the so-called “Service Instance Registry” which takes over responsibility
for resolving the aforementioned service handlers (see Messaging below for details).
Configuration details and potentially additional information from the administrator will
furthermore convey details with respect to what notifications need to be provided, respec-
tively received by the individual services, thus triggering the subscription and registration
processes at the notification related components (please refer to Messaging below for

D09 – TrustCoM Reference Architecture

 Page 50

more information). As such, a service provider may add individual, local endpoints to the
service instance registry, thus redirecting specific invocation calls to (only locally known)
service instances or even for enhancing messaging between local messages (cf. below).

II.3.b Messaging (mostly Operation)
In order to enact the functionalities of TrustCoM upon interactions between participants,
respectively services in the Virtual Organisation, the messages need to be enhanced and
verified accordingly. In theory, all outgoing messages of the actual service (be it application
service, TTP or VO Management), should be enhanced in a way that allows uniform
understanding within the VO, including identification of the actual endpoint from the handler
(cf. above). To complement this, all ingoing messages should be verified with respect to
access rights and authentication of the sender.
To realise these capabilities, all participants need to support some kind of message
enhancement / verification system as a kind of “frontend” or gateway to the actual
service(s). This gateway acts as the actual contact point for interacting with the local
services, thus allowing local redirection of messages, that is not visible from outside of the
respective service’s domain.
As can be seen from Figure 14 and Figure 15, the processes behind message reception
and message sending are principally identical, even though the real functionality, in the
sense of purpose, of these mechanisms slightly alters:
Sending Messages
As mentioned, sent messages should principally be extended by the VO specific
requirements thus allowing uniform interactions. An additional focus rests on resolving the
service handlers that are actually used for sending to valid endpoint references.

Figure 14: Processes involved in sending messages.

D09 – TrustCoM Reference Architecture

 Page 51

As Figure 14 shows, XML documents may either be sent as notifications or as “normal”
SOAP messages – the main difference being the recipient, which could be principally any
subscriber for notifications but only the referenced endpoint (represented as a handle) for
plain SOAP messaging. In case of notifications, the Notification Proxy will provide all the
actual interested parties that potentially receive the message (given that they have been
subscribed during Setup as described above). All messages may now (1) be verified for
whether they are allowed to be shipped to the recipient and (2) be extended by a security
token to authenticate the sender within the VO – note that the Security Token Service and
the Policy Enforcement Point (PEP) are described in more detail in chapter II.2.
The actual Endpoint References for individual recipients are provided by the Service
Instance Registry, which may need to query the VO Membership Management if the
respective handle is unknown. This may be due to the fact that the respective participant
has not yet been assigned and hence no instance or contact point exists for it – in such a
case, trying to access it would need to interrupt the process and trigger Identification and
Formation of that respective role. Notably the identified EPR may not be the one of the
actual recipient, if message brokering is desired for hiding the true identity of a service from
either recipient or sender, e.g. if the sender of a message is not allowed to know the true
location of the recipient for privacy reasons. In such a case the recipient as detailed below
will consist of an intermediary service that acts as a Broker forwarding the message to the
desired endpoint, potentially eliminating information about the sender by replacing the EPR
with the handler again.
Receiving Messages
The recipient of a message, be it Broker or actual destination point, will want to ensure that
the message was sent by an actual member of the Virtual Organisation and that he/she
has the right to access the resource provided by it, thus minimizing the risk of data theft
and other potential misuses.

Figure 15: Processes involved in receiving messages.

D09 – TrustCoM Reference Architecture

 Page 52

As such, Policy Enforcement Point and Security Token Service will be queried to (1)
authenticate the sender and (2) verify its access rights, potentially leading to the message
being dismissed and a potential security violation being logged for later reference.
It has already been noted that the frontend as provided by the Message Interceptor does
not necessarily reflect the real structure of the participant’s domain – thus the actual
recipient may need to be identified first on basis of the additional instance information
provided by the service administrator (cf. Setup above). Again, the actual EPR may be
missing, which in this case requires the interaction of the Service Administrator, since the
domain-internal structure is principally unknown to the VO. Note that in case of message
brokering the message would leave the domain again, thus starting the processes for
sending messages as describe above again. Note also that notification messages may be
distributed to different Endpoints within the domain, thus requiring the Notification Proxy as
the actual destination of the message.

II.3.c Reconfiguration (Evolution)
With replacing or just dispatching a participant in a Virtual Organisation, it has to be
ensured that the respective entity can no longer access resources in the VO, so as to avoid
potential misuse of data (cf. discussion in section II.2.e). This implies not only that that
service provider can no longer query resources, but also that other providers do not
forward information, e.g. as part of a business process to that entity. Since the evolution
process may involve several steps, including potential objections on behalf of the member
to be dispatched (section II.2.e), preliminary restrictions need to be activated immediately,
as the overlap must be considered a potential security threat – these restrictions may be
deactivated again, once it turns out that the Evolution procedure is not valid.

Figure 16: Evolution, respectively dissolution relationships in EN/VO Infrastructure
components.

Most of the required processes take place on service level (cf. sections II.2.e, II.2.f), like
revoking security tokens, unloading policies and interrupting the execution of the business

D09 – TrustCoM Reference Architecture

 Page 53

process – this implicitly blocks all messaging attempts due to the lacking access rights and
invalid authentication tokens. In addition to this, the contact information for that respective
service provider will be removed to render all information passing to that entity impossible.
If the entity will be replaced rather than dispatched, the updated contact details will replace
this obsolete data during the repeated Setup phase, as described above.

D09 – TrustCoM Reference Architecture

 Page 54

III Towards a Deployment Model
It has been discussed in the previous chapter (“Four phases of the lifecycle of a Virtual
Organisation are distinguished: (1) Identification and Discovery, (2) Formation, (3)
Operation & Evolution and (4) Dissolution & Termination. The main tasks to be performed
during individual operations of the system for each phase are describe here as scenarios.

III.1.a Establishment of a Virtual Organisation (Identification and Formation)
The first stage on VO formation is the formation of an Enterprise Network (EN) to provide a
pool of organizations who are willing to join virtual organizations. Organisations must
register with an EN register which acts like a yellow pages telephone book – listing the
organization and the services that they are willing to provide. One problem that is not well
addressed within Trustcom yet is the motivation to join an EN in a competitive
marketplace– why should an organization join one EN rather than another ? It is planned to
take guidance from other IST projects that are investigating the issues of VO breeding
environments in order to resolve this issue. The EN register and other EN and VO
infrastructure services will be hosted by a provider. Business models are presented in other
TrustCoM deliverables that show how the hosting of EN and VO services could be a
profitable business in itself, probably as added value additions to basic ISP provision.
An organization which is registered as an EN member identifies a business opportunity and
has the intention of creating a VO to meet it. They become the VO initiator, defining the
goal of the VO, and try to discover the organizations required to make up the VO to
achieve the business objective. The VO initiator will interact with a service provided by the
hosts of the EN and VO infrastructure to guide him through the creation of a VO – the VO
Management service, which is one of several VO services that will be introduced in the
scenario. .
Given a specific business objective (provided by a customer or by the VO Management
organisation itself) to be realized by a virtual organisation, the VO Management service
triggers the derivation of a business processes according to a collaboration definition by
contacting BP Enactment. The latter now queries (known) BP Template Repositories for
collaboration definition that realise the given task. Such templates contain the next highest-
level description of activities, information that is related to the roles involved in realising the
processes (i.e. descriptions of the services that fulfil the individual tasks), coordination
information (how the services have to interact) etc. which are passed to VO Management
for partner selection. It is an open issue to be addressed by the evaluation of the TrustCoM
demonstrators whether the level of description of the business objective, the collaboration
definition are defined at an appropriate abstraction for the available definition of the market
opportunity and the envisaged structure of the VO at this stage of the process. They may
be either too abstract or too concrete, in either case the mismatch between the
representations offered by the VO management services and the conceptualisation of the
human VO initiator will increase the risks of the VO failing - even at this early stage,
VO Membership Manager is invoked with the collaboration definition’s role related data
containing information about the structure of the service (operations, interface etc.), the
quality it has to fulfil (SLA) and its trustworthiness. This information is passed to the

D09 – TrustCoM Reference Architecture

 Page 55

Discovery Service that for each role to be manned contacts a set of (known) repositories
and returns a (sorted) list of potential organisations that meet these requirements.
Once the Membership Manager has received this list of potential participants, the SLA
Negotiator on VO Management side is triggered to negotiate the actual terms with the
Application Service Providers (starting with the most suitable ones), until all roles are
manned. If negotiation fails to cast a specific role, i.e. if none of the respective
organisations meet all requirements, the business process to be executed by that
organisation and its requirements need re-evaluating.
As soon as all participants for the virtual organisation have been identified, VO
Management triggers distribution of the relevant information to each of the VO members –
this includes:

e) required authorisations to access other members,
f) interaction and coordination information, like what data to pass when between

services
g) VO agreements and policies, as well as
h) other configuration data (contact information, notification topics etc.).

Once all participants have confirmed their configuration, the VO manager is ready to
instantiate the VO and enact the overall collaboration definition.

III.1.b Normal operational work
With all VO members configured, BP Enactment starts the execution of the overall
collaboration definition by triggering the first Application Service Provider(s) of the workflow
and forwarding relevant execution data to it (like input values or location of data files).
Generally, the Application Service itself is responsible for triggering the execution of follow
up tasks by forwarding its output data to the Application Service Provider(s) next in the
overall collaboration definition (the relevant information, like which services to contact and
which data to pass, has been provided during VO formation for each derived BP per role –
cf. section I.5.a).
At checkpoints in the enacted business processes, the respective Application Service
provides status information to BP Enactment, thus allowing monitoring of the overall
enactment.
Execution proceeds until either failures occur (like contract breaches, destruction of
services etc. – cf. sections I.5.d, I.5.e) or the business process is finalised, in which case
dissolution of the VO is initialised (cf. section I.5.f).

III.1.c Dynamic addition of an organisation during operation
Not all Application Service Providers are necessarily identified during the formation phase
of the virtual organisation, as some tasks may only be performed after a comparatively long
period of time and hence reservation of a service for that duration is unfeasible. Under
such circumstances, the difficulty connected with the discovery process has to be
considered, as some services are less common and/or are frequently occupied – assuming
that the required service does exist at all.

D09 – TrustCoM Reference Architecture

 Page 56

Hence, such an approach is in particular sensible, if the required services are relatively
common and only needed for short intervals.
The discovery process is either triggered directly by the need for a non-manned service
arising or by a specific discovery-related activity in the collaboration definition. In the first
case, the address of a non-existent service is requested from VO Management which in
turn triggers the discovery process at BP Enactment, whilst in the second case the
identification process reflects a separate task in the business process. Likewise, the latter
case allows for discovering new services ahead of time, i.e. before they are actually
needed, hence reducing potential delays in the overall execution.
Flexibility of discovery during the actual operation of the virtual organisation is limited as
opposed to during the discovery and formation phase, since no changes in the parameters
of other service providers can be accepted in order to achieve the overall goal.
Once an Application Service Provider has been identified, it is provided with the required
configuration data, as described above (section I.5.a). All VO participants that need to
interact with this new service are informed of the change, respectively of the addition of a
new participant, by providing the contact details (including access authorisation), i.e.
Endpoint Reference Address to them. This also applies to Trusted Third Parties services
insofar as they interact with the Application Services (e.g. Message Brokering, cf. section
II.3.b).

III.1.d Dynamic removal of an organisation during operation
Similar to adding a service provider during the operational phase, an organisation may
want to free their resources again, once they are no longer needed by the VO. Accordingly,
the Application Service Provider has to be removed from the virtual organisation, if so
requested.
Again, the request is either raised directly (in this case by the Application Service Provider
him-/herself) or indirectly by the respective entry in the overall business process. In either
case, the message is forwarded to VO Management, which triggers re-configuration as
follows:
As the service provider has no further rights to access other services and should not do so
for security reasons, all respective access rights are revoked. In order to avoid further
communication and in particular forwarding of (possibly sensitive) notifications, all
references to the respective service are removed – the only communication remaining
takes place between VO Management Services and the Application Service Provider.
If a price for service usage was agreed upon, billing takes place at this time – the Log may
serve as a means for establishing the actual price. Similarly, the trustworthiness of the
service provider is updated on basis of its performance (as maintained in the Log), i.e. the
reputation gained through participation in this virtual organisation is forwarded to the Trust
Maintenance Service.
Finally, the service provider is removed from the list of VO participants at VO Management
side.

D09 – TrustCoM Reference Architecture

 Page 57

III.1.e Replacement of a participant by another during operation of the VO
(Evolution)

During the operational phase of the VO, a particular service may need replacing, due to
non-performance, contract breaching, simple “disappearance” of the service or similar
reasons. In either of these cases, the overall business process is delayed as the current
task can not be executed. Since the need for substitution generally arises after the actual
task started execution, replacement may even cause a rollback and compensation
operation in the involved BPs, as a set of tasks will (in most cases) have to start anew with
the new service.
Typically, a Policy Subsystem identifies the need for a replacement as a reaction to a
specific event, like e.g. contract breaching and notifies VO Management. The latter may
verify the correctness of data by directly requesting information from the respective
Application Service Provider.
VO Management then triggers re-configuration of the VO as described in section I.5.d
(insofar as the service is still available for contacting), i.e. it removes the service to be
replaced from the virtual organisation.
At the same time, VO Management triggers the Discovery service to identify a new service
provider that fulfils the criteria as defined for the one to be replaced. The Application
Service Provider will then be provided with the necessary information as during the
dynamic addition of an organisation (cf. section I.5.c).
Once set-up accordingly, i.e. the old service removed (all tokens and related information
revoked) and a new service configured according to the VO’s needs, BP Enactment
triggers execution of the Application Service. Since input data may have been lost during
the replacement process, BP Enactment furthermore triggers the Application Service
Providers representing the preceding tasks in the overall business to re-distribute their data
to this new service.
Note that, similar to dynamic addition of organisations (cf. section I.5.c), circumstances like
relevance of that service for the overall execution, availability of replacements etc. play a
significant role in whether a service should be replaced. Data like amount of service
providers initially identified for that role (during the discovery phase) may be crucial for
further proceeding.

III.1.f Dissolution of the Virtual Organisation
Once the overall business process has executed its final task, respectively destruction of
the VO is triggered by VO Management (e.g. due to grave failure), the virtual organisation
may be dissolved, i.e. all partners are removed from it as described in section I.5.d.
Once all Application Service Providers have been detached, the configuration of the VO
Management Services will be reset up to the point of reuse. This means that the VO
Manager may decide to maintain e.g. the collaboration definition for later execution and
keep a list of all service providers that performed well so that they may be contacted again.
Generally, however, we will consider the virtual organisation to be reset completely at this
point, i.e. any new request to a VO Management service provider will have to start a
complete new setup procedure as described in section I.5.a.

D09 – TrustCoM Reference Architecture

 Page 58

The TrustCoM Architecture”) that the relationship model as presented does not provide
insight into the actual distribution of components and services across a “real” Virtual
Organisation, as there is no distinction made between the service “types” the components
could belong to. Furthermore, the relationship model does not convey details about the
actual usage of the components, since it mainly represents what kind of information can be
provided and which components typically use them, not in what order these transactions
would proceed to realise the functionalities.
This chapter tries to redeem these shortcomings by exemplifying the usage of TrustCoM
architecture in the context of an actual (though simplified) usage scenario, that is roughly
aligned to the Collaborative Engineering scenario (cf. D10, D20) – such a description
provides the lacking usage details at the expense of restricting the architecture to a specific
“type” of Virtual Organisation. The view will be restricted to a very limited use case with
only two participants, in order to maintain a maximum of overview. Even though this model
will detail what components are typically deployed on which systems, the main focus is not
on the deployment procedures, as typically conveyed by this type of diagrams, but rather
on the interactions in a fully deployed VO system.

III.2 Deployment Overview (One possible VO Instance)
In the following descriptions we assume that a customer needs to reach a business goal
that can be realised with two main application service providers (roles, cf. section I.3). As
described below, it must be assumed that such services exist and are available within
some form of Enterprise Network. It does not matter here whether the customer deploys
the according components of his/her own, or uses an existing VO Management Service
Provider with the capabilities to instantiate a Virtual Organisation.
We furthermore assume that each Application Service Provider participating deploys the
full TrustCoM support in his/her infrastructure, i.e. without integrating proprietary systems
to replace individual components, like e.g. the security token service. As such, Trusted
Third Party functionalities focus on supporting in particular management related tasks and
do not need to supplement ASP capabilities in themselves (cf. below). Overall, the scenario
is very basic with respect to functionalities and requirements towards the VO, we even omit
issues like message brokering as we initially focus on conveying the main aspects rather
than the full complexity. As noted, this may change with future versions of this document.
Similar to the relationship model above (chapter II.2), the deployment overview needs to be
segmented into several “views” so as to not unnecessarily complicate the diagrams – in
particular we distinguish between16 (1) the “Service Level view” and (2) the more detailed
“Component Level view”:

III.2.a Service Level view
The “Service Level view” is the most high-level view on the Virtual Organisation described
above and as such provides an overview over the interacting systems rather than the
actual transactions between the individual components (section III.3). From this point of
view every interaction partner exposing its own interfaces, i.e. each individual service in the

16 Note that the naming of this distinction differs slightly from previous version of this document

D09 – TrustCoM Reference Architecture

 Page 59

VO is considered a component in the diagram below – this reflects the actual view from
individual participants of the VO on other entities which generally expose this one interface
for interaction. Without loss of generality, each invocation on this level may be regarded as
a web service call – notably the interfaces really represent “virtual endpoints”, as detailed
further in section III.3.a below.

dd Serv ice Lev el

BP Repository

Coll. Def.

Serv ice
Description
Repository

query

Reputation
Management

Serv ice

query Update
Reputation

SLA Template
Repository

query

Discov ery Serv ice
Pot.
Members

VO Management Application
Serv ice A

Application
Serv ice B

see
Application
Service A

Notification
Broker

Subscription /
Registration

Subscription /
Registration

Notary

Sign Sign

SLA Ev aluator

StatusEval. Result

Eval.
Result

Supporting
Services

VO Management
Services

Customer

Trusted Third
Parties

Reputation
Ev aluator

Secure Audit Log

log

SLA Performance
LogPerformance

History

may be used by
any service

same as for
Application
Service A

Policy Serv ice

verify
policies

verify
policies

«notification» «notification»

«notification»

«notification»

«notification»

Figure 17: High-level view of the services involved in (this) Virtual Organisation.

Figure 17 provides an overview over these main services (represented as classes) and the
interaction capabilities (interfaces) they typically provide to other services (arrows). The
services have been grouped according to their type of functionality, as described in chapter
II.1.a, namely Supporting Services, Trusted Third Parties, Application Services and finally

D09 – TrustCoM Reference Architecture

 Page 60

VO Management. The details of the actual interactions between participating services will
be outlined in section III.3 with respect to the individual VO lifecycle phases’ requirements.
Note that each of the services depicted in the diagram are assumed to provide,
respectively integrate the VO specific enhancements, as detailed in the following section.

III.2.b Component Level view
As discussed in chapter II and section I.3, we assume that the actual participants in a
Virtual Organisation can be represented as individual services that fulfil a specific role in
the overall Collaboration Description. This does not imply that there is a direct mapping
between role and actual tasks to be executed to perform this role, i.e. a service in the
sense of a VO member does not necessarily comply to just one actual resource that fulfils
the respective actions, but rather that it maps to a business process of its own triggered by
the invocations and involving any amount of actual resources – these details are and in fact
should be of no interest to other participants in the VO, including the VO Manager, as well
as the customer, as long as the individual infrastructure, its according business processes,
the contracting model do not clash with the overall policies of the virtual organisation, like
e.g. that subcontracting is not acceptable.
We hence enhance the functionalities of this virtual endpoint with as little impact on the
actual infrastructure of the service provider as possible. As already explained above (cf.
sections II.1, II.2), there are different requirement with respect to “VO enhancements” for
the individual types of services (see section II.1.b), so that typically each type will deploy
different components. In the following we represent – for each type – the most typical
deployment for the given usage scenario. Note that such deployment is not prescriptive,
but only one example of how a working system could be realised on the given architecture.
Supporting Parties
As discussed, supporting parties are “outside” of the Virtual Organisation and as such do
not experience any alterations through TrustCoM – in fact one of the most important issues
to observe from a technical stance is that the existing and recommended services (mostly
repositories) can be used. TrustCoM caters for this through the use of web service
standards and respective recommendations.
Trusted Third Parties
Though Trusted Third Parties are in the first instance quite “generic” services (logs, notary,
notification broker – cf. Figure 17), they nonetheless are VO specific: as discussed above
(section II.1.b), TTP services are considered “trusted” since they may have to maintain
sensitive data for the participants and keep them private. Accordingly TTP services need to
observe at least the security rules and the access rights of the Virtual Organisation. Thus
these services require an enhanced infrastructure, similar to the full setup of the
Application Services (cf. Figure 18).
Since TTPs may interact with other services for querying data or triggering actions, they
will also have to be provided with the necessary contact information that allows
identification of the EPRs of the respective interaction partners, or at least usage of
message brokers to convey the relevant documents. Note that Notification is also a valid
form of interaction for Trusted Third Parties. Being stateful themselves, at least with
respect to maintaining the configuration parameters of the VO, these services furthermore

D09 – TrustCoM Reference Architecture

 Page 61

need to provide some form of instantiation and support the means for registering the
according instances in the virtual organisation.
For the given usage scenario, TTP services are not themselves subject to Service Level
Agreements and their tasks are “atomic” in the sense of that they do not enact business
process for providing the required functionalities.

cd Trusted Third Parties

individual infrastructure

Factory

"Gateway"

Messaging

Message
Interceptor

PEP

Serv ice Instance
Registry

<resolve
handler>

Notification Proxy
subscribe /
register

Policy Decision
Point

<query>

Security Token
Serv ice

<verify>

Instantiator Instantiator
Instantiation

Actual Serv ice

instantiates all
TrustCoM specific
services / components

«delegate» «delegate»

«delegate»

Figure 18: Typical components structure for Trusted Third Parties.

As with any other participant, the TrustCoM framework tries to influence the infrastructure
of the TTP service provider as little as possible: the aforementioned message gateway thus
needs to enact the authentication and access rights issues for incoming transactions, and
needs to enhance outgoing messages with the necessary identification tokens within the
VO, as well as identifying the actual EPR of the recipient (or at least of an intermediary).
Notably, the structure of this messaging gateway is principally identical for all service
providers participating in the Virtual Organisation (cf. details below). It will also be noted
that more interfaces are depicted in all the diagrams of this section, than are actually
explained or interactions are defined for: most of these either relate to interactions with
other services, or have been omitted – if they do not contribute to the better understanding
of the service – in order to maintain a more clear diagram structure. All these aspects will
be elaborated in more detail with respect to the lifecycle phases in chapter III.3.

D09 – TrustCoM Reference Architecture

 Page 62

Application Services
Application Services are the main contributors to a VO’s business goal(s) and as such
require the most complete configuration and setup, thus realising the requirements
identified by TrustCoM (cf. chapter I). An Application Service as provided to a Virtual
Organisation consists in principle of any number of resources, services and (human)
workers that are aggregated and directed by a business process to expose a specific
functionality (the “role”). The individual infrastructure, distribution of tasks, as well as the
business process details are principally completely up to the service provider, as long as
they comply with the overall VO requirements. The aggregated functionality is exposed as
a single (web) service with no information about how the exposed methods map to internal
processes.
Though the TrustCoM framework provides support for enacting a business process, as well
as guiding the instantiation and configuration processes, these means are not imperative
and may be replaced by any other approach the service provider prefers, as long as the
interaction and the monitoring are guaranteed.

cd Application Serv ices

individual infrastructure

"Gateway" Application
Serv ice X

Other Serv ices

Factory

Factory

Instantiation

CDL++2BPEL

load role

BPM Serv ice

Resource Y

Messaging

SLA Manager

Negotiator

Negotiate

SLA Monitor

status

Data Prov ider

note that no full
Messaging Enhancements
may exist at the time of
negotiation (Identification)

interface connections
principally identical for all
involved services/resources

SLA Signer

witnesssigning

SLA Repository

«notification»

instantiation

individual BP

Figure 19: Typical components structure for Application Service Providers.

Figure 19 shows a typical component structure as required for Application Service
Providers in the given scenario: besides for (1) the gateway structure like the one for the
TTP services, an Application Service would generally show support (2) for Service Level
Agreements, and (3) for the enactment of business processes.

D09 – TrustCoM Reference Architecture

 Page 63

(1) Though the gateway structure is principally identical to the one used by a Trusted Third
Party, an ASP may want to exploit the functionalities for redirecting specific messages to
the appropriate endpoint by enhancing the service instance registry with details about local
instances so that individual invocations may be mapped to different endpoints. Since the
service instance registry is a local component, the respective information is not exposed to
other services and kept private.
(2) Application Services are principally subject to Service Level Agreements, i.e. have to
maintain a specific quality of service as negotiated with the customer. From the VO’s point
of view, this requires in particular the capability of providing information about the current
performance related status. Since neither customer nor service provider may trust each
other to perform neutral evaluation of the QoS data, we place evaluation here at a Trusted
Third Party side – note that a service provider may want to make use of local evaluation for
management purpose, which is not depicted here, however. As has been noted before (cf.
section I.3), the issue of the private infrastructure implies that the structure for performance
measuring is equally unknown to the VO – likewise the data provisioning systems may be
individually configured to meet the service provider’s infrastructure and the QoS
requirements (cf. Appendix for details).
(3) As an application service provider exposes aggregated services that may be realised
through complicated business processes – we propose a “CDL++2BPEL” component that
may be used for turning the Collaboration Definition based role description into a business
process that can be enacted by the provider.
VO Management
The VO Management related service(s) take a particular role in the overall organisation
and enactment of Virtual Organisations by managing and maintaining the participants,
supervising the main processes and steering the lifecycle phases. Its main goal is to
represent the customer’s interest with the additional enhancement and capabilities to
realise them. As such, the VO Management service differs from other participants in the
Virtual Organisation, since it needs to ensure that all members can interact with each other
and observe the overall and specific requirements, including policies, access rights and
QoS definitions. Notably, this does not imply that the VO Management service itself needs
to be capable of “understanding” all the related information, e.g. evaluation of SLA status
information or interpret policy requests, but that the respective mechanisms are catered for
in the VO and that the consequences are enforced accordingly.
These management functionalities may be realised through one or multiple services, either
realised directly by the customer or through some intermediary providing the means to host
VO Management services, i.e. acting as a “normal” service provider for these particular
types of functionalities.

D09 – TrustCoM Reference Architecture

 Page 64

cd VO Management

SLA Manager

Negotiator

Negotiate

SLA Signerwitness

SLA Repository

GVOA Manager

Membership Mgmt

call
discovery

Lifecycle Manager

Security Token
Serv ice

Coordinator

Registration

ref Policy Serv ice

"Gateway"

Messaging

Message
Interceptor

PEP

Serv ice Instance
Registry

<resolve
handler>

Notification Proxy
subscribe /
register

Policy Decision
Point

<query>

Security Token
Serv ice

<verify>

Instantiator

«delegate»

«delegate»«delegate»

Figure 20: Typical structure of a VO Management Service.

In its position, VO Management is the first member of a Virtual Organisation and the one
service responsible for identifying the required participants for reaching the business goals
as defined by the customer (VO Initiator). Likewise, it needs to provide the means for
turning the goal description into a collaboration description that includes details about the
roles that need to be manned for enactment. We do not presume, however, that such a
service can realise this process which requires detailed knowledge about business
processes, but that it uses supporting services for this task – rather, VO Management will
take this elaborated description and extract from it the individual role definitions, including
such requirements as QoS parameters and actual task descriptions. The service will
furthermore take consequences for adapting requirements, respectively collaboration
description, depending on the identified and available participants, i.e. whether all roles can
be manned and whether the overall requirements can be fulfilled by it.
In order to build the virtual organisation, the VO Management needs also be capable of (a)
defining and (b) distributing the specific configuration details, as well as supporting the
instantiation processes. Configuration details in particular comprise VO specific
identification tokens, access rights and communication information (handlers of parties, as

D09 – TrustCoM Reference Architecture

 Page 65

well as actual endpoints), so that interaction between the parties that need to exchange
data is possible through one way or another – as has been noted before, this may involve
message brokering, dynamic interaction parties etc. Please also refer to the Appendix for
details.
The full description of the VO as realised by VO Management is maintained in the so-called
General VO Agreement (GVOA) that relates legal and electronic contracts – see section
I.4.

III.3 A Potential VO Instance
With the structures depicted above, it is in principle possible to build up a virtual
organisation that, though simplified, shows almost all of the capabilities of TrustCoM,
besides for the ones requiring large groups of participants – this involves mostly the
enactment of widely distributed collaboration workflows, more complicated message
brokering issues and similar, i.e. capabilities that are reflected in smaller VOs, too.
The simplified VO model we use for demonstration purposes here consists mainly, as
already outlined above, in two Application Service Providers, i.e. the underlying
collaboration definition involves two main roles, and several Trusted Third Party services,
Supporting Services, as well as the VO Management service. As such, the collaboration
may pursue a variety of purposes and we align our scenario slightly to the Collaborative
Engineering testbed (cf. D20):
A customer wants to enhance an existing design of an airplane (a boat, a car) with
multimedia entertainment capabilities that may conflict with the existing on-board systems
and hence may require reconfiguration. Without loss of generality we assume that the
design data is transported directly, thus not requiring storage provisioning services (though
realistically more feasible). The collaboration definition will thus involve a multimedia
designer role and a designing and testing role for the on-board systems. The details of the
requirements (budget, QoS, policies etc.) will be omitted here for the sake of simplicity and
as they are discussed in more detail in the testbed related documents like D20 and D21.
For demonstration purposes we simply assume that a QoS requirement consists in
providing progress reports every day and finishing the complete design after a period of
three months.
The collaboration itself is quite straight-forward and involves the customer / VO
Management providing the design of the on-board systems to the systems tester and the
details of the multimedia requirements to the multimedia designer. The latter will develop
an initial design and provide it to the system tester which will analyse the data and try to
redesign the on-board system to avoid conflicts, potentially requiring another redesign from
the multimedia provider. The result of the collaboration will consist in an enhanced design
for the on-board system integrating multimedia capabilities.
We will assume that all application service providers provide the fully configured system as
detailed in chapters II and III.2.b, and that the supporting and TTP services required for
privacy, discovery and similar issues are identical to the ones listed in section III.2.a.
In the following the main interactions of the services and components with respect to the
individual phases of a VO will be roughly outlined – since the processes have already been
discussed in previous sections and since the actual interactions of each subsystem are

D09 – TrustCoM Reference Architecture

 Page 66

detailed in the Appendix to this document, we will not provide thorough discussions of the
respective interaction diagrams. Note that this section is still under development and may
show slight inconsistencies with respect to the messaging details.

III.3.a Gateway Functionalities
Similar to the argumentation in section II.3, we will make a distinction between the gateway
related functionalities and the actual interactions between services, respectively
components to reduce the complexity of the diagrams: since the gateway structure will
behave principally identical for all services and communication, the respective processes
need not be repeated every time.
As opposed to section II.3, the aspects of the gateway mechanisms will be presented first
to allow for better understanding of the direct communication between services as will be
described in the lifecycle-specific sections following these elaborations.
Instantiation (Figure 21)
Though the gateway itself is not directly enabling instantiation of service-specific
components and resources, it nonetheless requires instantiation itself: besides for being a
unique representation of the service provided, it furthermore requires stateful information
for maintaining the access rights, security tokens etc., i.e. the configuration details.
Furthermore, the EN/VO Infrastructure related instantiation & deployment capabilities allow
for support of coordinated instantiation of the provided resources, in as far as desired by
the service owner. When triggered by the VO Management to instantiate and configure the
related components, the registered components’ and services’ factories (or similar) will be
triggered with the required information, such as an SLA (or at least a reference to identify
the SLA document).
The endpoints of the actual instances will be fed back to VO Management to fill the
membership details (that will later provide the information for the Service Instance Registry)
– note that this concerns only endpoint references that are required for messaging and not
considered inaccessible (in the sense of not directly exposed) by the service owner.
(Re)Configuration (Figure 22)
To use the gateway, it needs to be configured with information related to access rights,
individual policies, security tokens and the handler-instance mapping – changing these
details during Evolution (cf. section II.2.e) is principally identical to the interactions depicted
below and shall not be elaborated additionally.
Besides for providing, respectively updating the information details, the configuration will
also involve notification related subscription and registration, i.e. the steps required for
registering the individual components / services either as consumers of events related to a
specific topic, or as producer of such events, so that others may subscribe to it. Note that
for both the handler-instance mapping and the subscription, the endpoint known to the
individual services may not be identical to the actual source, respectively destination of the
interactions, if a broker acts as an intermediary transport medium (see also sections II.3.b
and II.2.d).
The service owner is principally capable of extending the Service Instance Registry with
further mapping details for purposes of communication internal of the service provider’s
domain or to redirect individual invocations to specific instances (cf. section II.3.b). He/she

D09 – TrustCoM Reference Architecture

 Page 67

may also make use of the policy subsystem to enforce local policies, either by adding them
to the local policy decision point or by registering his/her own at the PEP in addition to the
existing one.
Messaging (Figure 23, Figure 24, Figure 25)
The main task of the gateway consists in intercepting in- and outgoing messages to
authenticate the sender, to verify his/her access rights of the sender, to enact individual
policies, to redirect messages to the endpoint (using a handler) and to expose the
individual service’s & components’ functionalities as (enhanced) web methods:
In principal, three different processes have to be considered in order to realise these
capabilities: interception of incoming messages (Figure 23), of outgoing messages (Figure
24), and messaging via notifications (Figure 25). Note that notifications are rather a means
of managing destinations and sources, than a substitute for the gateway capabilities, i.e.
messages generated by the proxy will be dealt by the gateway like any other messages.

III.3.b Main Functionalities
The following paragraphs will comprise the interactions between services and their
subsystems with respect to the individual lifecycle phases. Again, the details regarding the
individual subsystems are provided in the Appendix to this document.
Note that these diagrams omit the gateway related processes as they are identical for all
cross boundary communication (cf. above).
Identification (Figure 26)
In order to establish a Virtual Organisation, a collaboration description needs to be derived
from the goal definition provided by the customer / VO Initiator: Such a collaboration
description will have to include (1) information about the functionalities that participants
have to provide, i.e. their “roles” (basically a WSDL), (2) the requirements of the roles with
respect to (a) quality of service, (b) policy & security settings and (c) reputation. These
requirements will be derived from the constraints, as provided by the customer, by
distributing them sensibly across the roles – however, we consider this a task of the
business expert “behind” the BP Repository, as this is outside the scope of TrustCoM.
The actual discovery processes consist in a series of queries to different repositories and
registries. Note that we consider negotiation part of identification as this will determine
whether the resources are available in that form (cf. section II.2.b).
Formation of a Virtual Organisation (Figure 27)
Participants in the actual Virtual Organisation need to be invited, instantiated and
configured so as to meet the according requirements, as well as to (legally) bind them to
the VO (cf. section I.4). The respective processes comprise in particular triggering the
individual participants with the relevant instantiation and configuration details – this is
mostly ”gateway” related and thus discussed in section III.3.a.
Once all participants’ services and components have been instantiated and the respective
instance details gathered, the Service Instance Registries of all members will be updated to
enable interaction with the respective endpoints, insofar as allowed (cf. discussion in
chapter II.2.d).

D09 – TrustCoM Reference Architecture

 Page 68

Enactment of the Collaboration – Operation (Figure 28)
From the service level point of view, the operation of the Virtual Organisation consists
mostly in the data exchange between services in a way that pursues the overall
collaboration descriptions. The diagram in Figure 28 does not comprise the full process as
outlined above, but only the main processes: distribution of initial data, starting the
execution of individual services and alternating invocations.
Since the services may be (or in this case: are) subject to quality of service agreements,
supervision of the performances is a relevant aspect of VO operation. Performance of a
system may have an impact on the configuration of the VO (e.g. Evolution, increasing
security settings etc.) and in particular on the respective service’s reputation. Notably, the
reputation of a participant may trigger reconfiguration of the VO, too.
Reconfiguration of the Virtual Organisation – Evolution (Figure 29)
Services that violate the requirements and/or agreements within the Virtual Organisation
may trigger a reconfiguration process that will consist in minor changes, like increasing the
security settings, or even in replacing, respectively dispatching the service in question from
the VO.
Note that dynamically adding or dispatching a member due to other issues, like on request
by the party, or that the resource is no longer required, is also considered evolution.
The Evolution processes are really a mixture of dissolution and identification / formation,
but with the addition that the respective participant may want to object to being replaced,
which will lead to a series of validation steps, verifying whether the replacement is justified.
Termination of the Collaboration – Dissolution (Figure 30)
At the end of the execution, be it of a single participant (either due to evolution or due to
being no longer required) or of the whole Virtual Organisation, the respective
(collaboration) relationships need to be dissolved in order to avoid security issues. This
covers in particular the removal of the respective Endpoint from the Service Instance
Registry, deleting the access rights and declaring the according Security Token as invalid,
to make further resource access impossible.
Furthermore, all (SLA) contracts will be terminated and auditing of the respective service
initiated – this may in principal involve financial auditing, which, however, is not
represented in the diagram.

D09 – TrustCoM Reference Architecture

 Page 69

sd Instantiation

(any) Service VO Management

Service Administrator

Message
Interceptor

Factory /
Factories

Instantiator CoordinatorServ ice Instance
Registry

Notification ProxyPolicy
Enforcement

Point

Policy Decision
Point

Security Token
Serv ice

loop

[foreach paricipant]

Membership
Management

loop

[foreach factory]

ref Configuration(any) serv ice

identical to above
sequence

instantiate

instantiate

Instantiation Details

register

Instantiate
Member

Instantiate(configuration details)

extract specific
configuration

trigger
instantiation(config)

instantiate

instance details (EPR)

instance details

trigger inst.

instantiate

instantiate

instantiate

instantiate

instance details

instance details (EPRs)

instance details
(EPRs)

configuration

instantiate (& configure)

Figure 21: Message exchange during Instantiation of the gateway.

D09 – TrustCoM Reference Architecture

 Page 70

sd Configuration

VO Management (any) Service TTP (any other) service

Serv ice Instance
Registry

Policy Decision
Point

Notification ProxyFactoryVO Management
Serv ice

Notification
Broker

Notification Proxy

opt topic registration

loop

[foreach consumer]

opt topic subscription

loop foreach producer

Security Token
Serv ice

Note that all
messaging
between
services now
uses the
gateway (cf.
ref
Messaging)

Service Administrator

Policy Serv ice

opt

<instantiate>

(instantiate &)
configure

register as producer(topic)

indentify
consumers

subscribe consumer to topic

subscribe to topic

identify
producers

subscribe consumer to topic

fil l / update mapping

issue token

load relationship

load policies

load policies

additional mappings

additional policies

Figure 22: Message exchange during (re)configuration of the gateway.

D09 – TrustCoM Reference Architecture

 Page 71

sd Messaging - Incoming

 (any) service

(any other)
serv ice

Message
Interceptor

Serv ice Instance
Registry

Policy
Enforcement

Point

Policy Decision
Point

Security Token
Serv ice

actual recipient
(serv ice /

component)

message

verify security token

query higher STS

block / okay

verify access rights

check policies

check higher
PDPs

response

block / okay

identify receiving
component

EPR

forward message

Figure 23: Message interception for incoming messages.

D09 – TrustCoM Reference Architecture

 Page 72

sd Messaging - Outgoing

(any) service VO Management

(any) serv ice recipient
(message

interceptor)

Message
Interceptor

Serv ice Instance
Registry

Policy
Enforcement

Point

Policy Decision
Point

Security Token
Serv ice

Membership
Management

opt

[recipient unknown]

message

verify access rights

check policies

check higher
PDPs

response

block / okay

get security token

query
higher STS

security token

add token to message

identify recipient

identify recipient

potential ly trigger
identification

EPR

EPR

send message

Figure 24: Message interception for outgoing messages.

D09 – TrustCoM Reference Architecture

 Page 73

sd Notification

(any) service Notification Broker (another) service

(any) serv ice Notification Proxy ref Messaging -
Outgoing

ref Messaging -
Incoming

Notification
Broker

ref Messaging -
Outgoing

ref Messaging -
Incoming

Notification Proxy (any other)
serv ice

loop

[for each consumer]

opt Notification Brokering

loop

[foreach consumer]

loop

[foreach consumer]

raise event(topic,
message)

identify consumers

send notification

forward message

message

identify consumers

send notification

forward message

forward message

message

identify consumers

notification

Figure 25: Notification specific interactions.

D09 – TrustCoM Reference Architecture

 Page 74

 VO Management Trusted Third Parties Supporting Services Application Service Provider

Customer

Lifecycle
Manager

BP RepositoryGVOA Manager Membership
Management

loop discovery

[for each role(x)]

Discovery
Serv ice

Serv ice
Description
Repository

here a service is a
"virtualised role"

Reputation
Management

Serv ice

(public) SLA
Template

Repository

SLA Management
Subsystem

loop negotiation

[all potential services until all roles are manned]

Notary

the collaboration description
contains: (1) the roles, (2) their
respective requirements ...

loop

[for each potential service]

loop

[for each potential service]

SLA Management
Subsystem

Administrator, EMS or similar

goal description

goal description get collaboration
description from goal

collaboration description

store role descriptions

discover role(x)

get requirements for role(x)

requirements discover service with
(function, reputation, SLA)

query WSDLs for functions

list of potential services

query reputation of potential service

reputation

compare reputation
with requirement

get SLA template of potential service

SLA template(s)

compare template
with requirementsreduced and sorted list

of potential service
providers

start negotiation with specific
requirements

send offer

assign
unique ID

verify availabil ity
of resources

confirm / reject

<reserve resources>

accept / reject (simplified negotiation)success/failure,
SLA Id

select
appropriate SPs

initiate signature (SLA Id)

initialise signature

send signed SLA

send signed SLA document

compare
documents signed SLA

signed SLA

success, failure

identifcation successful (/failed)

store identification results

Figure 26: Interactions during Identification.

D09 – TrustCoM Reference Architecture

 Page 75

sd Formation

VO Management Trusted Third Parties (Application) Service Providers

Lifecycle
Manager

GVOA ManagerMembership
Management

SLA Management
Subsystem

SLA Management
Serv ices

loop integration

[for each potential member]

Policy Serv ices"Gateway" (see
section III.2.a)

CDL++2BPEL BPM serv ice

note: a fai lure would lead to
shut-down of the VO (respectively new
start with a different CDL

(any) Serv iceSLA Management
Subsystem

Coordinator "Gateway"

invite/initiate members

get relevant information
for member X

SLA Id, policy, role
description etc.

instantiate & configure

instantiate & configure

trigger configuration(SLA Id)

trigger config(SLA Id) instantiate, configure
components

instantiate & configure instantiate &
configure

load policy, roles,
relationships

load policies

load policies

trigger configuration(individual role information)

derive
individual BPs

deploy individual BP

update information

finished

trigger update

update al l information

update all information

update al l information

update all information

Figure 27: Interactions during Formation.

D09 – TrustCoM Reference Architecture

 Page 76

sd Operation

VO Management Trusted Third Parties Systems Tester Multimedia Designer Supporting Services

Lifecycle
Manager

serv iceSLA Management
Subsystem

SLA Ev aluator SLA Performance
Log

Reputation
Ev aluator

Reputation Mgmt.
Serv ice

Secure Audit Log Policy Serv ice

loop monitoring

[as long as appl ication service is active]

SLA Management
Subsystem

SLA Management
Subsystem

serv ice

opt

[policy violation]

opt

[changed reputation]

loop monitoring

provide design data

provide generic description of desired system

start SLA(SLA Id)

start

start

start execution

design multimedia
systemforward status

evaluate

forward eval. results

forward eval. results

forward eval. results

update reputation

forward eval. results

verify policies

updated reputation

verify policies

trigger changes (evolution)

send results

stop(SLA Id)

stop(SLA Id)

stop(SLA Id)

start(SLA Id)

start(SLA Id)

start(SLA Id)

test design

Figure 28: Typical interactions during Operation.

D09 – TrustCoM Reference Architecture

 Page 77

sd Ev olution

VO Management Trusted Third Parties Service Provider (any) service

ref Dissolution
Full

service owner

NotarySLA Performance
Log

GVOA Manager Application
Serv ice(s)

ref Identification
Full : discov ery

ref Identification
Full : negotiation

Membership
Manager

ref Formation
Full : integration

Lifecycle
Manager

(any) serv ice

interrupt process

replace
member X

inform about termination

get performance

log

check
performance

objection

request verification

compare SLAs
and performance

confirm / object

response to objection

dispatch THIS member

response

update data

dispatch member X

update information
(all services)

discover replacement

find replacement

negotiation

integrate member

success / failure

update al l information

continue processing

Figure 29: Overview over the Interactions during Evolution.

D09 – TrustCoM Reference Architecture

 Page 78

sd Dissolution

VO Management Trusted Third Parties Service Provider Supporting Services

SLA Management
Subsystem

SLA Ev aluatorLifecylce
Manager

"Gateway" "Gateway"Reputation
Ev aluator

Reputation Mgmt.
Serv ice

SLA Performance
Log

loop

[for each member to be dispatched]

SLA Management
Subsystem

serv ice (any other)
serv ice

loop

[foreach member]

includes restricting access rights, "revoking"
tokens and deleting EPR from Service
Instance Registry,
i.e. erasing the member to be dispatched
as an interaction partnerupdate information

update information

termination (stop execution)

terminate contract

stop(SLA Id)

terminate contract

stop all components

commence auditing

query log(SLA Id)

performance log

update reputation

Figure 30: Overview over the Interactions during Dissolution.

D09 – TrustCoM Reference Architecture

 Page 79

IV Profiles
TrustCoM will focus on, and expects to have its main impact with respect to standardisation
in the creation of profiles. A profile identifies how different specifications should be used
together to support complex applications. This specifically applies to (but is not limited to)
interoperable web services. If individual web services standards are metaphorically seen
as pieces of a jigsaw puzzle, that each capture some autonomous functionality, then
profiles can be seen as recommended designs of jigsaws and “best practice” guidelines
that support work towards implementing comprehensive and potentially complex business
functions. Profiles are created in response to the ever-growing number of interrelated
specifications, all at different version levels and different stages of development and
adoption, and often with conflicting requirements. Profiles integrate and refine dominant
web services standard specifications by resolving potential conflicts between them,
constraining their extensibility options where necessary, and exploiting their
complementarity and composability characteristics.

Specific emphasis goes to the potential of creating TrustCoM profiles that integrate existing
standards within and across the different areas. The project will concentrate on integration
profiles, bringing together the isolated subsystem developments; while we have refined the
potential standardisation contributions within each specific TrustCoM research and
development area, the most immediate result of the TrustCoM standardisation activity is
expected to be in the integration of existing standards across the different areas.

The specification of the Trustcom Framework for implementation in software draws upon
many open specifications for three reasons:

o to transparently show how it operates in order to build trust in it as a technology;
o to ease implementation by anybody who wishes to do so;
o to improve the probability that the technology will interoperate between a wide range

of platforms.
Consequently, there are many combinations of open specifications that could be the
subject of profiles. In order to have an impact, only a small set of specifications have been
selected as the basis of profiles which are both likely to be adopted, and where the project
has mature input resulting from significant experience. These are:

o WSLA – to revive the structural detail required to specify SLA’s lost in the
development focus on WS-Agreement

o WS-Trust – to refine the interaction of WS-Trust with other specifications
o WS-CDL – to demonstrate the integration of choreography and orchestration as

methods of co-ordination of distributed business processes.
o XACML – to introduce delegation into the security specification
o EDA-Policies – to refine the policy representation as used in Trustcom

Each of these will be described below as a proposal for wider adoption.

D09 – TrustCoM Reference Architecture

 Page 80

IV.1 WSLA
IV.1.a Introduction
This section defines a profile for the use of the Web Service Level Agreement (WSLA)
specification to describe service level agreements (SLAs) within a TrustCoM Virtual
Organization.
Background
The SLA technology analysis performed in the state-of-the-art evaluation and the
experience accumulated so far in the project has resulted in the selection of WSLA as the
main SLA specification formalism to be used within TrustCoM. Although the specification
seems at times over-engineered, it is rich enough to match the needs of SLAs within the
TrustCoM framework, naturally matching the distribution of tasks and responsibilities in the
SLA Management subsystem as discussed in D9 (Architecture Deliverable).
An alternative specification, WS-Agreement, has so far been perceived as lacking enough
structure (possibly resulting from an excessive zeal for generality). Nonetheless, future
work regarding the creation and deployment of agreements within the TrustCoM
Framework will be much influenced by the work on WS-Agreements.
Two design decisions affect considerably the way the WSLA is used in the Framework.
First, loosely coupled components are to make as much use as possible of the notification
mechanisms supported by the EN/VO infrastructure. An agreement must therefore be
explicit about the way these mechanisms are to be used during SLA management.
Second, application and supporting services are to be virtualized as VO Resources before
they can be shared in a VO. The virtualization mechanisms, also provided by the EN/VO
infrastructure, introduce a level of indirection in the representation of service addresses
which has to be taken into account when describing services and their QoS
requirements/guarantees.
Summary
The Web Service Level Agreement specification (WSLA) from IBM has been chosen as
service level agreements description language. WSLA has a rich set of elements that is
suitable for describing the distribution of tasks and responsibilities in the SLA Management
subsystem although some minor modifications have been necessary.
Namespaces
For this profile, the namespace prefixes are defined as follows:
xmlns:wsla=”http://www.ibm.com/wsla”

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

xmlns:uddi=”urn:uddi-org:api_v3”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xmlns:slaEval=”http://www.sics.se/Trustcom/SLAEvaluator”

Scope
The present version addresses only full SLAs. Neither SLA Templates nor WSLA SDI
(Service Deployment Information) are covered by this profile.

D09 – TrustCoM Reference Architecture

 Page 81

SLA Identification
An SLA is identified by an URI of type xsd:anyURI returned by the SLA Manager when
called to configure the monitoring service. The identifier attribute name of the root element
of WSLA service level agreement, wsla:SLA, is not used.

Parties
All party descriptions in WSLA are instances of a subtype of the abstract type
wsla:PartyType and therefore contain the sub-elements <Contact> and <Action>
and the attribute name. Neither of the two elements serves the purpose of properly
identifying the party as a VO partner. The name attribute should be used for such a
purpose and therefore it should be of the type reserved by TrustCoM for VO Partner IDs,
which is the UDDI Business Entity identifier type uddi:businessKey17. This is a change
of the WSLA specification where the original type was xsd:string.
 <xsd:complexType name="PartyType" abstract="true">
 <xsd:sequence>
 <xsd:element name="Contact"
 type="wsla:ContactInformationType"
 minOccurs="0"/>
 <xsd:element name="Action"
 type="wsla:ActionDescriptionType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="uddi:businessKey"/>
 </xsd:complexType>

It has been considered, but so far ruled as unnecessary, to add a further attribute to the
wsla:PartyType corresponding to the handle of the manageability interface
implemented by the party’s VOVirtualizationNode (cf. EN/VO Infrastructure). This handle
should be recovered from an index service provided by the EN/VO infrastructure.
Signatory Parties
In WSLA, an SLA relates the consumer to the provider of a service. These two parties are
expected to sign the agreement and therefore are described with elements of type
wsla:SignatoryPartyType, an extension of wsla:PartyType.

In the TrustCoM Framework, the identity of a signatory party is used to assign
responsibilities, but in principle it is not expected that it directly implements any SLA
Management action. Therefore this profile discourages the use of the <Action> element
for signatory parties.
Supporting Parties
The WSLA specification defines three types of supporting parties (i.e. contributors to the
execution of the SLA that are neither consumers nor providers): MeasurementService,
ConditionEvaluationService and ManagementService.

Measurement Service. Corresponds both to the simple and aggregating monitors in the
conceptual model (cf. deliverable D16 – Conceptual Models).

17 http://uddi.org/schema/uddi_v3.xsd

D09 – TrustCoM Reference Architecture

 Page 82

1. When a <Metric> element of type wsla:MetricType contains a
<MeasuringDirective> sub-element, then its <Source> sub-element specifies the id of
a Simple Monitor. The following example tells us that supporting party “YMeasurement” is
responsible for producing the integer value of a MeasurementDirective of type
tc:StatusRequest (to be defined).

Example
 <Metric name=”MeasuredStatus” type=”integer” unit=””>
 <Source>YMeasurement</Source>
 <MeasurementDirective xsi:type=”tc:StatusRequest”
 resultType=”integer”>
 <EndpointReference>
 …An element of type wsa:EndpointReference…
 </EndpointReference>
 </MeasurementDirective>
 </Metric>

Observe that the directive identifies the endpoint reference (EPR) that shall be used to
query this monitor. The EPR may point to the monitoring interface implemented by a VO
Virtual Node.

2. When a <Metric> element of type wsla:MetricType contains a <Function> sub-
element, then its <Source> sub-element specifies the id of an Aggregating Monitor. The
following example tells us that supporting party “HLRS2” is responsible for producing the
double integer value that results of dividing the result of metric clock_speed by (100 –
process_Cpu_Load).

Example
 <Metric name="performance_metric" type="double" unit="GHz">
 <Source>HLRS2</Source>
 <Function xsi:type="wsla:Divide" resultType="double">
 <Operand>
 <Metric>clock_Speed</Metric>
 </Operand>
 <Operand>
 <Function xsi:type="wsla:Minus" resultType="double">
 <Operand>
 <LongScalar>100</LongScalar>
 </Operand>
 <Operand>
 <Metric>process_Cpu_Load</Metric>
 </Operand>
 </Function>
 </Operand>
 </Function>
 </Metric>

Observe that the example does not clarify how party HLRS2 is expected to make the
metric value available to other SLAM components. In the case of the Condition Evaluation
service this is done by the use of element <SLAParameter> as explained below.

D09 – TrustCoM Reference Architecture

 Page 83

3. Some Monitors (i.e. MeasurementServices) are also producers of SLA Parameters. A
SLAParameter contains based on a sub-element SLAParameter/Metric indicating
how the parameter is defined. The party responsible for providing the parameter is
indicated by the sub-element SLAParameter//Source. The sub-element
SLAParameter//Pull may be used to define which parties are allowed to pull the SLA
Parameter from the monitor (by invoking its GetSLAParameterValue operation). The
sub-element SLAParameter//Push, if not empty, indicates that:

1. The Monitor is expected to produce notifications according to the metric
schedule.

2. The SLA Management subsystem shall subscribe the list of parties in the
<Push> element to receive those notifications.

3. A Monitor publishes notifications using the simple topic dialect for topics. A
topic is formed in the following way in order to identify a SLA Parameter
uniquely:

 { value of SLAParameter//<Source> } value of SLAParameter/@name

For instance, if element SLAParameter//<Source> has value
“http:/example.com:monitor1” (a URI) and the SLA parameter attribute
name has value “averageResponseTime” then the topic is:
“{http:/example.com:monitor1}averageResponseTime”.

4. A notification shall contain a message of type
slaEval:SLAParameterWrapperType that contains element
ArrayOfSLAParameters, which in turn contains an array of
SLAParameter elements of type slaEval:SLAParameterType. The
type slaEval:SLAParameterType is based on type
wsla:SLAParameterType in order to be compatible with the WSLA
specification. Thus it has element value of type xsd:double and has
attribute name of type xsd:string, attribute type of type xsd:string
and attribute unit of type xsd:string.

Condition Evaluation Service. There is a one to one relationship between this type of
supporting party and SLAEvaluators (see D16 – Conceptual Models).
An SLAEvaluator is responsible for notifying the violation of a set of service level

objectives (see
Obligations)

Management Service. The approach of the TrustCoM Framework establishes an SLA
Management infrastructure as part of the constitution of the VO, regulated by the GVOA,
so it is unnatural to let specific SLAs define how they are to be managed. For this reason,
the present profile deprecates the use of ManagementServices.

D09 – TrustCoM Reference Architecture

 Page 84

Obligations
ActionGuarantees shall only be used to encode obligations on the SLAEvaluator and the
Monitors.
An SLAEvaluator is responsible for the evaluation of a Service Level Objective (SLO) if it is
listed in /SLA/Obligations/ActionGuarantee/Obliged. In such a case, the SLO in
question is given in the Expression//ServiceLevelObjective sub-element of the
ActionGuarantee.

Example
 <Obligations>
 <ServiceLevelObjective name=”g1”>
 …
 </ServiceLevelObjective>
 <ActionGuarantee name="g2">
 <Obliged>SICS</Obliged>
 <Expression>
 <Predicate xsi:type="wsla:Violation">
 <ServiceLevelObjective>g1</ServiceLevelObjective>
 </Predicate>
 </Expression>
 <EvaluationEvent>NewValue</EvaluationEvent>
 </QualifiedAction>
 <ExecutionModality>Always</ExecutionModality>
 </ActionGuarantee>
 </Obligations>

In this example, party SICS provides an SLAEvaluator that computes SLO g1. Whenever
this SLO is violated, the SLAEvaluator is obliged to send a notification. The notification
message is published with a simple topic "{http://wsrf.notification.de}SLA_violation". The
message contains the identifiers of the violating SLA Parameters, the identifier of the SLO
(qualifying the SLO name using the SLA name) and the violating partner (see discussion
on topics for notifications emitted by MeasurementServices).
In case the SLO is fulfilled, a similar message is sent with topic
"{http://wsrf.notification.de}SLA_fulfilment".

IV.2 WS-Trust & SAML
This section describes a WS-Trust and a SAML token profile for virtual organizations as
implemented in the FP6 TrustCoM project. The purpose of this document is to specify how
web service components communicate with security token services (STS) to request an
STS to issue and validate ‘cross-organizational’ security tokens.
This chapter does not intend to present a final profile, nor does it intend to present a
mandatory profile for use outside the “scoped federations” context as implemented in the
FP6 TrustCoM project.
We differentiate between two types of security tokens:

• Organization-internal security tokens and

D09 – TrustCoM Reference Architecture

 Page 85

• Cross-organizational security tokens.
This differentiation is necessary because each VO partner organization may use arbitrary
security tokens inside the organization’s own network, so that a standardization and
unification of these types is not possible. For example, one VO partner organization may
solely use Kerberos tokens to authenticate and protect messages inside the company’s
network, whereas other VO partners may use username/password or X.509 certificates
inside their organization. Even in scenarios where all organizations use long-term tokens
such as X.509 certificates, it may not be possible to use these tokens cross-
organizationally, because the companies may not have a common root of trust (e.g., no
X.509 cross-certification).
For the above reasons, it is necessary to agree on a common format of cross-
organizational security tokens. Inside TrustCoM, we agreed to use SAML assertions as
security tokens.
The objective is to draft a profile in which all the parameters are clearly justified, and
correspond to a concept from the framework. The current draft is not fully there yet,
primarily because the profile originally suggested uses symmetric encryption (whereas
other SAML profiles with which this should be consistent use asymmetric encryption) and it
also contained parameters whose purpose is not immediately obvious.
It is important that it can be clearly seen how the profiles and their parameters fit the
framework, and what the relationship between profile parameters and framework
elements/concepts are.
Here is a summary of what has been agreed so far:

i. The WS-Trust profile will send SAML attribute assertions
ii. The parameters to be used from SAML attribute assertions are

a. the issuer field is mandatory and contains the name of the issuer of the
attribute assertion/security token.

b. advice is optional and probably wont be used
c. the signature field is optional and isnt needed when X.509 ACs are passed as

the attributes, or when symmetric encryption is used
d. conditions are optional, but when present will contain the validity time of the

attribute assertions (notBefore and notOnOrAfter)
e. the subject statement holds the name of the entity that the attributes are

being assigned to
f. the set of attributes contain the attributes being assigned to the subject

Whereas the following issues are still outstanding and not agreed so far:
i. how symmetric tokens and tickets are encoded
ii. how obligations are encoded
iii. how delegation permission is encoded
iv. how "no assertion" is incoded

D09 – TrustCoM Reference Architecture

 Page 86

These will be addressed in the next development cycle of six months before the next
release of V3 of this Framework.

IV.2.a Namespaces and supported specifications
Inside this document, the namespace prefixes are defined as follows:

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust"

xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"

xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"

xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

xmlns:emic="http://www.microsoft.com/emic/SAFe/"

xmlns:emicfrc="http://www.microsoft.com/emic/SAFe/#FederationRestrictions"

xmlns:emicfpi="http://www.microsoft.com/emic/SAFe/#FederationPartners"

xmlns:wstx="http://www.microsoft.com/emic/SAFe/#WSTrustExtensions"

IV.2.b WS-Trust
This profile is based on the WS-Trust specification from February 2005
(http://msdn.microsoft.com/ws/2005/02/ws-trust/).

Issuance Binding Profile
For requesting a new cross-organizational security token, we use the “Issuance Binding” as
defined by the WS-Trust specification from February 2005.

• wst:TokenType
The WS-Trust token type for cross-organizational SAML assertions is defined as follows:

<wst:TokenType>http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-
1.1#SAMLV1.1</wst:TokenType>

• wsp:AppliesTo

D09 – TrustCoM Reference Architecture

 Page 87

In this profile, the requestor of a security token MUST specify a wsp:AppliesTo element as
part of the wst:RequestSecurityToken. This element may have the following components:

wsp:AppliesTo/wsa:EndpointReference/wsa:Address (MAY)

The URI of the web service where the token will be used.

wsp:AppliesTo/wsa:EndpointReference/wsa:Action (MAY)

The action that is invoked on the web service where the token will be used.

wsp:AppliesTo/wsa:EndpointReference/wsa:ReferenceProperties/emic:FederationUUID
(MUST)

The FederationUUID is an identifier of the VO inside which the token will be used.
We expect that an issue request for a cross-organizational token MUST contain a
VO identifier (such as a FederationUUID). That is necessary because the STS
must be able to lookup whether the requesting client has available claims for that
particular VO.
In this profile document, we defined an own format for a VO identifier. The model
would allow to use other types of identifiers with equivalent functionality, for
example from UDDI space.

wsp:AppliesTo/wsa:EndpointReference/wsa:ReferenceProperties/emicfpi:FederationPartne
rIdentifier (SHOULD)

That federation partner identifier is an identifier of the VO partner organization that
performs token validation for the service. Such a partner identifier could be a long-
term credential of the partner’s STS (such as an X.509 certificate or a reference to
a certificate), a UDDI business entity key or some other unique identifier.
The STS needs the federation partner identifier for different purposes: In a
symmetric-key based (Kerberos-like) model, the STS requires that information to
determine the service’s organization’s security token (key), so that the STS can
include a session key inside the cross-organizational token. In addition, the partner
identifier may be used for client-side security decisions.

• wst:RequestedSecurityToken
The wst:RequestedSecurityToken MUST contain a cross-organizational saml:Assertion
element.

• wst:RequestedProofToken
The wst:RequestedProofToken SHOULD contain the private or secret key material
associated with the saml:Assertion. In the current “scoped federations” prototype, the
wst:RequestedProofToken contains an xenc:EncryptedKey element. The

D09 – TrustCoM Reference Architecture

 Page 88

xenc:EncryptedKey contains a symmetric key encrypted for the requestor of the token, i.e.,
the key is encrypted under the client’s organization-internal key.

Validation Binding Profile
The current prototype adopts the WS-Federation “U-model”. To validate an existing cross-
organizational security token at the service side, we use the “Validation Binding” as defined
by the WS-Trust specification.

• wst:TokenType
The WS-Trust token type for validation SAML assertions is defined as follows:

<wst:TokenType>http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-
1.1#SAMLV1.1</wst:TokenType>

• wsp:AppliesTo
See Issuance Binding Profile. For token validation, the service MUST provide wsa:Address
and wsa:Action elements in the wst:RequestSecurityToken/wsp:AppliesTo.

• wstx:ValidateTarget
The wstx:ValidateTarget element refers to the target of validation. The wstx:ValidateTarget
element MUST contain the cross-organizational saml:Assertion that should be validated.

• wst:RequestedSecurityToken
The wst:RequestedSecurityToken MUST contain a saml:Assertion that contains the
validation results.

• wst:RequestedProofToken
The wst:RequestedProofToken SHOULD contain the public or secret key material with
which the service can verify the signature of the received message as well as decrypt the
received message. In the current “scoped federations” prototype, the
wst:RequestedProofToken contains an xenc:EncryptedKey element. The
xenc:EncryptedKey contains the symmetric key associated with the SAML token, now re-
encrypted for the service.

• wst:Status
The wst:Status element MUST be included in the RSTR as specified by WS-Trust. The
predefined URIs, as specified in WS-Trust, are used in the current prototype.

D09 – TrustCoM Reference Architecture

 Page 89

IV.2.c SAML Assertion Profile
This profile is based on the SAML 1.1 Assertion specification (http://www.oasis-
open.org/committees/download.php/3406/oasis-sstc-saml-core-1.1.pdf) and the Web
Services Security SAML Token Profile 1.1 (http://www.oasis-
open.org/committees/download.php/15256/Web%20Services%20Security%20SAML%20T
oken%20Profile-11.pdf).

SAML cross-organizational token
The cross-organizational security token is a SAML 1.1 saml:Assertion. The saml:Assertion
MUST include saml:Conditions, saml:AttributeStatement, and ds:Signature elements.

• saml:Assertion
The @Issuer attribute SHOULD contain the URI of the issuing STS.

• saml:Conditions
In addition to the @NotBefore and @NotOnOrAfter attributes which MUST be included, the
saml:Conditions element MUST include a emicfrc:FederationRestrictionCondition.

emicfrc:FederationRestrictionCondition (MUST)

The FederationRestrictionCondition defines the federation scope in which the cross-
organizational SAML assertion can be used. Validation in other scopes must fail.

• saml:AttributeStatement
The saml:Assertion MUST contain exactly one saml:AttributeStatement. That
saml:AttributeStatement element MUST contain one saml:Subject and a saml:Attribute
element.

saml:Subject (MUST)

The subject is the owner of the token and is identified by a
saml:SubjectConfirmation/saml:ConfirmationMethod
urn:oasis:names:tc:SAML:1.0:cm:holder-of-key as specified in the WSS SAML
Token Profile 1.1.

The key is included in a ds:KeyInfo element which contains an xenc:EncryptedKey
with a symmetric key encrypted for the receiving VO partner organization.

saml:Attribute Claims (MUST)

D09 – TrustCoM Reference Architecture

 Page 90

The AttributeName is “Claims” and the AttributeNamespace is
"http://schemas.xmlsoap.org/ws/2005/02/trust". The saml:AttributeValue element
MUST contain a wst:Claims element.

The wst:Claims element contains the claims that the client possesses in the
particular VO. These claims may be xacml11 attributes.

• ds:Signature
The Signature MUST contain exactly one ds:Reference referencing the
saml:Assertion/@AssertionID attribute. This Reference MUST have exactly two transforms:

1. The first transform is “Enveloped Signature”
(http://www.w3.org/2000/09/xmldsig#enveloped-signature)

2. The second transform is “Exclusive XML Canonicalization without Comments”
(http://www.w3.org/2001/10/xml-exc-c14n#)

To support cross-organizational validation of the signature of the token, the KeyInfo
element MAY contain various references to the signing certificate of the issuing STS,
including a wsse:SecurityTokenReference/wsse:KeyIdentifier, a
wsse:SecurityTokenReference/wsse:Embedded, or a emicfpi:FederationPartnerIdentifier.

SAML validation token
The validation response is a SAML 1.1 saml:Assertion. The saml:Assertion MUST include
saml:Conditions, saml:AttributeStatement, and ds:Signature elements. In addition, a
saml:Advice SHOULD be included.

• saml:Assertion
The Issuer attribute SHOULD contain the URI of the validating STS.

• saml:Conditions
In addition to the NotBefore and NotOnOrAfter attributes which MUST be included, the
saml:Conditions element MUST include a emicfrc:FederationRestrictionCondition.

emicfrc:FederationRestrictionCondition (MUST)

The federation scope in (and only in) which this SAML assertion is to be considered.

• saml:Advice
The saml:Advice SHOULD contain the original cross-organizational saml:Assertion that
has been validated.

D09 – TrustCoM Reference Architecture

 Page 91

• saml:AttributeStatement
The saml:AttributeStatement element MUST include a saml:Subject and at least one
saml:Attribute element.

saml:Subject (MUST)

The subject is the owner of the original cross-organizational token that is validated,
and is identified by a saml:SubjectConfirmation/saml:ConfirmationMethod
urn:oasis:names:tc:SAML:1.0:cm:holder-of-key as specified in the WSS SAML
Token Profile 1.1.
The key is included in a ds:KeyInfo element which contains a wst:BinarySecret with
a cleartext symmetric key (this assumes that the RSTR is properly protected!), or an
xenc:EncryptedKey with a symmetric key encrypted for the receiving VO partner
organization.

saml:Attribute FederationPartnerIdentifier (MAY)

The AttributeName is “FederationPartnerIdentifier” and the AttributeNamespace is
"http://www.microsoft.com/emic/SAFe/#FederationPartners". This attribute MAY be
included to explicitly indicate to the service the VO partner organization the service
request is originating from. If this attribute is present, the saml:AttributeValue
element MUST contain an emicfpi:FederationPartnerIdentifier element.

saml:Attribute Status (MUST)

The AttributeName is “Status” and the AttributeNamespace is
"http://schemas.xmlsoap.org/ws/2005/02/trust". This attribute MUST be included to
indicate the result of the security token validation. The saml:AttributeValue element
MUST contain a wst:Status with one of the predefined wst:Code status codes.

saml:Attribute Claims (SHOULD)

The AttributeName is "Claims" and the AttributeNamespace is
"http://schemas.xmlsoap.org/ws/2005/02/trust". This attribute SHOULD be included
to pass the validated (and possibly transformed) claims to the service. If this
attribute is present, the saml:AttributeValue element MUST contain a wst:Claims
element.
A policy enforcement point (PEP) may forward these validated claims to a policy
decision point (PDP) to support the policy decision.

saml:Attribute ValidationMessage (MAY)

The AttributeName is "ValidationMessage" and the AttributeNamespace is
"urn:string". This attribute MAY be included to pass a human-readable validation
result message to the service.

D09 – TrustCoM Reference Architecture

 Page 92

IV.2.d Custom elements
The following custom namespace prefixes are defined in the current “scoped federations”
prototype in TrustCoM:

 xmlns:emic="http://www.microsoft.com/emic/SAFe/"

 xmlns:emicfpi="http://www.microsoft.com/emic/SAFe/#FederationPartners"

 xmlns:emicfrc="http://www.microsoft.com/emic/SAFe/#FederationRestrictions"

• emic:FederationUUID
The emic:FederationUUID represents a universal and unique identifier for the federation
scope.

• emicfpi:FederationPartnerIdentifier
The emic:FederationPartnerIdentifier identifies a VO partner organization. A partner
organization can be identified in various ways as indicated in the Type attribute.

• X509SubjectName Type

X509Data/X509SubjectName (MUST)

The X.509 DN of the certificate of the issuing STS of the partner.

• emicfrc:FederationRestrictionCondition
The emicfrc:FederationRestrictionCondition is a custom SAML condition which intends to
indicate the “scope” within which the SAML cross-organizational or validation token MUST
be considered.

• wsp:AppliesTo
The FederationRestrictionCondition MUST contain a wsp:AppliesTo element.

wsp:AppliesTo/wsa:EndpointReference/wsa:Address (SHOULD)

The URI of the web service that is invoked.

wsp:AppliesTo/wsa:EndpointReference/wsa:Action (SHOULD)

The action that is invoked on the web service.

D09 – TrustCoM Reference Architecture

 Page 93

wsp:AppliesTo/wsa:EndpointReference/wsa:ReferenceProperties/emic:FederationUUID
(MUST)

The VO identifier inside which the assertion can be used.

Role semantics
In the first prototype, we used a self-defined role claim with proprietary semantics to
represent roles. In TrustCoM, we will use XACML 1.1 attribute values to convey role
information.

IV.3 WSCDL

IV.3.a Overview
This section defines a profile for the use of W3C’s Web Service Choreography Description
Language (WS-CDL) specification to describe the business process modelling aspects of
collaboration definitions within a TrustCoM Virtual Organization.
Background
The technology analysis on collaborative business processes performed in the state-of-the-
art evaluation and the experience accumulated so far in the project has resulted in the
selection of WS-CDL as the business process specification to be used for the holistic view
on collaborative business processes within TrustCoM, i.e., the single view on the
collaborative process that includes the activities at and interactions between all involved
parties. Although much critique has been issued against the specification [10], [11], [12]
and it is not yet a standard, the advantages over other available choreography models
outweigh the issues. WS-CDL matches the needs for collaborative business processes
within the TrustCoM framework, due to the following reasons: It specifies the control flow
over interactions and local activities between multiple roles from a high-level perspective,
and is conceptually close enough to single-party business process languages to be
matched with them. A choreography language that allows for the modeling of complex
interaction patterns would mostly be good for design, not for execution as a business
process, because its execution should include executable business processes as well as
more flexible programming models and human interaction, e.g., for distinctive choice points
with a high economical impact.

Most other choreography languages state single-partner processes and connect them, at
the cost of hard legibility and high risk of incoherency. WS-CDL always offers a combined
view on all partners’ activities, making it much easier to realize and observe coherence in
the various parties’ behavior

Alternative specifications include WSCI, WSCL, and BPSS:

• WSCI18 is also a specification by W3C, which allows the definition of choreographies
by extending WSDL interfaces to express business process semantics over the web

18 WSCI: Web Service Choreography Interface

D09 – TrustCoM Reference Architecture

 Page 94

service operations and connecting such extended WSDLs to form a choreography.
There are multiple points to note here: WSCI is more a web service technology than
a business process technology. Its most natural use would be to connect existing
web services, thus suggesting a bottom-up approach – instead of the here-
anticipated top-down approach. The distribution of the choreography specification
over multiple documents does not feature a global view on the collaborative
business process as a whole, which is supposedly very helpful for consistence and
coherency in the understanding of the overall control and data flow. Last, the level of
detail is fairly high: on the choreography level, the exact WSDL interfaces of each
partner do not yet have to be present.

• ebXML19 is a business collaboration framework, which offers related mechanisms to
specify collaborations between partners. The focus here is rather on the business
level with its functional and legal implications and not process integration and
execution.

Still, an ideal choreography language is not available yet. Potentially, ongoing and future
developments will strongly influence the choice for a choreography language in future
implementations of the TrustCoM architecture.

Summary
The Web Service Choreography Description Language (WS-CDL) [8] is the main effort of
W3C’s WS Choreography Working Group. Still being on the way of becoming a standard, it
offers the most promising, currently available way to describe business processes for
multiparty collaborations from a high-level perspective. Similar to an abstract BPEL
process, a choreography in WS-CDL only describes the externally observable aspects of a
collaborative business process. It is important to keep in mind that a choreography is not
meant for execution, but resembles a design artifact.

Scope
In TrustCoM, WS-CDL is used to model the collaborative business process (CBP)
spanning all members of a VO and describing the interplay of their local activities and
communication during the operation phase of a VO. This description is given from the high-
level perspective of the whole VO with an emphasis on interactions, omitting the details
about internal implementations of business services. In other words: While many
components in the TrustCoM framework deal with the administrative aspects of the
cooperation between the VO members, the choreography describes the actual work to be
performed by the VO and how the members align their efforts.
Due to the current usage of WS-CDL, which is to generate WS-CDL code from UML
diagrams via the UML2CDL service, and to generate BPEL code from the CDL via
CDL2BPEL, WS-CDL could in principle be replaced with moderate effort.

IV.3.b WS-CDL Language Elements and Representation
One or many choreographies form a cdl:package. Exactly one of them is marked as the
“root choreography”, and thus is the starting point for a package. Having its roots in the Pi-

19 ebXML: Electronic Business using eXtensible Markup Language , see http://www.ebxml.org/

D09 – TrustCoM Reference Architecture

 Page 95

calculus, a choreography in CDL describes the control flow around basic activities through
structuring activities. A choreography can have variables, exception handlers, and
finalizers, which define communication and the like at the end of a choreography. Due to
the point of view taken by CDL, there are only few basic activities, with the interaction as
the center piece, since the focus of choreographies is to describe the how and when of
communication. All basic activities, conditional expressions, and variables can be defined
for only a subset (sometimes of size one) of the available roles.
In CDL, the concept used for referring to one of the parties is always the role type (or, in
short, the role). A party that wants to participate in a choreography can be required to play
multiple roles by specifying a cdl:participant subsuming these roles. Note that each role
can belong to zero or one participant. Also, a role can be defined to show more than one
behavior. Each behavior can be refined in a WSDL document, and, if it is not, has no
deeper meaning for the details of the choreography. However, both, a WSDL and a CDL
document, describe the behavioral interface of entities, although a choreography includes
far more information. Thus, our impression is that the redundancy in providing an additional
WSDL per role behavior alongside with a choreography yields no significant advantage.
Note, that CDL has a closed-world assumption, meaning that interactions are always
bilateral between two roles specified in the choreography.

Example

<roleType name="AnalysisPartner">
 <behavior name="Analyzer"/>
 </roleType>
 <roleType name="StoragePartner">
 <behavior name="StorageProvider"/>
 </roleType>
In the above code snippet from a WS-CDL package in Collaborative Engineering, two role
types are defined: the AnalysisPartner and the StoragePartner, each showing a single
behavior with no assigned WSDL interface. The choreography corresponds to the UML
Activity Diagram in Figure 31.

WS-CDL Activity Elements

Starting with the structuring ones, the list of activities is shown below.

• sequence - Sequential order of activities.
• parallel - Parallel execution of activities.
• workUnit - As the most unusual structuring activity, the workUnit specifies

conditions under which an enclosed activity is executed or repeated. Its guard
condition is similar to an if-condition in standard programming languages, and can
contain various XPath expressions or CDL supplied functions. The guard can be
evaluated either immediately or deferred (e.g., when a variable becomes available)
by setting the block attribute to true or false, respectively. Furthermore, the repeat
condition states if a workUnit is considered for execution again after completion.

• choice - Exclusive branching: at most one of the enclosed activities (which may
itself be a structuring activity) is to be performed. A cdl:choice is intended to contain
workUnits as children, with a guard condition. If there are non-workUnit children in a

D09 – TrustCoM Reference Architecture

 Page 96

choice, the branching condition is said to be non-observable or not relevant at the
choreography.

• interaction - Used for communication between two roles. In data exchanges the
submitted variables are specified. Timeout conditions can be defined directly in an
interaction, as well as assignments with reference to the data exchanges. If an
interaction’s “align” attribute is true, transactionality for an interaction is enabled, in
the sense that the interaction only shows effect if the involved roles have the mutual
understanding that the interaction completed successfully.

Example

 <interaction name="getRawDataReq" operation="getRawDataOp"
 channelVariable="chVarGet">
 <participate relationshipType="AnalysisStorageRel"
 fromRoleTypeRef="AnalysisPartner"
 toRoleTypeRef="StoragePartner"/>
 <exchange name="exRawDataAddr" informationType="uriType"
 action="request">
 <send variable="cdl:getVariable('varRawDataAddr_Ana','','')"/>
 <receive variable="cdl:getVariable('varRawDataAddr_Sto','','')"/>
 </exchange>
 </interaction>

This code example shows the information exchange between the
AnalysisPartner (AP) and StoragePartner (SP) from the first CDL code example.
The Web service operation ‘getRawDataReq’ at SP is called by AP. The
information exchanged is the raw data’s address, available in the variable
‘varRawDataAddr_Ana’ at the AP and stored in the variable
‘varRawDataAddr_Sto’ at SP after the transmission.

• noAction - Explicit “no operation” for a specified role. The respective party must
remain idle.

• silentAction - Partner-internal action, whose details are of no interest to the
choreography as a whole. The comment, by default in natural language, specifies
what a partner is assumed to do at that instant, e.g., “analysis of aircraft antenna”.

• assign - Variable value modification. Can be used to trigger exceptions.
• perform - Execution of another choreography. With CDL’s binding mechanism,

variable values from the outer choreography can be carried over to the inner
choreography.

The link between WS-CDL and the Pi-calculus is strong, and also becomes apparent in the
availability of channels in CDL. There, channel variables are of a channel type, which
allows the definition of identity and reference tokens, restrictions on the channel usage,
and the receiving role at the end of a channel. However, the way channels can be used in
CDL as well as certain activities and more allow for several points of critique. This critique
is subject to [10], [11], [12] and shortly summarized below.
Graphical Notation
UML activity diagrams offer a good visualization for choreographies, as justified in [9].
Where common business process modeling languages deal with only one party per
process, in a choreography there are always multiple roles. The distinction between

D09 – TrustCoM Reference Architecture

 Page 97

activities of the various roles is achieved by using a swim-lane (large, rectangular boxes)
per partner. In contrast to WS-CDL, UML activity diagrams do not know a single activity for
the interaction as a whole, so each cdl:interaction is represented by a pair of send and
receive activities.
Summary of Critique Against WS-CDL
The main points of critique in [10] (p.16-18) are: the not explicitly stated link to a formalism
as the Pi-calculus on the one hand, and the conceptual limits of linking WS-CDL to WSDL,
WSDL-MEPs20, and WSBPEL on the other hand; the not anticipated runtime selection of
participants; the restriction to binary interactions; the dissimilarity of the sets of control flow
constructs of WS-CDL and WSBPEL with respect to the fact that WSBPEL is the most
promising orchestration language; and the discrepancy of WS-CDL being a design-level
language and having no graphical representation. These are all very good points and -
since they are deeply positioned in the concepts of the language - question the future of
WS-CDL as a whole.
In WS-CDL, communication (cdl:interaction) is always bilateral, and built-in transactionality
is restricted to the guaranteed mutual agreement of single variable values at one point in
time. Therefore, WS-CDL most likely is unable to express the majority of the 15 “Service
Interaction Patterns” from [11]. It thus seems not suitable for modeling related use cases,
like a broad request for proposals with unknown outcome.
Also, the redundancy in certain WS-CDL elements makes writing a choreography with a
general-purpose editor inconvenient. For instance, an attribute whose content has to be a
variable, still needs to use the cdl:getVariable function.

IV.3.c Annotation of Trust, Security, and Contract (TSC) Tasks
As an augmentation of WS-CDL documents a conceptual model for a collaborative
business process security concept was introduced in D16, the TrustCoM conceptual
models V1, and is further refined in the Appendix. The goal of this concept is to inject
security controls where required into the role specific executable public/private business
processes. To achieve this, the collaboration definition activities and interactions are
annotated with so-called TSC Extension Roles. This concept serves its purpose if, at
collaboration definition modelling time, it is at least known, that a TSC control has to be
enforced at a specific interaction in collaboration. This is realised by adding an empty TSC
Extension Role only containing the header data, the specific role can be deployed at
runtime by the BPM service.

IV.4 XACML
XACML is an OASIS standard for access control policies. This document describes how
XACML is used in TrustCoM. The aim is to define a common method of applying XACML in
order to provide for interoperability and easy to use guidelines which save time and effort
for the TrustCoM partners.

20 WSDL 2.0 Message Exchange Patterns

D09 – TrustCoM Reference Architecture

 Page 98

TrustCoM uses XACML 1.121 with the delegation extensions developed at SICS22.

XACML is based on the concept of attributes. Subjects and resources are defined in terms
of their attributes, for instance the role of a user is an attribute of the subject and the name
of a service is an attribute of the resource. Policies are written in terms of these attributes
and the attributes of the subject and resource that is being accessed are made available to
the PDP, which can then calculate whether the access should be permitted or not.

One important part of this profile is to define which attributes are available for policy writers
to refer to in their policies. Another part of this profile makes recommendations on the
overall structure of policies and how the delegation features fit in the overall picture of
TrustCoM.

XACML itself does not define any kind of transport formats. This profile defines how
policies are enveloped in a signed transport format for secure distribution.

IV.4.a Attributes
In the TrustCoM PDP there are two sources of attributes. The PEP will add attributes to the
request it sends to the PDP. These attributes concern the access entities, that is the
subject, resource, action and environment. In addition to this, the PDP will get attributes
from the tokens that policies have been signed with. These attributes concern the issuers
of policies and are used to verify that the policies have been issued in an authorized
manner.

The attributes that the PEP fills in the request can be divided into two categories:
application independent attributes and application specific attributes. The application
independent attributes are derived from the SOAP header of the service invocation that is
under access control and the WS-Trust token from the SOAP message. The application
specific attributes may be based on content from the SOAP body.

IV.4.a.1 Attributes based on the SOAP header
The following attributes are derived from the SOAP header.

Description Address of the invoked service. Value of <wsa:To>
element.

21 XACML 1.1: The full standard is available at http://www.oasis-open.org/committees/xacml/repository/cs-
xacml-specification-1.1.pdf. For a brief and easy to understand overview see http://www.oasis-
open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html.
22 http://www.sics.se/isl/pbr/xacml/XACML-delegation.doc

D09 – TrustCoM Reference Architecture

 Page 99

XACML request section Resource

Attribute id urn:oasis:names:tc:xacml:1.0:resource:resource-id

Value Content of /soap:Envelope/soap:Header/wsa:To
element

Type http://www.w3.org/2001/XMLSchema#anyURI

Description Value of <wsa:Action> element

XACML request section Action

Attribute id urn:oasis:names:tc:xacml:1.0:action:action-id

Value content of /soap:Envelope/soap:Header/wsa:Action
element

Type http://www.w3.org/2001/XMLSchema#anyURI

The XML fragments below show how an example SOAP header translates to XACML
attributes in the request.

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">
 <soap:Header>
<wsa:Action>http://tempuri.org/RepositoryMngSoap/getContentsByProjectRequest</ws
a:Action>
 <wsa:MessageID>urn:uuid:a1543b3d-451c-458c-b528-8b6e67df00d5</wsa:MessageID>
 <wsa:ReplyTo>
<wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</ws
a:Address>
 </wsa:ReplyTo>
 <wsa:To>http://localhost:3998/SP_WS/RepositoryMng.asmx</wsa:To>
 </soap:Header>
 <soap:Body>...</soap:Body>
</soap:Envelope>

<Request xmlns="urn:oasis:names:tc:xacml:1.0:context">
 <Subject>...</Subject>
 <Resource>
 ...
 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:
resource:resource-id"
 DataType="http://www.w3.org/2001/XMLSchema#anyURI">
 <AttributeValue>http://localhost:3998/SP_WS/
RepositoryMng.asmx</AttributeValue>
 </Attribute>

D09 – TrustCoM Reference Architecture

 Page 100

 </Resource>
 <Action>
 ...
 <Attribute
 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
 DataType="http://www.w3.org/2001/XMLSchema#anyURI">
 <AttributeValue>http://tempuri.org/RepositoryMngSoap/
getContentsByProjectRequest</AttributeValue>
 </Attribute>
 </Action>
 </Request>

IV.4.a.2 Attributes from WS-Trust tokens
Every claim in the token translates into one attribute of the issuer. Currently we are using
mock tokens since the STS from EMIC does not support asymmetric cryptography yet.
This specification will be updated once support for real tokens becomes available.
The content of the AttributeId element becomes the attribute id in the XACML attribute and
the content of the AttributeValue element becomes the value of the XACML attribute. The
two XML fragments below show how a token translates to XACML attributes:

<MockToken>
 <Claim>
 <AttributeId>group</AttributeId>
 <AttributeValue>administrator</AttributeValue>
 </Claim>
 <Claim>
 <AttributeId>hair_color</AttributeId>
 <AttributeValue>pink</AttributeValue>
 </Claim>
</MockToken>

<Attribute
 AttributeId="group"
 DataType="http://www.w3.org/2001/XMLSchema#string">
 <AttributeValue>administrator</AttributeValue>
</Attribute>
<Attribute
 AttributeId="hair_color"
 DataType="http://www.w3.org/2001/XMLSchema#string">
 <AttributeValue>pink</AttributeValue>
</Attribute>

Currently all attributes derived from WS-Trust tokens are of string type. (This could be
changed if there is need for other types of attributes.) TrustCoM does not use the “issuer”
attribute of XACML attributes.
It is the responsibility of the PEP to verify that the token is valid and trusted when it comes
to the attributes that the PEP includes in the request. When it comes to the attributes of
policy issuers, it is the responsibility of the PDP to validate the tokens.

D09 – TrustCoM Reference Architecture

 Page 101

IV.4.a.3 Application specific attributes
Access control and delegation policies, as processed by the PDP, may refer to application
specific attributes. For the case where the values of these attributes are to be recovered
from the bodies of SOAP messages (corresponding to service invocations and responses),
this profile suggests two solutions: (1) the PEP can forward the whole body of the message
to the PDP, thus letting the PDP extract attribute values using XPath expressions specified
in its policies; or (2) the PEP examines the message body itself, extracts attribute values
and places them in the authorization request.
Alternative (1) may result in excessive communication costs, depending on the size of the
SOAP message bodies, but has the advantage over (2) that the PEP does not need to be
configured with application-specific information. Otherwise, in case (2), the Policy Service,
i.e. the service that uploads policies to the PDP, could also be in charge of configuring the
PEP with information on how to extract attributes from the message bodies.

IV.4.b Policies
Delegation
When a service is deployed, a root policy must be installed in the PDP which will serve the
new service. The root policy should contain a full delegation right for the owner of the
service. The access policies will be created by having the service owner issue them. The
root policy is not modified during normal operations. If the policies need to be changed,
new signed policies may be added or removed. This way daily administration can be
decentralized as needed by means of the delegation model. However, the current
scenarios do not cover access policy reconfiguration, so this issue has not been explored
in detail.
The right to delegate is expressed by means of a condition on delegation chains. A
delegation chain is a special attribute in the environment section of the request which
specifies whether the request is a request for access to a resource or a request for
verifying the authority of a policy issuer, with the contents of the chain detailing the whole
chain of issuers leading to the final access permission. By writing conditions on the
delegation chain we can differentiate between rights to issue policies (administrative rights)
and access rights, and also specify limits on further delegation of administrative rights23.
For TrustCoM we limit the policies to three kinds: access policies, administrative policies
which do not allow further delegation and administrative policies which allow further
delegation.
Access policies
An access policy shall contain a condition which constrains the delegation chain to only
access requests. The XML fragment below shows what this kind of condition looks like.
Notice the empty delegation constraint, which means that the condition will match only
requests with an empty delegation chain. Requests with an empty delegation chain are
access requests.

<Condition FunctionId="urn:FIXME:function:delegationMatch">

23 See http://www.sics.se/isl/pbr/xacml/XACML-delegation.doc.

D09 – TrustCoM Reference Architecture

 Page 102

 <AttributeValue
 DataType="urn:FIXME:data-type:delegationConstraint">
 </AttributeValue>
 <Apply
 FunctionId="urn:FIXME:function:delegationChain-one-and-only">
 <EnvironmentAttributeDesignator
 AttributeId="urn:FIXME:environment:delegationChain"
 DataType="urn:FIXME:data-type:delegationChain"/>
 </Apply>
</Condition>

Administrative policies without further delegation
An administrative policy without further delegation shall contain a condition on the
delegation chain with a single step which specifies the required attributes of the subject of
the administrative right.
The XML fragment below shows an example of a condition which allows anyone in the
administrator group to issue access policies. This condition does not allow creation of
administrative rights.

<Condition FunctionId="urn:FIXME:function:delegationMatch">
 <AttributeValue
 DataType="urn:FIXME:data-type:delegationConstraint">
 <ConstraintStep>
 <SubjectMatch
 MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue
 DataType="http://www.w3.org/2001/XMLSchema#string"
 >administrator</AttributeValue>
 <SubjectAttributeDesignator
 AttributeId="group"
 DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </SubjectMatch>
 </ConstraintStep>
 </AttributeValue>
 <Apply
 FunctionId="urn:FIXME:function:delegationChain-one-and-only">
 <EnvironmentAttributeDesignator
 AttributeId="urn:FIXME:environment:delegationChain"
 DataType="urn:FIXME:data-type:delegationChain"/>
 </Apply>
</Condition>

Administrative policies with further delegation
An administrative policy with further delegation shall contain a condition on the delegation
chain where the first constraint step specifies the required attributes of the subject of the
administrative right and the second constraint step specifies the required attributes of those
that the administrative right may be further delegated. The MaySkipOrRepeat attribute of
the second constraint step shall be true, meaning that there is no limit on the number of
times the administrative right may be delegated further and also allowing for the creation of
an access permission.
The XML fragment below shows an example of a condition which allows anyone in the
administrator group to issue either administrative or access policies. The second constraint

D09 – TrustCoM Reference Architecture

 Page 103

step in this case is empty, meaning that the administrator may delegate an administrative
right to anyone.

<Condition FunctionId="urn:FIXME:function:delegationMatch">
 <AttributeValue
 DataType="urn:FIXME:data-type:delegationConstraint">
 <ConstraintStep>
 <SubjectMatch
 MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue
 DataType="http://www.w3.org/2001/XMLSchema#string"
 >administrator</AttributeValue>
 <SubjectAttributeDesignator
 AttributeId="group"
 DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </SubjectMatch>
 </ConstraintStep>
 <ConstraintStep MaySkipOrRepeat="true">
 </ConstraintStep>
 </AttributeValue>
 <Apply
 FunctionId="urn:FIXME:function:delegationChain-one-and-only">
 <EnvironmentAttributeDesignator
 AttributeId="urn:FIXME:environment:delegationChain"
 DataType="urn:FIXME:data-type:delegationChain"/>
 </Apply>
</Condition>

IV.4.c Transport formats
Policies are to be signed with WS-trust tokens in a way very similar to how WS-Security
defines signatures for SOAP messages. Currently the STS does not support asymmetric
cryptography, so we cannot yet sign policies for real. For now this section defines an
unsigned transport format based on a mock token. The real signature format will be similar
to this.
The XML fragments below show examples how an XACML Policy and a PolicySet are
signed. For brevity, the actual contents of the policies have been truncated.

<AssertWithToken xmlns="http://eu-trustcom.com/PDP/interface">
 <MockToken>
 <Claim>
 <AttributeId>group</AttributeId>
 <AttributeValue>administrator</AttributeValue>
 </Claim>
 </MockToken>
 <Signature/>
 <Policy xmlns="urn:oasis:names:tc:xacml:1.0:policy">
 ...
 </Policy>
</AssertWithToken>

<AssertWithToken xmlns="http://eu-trustcom.com/PDP/interface">
 <MockToken>

D09 – TrustCoM Reference Architecture

 Page 104

 <Claim>
 <AttributeId>group</AttributeId>
 <AttributeValue>administrator</AttributeValue>
 </Claim>
 </MockToken>
 <Signature/>
 <PolicySet xmlns="urn:oasis:names:tc:xacml:1.0:policy">
 ...
 </Policy>
</AssertWithToken>
See the section below on the TrustCoM PDP schema for details of the format.
Obligation to validate issuer
The SICS delegation extensions make use of a special obligation to implement the
verification of the right to issue a policy24. The policies in the transport format do not
contain this obligation to verify the authority of the issuer. Instead the obligation is
automatically generated by the PDP based on the token when the transport format is
decoded by the PDP. The reason for this is that the obligation is what triggers the policy
validation process inside the XACML engine and we cannot trust the issuer to supply it
himself.

IV.5 ECA-Policies
There are no specific standards in this scope on which the policy service is based. The
closest standard in scope would be DMTF’s Policy Core Information Model (PCIM) and
TM-forum’s NGOSS which do not explicitly address web-services. Numerous discussions
have taken place on the difference between ECA-based models and PCIM like ‘if-then’
models which would not be appropriate to review here in detail25.
Amongst the WS-* standards the most relevant would be WS-Policy and to a lesser extent
WS-SecurityPolicy. The latter defines configuration directives for the security of a web-
service and is applicable only in the sense that ECA actions may push WS-SecurityPolicy
assertion documents to web-services in order to configure them. The ECA model adopted
in this project is itself agnostic to the specification and does not impose constraints upon
the parameters of the actions performed. WS-Policy is a relatively simple and still evolving
standard. It aims to define a container format for policy assertions and combinations of
policy assertions (e.g., policy alternatives) and defines syntactical elements in order to
associate WS-Policy documents with specific web-service scopes. Also note that operators
for policy combinations are undergoing important revisions. It would be possible to
package the ECA-policies used in this project into <wsp:Policy> tags but little would be
gained from this additional packaging as the semantics of the policies would still need to
interpreted by a policy service which offers this functionality. Indeed, WS-Policy does not
restrict which assertions may be specified and it is up to the web-service to be able to
interpret them by offering support for the specific derived standard that defines their
content such as WS-SecurityPolicy.

24 See http://www.sics.se/isl/pbr/xacml/XACML-delegation.doc.
25 For an example of such discussions see Strassner, J., Policy based Network Management : solutions for
the next generation. Morgan-Kaufmann Publishers 2003. ISBN: 1558608591

D09 – TrustCoM Reference Architecture

 Page 105

Note however that the policy service defined in this framework can be used in order to
reconfigure web-services with specific WS-Policy documents if the services present a
management interface that allows them to do so.

D09 – TrustCoM Reference Architecture

 Page 106

Glossary
Term Definition

Application Service A service that may perform a certain, business oriented task
according to a pre-defined workflow.

Application Service
Provider

Enterprises, companies or individuals that provide Application
Services and offer them via searchable registries to customers.

BP Management
System

The unit responsible for the overall business process that is to be
realised by the virtual organisation.

Business Process An abstract workflow that describes the action and tasks a unit has to
enact.

Collaboration
Agreement General VO-Agreement

Collaboration
Definition

A Collaboration Definition (CD) captures the global view of a
business collaboration among roles. It entails roles, high-level
activities and interactions.

Collaboration
Definition
Template

A Collaboration Definition Template captures the recurring best
practices for a specific well known business collaboration in the
format of a CD. It is usually stored in a repository.

Collaborative
Business Process

A Collaborative Business Process (CBP) entails the set of public and
private processes derived from or associated to a CD for each
specified role in the CD

Component
The smallest functional and/or logical unit. Tightly coupled
components interact in order to fulfil a specific task form a
subsystem

Contract A form of convention that designates the behaviour the involved
parties commit to. This is principally the legal counterpart to SLAs.

Dissolution Phase
During this VO lifecycle phase the Virtual Organisation is
dissolved again and all partners are released from their respective
bindings (contracts, SLAs etc.)

Enterprise Network
Agreement

A description of the requirements to be fulfilled in order to become
member of an Enterprise Network. This is the basis for the
General VO Agreement

Evolution Phase

Sometimes distinguished from the Operation Phase. During this
VO lifecycle phase, changes to the Virtual Organisation may occur
– this covers in particular the addition & exclusion of individual
partners.

General VO-
Agreement

The “high-level” definition of all the parameters and rules that have to
be fulfilled by all participants. This may involve Contract terms

Identification The VO lifecycle phase during which potential partners to support

D09 – TrustCoM Reference Architecture

 Page 107

Phase the overall business goal are discovered.

Formation Phase
In this VO lifecycle phase partners are invited to the Virtual
Organisation and they are provided with the necessary information to
collaborate. During this phase the VO is actually formed.

Operation Phase The VO lifecycle phase during which the Business Process(es)
are executed to reach the VO’s business goal(s)

Policy

Rules defining choices in the behaviour of systems. Within the scope
of the TrustCoM project several types of policies are considered.

- SLA Obligation policies which define the obligations of a party
in respect to the provision of a QoS to the other party. These
policies trigger notifications when the specified QoS has been
violated.

- Access control policies in the form of authorisation and
delegation policies which define who can access services and
under which constraints.

Obligation Policies (in the form of Event-condition-action rules) which
define how the VO should adapt to failures, changes in requirements,
security events, etc.

(Authorisation)
Policy Decision
Point

Decides which messages are permitted or not depending on the
current access control policies.

(Authorisation)
Policy
Enforcement Point

It is the point where the incoming message is intercepted, the tokens
provided with the message are verified and an access control
decision is requested from the PDP.

Private Process

A private process is an executable business process enacted by a
BP engine, contributing to the VO’s business objective by
orchestrating services. A private process is confidential to a VO
member domain, the process owner, due to optimisation and
associated sensitive information.

Public Process

A public process captures the externally visible part of exactly one
private process. The public process can be seen as the private
process interface with the minimal exposure to let the private process
collaborate in a CBP.

Repository/
Registry

A database that stores information about (publicly available) services,
like e.g. their WSDL, SLA templates etc.

Security Token Contains authentication relevant information, may also contain
access-rights and related data.

SLA
Service Level Agreement: an electronic form of contract, that is
only of limited legal impact. It describes the quality of service that has
to be maintained.

SLA Management
System

Responsible for managing SLAs – this includes negotiation of the
parameters, monitoring & evaluating service performance and

D09 – TrustCoM Reference Architecture

 Page 108

enforcing the obligations.

SLA Template A document that contains the parameters that can principally be
fulfilled by the service that provides the template.

Subsystem A subsystem represents a logical and functional unit of
components that interact in order to fulfil the subsystem’s task.

Supporting Service
Services that are in themselves not part of the virtual organisation,
but that are used by the latter to fulfil certain purposes. Supporting
services are mainly Repositories and Registries so far.

Trust
In the sense used here mostly related to “trustworthiness”: the
expectations put in a service to behave in a particular way. This
reflects first of all an evaluation of past performance.

Trusted Third Party
Services that participate in a virtual organisation, yet do not directly
contribute to the realisation of the overall Business Process (as
opposed to an Application Service)

TSC Extension
Role

The TSC Extension Role is part of the BP TSC concept and it
configures a TSC task, to perform TSC control functions based on
defined subsystem EPRs and parameters.

TSC Task
The TSC task is part of the BP TSC concept which provides process
control based on the TSC subsystems during process instance
runtime.

Virtual
Organisation

A set of business entities that work together (by message exchange
etc.) to reach a common goal – generally represented by an overall

 Business Process.

VO Lifecycle

The Virtual Organisation traverses 5 main phases that logically
distinguish the actions to be performed. These phases are:
Identification, Formation, Operation & Evolution (sometimes
regarded as one phase) and Dissolution.

VO Manager
The central management instance that acts on behalf of the VO-
customer. This entity is responsible for “guiding” the VO lifecycle and
performing membership-related management tasks.

D09 – TrustCoM Reference Architecture

 Page 109

Key to diagrams
The following UML diagram types may be used in this document:

o Dynamic modelling by Activity diagrams with swimlanes for different sub-systems,
or components of subsystems.

o Component or Composite Structure diagrams to represent the structure of
components that form a subsystem (respectively subsystems that form the
TrustCoM system in the overview case) and their dependencies to each other.

When diagrams are used they should use symbols and notations defined in the standard
Rational Unified Process (RUP); the elements for these diagrams are summarised below.

Summary of Activity Diagram Elements

 Diagram Element Symbol Represents

Nodes Action state Horizontal
capsule A process

 Decision Diamond Next step may be only one of several sucessors

 Swim lane Parallel vertical
lines A group of related processes

 Synchronization
point Thick bar All predecessors must terminate before the

successor can start

 Object Object box An object, component, or subsystem

 Signal receiver Notched
rectangle

The successor cannot be started until the signal
is received

 Signal sender Pointy rectangle A signal is sent before the successor start

 Initial action state Filled circle Predecessor to the first action state

 Final action state Bull's eye Final action state

Edges Control flow Solid arrow Pre- and post-decessor relationship

 Message flow Dashed arrow Message sent to/from an object

 Signal flow Dashed arrow A pair of sender/receiver nodes

Summary of Component Diagram Elements

 Diagram Element Symbol Represents

D09 – TrustCoM Reference Architecture

 Page 110

 Diagram Element Symbol Represents

Nodes Component

A modular part of a system,
whose behaviour is defined by
its interfaces

 Class

Representation of object(s),
that reflects their structure and
behaviour within the system.

 Interface A specification of behaviour
supported.

 Object

Particular instance of a
class.

 Port

A distinct interaction point

 Provided Interface

Interface provided by the
component

 Required Interface

Interface required by the
component

 Artifact

Physical piece of information
used or produced by a system

«artifact»
Artifact

Interface

Interface

Port

Object

Interface

Class

Component

Port

Component

Class

Interface

Object

Interface

Interface

«artifact»
Artifact

D09 – TrustCoM Reference Architecture

 Page 111

 Diagram Element Symbol Represents

 Edges Assembly
Connection between a
provided and a required
interface

 Associate
Denotes relationship
between two elements.

 Delegate

 Realise

 Generalise

 Dependency

 Trace

Summary of Composite Structure Diagram Elements

 Diagram Element Symbol Represents

Nodes Class

Representation of object(s),
that reflects their structure
and behaviour within the
system.

 Interface

A specification of behaviour
supported.

 Part

Run-time instances of classes
or interfaces.

 Port

A distinct interaction point

 Collaboration

Port

Part

Interface

Class

Port

Interface

Class

Part

D09 – TrustCoM Reference Architecture

 Page 112

 Diagram Element Symbol Represents

 Component provides Interface

Interface provided by the
component

 Component uses Interface

Interface required by the
component

Edges Assembly
Connection between a
provided and a required
interface

 Connector

Communication link.

 Delegate

 Role Binding

 Represents

 Occurence

This document furthermore makes use of a non-UML based diagram type to depict the so-
called “relationship model” introduced with this document. This diagram type reflects the
potential information transport between components, non-regarding their deployment,
respectively actual “usage environment” (see chapter III for a detailed description of the
diagram type).
Though such a model could principally be depicted using UML specific representations, we
chose the following symbolic representation to avoid confusion:

Summary of Relationship Model Diagram Elements

 Diagram Element Symbol Represents

Interface

Interface

Interface

Interface

D09 – TrustCoM Reference Architecture

 Page 113

 Diagram Element Symbol Represents

Nodes Component <name>

Components, parts of the
TrustCoM framework –
generally services and/or
libraries.

 Service

Any (web) service that
participates in a Virtual
Organisation.

 User

Human beings in a VO
(customer, service owner
/ administrator etc.)

Edges Message Passing data

 Trigger
Action invocations
(triggers)

 Relationship

Data relationship on
subsystem level

Other Boundary
Logical boundary of a
subsystem

 References

Reference to other
diagrams

D09 – TrustCoM Reference Architecture

 Page 114

References
[1] Preliminary Conceptual Models for the TrustCoM Framework, ID 1.1.2, version 1.0 -

http://portal.sema.es/pls/portal30/docs/FOLDER/TRUSTCOM_AREA/WORKFOLDE
RS/AL1FRAMEWORKDEFINITION/ACTIVITY11CONCEPTUALMODELS/WP1111
TRUSTCONTRACTMANAGEMENTMODELS/ID112/ID.1.1.2_V1.0.DOC

[2] TrustCoM Reference Architecture, D09, ID 1.2.4, version 1.0
[3] Baseline Prototype Infrastructure for the CE Scenario, D10, version 1.0
[4] The TrustCoM Concepetual Models, D16, version 1.0
[5] VO Trust, Security & Contract Management Framework, D18, version 1.0
[6] An Intermediate Assessment of the TrustCoM Framework using the CE Scenario,

D20
[7] An Intermediate Assessment of the TrustCoM Framework using the AS Scenario,

D21
[8] W3C. Web Services Choreography Description Language, 2005. W3C Latest

Working Draft from October 8th, 2005, work in progress
[9] Marlon Dumas and Arthur H. M. ter Hofstede. UML Activity Diagrams as a Workflow

Specification Language. In UML ’01: Proceedings of the 4th International
Conference on The Unified Modeling Language, Modeling Languages, Concepts,
and Tools, pages 76–90, London, UK, 2001. Springer-Verlag.

[10] Alistair Barros, Marlon Dumas, and Phillipa Oaks. A Critical Overview of theWeb
Services Choreography Description Languages (WS-CDL). BPTrends Newsletter,
Vol. 3, March 2005

[11] Alistair Barros, Marlon Dumas, and Arthur H.M. ter Hofstede. Service Interaction
Patterns: Towards a Reference Framework for Service-Based Business Process
Interconnection. http://sky.fit.qut.edu.au/ dumas/ServiceInteractionPatterns.pdf, April
2005.

[12] Roberto Gorrieri, Claudio Guidi, and Roberto Lucchi. Reasoning about interaction
patterns in Choreography. In Proceedings of the 2nd International Workshop on
Web Services and Formal Methods (WS-FM ’05), 2005.

[13] WS-Trust specification from February 2005
(http://msdn.microsoft.com/ws/2005/02/ws-trust/).

[14] SAML 1.1 Assertion specification (http://www.oasis-
open.org/committees/download.php/3406/oasis-sstc-saml-core-1.1.pdf).

[15] Web Services Security SAML Token Profile 1.1 (http://www.oasis-
open.org/committees/download.php/15256/Web%20Services%20Security%20SAM
L%20Token%20Profile-11.pdf).

[16] W. Saabel, T.M. Verduijn, L. Hagdorn and K. Kumar. A Model for Virtual
Organisation: A Structure and Process Perspective. Electronic Journal of
Organizational Virtualness, Vol. 4, 2002

D09 – TrustCoM Reference Architecture

 Page 115

..........

.

Deliverable
D29-B
D35-B
D36-B TrustCoM Framework V2

Appendix

AL1 – TrustCoM Framework
.

Prepared for the European Commission under FP6 Contract No. 01945 a

A trust and Contract Manage
processing in on-demand cre
Michael D. Wilson, CCLRC
Alvaro Arenas, CCLRC

Lutz Schubert, HLRS
31/01/2006

V1.6
TrustCoM
ment framework enabling secure collaborative business
ated, self-managed, scalable, and highly dynamic Virtual

Organisations
SIXTH FRAMEWORK PROGRAMME

PRIORITY IST-2002-2.3.1.9

Networked business and governments
s a deliverable form

D09 – TrustCoM Reference Architecture

 Page 2

LEGAL NOTICE

The following organisations are members of the TrustCoM Consortium:

Atos Origin,
Council of the Central Laboratory of the Research Councils,
BAE Systems,
British Telecommunications PLC,
Universitaet Stuttgart,
SAP AktienGesellschaft Systeme Anwendungen Produkte in der Datenverarbeitung,
Swedish Institute of Computer Science AB,
Europaeisches Microsoft Innovations Center GMBH,
Eidgenoessische Technische Hochschule Zuerich,
Imperial College of Science Technology and Medicine,
King's College London,
Universitetet I Oslo,
Stiftelsen for industriell og Teknisk Forskning ved Norges Tekniske Hoegskole,
Universita degli studi di Milano,
The University of Kent,
International Business Machines Belgium SA .

© Copyright 2006 Atos Origin on behalf of the TrustCoM Consortium (membership defined above).

Neither the TrustCoM Consortium, any member organisation nor any person acting on behalf of those
organisations is responsible for the use that might be made of the following information.

The views expressed in this publication are the sole responsibility of the authors and do not necessarily
reflect the views of the European Commission or the member organisations of the TrustCoM Consortium.

All information provided in this document is provided 'as-is' with all faults without warranty of any kind, either
expressed or implied. This publication is for general guidance only. All reasonable care and skill has been
used in the compilation of this document. Although the authors have attempted to provide accurate
information in this document, the TrustCoM Consortium assumes no responsibility for the accuracy of the
information.

Information is subject to change without notice.

Mention of products or services from vendors is for information purposes only and constitutes neither an
endorsement nor a recommendation.

Reproduction is authorised provided the source is acknowledged.

IBM, the IBM logo, ibm.com, Lotus and Lotus Notes are trademarks of International Business Machines
Corporation in the United States, other countries or both.

Microsoft is a trademark of Microsoft Corporation in the United States, other countries or both.

SAP is a trademark of SAP AG in the United States, other countries or both.

'BT' and 'BTexact' are registered trademarks of British Telecommunications Plc. in the United Kingdom,
other countries or both.

Other company, product and service names may be trademarks, or service marks of others. All third-party
trademarks are hereby acknowledged.

D09 – TrustCoM Reference Architecture

 Page 3

Deliverable datasheet

Project acronym: TrustCoM
Project full title: A trust and Contract Management framework enabling secure collaborative business processing
in on-demand created, self-managed, scalable, and highly dynamic Virtual Organisations

Action Line: AL1
Activity: 1.2
Work Package: WP27
Task:

Document title: TrustCoM Framework V2 - Appendix
Version: v2.0
Document reference:
Official delivery date: 31/01/2006
Actual publication date: 10/02/2006
File name: D29_35_36 TrustCoM Framework V2 - Appendix (with
comments).doc

Type of document: Report

Nature: official deliverable

Authors: Michael D. Wilson, Alvaro Arenas, Jochen Haller,

Ingo Weber, Philip Robinson, Pablo Giambiagi,
Gustav Boström, Tomas Olson, Emil Lupu, Christian
Geuer-Pollmann, Jürgen Doser, Lutz Schubert,
David Brossard

Reviewers: Yücel Karabulut, Paul Kearney, Emil Lupu, Michael
D. Wilson, Jakka Sairamesh

Approved by: …

Version Date Comments

V1.1 07/12/2005 New document structure

V1.2 22/01/2006 Updated Business Process Management section, SAP

D09 – TrustCoM Reference Architecture

 Page 4

V1.3 26/01/2006 Added Sandbox from EMIC

Updated Trust & Security Section, ETH

Reworked EN/VO section on Notification, HLRS

V1.4 31/01/2006 Updated Policy Section, IC

V1.5 04/02/2006 Refined SLA Management Section, SICS

Refined Discovery support, HLRS

V1.6 08/02/2006 Updated EN/VO Section, BT

Refined BP Management Section, SAP

V2.0 Final Version

D09 – TrustCoM Reference Architecture

 Page 5

 Table of Content

I Subsystem Architecture... 6

I.1 VO Management .. 6
I.1.a Components.. 7
I.1.b Interaction Scenarios .. 12
I.1.c Dependencies Overview... 16

I.2 Business Process Management.. 17
I.2.a Conceptual Justification ... 17
I.2.b Components.. 18
I.2.c Interaction Scenarios .. 23
I.2.d Dependencies Overview... 26

I.3 SLA Management Services.. 27
I.3.a Components.. 27
I.3.b Interaction Scenarios .. 29
I.3.c Dependencies Overview... 35

I.4 Trust & Security Services.. 35
1.1.1 Conceptual Justification ... 35
1.1.2 Components.. 37
1.1.3 Interaction Scenarios .. 39
1.1.4 Dependencies Overview... 41

I.5 Policy Control ... 41
I.5.a Components.. 43
I.5.b Interaction scenarios... 46
I.5.c Conclusions .. 49
I.5.d Future Work ... 50
I.5.e Dependencies Overview... 50

I.6 EN/VO Infrastructure.. 50
I.6.a Components Overview... 51

I.7 EN/VO Infrastructure: Basic VO elements ... 52
I.7.a The enforcement point ... 52
I.7.b The messaging layer... 57
I.7.c Coordination... 58
I.7.d Notification service .. 59

I.8 EN/VO Infrastructure: Advanced VO functionalities.. 60
I.8.a Service instantiation ... 60
I.8.b Federation support.. 61
I.8.c Validation/ Authorisation of a SOAP Request... 63

D09 – TrustCoM Reference Architecture

 Page 6

I Subsystem Architecture
Within the following chapters, the subsystems as have been introduced in the main
document, shall be explained in more detail with respect to their structure and how the
according components interact in order to contribute to the individual lifecycle’s
functionalities.

I.1 VO Management
This section summarizes the architectural requirements and discusses the possible options
for TrustCoM VO Management (VOM).
The VO management component is an advance on existing VO Management systems
such as the LCG VO membership management system1 since it contains the additional
functionality for contract management and VO lifecycle support. The VO Management
subsystem will provide the services necessary for coordinating the VO functionalities
across its lifecycle as described previously in section 2.6 for the interactions of system
components. The VO management component is defined here in terms of its
subcomponents, major data objects and interaction with other system components.
There is obvious scope for terminological confusion for the phrase “VO manager”. To
clarify this some definitions used are:

o VO manager: The responsible person creating the VO, and recording in the VO
Registry, after appropriate checks, the status of a member of the VO, i.e. performing
user entries, assignment of roles, information updates and user removals. The VO
management function can be performed by a group of persons delegated by the VO
manager. The VO manager for a VO can change during the lifecycle of the VO,
therefore there is a single current VO manager, and there may also be previous VO
managers for any VO. A single person can be VO manager to one or more VOs. A
person becomes a VO manager when the notify the Trustcom system of the
intention to create a VO – even though the VO itself does not legally exist until a
General VO Agreement (defined below) has been agreed (this is ontologically
confusing since the person manages a VO that does not exist, but they are
managing a VO which has been proposed, and there is no requirement yet to
differentiate the manager of a VO proposal from the manager of a VO itself).

o VO Management Organisation: The organisation to which the VO manager belongs.
The person who is VO manager for a VO can change organisation while remaining
the VO manager, and can remain at the same organisation and change status from
a VO manager to a previous VO manager for a names VO.

o VO Management Component : The Trustcom component being described in this
section of the architecture.

1 Kelsey, D. (2004) Requirements for LHC Computing GRiD (LCG) User Registration and VO Membership Management.
www.gridpp.ac.uk/tier2/LCG_User_Registration2004.pdf, and see LCG VO User Registration -
http://lcg.web.cern.ch/LCG/users/registration/VO.html

http://www.gridpp.ac.uk/tier2/LCG_User_Registration2004.pdf

D09 – TrustCoM Reference Architecture

 Page 7

o VO Membership Management Module : One of the major modules of the VO
component which is defined below.

o VO partner/member – an organisation that is a member of the VO
o VO partner/member manager – person responsible for a VO member within a VO.

Different VO member managers can manage different VO’s for the same VO
member organisation.

o VO partner/member staff – person, not different for VO management organisation
o VO/EN partner profile - Collection of services that a partner is willing in an EN or

expected in a VO to perform. Included in the EN Agreement.
VO/EN partner details – organisation details of name, address etc. – see the UDDI
business entity class.

I.1.a Components

Figure 1: VO Management Component Overview.

The descriptions of the components are below, so that the design decisions will become
more clear. During the design process the Role Management function has been considered
within the VO manager, but following an analysis of the interactions required, this has been
placed within the business process model manager, along with responsibility for
Choreography support.

Lifecycle Management
This module is a system guide of VO Management activities, based on the lifecycle defined
by the VO Manager.
The VO lifecycle has been outlined above, and is “Identification Formation Operation

 Dissolution”.

D09 – TrustCoM Reference Architecture

 Page 8

To be a candidate member of a VO, an organisation needs to join an Enterprise Network.
Therefore there is a need to have Enterprise Network Agreement which will:

• Permit – the organisation to be a member of the EN and grant access to EN
resources, and permit that organisation to describe itself in terms of its
capabilities which must be stored in the EN repository for use at the VO
formation stage (to match against roles in a VO Collaboration Description).

• Require – that the organisation acts by the rules of the EN.

The Enterprise Network Agreement will act as a stage before the General VO Agreement
on which it will build.
A Dynamic VO is a co-operation within a subset of EN members. Specific objectives and
market needs trigger the establishment and operation of the dynamic organisation. An EN
provides the infrastructure to rapidly set up new VOs:

• The EN may be static but the VOs can be dynamic
• Participation in an EN shows disposition to create VOs and offers infrastructure

support for creating VOs but EN is not a VO

Below in Figure 2 the interrelations between the outlined concepts are depicted. As we can
see, an enterprise may participate in more that one VO at any given point of time,
delegating appropriate resources (via virtualised services) and playing different roles,
according to its policies and those of the VOs the enterprise is involved in.
The VO process management, ensures that the members of a VO play by the rules agreed
by everyone involved and that members’ behaviour is observable, thus allowing to enforce
these rules for common business need. In order to define the necessary services for the
VO management we need to identify some other key concepts. As indicated earlier, we can
perceive a VO as composition and interaction of three main components:

• The collaboration agreement, also called General VO Agreement (GVOA) -
contracts that express the general rules each partner of a VO must abide to, in order
to be acceptable as a member of the VO.

• The SLA for each role in the business process of the VO
• The participants who each fulfil a role in the VO
• The business process model which defines business of the VO, and the roles

available for each partner.

D09 – TrustCoM Reference Architecture

 Page 9

Dynamic VO A
VO Member

EnterpriseService

Virtual
EN Member

Dynamic VO B

Enterprise Network

Resource

EN Member
Access Point

Figure 2: Relationship between the enterprises, enterprise networks and VOs.

Following the template-based approach for business processes and SLAs adopted by
TrustCoM, it is envisaged that the initiator of a VO chooses a GVOA template, instantiates
it and publishes its intention to build a VO on this basis.
The GVOA identifies a set of business process with a set of roles involved in the enactment
of those processes. It will also list policies and SLA templates to introduce (non-functional)
constraints on roles and on the enactment of business processes. Furthermore, a GVOA
may specify one or more operational business processes in accordance with the business
objectives that support the creation of the VO.
The roles identified in the GVOA must be defined in a Collaboration Description (CD) which
states which resources those roles have access to. In turn the security policies for
accessing those resources can later be derived from policy templates in the SLAs, the
roles and resources from the CD.
When joining the EN, an organisation has declared the set of capabilities that it has. These
will be mapped to the set of roles defined in the CD to determine if an organisation is a
candidate member for a VO.
When an EN member declares its interest in participating in the future VO, it must indicate
the roles it may be willing to assume, respectively can assume. Depending on the
negotiation model, a stakeholder may also propose policy changes, trigger the deployment
of new business processes, etc. Up to that point, the GVOA is considered to be non-
effective.

D09 – TrustCoM Reference Architecture

 Page 10

Just as a general contract may need to be revised if the existing contract is detected to be
unsatisfactory, the GVOA could possibly be re-negotiated at different points in time. One
need that must be addressed is the consequences of modifying the set of partners, or
modifying role-assignment of partners in an existing VO. Hence, in the defined VO
Management process for VO modification, the GVOA is one of the components that are
treated according to well-defined rules.
Consequently the management of the VO is closely linked to the SLA management and the
BP management.

Subscription to :

o SLA Management
– subscribe to SLA evaluator to be informed of SLA Violations such as failure

to meet deadlines or desired QoS parameters.
– Notify VO Manager, VO Partner Managers, or take action defined in rules

when SLA conditions are breached; ultimately replacing an existing partner
in a role.

o Reputation

– input to the reputation system at the end of each business activities by
subscribing to the BPM service and pass quality measures to reputation
service ;

– monitor reputation value of partners and act if it drops below a threshold.

When there is a violation the VO manager and VO partner manager will be informed. The
VO manager can include automatic rules for action on the violation of policies, SLA
conditions, or decline in reputation in the general VO Agreement which are implemented
here.

Membership Management
This module is responsible for the addition, modification and removal of VO-Members in
either an active or persisted VO. It builds upon the Enterprise Network Infrastructure which
stores details of those organisations which are members of the Enterprise Network and are
therefore eligible to join any VO. It invokes the Discovery tool to identify potential VO
members, then calls the SLA negotiator to chose the best partner for a role, and to
negotiate the detailed SLA.

GVOA Management
The General VO Agreement Manager hosts the General VO Agreement for each VO. It
manages the creation of this during the initiation of the VO, and the evolution of this during
the operation of the VO as partners join or leave, and as new SLA are defined for partners
as they change roles. It mainly interfaces to the SLA Manager which creates the details for
the SLA and monitors them, and to the BP Manager which creates the details of the
Collaboration Model through a WS-CDL specification, and executes it. The GVOA Manager
generates partner profiles based on these pieces of information.
A major sub-component of the GVOA Manager is the Collaboration Manager: the
component responsible for managing the consistency of the collaboration definition and the

D09 – TrustCoM Reference Architecture

 Page 11

other VO Management Services. The important role is to notify the Lifecycle, Membership
and GVOA managers when the GVO and SLA’s change as the VO evolves.
The registry will store clauses for the VO Agreement defined below. Each clause is
described both in natural language and, where applicable, in machine readable language in
order to allow the policies to be enforced.
General VO Agreement components:

o VO template – a general set of terms and conditions that apply to all VO
agreements

o Partner Details – details of the legal entity that is the partner
o EN organisation identifier – reference to the Enterprise network agreement for

the partner that overrides the VO Agreement
o Objective and Role of Partner – defined as annotations to the CD
o BPM Definition – a pointer to the CD created for the VO as context for the Role

definition
o VO Constraint – Constraints that apply to the whole VO, rather than an individual

partner – e.g. automatic rules for action on the violation of policies, SLA
conditions, or decline in reputation.

o Initiation and Termination Conditions – conditions for the BPM to begin before
the Choreography can be initiated and that the VO cease operating when the
Choreography has met them.

o Legal Issues section – Terms and Conditions for legal issues drawn from a VO
model agreement

o Policies – General policies applying to the whole VO which are inherited by all
SLA’s leading to Trust Security & Contract Roles (see section 3.2.1.3) that result
in Policy enforcement & decision points.

o References to SLA for the VO which include policies applying to the individual
functional and non-functional roles and work units leading to Trust Security &
Contract Roles (see section 3.2.1.3) for the non-functional roles that result in
Policy enforcement & decision points.

D09 – TrustCoM Reference Architecture

 Page 12

Figure 3: Static model of General VO Agreement

VO Management Registry
The registry is a simple relational database to be accessed by the VO management
component. The simple data structures are not all defined here to save space. Access is
permitted for create/read/write from within the VO management component, and read only
through Web Service interface to the rest of the Architecture. Write access for the rest of
the architecture is only permitted through the interfaces to the modules within the VO
management component. The VO Management Registry is not a UDDI Registry, merely a
relational database used to store data.

I.1.b Interaction Scenarios
The three main phases of the VO life cycle are considered for the operation for the VO
management component and its interaction with other components.

Identification and Formation
Steps in Identification and Formation:

1) Organisation registers its identity and available services with the EN infrastructure
2) An EN member wishes to create a VO and registers in the VO lifecycle tool to create

a new VO. VOM calls EN Infrastructure to identify the VO manager. The VO lifecycle
tool registers in its registry a VO identifier.

3) The VO lifecycle tool calls the BP Manager, passing the VO identifier, to allow the
VO manager to define a BPM for the VO. The BP manager returns a CD, including:

a. definitions of the roles of potential VO members
b. choreography descriptions
c. policies (TSC Roles – see section 3.2.1.3) associated with each role
d. initiation conditions for the BP

D09 – TrustCoM Reference Architecture

 Page 13

e. termination conditions for the BP.
4) VO lifecycle tool calls the VO membership management tool, passing the VO

identifier.
5) Membership Management tool invokes the Discovery Service (see section 3.6.1.3)

passing the VO identifier. The Discovery Service will identify partners for the VO that
match the role descriptions and constraints obtained and stored by the BP Manager
(step 3 above). The Discovery Service returns identifier triples for:

a. The role in the CD for the VO,
b. The EN organization identifier
c. The registered EN service identifier

There may be more than one identifier EN candidate per role (ENBusinessEntity
class, which extends the BusinessEntity datatype specified in the UDDI schema).
The Membership manager stores in its registry the triples.

6) Cycling through the BPM roles, for each role the Membership management tool calls
the SLA negotiator (section 3.3.1.4) passing it the VO identifier and the appropriate
set of triples from the discovery service for each role. The SLA negotiator returns the
triple with an identifier for the agreed SLA for each role. The SLA negotiator needs
to choose the best potential partner for each role as part of the negotiation process.
The Membership manager stores in its registry the SLA identifier for each role.

The process describe till this point corresponds to the identification phase. A summary
of such process is presented in Figure 4

Figure 4: Sequence Diagram for the VO Management in the Identification phase

7) The Membership manager now calls the VO Agreement Manager to create a VO
agreement passing a VO identifier. The VO Agreement manager returns success or
failure.

8) The VO Agreement Manager:

D09 – TrustCoM Reference Architecture

 Page 14

a. retrieves the VO agreement template from the VO Management Registry
b. Call the BP manager passing the VO identifier and retrieve the general VO

policies that apply to all partners, the initial conditions and termination
conditions for the BP.

c. for each role stored in the registry for the VO, the VO Agreement manager
will:

i. Call the EN Infrastructure passing the EN identifier to retrieve the
partner identity details from the partner profile.

ii. Call the BP Manager passing the VO identifier and role identifier and
retrieve the role objective and description, and the policies applicable
to that partner in that VO.

iii. SLA negotiator to retrieve the instance of the negotiated SLA for each
partner in each role.

d. Generate an XML document for the VO agreement and store it in the registry.
e. Issue the document to each VO partner for signature, storing the returned

signed copies from each partner.
f. Return to the Membership manager acknowledging that an agreement has

been reached and stored.
9) The Membership manager returns to the VO lifecycle manager that the VO

membership has been created.
10) The VO lifecycle manager registers all services that can be called in the VO at the

Service Instance Registries and the Information Repositories in the EN
Infrastructure.

11) The VO lifecycle manager has completed the Identification and Formation stage
and initiated Operation and Evolution Stage.

D09 – TrustCoM Reference Architecture

 Page 15

Figure 5: Sequence Diagram for the VO Management in the Formation phase

Operation and Evolution
The VO lifecycle manager calls the BP Manager to initiate the operational phase of the VO.
The VO lifecycle manager awaits the following alerts to act:

1) Each completed Transaction
a. The BP Manager calls the VOM to declare that a BP transaction has been

completed
b. The VOM calls the reputation manager to update reputation information

passing:
i. VO
ii. Partner id
iii. the organisational unit of the partner
iv. Role (context)
v. 50 or so performance attributes defined by the SLA

2) Partner defaulted on policy from SLA Manager.
a. Call VO Membership Manager to replace partner.

i. Call VO Membership Manager to initiate Termination phase for this
member

ii. Membership Manager follows step 5-10 for Identification and
Formation

D09 – TrustCoM Reference Architecture

 Page 16

3) BP has completed from the BP Manager.
a. Call VO Membership Manager to initiate Termination phase for all members.

4) A member of the VO has completed its roles in the VO from the BP Manager.
a. Call VO Membership Manager to initiate Termination phase for this member.

5) The VO manager wishes to modify the VO, either the Business Process or policies.
a. call BPM to modify BP
b. call SLA negotiator to renegotiate SLA
c. revise VO Agreement

6) The VO manager wishes to dissolve the VO
a. Call VO Membership Manager to initiate Termination phase for all members

7) The VO manager wishes to change the VO structure in one of the following ways:
a. Change a partner
b. Change the role allocation between partners
c. Change timescales within the BP
d. Change costs within the BP
e. Change policies in the VO Agreement
f. Change the structure of the BP by dividing processes and re-aligning

dependencies.

Dissolution and Termination
VO Membership Manager enacts the termination conditions on the VO agreement.
When each partner is removed from the VO the VO Membership Management component
will call the BP Management and Policy Service to gather information about the
performance of the partner, Reputation Management Service to update the reputation of
that partner.

I.1.c Dependencies Overview

EN Infrastructure
Organisations register to join the EN by making an EN agreement. Also called to identify
EN members, and collect their details.
The VO lifecycle manager registers all services that can be called in the VO at the Service
Instance Registries and the Information Repositories in the EN Infrastructure.

BP Management
Called to define the BP and return role details, termination and initiation conditions on the
BP, and to enact the business process in the operation phase of the VO. Called to gather
information about the performance of a partner for the reputation service.

D09 – TrustCoM Reference Architecture

 Page 17

EN Infrastructure - Discovery Service
Called to identify partners for the VO that match the role descriptions and constraints
obtained and stored by the BP Manager

SLA Management - SLA negotiator
Called to negotiate SLA with potential partners, and return SLA for inclusion in GVOA.

SLA Management - SLA evaluator
Informs VO manager about a partner defaulting on a policy in an SLA.

Reputation Service
During the operation phase:

- input to the reputation system at the end of each business activities by
subscribing to the BPM service and pass quality measures to reputation service ;
 - monitor reputation value of partners and act if it drops below a threshold.

Called during the termination phase for each partner to update that partner’s reputation
information.

Policy Services
Read the VO Management Registry to retrieve machine readable policies from the VO
Agreement. Called to gather information about the performance of a partner for the
reputation service.

I.2 Business Process Management
In the previous architecture section about Business Process Management (BPM), the
operational baseline dealing with collaborative business processes (CBPs) from
collaboration definition to executable private/public processes, was introduced. The
following sections refine the previous content and integrate the security concept for CBPs,
called the TSC Concept referring to Trust, Security and Contract Management.

I.2.a Conceptual Justification
For the operational part, the BP subsystem offers the connecting piece between business
applications and the VO management, infrastructure, and security functionality. Given the
business applications are available via service interfaces, TrustCoM’s BPM subsystem
allows to interconnect the services of multiple parties in a VO while applying trust, security,
and contract management to it. Since VOs are formed quickly, on-demand and often
include previously unknown business partners, a method for fast application and process
integration must be available. The BPM subsystem offers this method while satisfying
security requirements as well.
The trust, security, and contract (TSC) concept introduces fine-grained security control
mechanisms into the control flow of processes, enabling fine-tuned reaction to security-
related issues and compensation at the process level. These security controls invoke the
relevant services, e.g., for the confirmation of claims, and use the gathered information to
steer the process control flow. By using this method, expensive rollbacks of the CBP can

D09 – TrustCoM Reference Architecture

 Page 18

potentially be avoided, e.g., solving process control flow related security conflicts, for
instance the missing verification for a certain claim, within the process exception handling.
In this case, the exception handler could try to verify the claim, instead of terminating the
whole CBP and undoing the performed work as far possible. It is important that the CBP’s
TSC concept is uniform for the whole VO, so that partners have the same understanding of
what credentials are to be provided with which message. A major feature of the TSC
concept is the runtime configuration of the security controls inside a running CBP: Long-
running business process instances can be adapted to changing conditions and business
partners, even after they have been started.

I.2.b Components

Figure 6: BP subsystem component overview

D09 – TrustCoM Reference Architecture

 Page 19

BP Designer
A modelling tool, using a custom UML profile for UML activity diagrams, to model and store
collaboration definition templates. In the first instance, a user (usually the VO manager)
models processes from scratch, on the level of a choreography description language like
WS-CDL. It is anticipated that the UML profile will be expanded to directly cover recurrent,
pattern-like behaviour and interactions (e.g. call-for-tender), hereby providing a higher-level
description of the collaboration. Also, a library of pre-defined commonly-used
collaborations may be defined, thus supporting re-use and quicker definition of new
collaborations.
The collaboration definition template defined by the UML model contains:

• the roles participating in the collaboration

• a description of the order of interactions between the participating roles

• an (abstract) description of the information types exchanged in the interactions
between the participating roles

• an (abstract) description of additional trust, security and contract management
(TSC) requirements that participating roles may demand.

• meta-data about the collaboration
Such a template can be instantiated to a collaboration definition by instantiating the roles,
and replacing the information types and the TSC requirements with refined descriptions.

BP Repository
The BP Repository offers design time storage and retrieval capabilities for collaboration
definition (CD) templates. CDs are retrieved by specifying a list of criteria outlining the
business objective, the VO is intended to meet. The BP repository is able to suggest CDs
meeting the criteria by matching the CDs meta-data description.

CDL++2BPEL Service
The CD contains the global, high-level description about how the VO will meet the business
objective. This description has to be realised at runtime by executable BP components, the
executable private processes and corresponding views.
The CDL++2BPEL Service addresses this gap by taking VO Members meeting the
specified roles as input from VO Management. The service then automatically derives at
least process views for each, or just one specific role. The service is also capable of
deriving private processes as well, if no private processes fitting the views are available in
the VO member’s domain, assigned to the specific role. It is recommended that one
instance of this service is offered in a VO, possibly by VO Management falling in the
category of Choreography services, but it is also possible to run one service instance per
VO member domain.
The Service performs its duty in three parsing stages:

1. Immediate mapping of activities and message exchanges to views and
optionally BP activities and exchanges.

D09 – TrustCoM Reference Architecture

 Page 20

2. Identification of well known collaboration artefacts, e.g. Purchase Order,
and generation of their view activities (and corresponding private BP
activities optionally), in general for more than one role.

3. Handling of remaining activities and exchanges, in worst case by raising
alerts and using exception handlers from the GVOA.

Views and optionally private processes may be deployed automatically in the role specific
VO member domains, using the BPM service.
TSC requirements are already addressed as so-called TSC Extension Roles at this stage.
If available at design time, TSC Extension Roles are annotated in the collaboration
definition, and corresponding TSC Tasks are inserted according to the role type in the view
or private process. D16, the conceptual models (BP section) elaborates further on TSC
requirements and the model behind it. The next 6 month work cycle in TrustCoM will focus
on the TSC concept.
TSC Extension Roles (see WP21-ID section 4.1 for specification) are intended to capture
all information at design time which is necessary for TSC Tasks to perform their
enforcement or control duty at runtime. A TSC Extension Role is modelled as a data set
containing all the required information to configure a TSC Task. So far, four types of TSC
Extension Roles are modelled, each realizing a CBP control for exactly one TSC
subsystem:

• Trust Extension Role – Trust and Reputation subsystem
• Security Extension Role – security subsystem
• SLA Extension Role – SLA subsystem
• Monitoring Extension Role – Messaging Subsystem

CD Knowledge Base
This service is closely tied to the CDL++2BPEL service and the same domain affiliation as
well as deployed service numbers are required. In the second parsing stage of the
CDL++2BPEL service (see the CDL++2BPEL component description above), well known
CD artefacts are identified and the CD Knowledge Repository Service is queried for view
and optionally private process artefacts which are then inserted in the generated role
specific subjective views. Such a CD artefact usually corresponds to a confidential part of
the private process which may not be exposed to other entities, not even to other VO
members.

BPM Service
The BPM service provides deployment and runtime control for the BP engine, one in each
VO member domain. Views and private processes are deployed, suspended, stopped or
tested by using offered service interfaces. The BPM also subscribes to notification topics
addressing the BP runtime, e.g. addressing the control of BP instances.
If TSC Tasks need further or altered configurations, TSC Extension Roles can be assigned
to a deployed view/private process.

BP Engine
The BP engine finally enacts the deployed private process and offer the process view as
the externally visible behaviour to the outside. Usually, each VO member runs an engine in
her own domain. Internal to the engine, monitoring data required by other subsystems, e.g.

D09 – TrustCoM Reference Architecture

 Page 21

VO Management is generated and emitted via the notification subsystem. Message
exchanges between processes and services is handled using the messaging subsystem.
The BP engine, following the service oriented architecture paradigm, is lightweight,
implementing a process model with limited capabilities to work with workflow relevant data.
The engine rather orders service invocations from within private process tasks providing
implemented business logic.
A deployed process may be instantiated upon deployment, only once or in several
instances flexibly meeting the requirements imposed by the business objective. A process
instance is started by invoking the dedicated activity/method in the corresponding process
view with initial start data. Note that a process instance completion is not equivalent to the
termination of the VO. In fact, many instances of the CBP may be executed during the
operation phase of a VO, but all instances should be completed or terminated before the
dissolution phase is started.

The TSC Concept

Figure 7: TSC related components

The security concept for CBPs is called the TSC concept. It was formerly in the stage of a
purely conceptual model and is in this architecture version mature enough to become part
of the BPM subsystem’s deployment model. Figure 7: TSC related components shows the
components belonging to the TSC concept in a darker colour. The remaining components
belong to the above described operational baseline. Only the ones which are important to
understand the TSC concept integration are shown again. The TSC concept components
are now briefly described. The components are divided in runtime and design time
components. The former are relevant for the operational phase of the VO, the latter for
formation and identification.
TSC Context

D09 – TrustCoM Reference Architecture

 Page 22

The TSC Context contains all security relevant data for one BP instance. It is therefore
stored in a trusted software component, e.g. a database. Since the TSC concept is about
the offering of task based security controls for CBPs, the security relevant data entails the
set of all security controls for a BP instance.
TSC Task
Security controls have to be enforced during the BP enactment. The BP model needs to
offer an intrinsic means to enforce security policies in running process instances. The TSC
Task is exactly this enforcement component. Its configuration data is stored in the TSC
Context, since the BP engine is not necessarily a trusted software component. It enforces
BP security controls by invoking TSC subsystem services (as shown in Figure 6: BP
subsystem component overview) and retrieving security critical decisions from those
trusted subsystems. Technically, the TSC Task is a design pattern in the chosen private
process modelling language, e.g. WSBPEL.
TSC State
The TSC Task needs to retrieve its configuration data from the TSC Context when
executed during process enactment. This security critical data is stored in the TSC State
data structure only for the time of this TSC Task’s execution.
TSC Service
The TSC Service’s purpose is to abstract from the chosen TSC Context storage. It allows
to create and update the TSC Context. The TSC Context is created from TSC Extension
Roles, which are deployed along with a CD via the CDL++2BPEL service or updated via
the BPM Service when TSC Extension Roles are deployed at runtime.
TSC Extension Role
A TSC Extension Role is a design time document stating the requirement of a particular
security control within a role in a CD. It therefore belongs to this role’s BP and is inserted at
a specific position in the sequence of business interactions within the CD. At runtime, there
will be a TSC Task in the private/public process model, automatically modelled in by the
CDL++2BPEL service. Four (SLA, Security, Trust and Notification) TSC Extension Role
classes are so far identified and described in more detail in the Appendix. These
correspond to four different types of security controls for BPM relevant for TrustCoM.

D09 – TrustCoM Reference Architecture

 Page 23

I.2.c Interaction Scenarios

Identification and Formation

Figure 8: CDL++2BPEL Sequence

At first, VO Management is typically informed about the customer’s business objective and
needs to retrieve a suitable collaboration template from the BP repository describing in a
global view/choreography how to achieve this goal (steps 1.*). A human business expert,
may be required to perform tailoring or adapt the template resulting in the final
collaboration definition. The BP related services to the right deal with the CD further on and
are deployed in the VO Member’s domain.
VO Lifecycle Management verifies the received CD and invokes the CDL++2BPEL service
for further CD processing (steps 2.*).
The member roles codified in the CD need to be met by a list of VO members. VO
Membership Management is queried for this list (steps 3.*).
In the following (steps 4.*) the CDL++2BPEL service performs its main work, parsing the
CD in three stages as outlined in the CDL++2BPEL component description above.
Invocation 4.1 queries the BP Knowledge Repository service in the second stage with well
known CD artefacts as parameters. When the CDL++2BPEL service encounters a TSC
Extension Role document annotating the CD, it inserts a TSC Task into the BP model and
deploys the contained data to the TSC Context (not shown here due to space reasons).

D09 – TrustCoM Reference Architecture

 Page 24

In the end (step 5), the CD is either successfully processed and counts as instantiated or
failed because a VO member wasn’t qualified to play a certain role or the automatic view
derivation was not able to complete successfully. In the first case, a notification with the
CD_ID is sent to register in the GVOA/partner profile, in the latter case, a failure notification
is generated.

Figure 9: View deployment

If the CD was processed successfully, Figure 9 shows the steps to finally deploy the
generated views and optionally the private processes. The CDL++2BPEL service is able to
do this by sequential or parallel invocation of the BPM services of each VO member’s
domain. The CD is fully deployed if positive acknowledgements are received for each view.
Each BPM service also generates a notification containing the ID of a successfully
deployed View for registering in the GVOA/partner profile. Private processes are not
covered, since those – as the name suggests – are seen as private and are not exposed
outside the VO Members’ domains.

D09 – TrustCoM Reference Architecture

 Page 25

Operation and Evolution

Figure 10: BP Execution

From the BP subsystem’s perspective, the operation phase starts when the initial “overall”
collaboration definition is set into motion. This still expresses the global view. From a VO
Member’s subjective perspective this means, the execution of the private processes
implementing the beginning of the collaboration definition is started.
Typically, VO Management triggers this execution by invoking the process’ view activity
(here exemplified called startBP()) with initial values implementing the CD’s start. The
invoker receives acknowledgement, and a notification is sent out by VO Management.
It has to be noted that all steps in the initial VO phases may also be performed completely
in the operation phase, e.g. recursive control leading into another VO structure,
implementing a contingency plan or dynamically realizing further (sub-)collaboration
definitions.

D09 – TrustCoM Reference Architecture

 Page 26

Figure 11: TSC Extension Role Deployment

During runtime, different authorised actors may want to update or initially configure TSC
Tasks in views and private processes. The BPM service offers this method in its interface
(steps 1.*). The TSC Extension Role document is also parsed by it to ensure validity and
because the header information contains references to the target TSC Task, its ID and the
view/private process ID which are required for further processing.
An apparent prerequisite is that the target process is already deployed, which is tracked in
the partner profile. Since an instance of the target process might be already running in the
BP engine, steps 2.* perform the update on the engine’s data itself.
The development work in AL2-WP29 explores the possibilities leading to an
implementation of those models. The TSC concept will be implemented in the second
prototype after laying an operational foundation in the first prototype. The latter addresses
the operational parts of the automated deployment model from collaboration definition to
views and private processes.
The actual data deployment (after step 2.1 in Figure 11) may be realized by updating a
data structure, the TSC Context (see WP21), stored in a trusted BP engine subsystem, but
external to it. Each TSC Task maps to a dynamic list of attributes into the TSC Context
which holds all TSC related data for one process instance.
Another possibility is extending the BP engine and handling the TSC Task data, essentially
the TSC Context, engine internally. This approach requires the introduction of a “trusted”
BP engine addressing threats of manipulation, malicious process models etc.

I.2.d Dependencies Overview

Supporting Services
BP design time functionalities such as the BP template repository are central to the VO and
its members. The repository contains CD templates which are retrieved most importantly

D09 – TrustCoM Reference Architecture

 Page 27

by VO Lifecycle Management. Since the BP subsystem offers generic services, other
entities, e.g. a service provider, may retrieve CD templates in other VO phases as well.
Access from partner domains has to be facilitated; therefore those services are offered as
supporting services.

VO Management
The BP subsystem offers services to VO management, particularly for the choreography
services. The CDL++2BPEL service takes a collaboration definition, retrieved from the CD
template repository, and matches public and private business processes for each involved
VO member.
To also match VO members with roles required by the collaboration definition, VO
membership management is required. Therefore, upon submission of a CD to the
CDL++2BPEL service, the required role declarations in the CD’s header are parsed. The
service then calls VO Membership Management with the enumerated roles as parameters
and expects VO members in return, meeting all role requirements.
When queried for Members matching CD roles, VO Membership Management also delivers
a set of services described with business keywords. The latter match the internal member
activities described in the CD. If those are not available or sufficient for dynamic service
discovery and invocation from within a business process, the discovery service offered by
VO Management can optionally be used (not depicted above). It can be invoked by the
CDL++2BPEL service and also BP engine, containing a BP instance modelling a suitable
invocation. When processes, public and optional private ones, are derived from a CD for
each role by the CDL++2BPEL service and deployed in each member’s domain, private
processes already contain the correct sequences of service invocations. If the private
processes were already present, required service EPR are assumed to be present as well;
if these processes are also derived by the BP subsystem, the discovery service is used for
the EPR identification. During runtime, if a service becomes unavailable, exception
handling on process instance level triggers the discovery service for a replacement service.

Notification
The notification subsystem allows sending notifications for BP subsystem related topics.
VO Management and other interested subsystems need to subscribe to those topics.
It also allows receiving notifications from topics related to e.g. TSC subsystem, which are
of interest for BPM.

I.3 SLA Management Services

I.3.a Components
Here is an overview of the components in the SLA Management Services subsystem. Note
that the underlying WS-specifications are examined in more detail in the deliverable D18.

D09 – TrustCoM Reference Architecture

 Page 28

Figure 12: Components of the SLA Management Subsystem

SLA Manager
This component functions as a coordinator for the different components in the SLA
Management subsystem. In particular, it is responsible for the configuration of monitors
and evaluators. It associates the Monitors and SLA Evaluators with an SLA and connects
them with each other through the Notification subsystem. This component is accessible
through a web-based user-interface. It maintains a database of the Monitor-Evaluator
connections and configuration. It can also be called by the VO Manager.

SLA Template Repository
An EN member that wishes to announce the availability of a service may use this
component to publish SLA templates. A template defines ranges for QoS parameters that
the provider is willing to accept as starting point in any negotiation regarding service
provision. The SLA Template Repository can also be queried for templates fulfilling some
constraints.

Notary
This (trusted third party) component witnesses the signing of SLAs between providers and
consumers.

SLA Negotiator
A component providing support for negotiating agreements. The users of this component
will include VO management processes in charge of signing agreements with service
providers. A negotiator only offers functions and protocol implementations. The actual logic

D09 – TrustCoM Reference Architecture

 Page 29

determining what is to be considered a successful negotiation lies outside the SLA
Management subsystem.

SLA Signer
This local component implements one of the sides in the signing protocol chosen for the
VO and admitted by the Notary. Different signing protocols would then require the
instantiation of different SLASigner components.

SLA Repository
An SLA Repository provides a secure store for signed SLAs. Notaries are responsible for
uploading SLAs to the repository.

SLA Monitor
Two types of SLA monitors have been identified so far:

a. Internal ASP and Host Domain Monitors
b. External or Trusted Third-Party Monitors

Internal monitors have direct access to the applications and resources they inspect. On the
other hand, external monitors can only inspect web services at their interfaces and usually
lie outside the control of the service owner.

SLA Evaluator
An Evaluator receives monitoring information and keeps a state of each active SLA; it is
also responsible for sending notifications on the event of SLA violation and/or fulfilment.
The set of subscribed receivers for this kind of notifications may include VO Management
and Reputation services.

SLA Performance Log
This component accumulates historical data on the performance of SLAs for future
evaluation and use (e.g. for accountability purposes). This is done by subscribing to
messages from the Notification subsystem and saving the messages in a database.

I.3.b Interaction Scenarios

Discovery
1) Register SLA template

A member of the Enterprise Network registers the services it is willing to offer (to potential
VOs) by listing their descriptions in some Service Directory. These descriptions have
associated SLA templates that are stored in the SLA Template Repository.

D09 – TrustCoM Reference Architecture

 Page 30

slaTemplateRepositor
SLATemplateRepositor

ServiceRegistr

ServiceProvide

3: svcID := store(svc, slaTemplateID)

2: slaTemplateID:=store(slaTemplate)

1: SLATemplate = DesignTemplateFor(svc)

Figure 13: SLA template registration

2) Discovery service using QoS requirements
Regarding identification proper: The VO Manager will use the services of the (TTP)
Discovery service to search for services to fulfil the requirements of the collaboration
definition, including QoS requirements (cf. main document, sections I.3 and II.2.b).

Figure 14: Discovery using QoS requirements

3) SLA Negotiation
The TrustCoM Framework should provide flexible support for SLA negotiation, offering the
possibility to apply several negotiation protocols. However, for version 1 of the framework,
the negotiation protocol is restricted to a single round where the offer, made by the service
consumer based on the SLA template, is either accepted or rejected on the spot by the
service provider. Figure 15 illustrates this protocol.

D09 – TrustCoM Reference Architecture

 Page 31

Figure 15: Single-Round SLA negotiation protocol

Note that the implementation of the particular negotiation protocol is left in the hands of the
SLANegotiator components of both the service provider and consumer. Occasionally the
service consumer may delegate its negotiation rights to the VO Manager. In those cases,
the VO Manager, may use it own instance of the SLANegotiator component.
Notice as well that Figure 15 assumes that the SLANegotiator is responsible for triggering
the signing of the agreement. In fact, this is a simplification that will surely require
refinement. When searching for a number of services to fulfil the requirements of a
particular business process, the VO Manager may want to make sure that an agreement
can be reached for all needed services before actually committing to signing any of them.
In other words, a VO Manager may have to prevent the signing of an agreement if it is
unable to conclude some other agreement, without which it becomes impossible to enact
the business process.

4) Signing and storage
When digitally signing a protocol it is reasonable to assume that no partner wants to be the
first to sign, in fear that other would-be signatories could change their minds before signing.
Even though a protocol is not valid until everybody has signed, there are situations, for
example when resources need to be reserved, that can have a negative impact for the
party that signs first, if the second party does not sign. The simplest solution involves a
trusted third party that first collects all signatures, verifies them and then distributes the
signed contracts among the signatories. Figure 16 illustrates this protocol. In this case we
have chosen to implement a protocol which needs an intermediary; however there exists
alternative protocols which attempt reducing the performance costs incurred by the Notary.
However, version 1 of the TrustCoM Framework will only provide support for the Notary-
based protocol.

D09 – TrustCoM Reference Architecture

 Page 32

Figure 16: Signing and storage of SLAs

After the successful conclusion of the signing protocol, each signer component informs its
corresponding SLAManager component. Figure 16 shows this only for the service
consumer side. The SLAManager then registers the ID of the recently signed SLA and, in
the case of the service consumer, forwards it to the VOManager. If the SLAManager of the
service consumer is not trusted, an alternative is to make the Notary communicate the
result of the negotiation to the VOManager. The rationale behind communicating the
conclusion of the agreement to the VOManager is that without this step the VOManager
would be unable to determine the successful formation of the VO.

Formation
1) Service provision configuration

Each Application Service Provider (ASP) manages service provision according to the
signed SLA. At this stage, or possibly, earlier an SLA Monitor is attached to the service

2) Configuration of Evaluators and Monitors
The VO Manager (via the Service Instantiator) uses the SLA Manager to configure
Evaluators and SLA Monitors in order to monitor SLA performance. The SLA Manager may
configure the Notification subsystem to direct notifications from monitors to evaluators and
other monitors. Alternatively evaluators may pull data directly from monitors. The
configuration data sent to monitors and evaluators consists of relevant parts of the SLA
and information on which Notification Topics will be used.
The SLA Manager also keeps track of which SLAMonitors and SLAEvaluators exist and of
their respective SLAs.

D09 – TrustCoM Reference Architecture

 Page 33

Figure 17: Configuration of SLA Monitors and Evaluators

Operation & Evolution
1) SLA parameter computation

Simple and aggregating2 monitors, using the configuration provided during the formation
phase, observe the execution of a service, host process or even business process, and
compute SLA parameters according to the metrics defined in the corresponding SLA.

2) SLA parameter communication
SLA parameters are communicated upon request by their consumers (Monitors and
Evaluators) or upon the occurrence of events (including time events). The former model is
called the “pull model” (Figure 18) whereas the later is called the “push model” (Figure 19).

3) An Evaluator reports contract violation/fulfilment
Notifications of SLA performance are generated by the Evaluator and channelled to the
Messaging/Notification component (and distributed to the receivers that were subscribed in
the Formation phase, §0).
Monitors and Evaluators deployed at the level of the ASP domain or the host system
should notify their respective domain managers.

2 An aggregating monitor computes metrics using data probably computed by other monitors.

D09 – TrustCoM Reference Architecture

 Page 34

Figure 18: SLA Monitoring (pull model)

Figure 19: SLA Monitoring (push model)

Dissolution
1) Contract termination

SLAs and contracts that have reached the end of their validity period or have been
cancelled due to broken contracts may be removed from the SLA Repository. Evaluators
and Monitors are likewise re-configured to release the resources dedicated to monitoring
the terminated contracts. The whole process is instructed and coordinated by the SLA
Manager.

D09 – TrustCoM Reference Architecture

 Page 35

Contracts can also be terminated by VO Management as part of VO adaptation
procedures. However, in this case, special care must be taken to keep record of the
contract violations incurred by the abrupt termination of the contract.
Notice that a contract or SLA may be kept in storage after its termination for accountability
purposes.

I.3.c Dependencies Overview
The following table summarizes the dependencies between the SLA Management services
and other subsystems in the architecture:

 Dependency

The General VO Agreement (GVOA) contains references to (signed) SLAs regulating the QoS
properties of the services provided to the VO by each VO partner.

VO
 M

gm
t

Partner Profiles describe the services that an EN member is willing to offer to a VO. Therefore a
Partner Profile refers (probably indirectly) to the SLA templates associated to each service offered by
an EN member.
SLA Performance notifications (i.e. notifications of agreement violations) will usually be directed (by the
Notification subsystem) to one or more ECA interfaces responsible for triggering the corresponding
adaptation mechanisms.

Po
lic

y

The Policy Service will distribute and install the access control policies that ensure that the SLA
Manager is not interfered upon when it comes to managing SLA Evaluators and to configuring the
distribution of SLA-related notifications.
The Coordination Infrastructure is used by the SLAM subsystem to implement distributed protocols
(e.g. signing and notarization).
The Discovery Service accesses the SLA Template repository to recover the SLA templates that
correspond to a (probably not yet instantiated) application service.
The Service Instantiator uses the SLA Manager to configure SLA monitoring for the services it
instantiates. The SLAM subsystem provides a monitor interface as a capability that gets associated to
the service instance.
The Service Instance Registry provides a link to the SLA (stored in the SLA Repository) that applies to
each particular service instance. EN

/V
O

Inf
ra

str
.

The communication of SLA Parameters and SLA Performances within the SLAM subsystem and in its
communication with other subsystems uses the Notification Subsystem. The SLA Manager will perform
the appropriate subscriptions to Notification Brokers and Proxies (see §0)

table 1: overview over the dependencies between SLA Management components and components of other
subsystems

I.4 Trust & Security Services

1.1.1 Conceptual Justification
The Trust and Security Services provide various technical means for the management of
trust, and related concepts like risk and assurance, between partners in a VO, as well as
provide supporting services for managing trust in nontechnical ways.
Security Token Services are used to authenticate previously unknown VO members across
administrative domains. This for example assures that the VO member is trusted by the
partner organization to act on behalf of it in the context of this VO. This in turn can be used
to approximate the risk in interacting with this VO member by the (lack of) trust in the
partner organization. Security token services are accompanied by configuration

D09 – TrustCoM Reference Architecture

 Page 36

management and trust negotiation services. The configuration management services are
used to adapt the security configuration to changes in the VO, for example making a trust
relationship to a new VO partner organisation known to the security token services. Trust
negotiation services can be used to specify disclosure policies for sensitive data in security
token when authenticating to other VO partners or EN members. This is a form of risk
mitigation in that the risk of misuse by the partner organisation of the sensitive data
contained in the security token is reduced.
Besides the identity of VO members, which is authenticated resp. managed by token
services, another technically tangible trust criteria is the VO member's prior behaviour. In
order to support the judgement of behaviour that is not only observed by oneself, this
subsystem provides a Reputation Management service that collects and combines
individual ratings about a VO member's behaviour into a numerical value, it's reputation.
Both this absolute value, as well as sudden big changes in it, can thus give quantifiable
input into decision making processes like which partner to choose when forming a VO, or
whether to expel a partner from a VO. Also, it provides a certain incentive for good
behaviour, as misbehaviour will likely have negative consequences in the future, for
example fewer contracts and therefore reduced business volume due to the reduced
reputation. This equates to (a limited amount of) risk mitigation for the other VO partners.
Non-repudiation, as provided by the Secure Audit service, provides further mitigation of the
risk involved in interactions between VO partners by assuring that misbehaviour will have
(potentially drastic) legal implications. The Secure Audit thus also provides the evidence
necessary for enforcing penalties specified in the legal contract that governs the VO.

D09 – TrustCoM Reference Architecture

 Page 37

1.1.2 Components

Domain- level STS

Supporting Services

Reputation Server Secure Audit Web Service

SendLog
Messaging & Notification
Subsystem

Policy Control and Supervision
Subsystem

Adaptation Policy
Management

Trust & Security Subsystem

Security Configuration
Management

Security Token Service

Trust Negotiation

Negotiation Policy
Repository

Credential Repository

Reputation Management

Secure Audit Client

Figure 20: Component overview.

Security Token Services
The security token services component provides services that enable the issuing and
validation of security tokens across different security domains. The architecture allows for a
layered structure, where security token services on lower levels can delegate the issuing
and validation to token services on higher levels. For example, a domain-level STS can
delegate to an organization-level STS, or a organization-level STS can delegate to a VO-
wide STS.

Security Configuration Management
The security configuration management component provides services to adjust the
host's/service's/domain's security configuration to changing conditions in the environment,
for example to changes in the VO membership, or to detected attack trials. There are three
possible ways of how the security configuration management component can be enacted
at runtime:

• Configuration changes are manually triggered by an administrator using a custom
management interface software.

D09 – TrustCoM Reference Architecture

 Page 38

• Certain simple rules can be defined statically and deployed together with the
component

• In a more sophisticated scenario, a special component of the policy services
subsystem would be responsible for storing and enforcing so-called adaptation
policies. The enforcement of adaptation policies would - among other things -
encompass the use of the security configuration management component.

Trust Negotiation
The Trust Negotiation component provides services that enable a participant in a VO to
disclose just the security tokens to another party that are needed to access a service.
The component uses custom negotiation and disclosure policies, which describe which
tokens have to be disclosed for accessing which service and which describe which
credentials are sensitive and should not be disclosed to other parties (when not
necessary).
Trust negotiation provides added value of protecting the privacy of EN/VO members in the
sense that credentials may disclose more sensitive information than a organization is
willing to provide to just anybody. The risk that is carried with unwanted disclosure of
information inside security credentials can be imagined to be substantial in certain kinds of
enterprise networks, especially in very open and loosely connected ones, In the cases of
the application scenarios that we concentrate on in the TrustCoM project, however, this risk
is not consiedered to be business-critical because there the participants are relatively well-
known to each other. Because work will concentrate on components that are critical for the
application scenario, the trust negotiation component, while part of the TrustCoM
architecture, might not be part of the reference implementation to be provided during the
time-frame of this project.

Secure Audit Service
The Secure Audit Client provides a common interface to both the generic messaging and
notification services, as well as to the policy control subsystem, to securely safe a log of
actions that happened during their execution (for example, positive or negative
authorisation decisions, etc.). The secure audit client forwards these logging requests to a
supporting (or trusted third-party) service, the secure audit web service.

Reputation Management
The Reputation Server is a supporting (or trusted third-party) service that provides
reputation information about VO or EN members and is accessed by the reputation
management component of the trust & security services subsystem
The reputation service is used to record trust relationship values between individual
members, i.e., individual reputation ratings, and to calculate and disseminate the combined
reputations of EN/VO members. The metrics used for measuring reputations are definable
within the initial set up of the reputation service. The metric used will define the nature of
the measurement of trust (i.e. what values will be used to record it etc) and what
information will be held regarding the situation which merited the recording of trust (i.e.
what were the circumstances under which party A formed a trust relationship with party B,
and how is this recorded in the metric).

D09 – TrustCoM Reference Architecture

 Page 39

1.1.3 Interaction Scenarios
We will concentrate on 3 core usage scenarios here: addition of an organisation, normal
operational work, and removal of an organisation. The other usage scenarios presented in
Section 2.5, like establishment of the VO, replacement of an organisation, and dissolution
of the VO can be seen as combinations or iterations of these core scenarios, at least from
the point of view of the Trust and Security Subsystem.

Addition of an Organisation

Discovery Service Reputation
Management

VO- level STSVO Management

1: / / find suitable partners

2: / / get Reputation

3: / / return Reputation

4: / / return list of candiates

5: / / select partner

6: / / issue token to partner

Figure 21: Scenario for adding an organisation to the VO.

When an organisation has to be added to the VO, be it in the identification/formation
phase, or dynamically in the evolution phase, the following steps happen:
Triggered by the Membership Management component of the VO Management subsystem,
the Discovery Service queries well-known repositories to find a list of potential
organisations matching the request from the VO Management. Among other things, it asks
the Reputation Management Service for the trust values of potential partners to filter for
those organisations that fulfil the reputation requirements. When a suitable partner is
found, and other negotiations with this partner (e.g. SLA negotiation, see above) are
successful, VO Management triggers the STS to issue appropriate tokens for this new
partner.
In case this scenario happens in the identification phase of the VO, instead of the evolution
phase, the steps occur in the same sequence, however, the issuing of the tokens only gets
started in the formation phase of the VO, after all other necessary partners have been
discovered. The figure above shows the scenario happening in the evolution phase, where
only a single organisation has to be added.
Furthermore, the figure assumes the existence of a VO-level STS, which is a valid option
for the deployment of trustcom services, but not required. If there is no VO-wide STS

D09 – TrustCoM Reference Architecture

 Page 40

employed, in step 7 the membership management component has to iterate over all VO
partners to make the new organisation known to them.

Normal Operational Work

Secure Audit LogServer STSEN/ VO ServerEN/ VO Client Client STS

4: / / authenticate

6: / / return

5: / / log request and decision

3: / / send msg

1: / / msg to deliver

2: / / enriched msg

Figure 22: Basic Authentication Scenario.

During normal operation of the VO, when a client sends a message to an application web
service, the Policy Enforcement Point (PEP) of the service forwards incoming messages to
the token services, which authenticate the message by validating the contained tokens.
This may involve several levels of token services, which each validate respective
delegation claims; for example host-level, organisation-level and VO-level token services.
Symmetrically, before sending this message, the PEP of the client has forwarded the
message to its own token services in order to fill in necessary tokens and sign/encrypt the
message according to the applicable policy.
After this basic authentication, additional authorisation checks are performed by the Policy
Decision Point (PDP) for example access control checks on the content of the message
(see below). The architecture allows for several options of how the communication
between PEP, PDP and STS is organized: The PEP may ask the PDP and the STS
seperately, the PEP may ask the PDP, which forwards the request to the STS, or the PEP
may ask the STS, which forwards the reqeuest to the PDP. The choice of which option to
take depends on the concrete application and the type of authorisation policies to be
checked, as the requesting component (STS or PEP) has to send all information relevant
to the authorisation decision from the message header to the PDP. See the section below
on EN/VO for a further discussion of this issue.
The policy subsystem optionally uses the secure audit web service to log it’s decision.
Also, if additional tokens are necessary to authorize the request, the server may start a
trust negotiation process with the client, in which they try to exchange the missing tokens.

D09 – TrustCoM Reference Architecture

 Page 41

Finally, the token services log the requests and validation decision using the secure audit
web service.

Removal of an Organisation

Reputation
Management

VO Management VO- level STS

1: / / revoke tokens

2: / / send evaluation

Figure 23: Scenario for removal of an Organisation.

The interactions for the removal of an organisation are in fact almost the reversal of the
interactions for the addition of the organisation: First, the authentication tokens are
invalidated, then the experience with this organisation is pushed to the reputation
management service.

1.1.4 Dependencies Overview
The following table summarizes the dependencies between the Trust and Security services
and other subsystems in the architecture:

 Dependency

Discovery service ask reputation management during Identification phase and when looking for a
suitable organisation in the evolution phase of the VO.

EN
/V

O
inf

ra
str

.

Reputation Management informs about changes in a partner's reputation via the notification service

Membership management triggers the STS to issue suitable tokens during the formation phase.
Membership management triggers the STS to invalidate the respective tokens during dissolution or
when an organisation leaves the VO.

VO
 M

gm
t

Membership Management sends evaluation of performance to the reputation management service
during dissolution or after the organisation leaves the VO
PDP may log their decisions using the Secure Audit Web Service
PEP or PDP request the STS to issue token for outgoing messages

Po
lic

y

PEP or PDP request the STS to validate tokens for incoming messages
Table 2: overview over the dependencies between Trust & Security components and components of other

subsystems

I.5 Policy Control
This section aims to describe the architecture of the policy sub-system and its associated
services. Policies define changes in the behaviour of systems and as such provide the
primary means by which the configuration and operation of a VO can be defined to be

D09 – TrustCoM Reference Architecture

 Page 42

specific to that VO and can change at run-time. The reason for encapsulating these
behavioural aspects as policies (rather than as traditional programs) is that policies can be
dynamically replaced without interrupting the system’s functioning. In particular, the
management strategy of the VO itself or the access rights given to partners may change
dynamically during the life-time of the VO and may vary substantially between VOs. For
example, in the CE scenario SLA violations are likely to require compensation actions
(either payments or allocation of additional cycles on the analysis service) and will involve
loss of reputation; they are not likely to trigger direct replacement of the partner because
the VOs tend to be long-lived. In the aggregated services scenario where VOs tend to be
short-lived SLA Violations may compromise the goal of the VO itself. Similarly, access
controls in an engineering scenario are likely to be stricter than in an on-line learning
environment. Thus loss of reputation in the first environment may require changing the
access permissions of a partner whereas it may trigger a search for new partners in the
second one. Long-lived VOs such as those exemplified by the CE scenario change during
the life-time of the VO and it is necessary to be able to reconfigure the operational
procedures of the VO without requiring development of new software. From these
requirements we can draw the following conclusions:

• There is a need to encode the operational strategy of the VOs in declarative
specifications included in the GVOA and which are specific to the VO.

• There is a need to be able to support changes in the operational strategy without
interrupting the execution of the VO or requiring additional software development.

In TrustCoM we are focussing on two types of policies: obligation policies in the form of
event-condition-action (ECA) rules and access control policies in the form of authorisation
and delegation rules3. The rationale for this choice is twofold: on one hand these policies
enable us to encode both the operational choices i.e. what should happen when specific
events occur and the authorisation aspects of the framework, on the other hand the use of
ECA rules in conjunction with a Notification Brokering system or event-bus enables the
development and deployment of a low-coupled architecture for VO frameworks which
minimises the dependencies between the various components. To integrate these policies
in the TrustCoM framework we need to provide the means to:

• Bootstrap the VO operation with a given set of policies. These policies may be either
pre-defined (e.g., inside the Generalised VO Agreement), instantiated from policy
templates, defined by human VO administrators or negotiated at run-time. The policy
sub-system does not address how these policies come into being but how they are
deployed and enforced in the VO.

• Change the policies inside the VO in a pre-defined manner. This is achieved by
considering policies as managed objects themselves that can be instantiated, deployed
and enforced through the actions of other policies. Thus a policy may trigger the
instantiation and dynamic replacement of policies in a VO.

• Change the VO policies through human intervention as it is unlikely that all
circumstances can be foreseen at the VO formation stage. It is therefore necessary for

3 Note that the term: policy is overloaded and even within the TrustCoM framework it is occasionally used to refer to other declarative
specifications. A discussion on the general meaning of the term as well as all its uses in TrustCoM has been presented in D16
Conceptual Models

D09 – TrustCoM Reference Architecture

 Page 43

a human administrator to be able to dynamically interact with the system and change its
behaviour by specifying new policies or removing the old ones in order to adapt to
unforeseen events or new customer requirements.

This section presents an overview of the architecture for the policy sub-system including:
its architectural structure and dependencies on other components, interactions between
the component elements and interactions with external components, extensibility of the
components and uses.

I.5.a Components
The figure below describes an overview of the policy sub-system components. The guiding
principles of this architecture have been:

• To minimise interactions with external components in order to ensure low coupling

• To provide a generic system that can be used for a wide range of policies and does not
depend on specific VO characteristics such as VO life-time or VO application area

• To enable the dynamic extensibility of the policy services both in terms of distribution
and in terms of functionality.

The main components are: the Policy Service which fulfils the role of policy deployment
manager and policy enforcement component for obligation policies (ECA-rules), the Policy
Interface Component through which administrators can interact with the running VO system
and the Authorisation Policy Decision Point. There are three main services that belong to
other subsystems and with which these components interact (shown as shaded in the
figure below). These are: the GVOA from which the policy service receives the policy
specifications and which the policy service may update if needed4, the notification service
to which the policy service subscribes in order to receive the events specified by the
policies, the policy enforcement point (PEP), which queries the Policy Decision Point in
order to obtain access control decisions for individual messages and which the service may
reconfigure through a management interface. Additionally, the figure below also represents
the target service on which invocations are made by the policy service according to the
policies loaded in that service. Note that the target services can be either application
services supporting the business process of the VO or administrative services of the VO
such as membership management, trust and reputation or infrastructure.
Although the diagram represents two policy services a VO may have several such services
that can ensure the deployment and enforcement of policies. For example, in the current
development plans for AL2, a policy service has been included as a front end to the
reputation service. Its main role is to implement policies that specify the reputation
thresholds for which notifications have to be issued to the other subsystems. When several
policy services are in use they should have the ability to federate and cooperate with each
other by exposing part of the target elements to each other’s actions or exchanging
policies. Note that the use of multiple components which interpret event-condition-action
rules in conjunction with a notification broker promotes de-coupling between the framework

4 In some circumstances when operational policies are changed the GVOA should be informed in order to maintain an up-to-date copy of
all policies and procedures.

D09 – TrustCoM Reference Architecture

 Page 44

sub-systems as several components can react independently to the same notifications
without the explicit knowledge of the component which has generated the notifications.

Figure 24: Architectural Overview of Policy Sub-system.

Below we detail the functions of each of the components:
Policy Interface - The policy interface are the user interface elements used by an
administrator in order to interact with a policy service. This will allow listing the policies
loaded in the service (including their status) and other elements present in the domain
service component of this service (see next section), instantiating new policies as well as
enabling and disabling them.
Policy Service - The policy service has primarily four functions: deploying the
authorisation policies to the authorisation policy decision points and deploying obligation
policies to other policy services, managing the policies specified and their life-cycle,
managing the adapter objects for the target services it performs actions on and
implementing the obligation policies defined in the form of event-condition-action rules.
Each policy service has a local repository, called the Local Persistence Store, in order to
ensure the persistence of policies. The internal architecture and function of the policy
service is presented in the next section.
Policy Decision Point - The policy decision point (PDP) implements authorisation and
delegation policies by evaluating requests sent by the policy enforcement point against the
policies that have been loaded to it. Policy Enforcement Points act as interceptors for each
request, interface with the trust and security services in order to validate the credentials
received with the request and forwards all the information to the PDP who returns a
permit/deny reply to the PEP.

D09 – TrustCoM Reference Architecture

 Page 45

Policy Service Architecture
The Policy Service itself is a composite component, which comprises four main
components: the local domain service, the event propagation engine, the policy interpreter
and the local repository. The structure and main interfaces of this component are
represented in the figure below.

Figure 25: Overview of the Policy Service Architecture

In essence the policy service has two interfaces (although they may themselves be
subdivided). One interface relates to the specification, instantiation, loading and unloading
of policies. It is used by the policy client or the other policy services in order to interact with
the policy service. The interaction with the other policy services is bi-directional in the
sense that other policy services may define, load or unload new policies into this service
just as the policy service may define, load or unload policies to them. It is through this
interface that the policy service receives the initial specification as well as any updates
from the GVOA and that it deploys the access control policies to the Authorisation PDP.
Policies apply to different sets of subjects (for authorisation policies) and targets. These
components may present heterogeneous interfaces though which invocations may be
performed on them. For example, re-configuration actions on a web-service may be
performed through a standard SOAP messaging interface or through a WSRF interface.
Infosets required for their configuration may also differ from service to service. For this
reason the policy service should be able to maintain adapter objects for the services which
it invokes in order to present a unified interface to the policy interpreter. Furthermore,
policies, need to be managed themselves in terms of their life cycle (enabled, disabled,
etc). In order to help with the categorisation and deployment of the adapter objects and
policies all policy services use a domain service component. The domain service provides
a hierarchical structure in which objects can be grouped in order to apply a common policy
to them and policy objects can be managed (including through other policies). Domains in
conjunction with policies are considered as one of the most effective means of categorising
and uniformly applying policies in distributed systems management.

D09 – TrustCoM Reference Architecture

 Page 46

Policies are persistent and must be maintained across interruptions and re-starts of the
policy service. Each policy service will therefore use a local repository for managing and
ensuring the persistency of policy object.
Finally, the policy service maintains several policies that apply to different objects. Several
policies may be triggered by the same event and different policies may be triggered by
different events. To this end the policy service must internally implement the functionality of
an event (notification) local system that enables to match the events against the policy
triggers.

The Policy Decision Point (PDP)
The policy decision point receives access control policies including both authorisation
policies and delegation policies in a format suitable for implementation by the access
control decision engine (XACML). The architecture of this component is comprised of a
policy interaction module which keeps track of the policies loaded into the current engine
so that they can be unloaded on request from the policy service, a request handler which
receives requests from the PEP applies any data processing required and handles all
communication with the PEP and the access control engine evaluation. These components
and interactions are represented in the figure below.

Figure 26 Policy Decision Point Architecture

I.5.b Interaction scenarios
In essence, policy services are used during the operation, evolution and termination phase
of the VO. At the end of the formation phase the GVOA must contain a description of the
roles and policies which apply to the VO. If any updates occur during the life-time of the VO
such changes will need to be reflected in the GVOA. We consider here that the VO
manager informs the policy service of the VO of the policy specification applicable and
loads this specification into the policy service. However, an alternative design could be that
the VO manager generates a notification when the GVOA is instantiated with the role and
service instances and the policy service retrieves this. The latter design presents the
advantage that other components can react similarly and concurrently to the same
notification, however it requires the policy service to be bootstrapped with a binding to the
notification service and with a policy which instructs it to retrieve the policy specification
upon receipt of the notification.

D09 – TrustCoM Reference Architecture

 Page 47

Once the policy specification is loaded into the policy service of the VO, the policy service
will load and instantiate any policies on remote services if the specification requires it, it will
instantiate the adapter objects for all the target services and events mentioned in the policy
specifications as well as creating and activating the objects implementing each ECA rule.
For access control policies the policy service will query the target service in order to identify
the policy decision point, transform the policy to the required XACML format and load the
policies into the policy decision point (PDP). These interactions are represented in the
figure below. Note however, that identifying the PDP associated with each target service
may be done by requesting the information from the service registry rather than from the
target service itself. The two alternatives are functionally equivalent.

Figure 27 Overview of policy deployment

During the operation phase of the VO 3 scenarios are possible:

• A (human) administrator changes some of the operational policies of the VO. In this
case the interactions follow the same sequence as indicated above. If the change has
been initiated through the policy interface rather than the GVOA the policy service will
generate a notification to inform all other components (in particular the VO Manager) of
the change.

• A notification specified in one of the policies occurs. The applicable policies are
triggered and the adaptation (management) actions are invoked on the target service.

• The PEP (see EN/VO infrastructure) receives a request for accessing a service. The
PEP interacts with the STS in order to verify the authenticity of any security tokens
presented and requests a decision from the PDP. The PDP encapsulates an
authorisation decision engine which returns then a decision to the PEP.

These interactions are represented in the figure below.

D09 – TrustCoM Reference Architecture

 Page 48

Figure 28 Summary enforcement for obligation and access control policies

This representation remains agnostic to the VO type, target services or particular
application environments. Typical examples include:

• reacting to SLA Violations by either updating the reputation, requesting membership
changes in the VO or enforcing compensation actions such as triggering the request for
additional analysis cycles in the CE scenario,

• reacting to significant changes in reputation by either requesting membership changes,
triggering the enforcement of secure audit of all interactions with that particular partner
by reconfiguring the interceptor’s handler chain or

• reacting to membership management events in order to trigger the instantiation of new
services or reconfiguration of access controls.

In each of these examples different interaction paradigms with the target service may be
employed and it is essential that the architecture of the policy service permits re-use of the
generic ECA paradigm across all of these application scenarios. Internally to the policy
service this can be achieved through the use of factories for the objects and adapters as
exemplified in the following diagram, which shows the loading of a policy.

D09 – TrustCoM Reference Architecture

 Page 49

Figure 29 Policy creation invocation

In essence policies are objects which are created through the use of a factory object
(ECAfactory) for obligation policies, (ACfactory) for access control objects. The
specification received from the GVOA through the VO Manager contains the infosets
needed for the parameterisation of the new instance. Every new instance of a policy leads
to the creation of a policy object which can initiate any invocations on any object known to
the Domain Service. Such objects may for example be adapters for external web-services
(created through the instantiation of a SOAPadapter factory) or for the notification proxy
when the required action is to raise a notification to the other subsystems. Note that
policies are now objects too on which specific operations like enable, disable, unload,
delete can be performed. In the case of access control policies these invocations would be
transmitted to the relevant PDP. Furthermore, these actions may be performed as the
result of another policy being triggered. Using such a paradigm it should be feasible to
extent the scope of use of policies in a simple way through the definition and
implementation of factories for new object adapters. Furthermore, although only obligation
policies and access control policies are described here such a design offers the possibility
to extend the scope of the policy service to different kinds of policies.

I.5.c Conclusions
The policy subsystem in a VO framework should provide support for declarative
specifications of behaviour which define the strategy, operations and access controls for
the VO. Event-condition-action rules have been identified as the most flexible paradigm for
supporting a wide range of adaptive strategies and trigger reconfiguration or administrative
procedures inside the VO in response to events such as SLA violations, changes in
reputation and changes in membership. The paradigm can also be applied in order to
define a number of other behaviours including aspects of membership management,
service categorisation and administrative re-configuration of web-service behaviour. To
achieve this in a flexible manner the design of the policy service must be easily extensible
to cater for a broad range of invocation protocols and the rules themselves must be clearly
separated from the specific aspects of the implementation. From an access control view
both delegation and authorisation policies must be supported. Their management should
however be done in a uniform way with the other policy constructs for two reasons: so that

D09 – TrustCoM Reference Architecture

 Page 50

grouping constructs such as roles and relationships can apply to both kinds of policies and
so that adaptation policies such as ECAs can be used in order to trigger changes to the
access control configuration.

I.5.d Future Work
This section has presented the framework of the policy subsystem and has emphasised its
architectural constructs. We have focussed on architectural aspects because as
implementation activities in AL2 progress, much of the work has been dedicated towards
the realisation of a computational framework for the policy sub-system that promotes low-
coupling in the design and that is sufficiently flexible to accommodate a wide variety of VO
management tasks through adaptation and reconfiguration. Previous deliverables (D09,
D16 and D19) have also introduced a number of concepts for aggregation of policies such
as roles and relationships and even a prototypical concept of a policy specification
language. We have not revisited them in this deliverable although some changes have
been made in those respects as well. Future work in AL1 will primarily focus on re-visiting
those higher-level concepts in light of the progress made AL2 and of the closer integration
of the various sub-systems.

I.5.e Dependencies Overview
 Dependency

The General VO Agreement (GVOA) contains the policies that need to be distributed within the VO
and should be updated with any changes to the policy specifications occurring during the operation
phase.

VO
 M

gm
t

Notifications corresponding to all events specified as part of the policies will be received from the
Notification broker in order to trigger the adaptation actions specified as part of the policies. The
policy service itself will generate notifications regarding policy deployment or failures of the adaptation
actions.

EN
/V

O
Inf

as
tru

ctu
ire

The policy enforcement point queries the policy decision point in order to obtain access control
decisions on each invocation.

Al
l

The adaptation actions performed by the policies may include membership management procedures,
and reconfiguration actions (in particular on the security services). These actions which depend on
the specific scenario for which the VO is configured need to be implemented by the corresponding
services.

table 3: overview over the dependencies between Policy components and components of other subsystems

I.6 EN/VO Infrastructure
The EN/VO Infrastructure workpackage does not provide one logical, integrated
subsystem, but rather a set of functionalities, realised as separate components,
respectively packages. These functionalities contribute to the base layer of TrustCoM,
allowing for interactions across enterprise borders (notifications, messaging and logging),
distribution and management of service and component instances (service instantiator,
service instance registry and information repositories), as well as supporting the discovery
process (discovery broker and repositories).

D09 – TrustCoM Reference Architecture

 Page 51

Please refer to deliverable D16 for an overview over the underlying concepts, respectively
to D18 for more details about the usage of WS specifications in the EN/VO Infrastructure
subsystem.

I.6.a Components Overview
cd VO Management

Factory

Instantiate

Notification
Broker

Coordinator

Message
Interceptor

PEP

Serv ice Instance
Registry

Notification
Proxynotify

subscribe

Instantiator

instantiate

register

instantiate

(any) Serv ice

"Gateway"

Service Host

Service Node

Messaging

notify

subscribe

Register
Instantiate

Register
Subscribe

forwardNotification

«delegate»

Figure 30: Composite Structure diagram of the components related to instantiation
and communication.

Such VO architecture would need:
 A messaging infrastructure that supports various interaction patterns (e.g. one-way

notification, request-response, brokered delivery, mediated and unmediated
coordination protocols). The infrastructure should be product and platform neutral.

 Operational management and security infrastructure services (service and network
resource discovery, security, message reliability, transaction management, service
composition, federation, and policy enforcement)

 Service exposure which includes the ability to deploy the applications, advertise them
as capabilities and enable on-demand creation & management,

The framework infrastructure can therefore be broken down into three major layers as
shown in the diagram hereafter:

 The infrastructure services
 The service bus
 The application exposure layer

D09 – TrustCoM Reference Architecture

 Page 52

Figure I-31. Framework infrastructure overview

In addition to the basic functionalities the infrastructure services provide, the latter can be
combined to meet more complex needs in a VO – for instance – secure federation. This will
be dealt with later on. Let’s now have a look at the elements that constitute the base of a
VO infrastructure.

I.7 EN/VO Infrastructure: Basic VO elements

I.7.a The enforcement point

Concept
Enforcement is carried out by SOAP ‘interceptors’ inserted into the message path between
sender and recipient. The insertion is achieved by dynamically selecting and chaining
handlers (a.k.a. interceptors) based on the contents of the SOAP message and statements
contained within the enforcement policy. The enforcement policy is assigned to every
instance of the resource by the Configuration Manager via Management Interface.
There are four types of policy present in the system: Enforcement Configuration Policy
(ECP) (describes the enforcement logic for a particular instance of the resource); Capability
Exposure Policy (CEP) (used to advertise the security capabilities of a particular resource);
Interceptor Reference Policy (IRP) (reflects the mapping between a particular operation
type and the software code responsible for the enforcement of this functionality; it can be
altered only by a deployment of a new enforcement package); Utility Services Policy (USP)
(contains locations of the infrastructure services which might be invoked during the
enforcement process).

D09 – TrustCoM Reference Architecture

 Page 53

Figure I-32. High-level view of the concept

Policy structure

Figure I-33. The structure of a typical security policy

The enforcement point at the endpoint level
The standalone architecture assumes that all of the components of the enforcement
middleware are implemented and deployed as part of the same software package (Figure
I-34). This option is especially beneficial in the situations when the ultimate recipient and

D09 – TrustCoM Reference Architecture

 Page 54

the enforcement middleware are placed on the same host and no routing is required. Then
the Enforcement middleware is plugged directly into the SOAP engine which is used to
provide web service wrapper for the protected resource. In this case:

a. Enforcement actions take place between the resource protected and the network
endpoint that is exposed on the host implementing the resource virtualisation, i.e. at
the host where the network service exposing the resource has been deployed.

b. The enforcement middleware is transparent to both the client and the resource
protected.

Figure I-34. System architecture with security middleware deployed locally to the protected resource

Standalone enforcement point
The second design option is to have an enforcement middleware on a separate host from
the protected resource (Figure I-35). In this case the enforcement middleware is deployed
as standalone intermediary. As in the previous case, all interceptors are implemented as
part of the same software package. The enforcement middleware deployed in this fashion
can either be visible on the network and have its own network address or take advantage
of protocol binding techniques and be transparent to both the client and/or the resource at
the service/application level of the network. Examples of standalone intermediaries include:

 SOAP intermediaries which are visible to the application network and
 HTTP or TCP routers which are specific to intercepting SOAP messages over HTTP

or TCP, respectively, and are transparent at the SOAP layer but visible at the HTTP
or TCP layers, respectively

D09 – TrustCoM Reference Architecture

 Page 55

Figure I-35. System architecture with security middleware deployed remotely to the protected resource

Enforcement process

Figure I-36. The process of enforcement where the interceptor chain is formed out of interceptors deployed

locally

The process of the enforcement which relies on the construction of the configurable
interceptor chains can be seen in the Figure I-36. The composition of interceptor chains is
process based on the amalgamation of the message content analysis and the security
requirements of the protected resource. Based on the outcome of this fusion the
interceptors are selected from the interceptor pool and inserted into the chain. As
mentioned earlier the interceptors in a chain may be deployed locally or they can be
distributed over the network and be invoked remotely.

D09 – TrustCoM Reference Architecture

 Page 56

Security configuration adaptation

Notification
Proxy

Figure I-37. System components responsible for the security configuration adaptation

The process of adaptation is described in Figure I-37. Once the failure has been detected
enforcement middleware produces the notification and submits it to the Notification Broker.
Notification Broker then notifies the Configuration Manager about the event. Based on the
information received and its internal supervision policy the Configuration Manager can
react adequately and update a configuration policy, say ECP. This update will have an
immediate effect and will influence the way interceptor chains are constructed

D09 – TrustCoM Reference Architecture

 Page 57

I.7.b The messaging layer

Overview
Services that want to communicate or engage in a conversation will be able to send their
requirements regarding their security policies to our third party, in exchange of guarantees
(in form of liabilities) that these policies will be upheld. The implementation of services will
be carried out as a set of protocols whose execution will provide certain guarantees. The
third party infrastructure will handle messages in certain predetermined ways in order to
guarantee a message’s anonymity, sender’s privacy, accuracy and others (see Figure
I-38).

Figure I-38. Third Party Infrastructure Services

Services will be used to guarantee certain attributes of the message exchanges as part of
a wider conversation.

Routing component
The routing component is one step down from the enforcement point. In the example of
message delivery happening over the HTTP protocol, the routing component reads the
HTTP headers (message headers) and determines where to send on the message it has
just received. The routing component can be combined with the enforcement point to
deliver more complete scenarios. Such an example would be upon the reception of a non
encrypted message, the routing component would forward the message to an end service
that does not require messages to be encrypted.

Anonymity
This service will make use of current web service standards to mediate the delivery of a
message from one party to another without revealing the sender’s identity if this not
desirable. The third party infrastructure can, in this case, guarantee the anonymity of the
message while at the same time guaranteeing other properties such as message integrity.

Privacy
The proposed infrastructure will provide guarantees regarding a message’s integrity and
confidentiality as well as guarantees about the accountability of the sender without
compromising one’s sensitive information.

Accuracy
Third party infrastructure will provide guarantees about the accuracy of the message.
Senders and Recipients will have guarantees that the integrity of the message has not
been compromised. Although there are a number of mechanisms for providing message

D09 – TrustCoM Reference Architecture

 Page 58

integrity, there is an additional challenge in providing message integrity in the light of our
earlier discussion on anonymity and privacy.

Transaction Isolation
Transaction Isolation is a mechanism that enables two services to participate in several
VOs, even if the message exchanges are identical for all of these VOs. We want to
distinguish between different sets of transactions that are associated with a particular
objective even if the transactions are between the same services. Such a mechanism
would let services participate in several different contexts, each of which may implement
different policies regarding the security of those messages. Services will also be able to
process messages from different contexts enhancing at the same time the degree of
dynamicity of those services. Services will therefore not be bound by VOs, which would
normally inhibit their participation in other VOs, but by context which is a more flexible
concept to deal with.

I.7.c Coordination
The coordination infrastructure provides coordination protocols able to determine and to
agree on whether the common goal among services has been reached. Some of the
service coordination (such as reliable message exchanges, e.g. as in the OASIS WS-RM
specification) does not require explicit coordinator, whereas transaction protocols such as
service instantiation and service instance destruction offer examples where mediation is
required in order to assure coordinated behaviour (including the reservation / release of VO
infrastructure resources). The coordination infrastructure offers both the message
correlation framework and the mediating services that may be required in order to
implement the coordinated message exchanges between web service instances that
support the operation of VO services.
Coordination context is of a form of a complex XML element which can be adapted to
include various contextual information. Some of the representative examples with respect
to the TrustCoM architecture are:
 VO formation and enactment. By including a VO identifier as a part of the context,

one can distinguish management –related interactions to the scope of the particular VO.
In addition, a separate context is created to support the execution/ interactions of the
application services (for that VO).

 Service instantiation. Since service instantiation includes creating a token, setting
security policy and defining the SLA for the service instance, a number of components
from different subsystems are included in the process. There may be a number of
instantiations (of same/different service types and for the same/ different VOs)
occurring concurrently. Use of the context would allow setting a clear separation
between the interactions related to different activities. An identifier of the service
instance being created may be an obvious choice to include in the context in order for
services to be able to distinguish different contexts.

 Federation of trust realms. This refers to dynamic creation of a group of participants,
where different participants may belong to different trust realms. The member
requesting a group creation is activating a context for the group (using WS-C Activation
service). The context has a unique identifier and is included in messages (using WS-C
Context element). The context is passed with every message relating to the group. All

D09 – TrustCoM Reference Architecture

 Page 59

recipients of a contextualised message attempt to register with this context (WS-C
aware PEP and WS-C registration service). The context has a token associated with it
which includes a public key that is bound to the context and successfully registered
participants receive the corresponding private key upon their successful registration.
This token is unique to the context identifier and the client activating. Among others, the
context/key-pair mechanism is used in order: to protect content that is shared among
participants, and to correlate message exchanges in the same group.

I.7.d Notification service
The notification infrastructure provides the capabilities for publishing, subscribing to and
managing subscription to notifications about single events or families of events of interest.
It also provides mechanisms for organising notification message types so that subscribers
can conveniently understand what messages they can subscribe to, as well as capabilities
to broker notifications and transform from one family of notification types to another.
The initial Notification subsystem consists of two components:

 the Notification Proxy (local to the nodes on which the notification producing and
consuming services reside) and

 the Notification Broker.
Their task is to allow notification passing in the VO Infrastructure with a minimal
implementation effort for the service providers – this involves topic handling, notification
forwarding, subscription management, etc. In general, the Notification Proxy takes over
notification management at the service provider nodes, while the Broker is responsible for
managing multiple topic sources and subscriptions to them. The Broker may also act as an
intermediary for notification forwarding, if subscribers are unknown to the notification
source.

cd Notification

Notification Proxy

Notification ProxyNotification
Broker

(any) serv ice

trigger / notify

forward
Notification

forwardNotification

notify

notify

subscribe

register

subscribe register

Figure I-39. Notification infrastructure overview

D09 – TrustCoM Reference Architecture

 Page 60

I.8 EN/VO Infrastructure: Advanced VO functionalities
With the interaction between the basic components of the VO infrastructure, one can
achieve further accomplishments. The following paragraphs give an overall overview of
component interaction and the services these interactions provide.

I.8.a Service instantiation
Process of service instantiation is described via example taken from the collaborative
engineering scenario.
The basic storyline of the scenario is that a VO member wants to expose a new service to
be used in the VO. The following steps comprise the application part of this activity:

1. On-demand creation of a service instance: Requester (from a GUI, or a user agent
representing the client, or another service). Request is sent to the dedicated
Instantiation service.

2. Request to Service Factory for creation of new Service Instance (i.e. creation of new
ResourceProperties document, in WSDM/WSRF terms). This includes creation of
EPR for the instance, which is passed back to the Instantiator.

3. Creation of the Service Endpoint for the service instance. This is a SOAP interceptor
which is the access point for the service instance and performs the function of the
PEP.

4. Configuration of the PEP/ Service Endpoint. This step also includes binding to other
TrustCoM services. It can be performed as the following independent activities:

a. Security-related: creation of the token for the service instance and binding to
the STS);

b. Policy-related: configuration and activation of the policy instance for the
service instance, and binding to the PDP);

c. SLA-related: configuration and activation of the SLA instance for the service
instance, configuration of monitors.

5. Update of the VO membership state (Active SLA, services available).
6. EPR of the new (configured) Service Instance returned to the Requester.
7. Requester invokes the service - test service operation:

a. Successful request using new service instance: show access control,
monitoring in operation.

b. Unsuccessful request or violation using new service instance: show access
control, monitoring in operation.

Before any interactions are allowed between different services, they need to register to the
activity with the Coordinator. These “control” messages are shown in a different colour and
without numbering). In summary, Instantiator (which initiates the activity), activates the
context for this activity with the Activation service of the Coordinator. Afterwards, the
context is passed to the services which need to participate the activity, causing them to
register. After that, the interactions follow message exchange as defined for this particular
transaction.

D09 – TrustCoM Reference Architecture

 Page 61

InstantiatorRequester
(TC-ConsEng)

NEC Antenna Service
(including

Service Factory)

1

3

Policy Service,
ECA, PDP

SLA Repository,
Evaluators,

Monitors

Membership
Manager

4a 4b 4c

4 - bindings

5

6

2

EN/VO
Component

Security
Component

Policy
Component

SLA
Component

VO Management
Component

Application
Service

STS

Activation

Registration

NEC Antenna
Service Instance

PEP

7 - activate simulation
(success / fail)

Concurrent coordinated activities are interposed to the main
activity, and the their outcomes trigger messages 4a, 4b, 4c.

Figure I-40. High-level diagram of the “Service Instantiation” activity. Application services are shown in the
context of CE scenario. Please note that all the services (may) contain the PEP, but it is shown only for the

new service instance

For an activity with a lot of interactions and a lot of services involved, the transaction (and
therefore any potential rollback) can become complex. Therefore, it is advisable to
separate independent interactions as separate, interposed activities. In the example given
in Figure I-40, “security, policy, and SLA part of” the Instantiation activity includes a number
of interactions within the corresponding subsystem, without dependencies on the full
process. Therefore, these are broken down in the separate (interposed) transactions, and
include interactions as outlined in the steps 4a, 4b, 4c above. Typically, this is done in the
following way: a service that receives registration request from Instantiator will register for
the main activity, at the same time activating its own interposed activity, with a different
coordination context. The participants registered with this new context can interact only
within the interposed activity, and do not have the access to the main activity. Upon
completion, the result of the interposed activity is communicated back to the main one via
the initiator of the interposed activity.
Such an approach decreases dependencies and coupling of different stages of the activity
and makes any potential rollbacks easier, as the transaction itself is less complex.

I.8.b Federation support
Enterprise-wide services are specific to a trust realm, but may interact with any other
services from the enterprise. In addition, STS services interact across trust realms in order
to establish trust relationships required for operation of context-management and group
services. One is to assume the existence of this basic trust relationship (i.e. it has already

D09 – TrustCoM Reference Architecture

 Page 62

been established between STSs from different trust realms, via some of the already known
federation mechanisms).
Context management services may operate across trust realms, making use of the existing
basic secure federation. Normally, registration services are those that interact over different
realms, as typically only one activation service is used (normally from within the realm of a
network service initiating the group).
Context management service may be provided by a third party, following the establishment
of the federation which includes realms of the enterprises that contribute network services
to the group, and the realm of the third party provider.
Group includes network services (typically web services) that are brought together for the
purpose of an activity.

Enterprise

Security Token
Service (STS)

Policy Decision
Point (PDP)

Activation
Service

Registration
Service

Web Service Web Service

Enterprise-wide
management services

Context management
services

Group
(cross-enterprise)

Coordination Service

Figure I-41. Basic system

The following figure displays the system for group-bootstrapping across two trust realms,
with a single coordination service. It is assumed that STSs from different trust realms have
means to establish trust relationship (e.g. some of the WS-Federation models).
The following summarises main interactions shown in Figure I-42: upon the activation
request from WS1, credentials presented to the activation service are evaluated by
respective PDP and STS services.
If the request is accepted, WS1 is returned coordination context for the group. This enables
WS1 to register to the activity (if required). In a similar way, WS2 is enabled to register to
the group when the context is passed from WS1 to WS2 (as a part of the application
message). Similar to the activation request, registration acknowledge is subject to (and
preceded with) the evaluation of the credentials by respective PDP and STS services.

D09 – TrustCoM Reference Architecture

 Page 63

Enterprise A Enterprise B

STS A STS B
Direct or

brokered trust

PDP A PDP B

Activation
Service A

Registration
Service A

Web
Service 1

Web
Service 3

Figure I-42. High-level Overview of Interactions for Creating a Federated Group of Services

As a part of creation of the coordination context, activation service may interact with other
(security) services in order to provide group-specific, security-related information which will
augment the basic context. While the basic context (as prescribed by WS-Coordination
specification) allows a potential participant to request registration to the federated group (at
the registration service), the security-related part of the context (which would normally be of
the form of an encryption key and/ or a token) would enable a participant to secure the
interactions within this particular context, upon successful registration.

I.8.c Validation/ Authorisation of a SOAP Request

Policy Enforcement Point-side
 Overview

Policy Decision
Point

Policy Enforcement
Point

Credential
Processing

Service

Security Token
Service

Context Handler/
Dispatcher

A3.2 A1.1A2.1

Request Message
Application/

Service

A1.2A2.2A3.1

A4

Figure I-43. PEP-biased Model

D09 – TrustCoM Reference Architecture

 Page 64

 Description
This model relies on PEPs to facilitate interaction and control data flow with miscellaneous
federated security services. Potentially this model requires a PEP to have knowledge about
the available security services in a trust realm and of the interaction protocols they support.
This model also delegates to the PEP the responsibility for maintaining the order of
interactions necessary to fulfil enforcement duties, error handling and management of
notifications. The typical order of invoking the services would be as described in the
paragraph below (see also Figure I-43 for overview).

 Incoming messages:
1. STS – the PEP protecting the recipient asks the STS to validate the token and to approve the

claims included in the token (A1.1, A1.2). Depending on the type of tokens different STS
services may be invoked.

2. CPS – credentials supplied with the request are further processed if needed (A2.1, A2.2).
3. PDP – an authorisation decision is made about the actions requested (A3.1, A3.2). Commonly

this requires the action identifier (and often action parameters) to be sent to the PDP along with
attributes corresponding to the validated claims and other contextual information (e.g. time,
transaction context, etc). Depending on the PEP/PDP protocol, the PDP may be allowed to
return an obligation statement which may trigger an additional round of collecting tokens,
processing credentials and requesting for a further authorisation in view of the additional
evidence provided.

 Outgoing messages:
1. PDP – the PEP acting for the requestor obtains an authorisation to proceed with the request.

Such authorisation decisions are based on policies that are specific to the realm of the requestor,
and they are not necessarily concerned with whether the recipient will authorise the request or
not. In particular, the requestor may not be allowed to request an action even if that action could
have been authorised at the recipient’s side. Depending on the architecture of the requestor’s
trust realm there may be cases where the PEP will have to validate the requestor’s credentials
prior to this step. Depending on the PEP/PDP protocol, the PDP may also be allowed to return
an obligation statement which may trigger an additional round of collecting credentials prior to
successful authorisation.

2. CPS – the requestor obtains the set of credentials associated with the request.
3. PDP – the requestor obtains a token asserting a collection of claims that match the credentials

provided.

The major benefit of this model is the flexibility it provides and the fact that it can scale to a
chain of PEPs focusing on the different types of enforcement actions within the same
realm. It allows for deployments where STS, PDP, CPS and PEP are loosely coupled
which can be advantageous when upgrading any of these services. This is beneficial when
a potentially large number of PEPs need to share a potentially smaller number of STS,
CPS, PDP services. It also facilitates the reconfiguration of PEP in order to invoke different
types of STS, CPS and PDP depending on the contents of the message (e.g. token,
credentials provided, types of action requested, etc.), the state of the enforcement and the
context of the interaction. This is particularly important for large-scale decentralised
networks where the infrastructure may need to adapt to contextual changes and where the
availability of some of these components cannot be always guaranteed. Finally, it facilitates
the inclusion of trusted third party services for validation or processing of credentials if
needed.

D09 – TrustCoM Reference Architecture

 Page 65

Disadvantages of this model include the fact that that the PEP is required to implement
intelligent decisions or use complex configuration information in order to manage the
sequence of enforcement actions. Furthermore, caching of security related information for
the duration of conversations between requestor and recipient may be required .to avoid
the traffic overhead incurred if a single request requires several conversations between
security services to take place.

Policy Decision Point-side
 Overview

Policy Decision
Point

Policy Enforcement
Point

Credential
Processing

Service

Security Token
Service

A2

A1

Request Message
Application/

Service

A5

A6

A3

Context Handler/
Dispatcher

A4

Figure I-44. PDP-biased Model

 Description
This model places more emphasis on the processing of security information and the
reasoning performed by the PDP. In this model the PEP effectively has only knowledge
about available PDPs and the protocols they support. Token and credential validation and
processing are performed as a part of the authorisation policy evaluation within the PDP.
During the processing of an incoming message, PEP sends all evidence available to the
PDP, unprocessed, in the context of an authorisation request. The response from the PDP
includes the authorisation decision.
During the processing of an outgoing message, PEP, sends an authorisation request to the
PDP and obtains an authorisation response that includes any tokens required as evidence
to support the authorised request.
In this model the actual PDP needs to implement STS/CPS functionality (or to invoke
external STS and CPS services) and handling of message contexts. Since the interactions
with STS/CPS are out of the chain of enforcement actions it may be possible for it to
execute validation of credentials and evaluation of authorisations concurrently in order to
reduce the delay times.
However, this model is less flexible than the one described earlier. For example, the
introduction of a new STS for validating new token types will require upgrade of the whole

D09 – TrustCoM Reference Architecture

 Page 66

PDP configuration. It also allows for a tighter coupling between the authorisation policies
and the types of credentials that may be used and fusion of authorisation, and privilege or
attribute management schemes, which may lead to architecting systems that are difficult to
maintain and manage. In particular, it encourages models where the authorisation policy
pre-determines the type of evidence that can be processed, which increases the difficulty
of federating Trust Realms.

Security Token Service-side
 Overview

Policy Decision
Point

Policy Enforcement
Point

Credential
Processing

Service

Security Token
Service

A2

A1

Request Message
Application/

Service

A4

A5

A3

Context Handler/
Dispatcher

Figure I-45. STS-biased Model

 Description
The approach taken in this model is interchanges the roles of PDP and STS relative to the
PDP-biased case. In this model the STS needs to implement PDP/CPS functionality or the
necessary protocols for invoking external PDP and CPS services. For an incoming
message, PEP requests the validation of tokens for the purpose of a requested action, and
the result of the validation depends on the tokens being valid and the action being
authorised. For an outgoing message, PEP requests the issuing of tokens for a requested
action and the result depends on the result of the authorisation decision and the success of
token issuing.
Similarly to the previous model the interactions with other security services can be
executed concurrently in order to reduce delays. For example, the STS may initiate an
authorisation request assuming the validity of credentials while it is validating and
processing the credentials. Then accepting a positive authorisation response will depend
on the result of the credentials validation.
In contrast to the PDP-biased model, this model allows deployments where the PEP has a
choice of which STS to invoke depending on the type of tokens provided. Furthermore, the
model does not encourage authorisation policies whose semantics depend on the type of
evidence provided. In other words the authorisation policy evaluation and the
processing/validation of evidence can be decoupled in this model.
However, this model also suffers from scalability and flexibility problems similar to the PDP-
biased case. In this model the STS is now expected either to evaluate authorisation

D09 – TrustCoM Reference Architecture

 Page 67

policies or to implement protocols for requiring and obtaining authorisation decisions.
Furthermore, the model suffers from the fact that it increases the dependency on the
specific types of token supported by some STS.

	TrustCoM Framework V2.pdf
	TrustCoM Framework V2.pdf
	D29_35_36 TrustCoM Framework V2 - Appendix (post_review).pdf
	D29_35_36 TrustCoM Framework V2 - Appendix (post_review).pdf
	Subsystem Architecture
	VO Management
	Components
	Lifecycle Management
	Membership Management
	GVOA Management
	VO Management Registry

	Interaction Scenarios
	Identification and Formation
	Operation and Evolution
	Dissolution and Termination

	Dependencies Overview
	EN Infrastructure
	BP Management
	EN Infrastructure - Discovery Service
	SLA Management - SLA negotiator
	SLA Management - SLA evaluator
	Reputation Service
	Policy Services

	Business Process Management
	Conceptual Justification
	Components
	BP Designer
	BP Repository
	CDL++2BPEL Service
	CD Knowledge Base
	BPM Service
	BP Engine
	The TSC Concept

	Interaction Scenarios
	Identification and Formation
	Operation and Evolution

	Dependencies Overview
	Supporting Services
	VO Management
	Notification

	SLA Management Services
	Components
	SLA Manager
	SLA Template Repository
	Notary
	SLA Negotiator
	SLA Signer
	SLA Repository
	SLA Monitor
	SLA Evaluator
	SLA Performance Log

	Interaction Scenarios
	Discovery
	Formation
	Operation & Evolution
	Dissolution

	Dependencies Overview

	Trust & Security Services
	Conceptual Justification
	Components
	Security Token Services
	Security Configuration Management
	Trust Negotiation
	Secure Audit Service
	Reputation Management

	Interaction Scenarios
	Addition of an Organisation
	Normal Operational Work
	Removal of an Organisation

	Dependencies Overview

	Policy Control
	Components
	Policy Service Architecture
	The Policy Decision Point (PDP)

	Interaction scenarios
	Conclusions
	Future Work
	Dependencies Overview

	EN/VO Infrastructure
	Components Overview

	EN/VO Infrastructure: Basic VO elements
	The enforcement point
	Concept
	Policy structure
	The enforcement point at the endpoint level
	Standalone enforcement point
	Enforcement process
	Security configuration adaptation

	The messaging layer
	Overview
	Routing component
	Anonymity
	Privacy
	Accuracy
	Transaction Isolation

	Coordination
	Notification service

	EN/VO Infrastructure: Advanced VO functionalities
	Service instantiation
	Federation support
	Validation/ Authorisation of a SOAP Request
	Policy Enforcement Point-side
	Policy Decision Point-side
	Security Token Service-side

	Text1: RAL-TR-2006-003
	Text2: The TrustCoM Framework for trust, security and contract management of web services and the Grid - V2
	Text3: Edited by Michael Wilson, Alvaro Arenas and Lutz Schubert
	Text4: March 2006

