An Autonomic Security Monitor for Distributed
Operating Systems

Alvaro E. Arenas, Benjamin Aziz, Szymon Maj, and Brian Matthews

! Department of Information Systems, Instituto de Empresa Business School,
Madrid, Spain
alvaro.arenas@ie.edu
2 School of Computing, University of Portsmouth, Portsmouth, U.K.
benjamin.aziz@port.ac.uk
3 AGH University of Science and Technology, Krakow, Poland

smaj@student.agh.edu.pl

4 e-Science Centre, STFC Rutherford Appleton Laboratory, Oxfordshire, U.K.
brian.matthews@stfc.ac.uk

Abstract. This paper presents an autonomic system for the monitor-
ing of security-relevant information in a Grid-based operating system.
The system implements rule-based policies using Java Drools. Policies
are capable of controlling the system environment based on changes in
levels of CPU/memory usage, accesses to system resources, detection of
abnormal behaviour such as DDos attacks.

1 Introduction

Monitoring is the act of collecting information concerning the characteristics
and status of resources of interest. Monitoring open distributed systems is an
active research area, and monitoring security properties is still considered a
challenge. The aims of this paper is to present the monitoring of security-relevant
information in the distributed operating system XtreemOS [5], a Grid-based
operating system (OS) based on Linux.

The main contributions of the paper are the following. First, describing an
abstract architecture for monitoring security properties in a distributed oper-
ating systems. Second, presenting an autonomic system that triggers corrective
actions on monitored events. Finally, showing the implementation of the archi-
tecture and its integration into the XtreemOS operating system

The structure of the paper is as follows. Next section acts as background
section, introducing the main concepts related to monitoring distributed systems.
Section 3 focuses on the XtreemOS systems, describing its general monitoring
subsystem. Then, section 4 explains how the general XtreemOS monitor was
customised for monitoring security properties. Section 5 describes an autonomic
rule-based system that exploits monitored data in order to take some actions.
Section 6 shows the implementation of the secure monitoring subsystem. Then,
section 7 compares our work with others. Finally, section 8 concludes the paper
and highlights future work.

2 Arenas et al.

2 Background

We start by revising the main concepts and terminology related to monitoring,
following the terminology defined in [9].

— An entity is any networked resource, which can be unique, having a consid-
erable lifetime and general use. Typical entities are processors, memories,
storage media, network links, applications and processes.

— An event is a collection of timestamped, typed data, associated with an
entity, and represented in a specific structure.

— An event schemadefines the typed structure and semantics of an event.

— A sensor is a process monitoring an entity and generating events.

Our interest is in monitoring distributed operating systems, and in particular
Grid-based operating systems. Hence, we use as a reference the Grid Monitoring
Architecture (GMA) [7] proposed by the Open Grid Forum. The main compo-
nents of the GMA are the following.

— A producer is a process providing events.

— A consumer is any process that receives events

— A registry is a lookup service that allows producers to publish the event types
they generate, and consumers to find out the events they are interested in.

After discovering each other through the registry, producers and consumers
communicate directly. GMA defines three types of interactions between pro-
ducers and consumers. Publish/subscribe refers to a three-phase inter-action
consisting of a subscription for a specific event type, a stream of events from a
producer to a consumer, and a termination of the subscription. Both the estab-
lishment and the termination of a subscription can be initiated by any of the two
parties. A query/response is an one-off interaction initiated by a consumer and
followed by a single producer response containing one or more events. Lastly,
a notification can be sent by a producer to a consumer without any further
interactions.

3 Monitoring in a Distributed Operating System

This section first presents a brief description of the XtreemOS distributed oper-
ating system and then gives a general overview of its monitoring component. The
XtreemOS Grid OS is based on the Linux OS, extended as needed for enabling
and facilitating Grid computing [5]. XtreemOS Grid spans multiple administra-
tive domains on different sites, comprising heterogeneous resources that can be
shared by the participating organisations. As illustrated in Figure 1, XtreemOS
is composed of two subsystems:

— The XtreemOS foundation, called XtreemOS-F, is a modified Linux kernel
embedding Virtual Organization (VO) support mechanisms and providing
kernel level process checkpoint/restart functionalities.

An Autonomic Security Monitor for Distributed Operating Systems 3

— The high-level Grid services, called XtreemOS-G, which comprises several
Grid OS distributed services to deal with resource and application manage-
ment in VOs, and it is implemented on top of XtreemOS-F at user level.
The three main subsystems of XtreemOS-G comprises: Data Management,
which federates multiple data stores located in different adminitrative do-
mains; VO Management, which manage the life-cycle of VO, including the
management and enforcement of VO security policies; finally, the Application
Execution Management (AEM) subsystem is in charge of discovering, select-
ing and allocating resources for job execution, as well as starting, controlling
and monitoring jobs. XtreemOS also includes a set of services facilitating
scalability, including a scalabe publish/subscribe subsystem.

| Grid Applications | User Software

A

N I
A 4 A .
XtreemOS Grid OS
XtreemOS API (based on SAGA and POSIX) |

A \
Y vo Y
Applica'_:ion Management Data XtreemOS-G
Execution P A A | Management

M g t | >
t 3 A
| Infrastructure for Highly Available and Scalable Services |

T T T Y

| Authz | + + +

| Extensions to Linux for VO Support and Checkpointing |
Embedded Linux

XtreemOS-F

Cluster Mobile Device

Fig. 1. XtreemOS Software Architecture [5]

XtreemOS follows the philosophy of associating a job with multiple processes
running on several nodes, similar to the Linux process-thread paradigm. To this
end, XtreemOS defines a hierarchy of entities composed of the job, job unit and
process. In order to check the status of jobs and processes, XtreemOS AEM
includes a monitoring infrastructure [6], which allows one to monitor the system
with user-defined events at the abstraction levels of jobs, processes and threads.

Figure 2 shows an abstraction of the XtreemOS monitoring infrastructure.
XtreemOS AEM includes two main components: the Job Manager, which pro-
vides job management features such as scheduling and storing job-related infor-
mation; and the Ezecution Manager, which manages execution of jobs at the
process level. Monitoring is performed at each of these levels, based on events
defined by the user or by the system. XtreemOS events, called metrics in [6],

4 Arenas et al.

getdobsinfo (jpblD, AllLevels)
— - Job level related monitoring

User JobManager 1 | XML = Job status
™ User metrics (Job related)
id g
Tt : il] Buffering
| IR (I
Parallel !
, | ol
T 1] .
i | Fyoctinn lays| monitoring
Execution level monitoing
Process Status
User Metrics (Process Related
ExechManager n i3 (s)
= . Buffering

Fig. 2. XtreemOS Monitoring Infrastructure [6]

have an event schema including a value type (Boolean, integer, timestamp, - - -)
and a scope. A scope (JOB, JOBUNIT or PROCESS) indicates the source of
monitoring information.

The monitoring service in XtreemOS is a general one, used by AEM services
as well as other XtreemOS services, such as the service for monitoring security
described in the following section.

4 Monitoring Security in XtreemOS

Our main objective is to exploit the XtreemOS monitoring infrastructure in order
to assess the security status of the distributed system. This section describes an
instantiation of the XtreemOS monitor subsystem to monitor security events.
First we describe the architectural distribution of the XtreemOS monitor; then,
we introduce the main use cases exploiting the security-monitoring capabilities;
and finally, outline the security events defined.

4.1 Security Monitoring and Auditing

XtreemOS defines two types of sites (organisations) participating in a distributed
system: A core site, which is a site hosting and executing XtreemQOS services
and is considered essential; usually it includes services such as VO membership
management, VO security policy management and auditing services. Any other
site participating in a XtreemOS Grid is considered a resource sites, usually
providing resources to the Grid.

An Autonomic Security Monitor for Distributed Operating Systems 5

We define two types of monitors. First, the resource monitor is responsible
for monitoring resource-related events such as CPU utilizations, memory usage,
network traffic, job status and job exit codes. There is one resource monitor
for each site participating in a Grid. Second, the core monitor monitors events
related to the Grid and VOs, and information collected from core XtreemOS
services such as VO Management. There is one instance of the core monitor
executing in the core site of the XtreemOS system.

In addition, we define an auditing service responsible for managing the mon-
itored information. It uses the monitors as a source of information, which is
stored in historical database for later analysis. There is one instance of the au-
diting service executing in the core site of the XtreemOS system.

4.2 Security Requirements

In order to define what type of information should be monitored, we analysed a
portfolio of fourteen Grid applications and identified the following use cases in
which the monitoring of security-related information is required:

— CPU/Memory Usage Restrictions. In this requirement, the system should be
able to register the amount of computational resources used by a user’s total
number of jobs. As soon as the user’s jobs use more than the specified quota,
the system takes an action; for instance, to forbid submitting any more jobs
by that user. A variation of this requirement would be to allow the quota to
be dynamically calculated based on the status of the distributed resources,
rather than presetting it statically during the initialization of the system.
The restriction on user actions may have expiration time, which may also be
based on predictions.

— Defense Against DDos Attacks. The aim of this case is to make the system
more resistant to Distributed Denial of Service (DDOS) attacks. A resource
analyzes incoming packets locally and exchanges aggregated meta informa-
tion with other resources, hence somehow monitoring the traffic data. Accu-
mulated knowledge enables detection and prevention of such attacks.

— Dynamic Access Control. Cases like this aim at restricting potentially harm-
ful accesses to resources dynamically. An access to a resource is governed
by dynamically changing attributes, which could be managed and controlled
according to either a Separation of Duty model or a Chinese wall policy
model.

— VO Usage Policy Enforcement. This case restricts available actions in a VO.
Users actions in the VO are monitored and possibly stopped and/or logged if
they do not match the predefined policies. These may forbid usage of certain
actions or restrict the frequency of such actions. Monitoring repeated unrea-
sonable requests or failed attempts to use the resource in a short amount
of time may lead to the suspicion that the user is attempting to misuse the
resource with ominous intent.

— Malicious Behaviour Detection. Another important requirement of Grid sys-
tems is to detect possible misbehavior of jobs in a Grid environment and

Arenas et al.

warn users in time to minimise the risk of damage from malicious behaviour.
If the monitoring system detects certain characteristic patterns in events
over some period of time during job executions, then this may imply execu-
tion of malware, therefore, requiring further the release of a warning to the
affected users.

Peak Hours Detection. This requirement is related to determining time pe-
riods during which the resources are scarce and times when resources are
abundant. The system monitors resource availability in time and determines
trends, presenting useful statistical information.

4.3 Monitoring and Auditing Capabilities

Based on the requirements, the XtreemOS system has defined the following
monitoring and auditing capabilities.

Monitoring Capabilities. These are related to the monitoring of various

information related to resource metrics, jobs, events, nodes and policy violations.

— Monitoring Resource Metrics. This capability allows the administrators to
obtain notifications when particular values for resource metrics change or
reach certain levels. For example, these include CPU utilization levels, mem-
ory usage levels and the amount of network traffic.

Monitoring Jobs. This use case allows the administrators to monitor job-
related information. Different job metrics can be monitored, for example,
job status, job submission time and job exit status, as well as higher-level
information such as the number of jobs currently running on a node or over
several nodes.

Monitoring Nodes. This includes the monitoring of various nodes in the Grid.
Example of what can be monitored on a node includes its state and the state
of the containers running on the node.

VO Policy Violation Monitoring. This capability generates notifications about
any policy violations in the system. In an autonomic policy system, this is
very important as it may trigger the evolution process for new rules and
policies. For example, if a user continuously violate their CPU usage quota
on a particular node, it may trigger a new rule that blocks the specific user
from submitting future jobs to the node.

Auditing Capabilities. Auditing capabilities include any functionality that

is based on the information gathered from the monitoring capabilities. These
include archiving and securing monitored data, querying historical database and
the generation of the various VO, node and user behaviour reports.

— Archiving and Securing Monitored Data. This capability simply allows any
monitored data to be archived in a historical database. In most cases, moni-
tored data is sensitive information that needs protection for future references.
Hence, this capability includes functionalities to protect monitored data by
using encryption or access control mechanisms.

An Autonomic Security Monitor for Distributed Operating Systems 7

— Querying Historical Database. This use case allows the querying of the histor-
ical database in order to retrieve information about past events at different
level of granularity: process, jobs, VOs.

— Report Generation. This capabilities allows generation of detailed reports
about either the VO state, the state of a particular node in the Grid, or a
specific user’s behaviour over a period of time.

5 Autonomic Management of Security Events

The monitoring and auditing capabilities described previously allows one to mon-
itor events, store them in a database, and query for particular events. In order
to achieve more autonomous behaviour, we have extended the monitoring ca-
pabilities with a rule-based system able to analyse monitored information in
real-time and take corrective actions accordingly, which themselves could lead
to new rules.

The rule-based system consists of four elements: Fvent Feeder, which provides
the stream of external events generated by the monitors into the autonomic
system; Rule Engine, the logic of the system; Rule Base, which contains the
collection of rule defined in the system; and Action Executor, which takes action
to affect external environment. In addition, there is a Working Memory that
is built dynamically from incoming facts and events during the life of system.
These main components of the architecture are shown in Figure 3.

insert
ccd evenis
notify with Event Feeder Working Memory
avents
reasoning
Monitoring Syst foke
Jonitoring System jons
Action Jaclmn cle i
Executor - ule Engine
A
rules
exacute
. external commands
Environment
Rule Base

Fig. 3. Architecture of the XtreemOS Autonomic Monitoring Sub-System.

Next, we describe in more detail each of these components.

8 Arenas et al.

— FEvent Feeder is the part of architecture responsible for communicating with
the monitoring system. Its implementations gather events either by subscrib-
ing to notifications from the monitoring system or by reading event objects
from external streams, like files. Events are then inserted directly into the
working memory, where the rule engine should react to them immediately.
Different implementations of this subsystem can handle different monitoring
systems and varying event formats, converting events into a suitable type if
necessary.

— Rule Engine works in stream mode, which means it can analyze events
in real-time, immediately firing any applicable rules, as opposed to filling
agenda with activations and periodically firing rules in determined order.
When a rule activated by some incoming event fires, the result may call the
action executor as well as add new facts into the working memory. The newly
added facts may lead to other rules being fired and this potentially-recursive
process is called reasoning or inferring.

— Rule Base contains all of the system’s logic except for the relation to the
external environment. It is loaded into the system and compiled during ini-
tialisation, therefore it is not possible to modify it during runtime. Rules
however can be modified before loading the system, but also may be config-
urable while being loaded into the system.

— Action Executor is responsible for the manipulation of external environment.
Consequences of some rules may affect external environment, for example
restricting user’s accesses, as opposed to rules only affecting the working
memory.

6 Implementation

The general XtreemOS monitoring component is part of the Application Execu-
tion Management (AEM) component [6]. XtreemOS monitoring includes events
and metrics. Examples of events include ”job failed”, ”VO created” or ”user
certificate not valid”. By contrast, metrics are user-defined and has associated
a value. Examples of metrics include ”cpu utilization - 80%”, " free disk - 100.5
GB” or ”jobs running - 5”.

Information for Process Monitoring is obtained from a daemon reading the
/proc/pid file in the nodes. The Job Monitoring implementation provides in-
terfaces to get the information associated to jobs (getJobsInfo, getJobMetrics);
mechanisms to add new information to the generated by the system - user met-
rics (addJobMetric, setMetric Value, removeJobMetric); and mechanisms to be
notified when certain monitoring events fire (addMonitoringCallback).

The Monitoring Manager collects monitoring data from various sources and
stores it for a period of time. Interested parties define monitoring rules which
describe what to monitor. When conditions of the monitoring rule are met, a
notification is issued. A particular monitoring rule is indentified by monitoring
rule name to which interested parties subscribe to receive notifications. The
Monitoring Manager implementation provides interfaces for saving events and

An Autonomic Security Monitor for Distributed Operating Systems 9

metrics (saveEvent, saveMetric); mechanisms for setting monitoring rules and
subscribing to monitoring notifications (addNotification, subscribe, unsubscribe);
and functionalities for defining aggregated metrics.

The Auditing Manager permanently stores monitoring data received from
the Monitoring Manager. Data is archived in a history database that can be
later analyzed and used for generating reports. The Auditing Management im-
plementation provides interfaces for defining archiving rules (addArchiveRule,
cancelArchiveRule); and querying the database (query). Hibernate is used as
query language.

The implementation of the Autonomic Manager of Security Events was car-
ried out using the Java Drools technology®, a Java-based platform for develop-
ing writing rules, workflows and performing event processing. We have defined
a Manager class that encapsulates and hides Java Drools interface in order to
simplify starting and stopping of the system. The Drools rule engine itself is not
thread-safe, but Manager synchronizes all necessary methods, thus the whole
system may be used by multiple threads, as its methods are non-blocking. The
Manager implements the FventEntryPoint interface, which is passed on as an
argument to the EventFeeder when it starts. In additiona, we have defined a
Configuration call that sets the initial parameters of the system. Objects rep-
resenting parameters are inserted into the working memory when starting the
system, therefore any subsequent additions will not affect execution.

7 Discussion

The approach we followed in this work on monitoring security information is
multi-layered. The first layer is security agnostic, i.e. low-level information is
detected using the XtreemOS AEM infrastructure [6], monitoring the states
of various processes and jobs. Second, based on the information collected by
the AEM, a security-aware monitoring and auditing service [8] is implemented,
whose monitored events could be queried directly from a database. Finally, an
autonomic security monitoring service is also implemented based on the infor-
mation collected from the AEM monitor; the service is dynamic in the sense
that is able to evolve the various rules depending on the status of resources, the
jobs running within, and the environment.

This is not the first attempt at achieving comprehensive monitoring in Grid
systems. In [7], the authors define a full Grid monitoring architecture, though
the architecture is designed with performance of Grid systems in mind, rather
than security. In [4], the authors monitor security information in Grids, which
is used only for brokering and selecting resources.

There are many systems that have been developed to support monitoring in
Grids, however, Ganglia [3] one of the most widely used such systems within
the Globus community, as a result of its integration with the Globus Meta Di-
rectory Service (MDS) [2]. In [1], a Grid monitoring infrastructure is defined,

® http://www.jboss.org/drools

10 Arenas et al.

called OCM-GQG, which can be used to support the development of various Grid
monitors.

8 Conclusion and Future Work

This paper describes the monitoring of security properties in the XtreemOS oper-
ating system. Monitoring security is seen as a particular case of XtreemOS mon-
itoring, where relevant events and user metrics are monitored and aggregated
in order to determine potential security problems. In addition, we presented
a Java-Drools-based autonomic monitoring system, which further extends the
functionality of the standard security monitoring service in XtreemOS with ca-
pabilities for the evolution of rules and policies based on the dynamic information
collected from the resources, jobs and VOs.

There are many directions for future work. Mainly, we would like to exploit
the XtreemOS autonomic monitoring service for the enforcement of more com-
plex autonomic security policies, in particular, focusing on the runtime detection
of malicious job signatures that could imply viral behaviour. The autonomic
monitoring service itself is somehow independant of the XtreemOS system in
that it only relies on the information collected by the AEM, therefore, another
main direction for future work will involve integrating the service with other
Grid middleware systems, in particular Globus and gLite.

References

1. Balis, B., Bubak, M., Funika, W., Szepieniec, T., Wismuller, R., Radeck, M.: Mon-
itoring Grid Applications with Grid-Enabled OMIS Monitor. In: Proc. First Euro-
pean Across Grids Conference. pp. 230-239 (2003)

2. Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid information services
for distributed resource sharing. In: 10th IEEE International Symposium on High-
Performance Distributed Computing (2001)

3. Massie, M.L., Chun, B.N., Culler, D.E.: The ganglia distributed monitoring system:
design, implementation, and experience. Parallel Computing 30(7), 817-840 (2004)

4. Mazzoleni, P., Crispo, B., Sivasubramanian, S., Bertino, E.: Efficient Integration
of Fine-Grained Access Control and Resource Brokering in Grid. The Journal of
Supercomputing 49(1), 108-126 (2009)

5. Morin, C., Jégou, Y., Gallard, J., Riteau, P.: Clouds: a new playground for the
xtreemos grid operating system. Parallel Processing Letters 19(3), 435-449 (2009)

6. Nou, R., Giralt, J., Corbalan, J., Tejedor, E., Fito, J.O., Perez, J.M., Cortes,
T.: XtreemOS Application Execution Management: A Scalable Approach. In: 11th
ACM/IEEE International Conference on Grid Computing (2010)

7. Tierney, B., Aydt, R., Gunter, D., Smith, W., Swany, M., Taylor, V., Wolski, R.: A
Grid Monitoring Architecture (2002)

8. XtreemOS Consortium: Fourth specification, design and architecture of the
security and vo management services. In: XtreemOS public deliverables -
D3.5.13. Work Package 3.5 (Dec 2009), http://www.xtreemos.org/publications/
public-deliverables/

9. Zanikolas, S., Sakellariou, R.: A Taxonomy of Grid Monitoring Systems. Future
Generation Comp. Syst. 21(1), 163-188 (2005)

