
A fast method for binary programming
using first-order derivatives, with
application to topology optimization
with buckling constraints

PA Browne, CJ Budd, NIM Gould, HA Kim, JA Scott

November 2011

 Technical Report
RAL-TR-2011-022

vvf24852
Typewritten Text

vvf24852
Typewritten Text

vvf24852
Typewritten Text

©2011 Science and Technology Facilities Council

Enquiries about copyright, reproduction and requests for additional
copies of this report should be addressed to:

RAL Library
STFC Rutherford Appleton Laboratory
R61
Harwell Oxford
Didcot
OX11 0QX

Tel: +44(0)1235 445384
Fax: +44(0)1235 446403
email: libraryral@stfc.ac.uk

Science and Technology Facilities Council reports are available online
at: http://epubs.stfc.ac.uk

ISSN 1358- 6254

Neither the Council nor the Laboratory accept any responsibility for
loss or damage arising from the use of information contained in any of
their reports or in any communication about their tests or
investigations.

mailto:libraryral@stfc.ac.uk�
http://epubs.stfc.ac.uk/�

A fast method for binary programming

using first-order derivatives, with

application to topology optimization

with buckling constraints

Philip A. Browne1,2,, Christopher J. Budd1,, Nicholas I. M. Gould3,4,

H. Alicia Kim5 and Jennifer A. Scott3,4

ABSTRACT

We present a method for finding solutions of large-scale binary programming problems where

the calculation of derivatives is very expensive. We then apply this method to a topology

optimization problem of weight minimisation subject to compliance and buckling constraints.

We derive an analytic expression for the derivative of the stress stiffness matrix with respect

to the density of an element in the finite-element setting. Results are presented for a number

of two-dimensional test problems.

1 Department of Mathematical Sciences, University of Bath, BA2 7AY, England, EU.

Email: p.a.browne@bath.ac.uk, cjb@maths.bath.ac.uk.

2 This research was supported through the EPSRC Industrial CASE studentship MCA 09-2008/2009

at the University of Bath in conjunction with the STFC Rutherford Appleton Laboratory.

3 Computational Science and Engineering Department, Rutherford Appleton Laboratory,

Chilton, Oxfordshire, OX11 0QX, England, EU.

Email: nick.gould@stfc.ac.uk, jennifer.scott@stfc.ac.uk.

Current reports available from “http://www.numerical.rl.ac.uk/reports/reports.shtml”.

4 This work was supported by the EPSRC grants EP/E053351/1 and EP/I013067/1.

1 Department of Mechanical Engineering, University of Bath, BA2 7AY, England, EU.

Email: H.A.Kim@bath.ac.uk .

Computational Science and Engineering Department

Atlas Centre

Rutherford Appleton Laboratory

Oxfordshire OX11 0QX

November 18, 2011

Fast binary programming using 1st-derivatives, with application to topology optimization 1

1 Introduction

The problem considered in this paper is to minimize the weight of an elastic structure whilst

maintaining the integrity of the structure by prescribing two constraints. The first ensures

that the structure has a prescribed level of stiffness, and the second that the structure is not

prone to buckling. The purpose of this paper is to present an algorithm that can provide a

solution for problems such as these in a reasonable computing time.

To formulate the problem mathematically, the design space (region in which material is

placed) is discretised using finite elements. The goal of optimization is to determine which

elements should contain material and which should be void of material. This is usually rep-

resented by a binary variable where a value of 1 is assigned to an element with material and

a value of 0 to an element containing no material, thus resulting in a binary programming

problem.

Finding a global solution to binary programming problems is notoriously difficult. The

methods for finding such minima can be broadly put into three categories: implicit enu-

meration, branch-and-bound and cutting-plane methods. The most popular implementations

involve hybrids of branch-and-bound and cutting-plane methods. For a comprehensive de-

scription of these binary programming methods see, for example, Wolsey [1]. These methods

were popular for structural optimization from the late 1960s through to the early 1990s. In

1994, Arora & Huang [2] reviewed the methods for solving structural optimization problems

discretely.

In 1968, Toakley [3] applied a combination of cutting-plane methods and branch-and-bound

to solve truss optimization problems. Using what is now known as the branch-and-cut method,

this method was resurged in 2010 by Stolpe and Bendsøe [4] to find the global solution to a

minimisation of compliance problem, subject to a constraint on the volume of the structure.

In 1980, Farkas and Szabo [5] applied an implicit enumeration technique to the design of

beams and frames. Branch-and-bound methods have been used by, amongst others, John et al.

[6], Sandgren [7, 8] and Salajegheh & Vanderplaats [9] for structural optimization problems.

In the latest of these papers, the number of variables in the considered problem was 100 and in

some cases took over one week of CPU time on a modern server to compute the solution. Whilst

these methods do find global minima, they suffer from exponential growth in the computation

time as the number of variables increases.

Beckers [10] uses a dual method to find discrete solutions to structural optimization prob-

lems. In 2003, Stolpe and Svanberg [11] formulate a topology optimization problem as a mixed

0-1 program and solve using branch-and-bound methods.

Achtizger and Stolpe [12, 13, 14] have studied in detail the topology optimization of truss

structures using branch-and-bound methods, and have been able to find global solutions to

problems with over 700 bars in the ground structure.

To avoid the computational issues associated with binary programming, the traditional

approach to topology optimization has been to relax the binary constraint and to look for a

solution that varies continuously in Rn. This is known as continuous relaxation of the problem.

Physically, this relaxed variable can correspond to the stiffness of the material in the element.

Nested analysis and design is then performed, meaning that the structural analysis of the

2 P. A. Browne, C. J. Budd, N. I. M. Gould, H. A. Kim & J. A. Scott

current structure is carried out and appropriate derivatives calculated. These values are then

fed to an optimization routine that updates the structure. The analysis is performed again

and this process iterates until an optimum is attained.

By far the most popular optimization method to update the structure is the Method of

Moving Asymptotes (MMA) [15]. MMA requires the function values and values of the deriva-

tives at the current iteration in order to progress to a new iteration with lower objective

function. There are many examples of MMA being very efficient at solving topology opti-

mization problems with different objectives/constraints (see, for example [16]). The buckling

load of a structure is found as the solution to an eigenvalue problem and a structure is said

to buckle at the lowest positive eigenvalue, referred to as the critical load. Derivatives of this

critical load are only well defined if there is a single modeshape corresponding to the critical

load, i.e. we have a simple eigenvalue. Hence a direct bound on the critical load cannot be

used as a constraint with MMA as the derivative is not well defined.

Semidefinite programming methods have been developed specifically to deal with such

eventualities. Kocvara [17], and in conjunction with Stingl [18], has applied such methods to

topology optimization problems. More recently, along with Bogani [19], they have applied an

adapted version of their semidefinite codes to find noninteger solutions to buckling problems.

This made use of a reformulation of a semidefinite constraint using the indefinite Cholesky

factorisation of the matrix, and solving a resulting nonlinear programming problem with an

adapted version of MMA. With these techniques they were able to solve a non-discrete problem

with 5000 variables in about 35 minutes on a standard pc.

When a continuous relaxation approach is used in problems involving calculating the buck-

ling modes (or harmonic modes) of a structure, unwanted numerical effects are introduced.

Tenek and Hagiwara [20], Pedersen [21] and Neves et al. [22] all noted that spurious buckling

(or harmonic) modes would be computed in which the buckling is confined to regions where

the density of material is less than 10%. Whilst assigning zero stress stiffness (or mass in

the harmonic analysis case) contributions from these elements can eradicate these spurious

modes, this is not consistent with the underlying model of the structure. Indeed, if one were

to consider a structure where a small fraction (less than 10%) of material was equidistributed

throughout the design domain, the stress stiffness matrix would be the zero matrix, and as a

result the critical load of the structure would be computed as infinite.

In this paper, we introduce an efficient method for binary programming that is able to find

a local minima of the topology optimization problem with buckling constraints. In doing so, we

avoid the problem of spurious buckling modes and can find solutions to large two-dimensional

problems (O(105) variables).

Due to the dimensionality of the problems, and the complexity of derivative-free methods

for binary programs, we will use derivative information to reduce this complexity. The efficiency

of topology optimization methods involving a buckling constraint is severely hindered by the

calculation of the derivatives of the buckling constraint. This calculation typically takes an

order of magnitude more time than the linear elasticity analysis. With this in mind, the

proposed fast binary descent method we introduce will try to reduce the number of derivative

calculations required.

The remainder of this paper is organised as follows. In Section 2, we formulate the topology

Fast binary programming using 1st-derivatives, with application to topology optimization 3

optimization problem to include a buckling constraint. Section 3 motivates and states the new

method which we use to solve the optimization problem. Section 4 then contains implementa-

tion details and results for a number of two-dimensional test problems. Finally in Section 5,

we draw conclusions about the proposed algorithm.

2 Formulation of topology optimization to include a buck-

ling constraint

Let Ω be the design domain containing the elastic structure that is discretised using a finite-

element mesh T . A load f is applied to Ω, and this induces displacements u, which are the

solution to the equilibrium equations of linear elasticity

Ku = f (1)

where K is the finite-element stiffness matrix. Compliance, defined as the product fTu, is a

measure of external work done on the structure and adding an upper bound cmax ensures that

the structure remains stiff.

The minimisation of weight subject to a compliance constraint is a well-studied problem, see

for example [16]. However, it has long been observed that structures optimized for minimum

weight or compliance are prone to buckling [23].

The critical buckling load of a structure is defined by the smallest positive value of λ

corresponding to a nonzero v for which

(K + λKσ)v = 0. (2)

In this equation, K is the symmetric finite-element stiffness matrix and Kσ is the symmetric

stress stiffness matrix. (λ, v) is an eigenpair of the generalised eigenvalue problem (2). λ is

refered to as the eigenvalue and v 6= 0 the corresponding eigenvector (or mode shape). The

critical load is λ times the applied load f . Given a safety factor parameter cs > 0, a bound of

the form λ ≥ cs is equivalent to the semidefinite constraint

K + csKσ � 0.

This means that all the eigenvalues of the system (K + csKσ) are non-negative. This happens

only if
∑M

i=1 v
T
i (K+csKσ)vi ≥ 0 where vi are the M buckling modes that solve (K+λKσ)vi = 0.

If we let x ∈ {0, 1}n represent the density of material in each of the elements of the mesh,

with xi = 0 corresponding to an absence of material in element i and xj = 1 corresponding to

element j being filled with material, the problem to be solved becomes:

4 P. A. Browne, C. J. Budd, N. I. M. Gould, H. A. Kim & J. A. Scott

min
x

∑
xi (3a)

subject to c1(x) := cmax − fTu(x) ≥ 0 (3b)

c2(x) :=
M∑
i=1

vi(x)T (K(x) + csKσ(x))vi(x) ≥ 0 (3c)

x ∈ {0, 1}n (3d)

K(x)u(x) = f (3e)

[K(x) + λ(x)Kσ(x)]v(x) = 0. (3f)

2.1 Derivative calculations

To use the binary descent method (discussed in Section 3) we need an efficient way of calculating

the derivative of the constraints with respect to the variables xi. As will be seen in Section 4, the

computation of derivatives of the buckling constraint (3c) is the bottleneck in our optimization

algorithm, so it is imperitive that we have an analytic expression for this. To calculate the

derivatives, the binary constraints on the variables are relaxed and assume that the following

holds

K(x) =
∑
`

x`K`,

where K` is the local element stiffness matrix. The derivative of this with respect to the density

of an element xi is given by
∂K

∂xi
(x) = Ki.

Calculating the derivative of the buckling constraint requires the derivation of an expression

for ∂Kσ
∂xi

. This quantity is nontrivial to compute, unlike the derivative of a mass matrix which

would be in place of the stress stiffness matrix in structural optimization involving harmonic

modes. The stress field σ` on an element ` is a 3 × 3 tensor with 6 degrees of freedom. This

can be written in three dimensions as

σ` =

σ11
σ22
σ33
σ12
σ13
σ23

`

= x`E`B`u,

which in two dimensions reduces to

σ` =

σ11σ22
σ12

`

= x`E`B`u,

Fast binary programming using 1st-derivatives, with application to topology optimization 5

where u are the nodal displacements of the element, E` is a constant matrix of material

properties and B` contains geometric information about the element. The indices 1, 2 and 3

refer to the coordinate directions of the system.

We consider the two-dimensional case, and note that all the following steps have a direct

analogue in three dimensions. We write the stress stiffness matrix given in (2) as follows.

Kσ =
n∑
`=1

∫
GT
`

σ11 σ12 0 0

σ12 σ22 0 0

0 0 σ11 σ12
0 0 σ12 σ22

`

G`dV`, (4)

where G` is a matrix containing derivatives of the basis functions that relates the displacements

of an element ` to the nodal degrees of freedom [24] and n is the total number of elements in

the finite-element mesh T . Now define a map Θ : R3 7→ R4×4 by

Θ(

αβ
γ

) :=

α γ 0 0

γ β 0 0

0 0 α γ

0 0 γ β

 .
Note that Θ is a linear operator. Using this, (4) becomes

Kσ =
n∑
`=1

∫
GT
` Θ(x`E`B`u)G` dV`

=
n∑
`=1

∫
G`(ξ)

TΘ(x`E`B`(ξ)u)G`(ξ) dV`

≈
n∑
`=1

∑
j

ωjG`(ξj)
TΘ(x`E`B`(ξj)u)G`(ξj) (5)

where ωj are the weights associated with the appropriate Gauss points ξj that implement a

chosen quadrature rule to approximate the integral. Differentiating the equilibrium equation

(1) with respect to the density xi yields

∂K

∂xi
u+K

∂u

∂xi
= 0

and hence
∂u

∂xi
= −K−1∂K

∂xi
u.

Now consider the derivative of the operator Θ with respect to xi. Since Θ is linear

∂Θ(x`E`B`u)

∂xi
= Θ

(∂

∂xi
x`E`B`u(xi)

)
= Θ

(
δi`E`B`(ξj)u+ x`E`B`(ξj)

∂u

∂xi

)
where δi` is the Kronecker Delta.

6 P. A. Browne, C. J. Budd, N. I. M. Gould, H. A. Kim & J. A. Scott

Applying the chain rule to (5) we obtain

∂Kσ

∂xi
≈

n∑
l=1

∑
j

ωjG`(ξj)
T ∂Θ(x`E`B`(ξj)u)

∂xi
G`(ξj)

∂Kσ

∂xi
≈

n∑
l=1

∑
j

ωjG`(ξj)
TΘ(δi`E`B`(ξj)u− x`E`B`(ξj)K

−1∂K

∂xi
u)G`(ξj), (6)

where the approximation is due to the error in the quadrature rule used. This matrix can now

be used to find the derivative of the buckling constraint which we require. For each variable

xi = 1, . . . , n, (6) must be computed. As (6) contains a sum over i = 1, . . . , n, it can be seen

that computing ∂Kσ
∂xi

has computational complexity of O(n) for each i and hence computing

(6) for all variables has complexity of O(n2).

3 Fast Binary Descent Method

In this section, we motivate and describe the new method that we propose for solving the

binary programming problem. If we solve the state equations (3e) and (3f) then problem (3)

takes the general form

min
x
eTx (7a)

subject to c(x) ≥ 0 (7b)

x ∈ {0, 1} (7c)

with x ∈ Rn, c ∈ Rm and e = [1, 1, . . . , 1]T ∈ Rn and note that problem (3) is of this form.

Typically m will be small (less than 10) and m << n. We also assume that x0 = e is an initial

feasible point of (7) . Let k denote the current iteration, and xk is the value of x on the k-th

iteration.

The objective function eTx is a linear function of x that can be optimized by successively

reducing the number of nonzero terms in x and we need not worry about errors in approximating

this. However, the constraints are nonlinear functions of x and ensuring that (7b) holds is

difficult. Accordingly, we now describe how a careful linearisation of the constraint equations

can lead to a feasible algorithm. Taylor’s theorem can be used to approximate c(xk)

c(xk+1) = c(xk) +
n∑
i=1

∂c(xk)

∂xi
(xk+1

i − xki) + higher order terms

where ∂c(xk)
∂xi

is determined using the explicit derivative results of the previous section. The

method will take discrete steps so that

xk+1
i − xki ∈ {−1, 0, 1} ∀i = 1, . . . , n,

and so we must assume that the higher order terms will be small, but later a strategy will be

introduced to cope with this when they are not.

Fast binary programming using 1st-derivatives, with application to topology optimization 7

Consider now variables xki such that xki = 1 that we wish to change to xk+1
i = 0. Since

xk+1
i − xki = −1, for the difference in the linearised constraint functions

c(xk+1)− c(xk) =
n∑
i=1

∂c(xk)

∂xi
(xk+1

i − xki)

to be minimal, all the terms of ∂c(xk)
∂xi

need to be as small as possible. However, since there are

multiple constraints, the variables for which the gradient of one constraint is small may have

a large gradient for another constraint.

Assuming a feasible point such that c(xk) > 0 and ignoring the higher order terms,

c(xk+1) = c(xk) +
n∑
i=1

∂c(xk)

∂xi
(xk+1

i − xki). (8)

We have to ensure c(xk+1) > 0, so

c(xk) +
n∑
i=1

∂c(xk)

∂xi
(xk+1

i − xki) > 0

or equivalently

1 +
n∑
i=1

∂cTj (xk)

∂xi
/cj(x

k)(xk+1
i − xki) > 0 ∀j = 1, . . . ,m.

If xk+1
i 6= xki then each normalised constraint cj(x

k) is changed by ±∂cj(x
k)

∂xi
/cj(x

k).

Define the sensitivity of variable i to be

si(x
k) = max

j=1,...,m

∂cj(x
k)

∂xi
/max{cj(xk), 10ε} (9)

where ε is the machine epsilon that guards against round off errors. For each variable, si(x
k)

is the most conservative estimate of how the constraints will vary if the value of the variable is

changed. In one variable, this has the form shown in Figure 1. Figure 1a shows the absolute

values of the linear approximations to the constraints based on their values and corresponding

derivatives. Figure 1b shows the calculation that we make based on normalising these approx-

imations to compute which of the constraints would decrease the most if the variable xki were

changed. βj is the point at which the line associated with the constraint cj crosses the y-axis

and so βj = 1− ∂cj(x
k)

∂xi
/cj(x

k). The amount that the normalised constraint cj would change if

the variable xki were changed is then given by 1− βj =
∂cj(x

k)

∂xi
/cj(x

k).

In this case the derivatives indicate that if the variable xki were to be decreased, the second

constraint is affected relatively more than the first constraint (as max{a, b} = b), and hence

the sensitivity associated with this variable xi is given the value si(x
k) = ∂c2(xk)

∂xi
/c2(x

k).

This sensitivity measure also provides an ordering so that if we choose to update variables

in increasing order of their sensitivity, the changes in the constraint values are minimised. Now

for ease of notation, let us assume that the variables are ordered so that

s1 ≤ s2 ≤ . . . ≤ sp ∀si s.t. xk1, x
k
2, . . . , x

k
p = 1 (10)

sp+1 ≥ sp+2 ≥ . . . ≥ sn ∀si s.t. xkn, x
k
n−1, . . . , x

k
p+1 = 0 (11)

8 P. A. Browne, C. J. Budd, N. I. M. Gould, H. A. Kim & J. A. Scott

xki

c(x)

1

c1(x
k
i)

c2(x
k
i)

0
0

(a) Linear approximations to the con-

straints c(xk
i) in the case where m = 2. In

this situation xk
i = 1.

xki1

c1(x
k
i)

c2(x
k
i)

1

a
b

0
0

β2

β1

(b) Sensitivity calculation in one variable.

Here si(x
k) = max{a, b} = b.

Figure 1: Sensitivity calculation in one variable for the case when m = 2.

To be cautious, instead of requiring c(xk+1) ≥ 0, we allow for the effects of the nonlinear

terms and so are content if instead c(xk+1) ≥ (1 − α)c(xk) for some α ∈ (0, 1). This implies

that

c(xk) +
n∑
i=1

∂cT (xk)

∂xi
(xk+1

i − xki) ≥ (1− α)c(xk),

or equivalently

αc(xk) +
n∑
i=1

∂cT (xk)

∂xi
(xk+1

i − xki) ≥ 0.

To update the current solution, we consider the variables ordered so that (10) and (11)

hold and find for some α ≥ 0

L := max
1≤`≤p

` s.t. αcj(x
k)−

∑̀
i=1

∂cj(x
k)

∂xi
> 0 for all j ∈ 1, . . . ,m. (12)

Then we decrease from 1 to 0 those variables xk1, . . . , x
k
L so as to reduce the objective function

by a value of L.

However, there is the possibility that increasing variables from 0 to 1 could further reduce

the objective function by reducing yet more variables from 1 to 0. This is tested by finding (or

attempting to find) J > 0 such that

J := max
0≤`≤(p−L)/2

` s.t.
∑̀
i=1

∂cj(x
k)

∂xp+i
−

2∑̀
i=1

∂cj(x
k)

∂xL+i
≥ 0 for all j ∈ 1, . . . ,m. (13)

So the variables corresponding to the terms in the first sum are increased from 0 to 1 but for

each of these two variables are decreased from 1 to 0, corresponding to the terms in the second

summation. As there are more terms in the second summation the objective function improves

whilst remaining a feasible solution. Hence the variables xkL+1, . . . , x
k
L+2J are decreased from 1

Fast binary programming using 1st-derivatives, with application to topology optimization 9

to 0 and the variables xkp+1, . . . , x
k
p+J are increased from 0 to 1. Note that in (12) and (13) the

equations have to hold for each of the constraints j = 1, . . . ,m.

The coefficient α is a measure of how well the linear gradient information is predicting the

change in the constraints. If the problem becomes infeasible, then the method has taken too

large a step, so α is reduced in order to take a smaller step. However, recall the goal of this

method is to compute the gradients as few times as possible, and so we wish to take steps that

are as large as possible. If the step has been accepted for the previous two iterations without

reducing α then α is increased to try and take larger steps and thus speed up the algorithm.

Note that if α is too large and the solution becomes infeasible then α is reduced and a

smaller step is taken without recomputing the derivatives. Hence increasing α by too much is

not too detrimental to the performance of the algorithm. Based on experience, α is reset to

0.7α when the solution becomes infeasible and α is set to 1.5α when we want to increase it.

These values appear stable and give good performance for most problems.

To ensure that at least one variable is updated, α must be larger than a critical value αc
given by

αc = max
j=1,...,m

{(∂cj(x
k)

∂xk1
)/cj(x

k)}.

This guarantees that L ≥ 1 and at least one variable is updated. The upper bound α ≤ 1

must also be enforced so that c(xk+1) ≥ 0.

If we cannot make any further progress with this algorithm, we stop. Making further

progress would be far too expensive as we would have to switch to a different integer pro-

gramming strategy and the curse of dimensionality for the problems that we wish to consider

prohibits this. However, we believe the computed solution is good because if we try and improve

the objective function by changing the variable for which the constraints are infinitesimally

least sensitive, the solution becomes infeasible.

The fast binary descent algorithm is thus presented in Algorithm 1:

10 P. A. Browne, C. J. Budd, N. I. M. Gould, H. A. Kim & J. A. Scott

Algorithm 1 Fast binary descent method

1: Initialise x0 and α.

Compute objective function (7a) and constraints (7b)

2: if x0 not feasible then

3: Stop

4: else

5: Compute derivatives ∂c(xk)
∂xi

6: Sort si (9)

7: Compute values L from (12) and J from (13)

8: Update the variables xki that correspond to L and J from (12) and (13)

9: if no variables updated then

10: {Algorithm has converged}
11: return with computed solution

12: end if

13: Compute objective function and constraints from equations (7a) and (7b).

14: if not feasible then

15: {Reject update step}
16: Reduce α.

17: GO TO 7

18: else

19: {Accept update step}
20: Increase α if desired

21: k = k + 1

22: GO TO 5

23: end if

24: end if

4 Implementation and results

We consider optimising isotropic structures with Young’s modulus 1.0 and Poisson’s ratio 0.3.

The design spaces are discretised using square bilinear elements on a uniform mesh.

The fast binary descent method has been implemented in Fortran90 using the HSL math-

ematical software library [25] and applied to a series of two-dimensional structural prob-

lems. The linear solve for the calculation of displacements (1) used HSL MA87 [26], a DAG

based direct solver designed for shared memory systems. For the size of problems considered,

HSL MA87 has been found to be very efficient and stable. The first 6 buckling modes of the

system (2) were computed as these were sufficient to ensure all corresponding eigenvectors of

the critical load were found. These eigenpairs were calculated using HSL EA19 [27], a subspace

iteration code, preconditioned by the Cholesky factorisation already computed by HSL MA87.

The sensitivities were passed through a standard low-pass filter[28] with radius 2.5h where h

is the width of an element and ordered using HSL KB22, a heapsort [29] algorithm.

The codes were executed on a desktop with an Intel R© CoreTM2 Duo CPU E8300 @ 2.83Ghz

Fast binary programming using 1st-derivatives, with application to topology optimization 11

with 2GB RAM running a 32-bit Linux OS and were compiled with the gfortran compiler in

double precision. All reported times are wall-clock times measured using system clock.

4.1 Short cantilevered beam

We consider a clamped beam with a vertical unit external force applied to the free side as

shown in Figure 2. Figures 3 to 5 refer to the solutions found with the same design domain

and material properties but with buckling and compliance constraints.

Figure 2: Design domain of a centrally loaded cantilevered beam. The aspect ratio of the

design space is 1.6 and a unit load is applied vertically from the centre of the right hand side

of the domain.

Figure 3: Solution found on mesh of 80 × 50 elements. The buckling constraint is set to

cs = 0.9 and the compliance constraint cmax = 35. A volume of 0.6255 is attained. The

buckling constraint c2 is active and the compliance constraint c1 is not.

Figure 3 is the computed solution to the problem with parameters cs = 0.9 in (3c) and

cmax = 35 in (3b). In this case the compliance constraint c1(x
0) is large initially but the

buckling constraint c2(x
0) is small initially. We see that the method has produced a typical

optimum grillage structure with 4 bars under compression and only 3 bars under tension.

Note that in the upper bar near the point of loading there is a distinct corner in the computed

12 P. A. Browne, C. J. Budd, N. I. M. Gould, H. A. Kim & J. A. Scott

solution. This type of formation attracts high concentrations of strain energy and so if the

problem were minimization of compliance then an optimization method would wish to avoid

such situations. However, in this case optimization of this region is primarily dominated by

the buckling constraint and the compliance is not the critical constraint.

Figure 4: Solution found on mesh of 80×50 elements. The buckling constraint is set to cs = 0.9

and the compliance constraint cmax = 60. A volume of 0.5535 is attained. Here the buckling

constraint c2 is active and the compliance constraint c1 is not.

Figure 4 is the computed solution to a problem with the same buckling constraint as in

Figure 3 (cs = 0.9) but is allowed to be more flexible with cmax = 60 (i.e. the compliance

constraint is not as restrictive). This results in a clear asymmetry in the computed solution in

which the lower bar is much thicker than the upper bar. This lower bar is under compression

with this loading, and hence would be prone to buckling. Thus optimization reinforced the

lower bar to meet the buckling constraint.

Figure 5: Solution found on mesh of 80×50 elements. The buckling constraint is set to cs = 0.1

and the compliance constraint cmax = 30. A volume of 0.692 is attained. Here the compliance

constraint c1 is active and the buckling constraint c2 is not.

Fast binary programming using 1st-derivatives, with application to topology optimization 13

Figure 5 was obtained as the solution for a problem with cs = 0.1 and cmax = 30. In this

case the initial value of c1(x
0) is close to 0. The computed solution has only the compliance

constraint active and hence the computed solution is more symmetrical than the solutions

shown in Figures 3 and 4.

From Figures 3 to 5 it is possible to see a clear difference in the topology of the resulting

solution depending on the parameters cs and cmax. The history of the algorithm when applied

to the problem solved in Figure 3 where cmax = 35 and cs = 0.9 is displayed in Figures 6 to 8.

0 5 10 15 20
0.6

0.7

0.8

0.9

1

Iteration

V
ol

u
m

e

Figure 6: Volume - iterations of the fast binary descent method

The plot of the objective function against iteration number shown in Figure 6 is monoton-

ically decreasing and so shows that the method as described in Section 3 is indeed a descent

method. Note that in the initial stages of the computation large steps are made and this varies

as the computation progresses. Until iteration 4 large steps have been made and thus the

objective function is swiftly decreasing. When going to iteration 5 taking a large step would

make the current solution infeasible so the method automatically decreases the step size and

hence the decrease in the objective function is reduced.

Figure 7 shows that the compliance constraint is inactive at the solution of this problem.

Note that at all points the compliance of the structure is below the maximum compliance

cmax and so the solution is feasible at all points with respect to c1. If this plot is compared

with Figure 6 then the large changes in compliance can be seen to occur where there are large

reductions in volume and similarly when there is a small change in the volume the change in

compliance is also small.

Figure 8 shows the lowest 6 eigenvalues of the system as the binary descent method pro-

gresses. We see that on the 20-th iteration the lowest eigenvalue is below the constraint cs and

so the computed solution is at iteration 19. At iterations 5 and 8 we see that the eigenvalue

constraint is close to being violated. The increase in the lowest eigenvalue at the subsequent

steps corresponds to a local thickening of the structure around the place where the buckling

is most concentrated. This shows that the method has re-introduced material in order to

move away from the constraint boundary. The nonlinearity in c2(x) is clear from the the non-

14 P. A. Browne, C. J. Budd, N. I. M. Gould, H. A. Kim & J. A. Scott

0 5 10 15 20

25

30

35
cmax = 35.00

Iteration

C
om

p
li
an

ce

Figure 7: Compliance - iterations of the fast binary descent method

0 5 10 15 20

0.8

0.9

1

cs = 0.90

Iteration

L
ow

es
t

6
E

ig
en

va
lu

es

Figure 8: Eigenvalues - iterations of the fast binary descent method. Note that on the 20-

th iteration the eigenvalue constraint is violated, thus the computed solution is at the 19-th

iteration.

monotonic behaviour seen in Figure 8. Generally we do see the eigenvalues converging and

that supports the intuitive optimality criteria of coincidental eigenvalues.

Figure 8, when viewed in combination with Figure 7 shows that for the history of the

algorithm the solutions are all feasible.

4.2 Side loaded column

In this section we consider a tall design space fixed completely at the bottom carrying a vertical

load applied at the top corner of the design space. The design space is shown in Figure 9a and

the computed solutions to this problem with differing constraints are shown in Figures 9b and

Fast binary programming using 1st-derivatives, with application to topology optimization 15

9c. The problem solved in Figure 9b has cs = 0.225 and cmax = 22.5. The problem solved in

Figure 9c has cs = 0.001 and cmax = 60.

(a) Design domain

with width to height

ratio 3 : 10.

(b) Optimal design on

a 30 × 100 mesh with

cs = 0.225 and cmax =

22.5. Here c2 is active

and c1 is not.

(c) Optimal design on

a 30 × 100 mesh with

cs = 0.001 and cmax =

60. Here c1 is active

and c2 is not.

Figure 9: A column loaded at the side

In Figure 9c as the constraints are relaxed compared with the problem in Figure 9b, the

computed solution has a significantly lower objective function. However, it follows the same

structural configuration where the main compressive column directly under the load resists the

buckling and the slender column on the side provides additional support in tension to reduce

bending. In both of these structures the path of the optimization is driven by the first buckling

mode.

4.3 Centrally loaded column

We consider a square design domain (Figure 10). A unit load is applied vertically downwards

at the centre of the top of the design domain and the base is fixed.

Figures 11 to 14 present results for a mesh of 60× 60 elements for a range of values of the

constraints. Figures 11 and 12 have cs = 0.5 with cmax = 5 and cmax = 5.5, respectively. This

small change in the compliance constraint results in two distinct configurations. Figure 12 with

the higher compliance constraint achieves a lower volume and has the compliance constraint

16 P. A. Browne, C. J. Budd, N. I. M. Gould, H. A. Kim & J. A. Scott

Figure 10: Design domain of model column problem. This is a square domain of side length 1

with a unit load acting vertically at the midpoint of the upper boundary of the space.

Figure 11: Solution computed on a mesh of

60× 60 elements. The buckling constraint

is set to cs = 0.5 and the compliance con-

straint cmax = 5. Here, the compliance

constraint is active and the buckling con-

straint is inactive.

Figure 12: Solution computed on a mesh of

60× 60 elements. The buckling constraint

is set to cs = 0.5 and the compliance con-

straint cmax = 5.5. In this case, compared

with Figure 11, the higher compliance con-

straint has led to a solution where this con-

straint is inactive and the buckling con-

straint is now active.

active as opposed to the buckling constraint which is active in Figure 11.

Distinct “Λ-like” structures have been found in Figures 13 and 14. These problems share

the parameter cmax = 8 but vary in that they have cs = 0.4 and cs = 0.1, respectively. The

higher buckling constraint of Figure 13 leads to the development of thick regions in the centre of

the supporting legs. These regions help to resist the first order buckling mode of the individual

legs and are not seen in Figure 14 as the buckling constraint is lower. Figure 15 is the solution

to a problem with the same parameters as the problem considered in Figure 14 but is solved

on a much finer 200× 200 mesh.

From Figures 11 to 15 we see that the symmetry of the problem is not present in the

Fast binary programming using 1st-derivatives, with application to topology optimization 17

Figure 13: Solution computed on a mesh of

60× 60 elements. The buckling constraint

is set to cs = 0.4 and the compliance con-

straint cmax = 8. A volume of 0.276 is

attained.

Figure 14: Solution computed on a mesh of

60× 60 elements. The buckling constraint

is set to cs = 0.1 and the compliance con-

straint cmax = 8. A volume of 0.183 is

attained.

Figure 15: Solution computed on a mesh of 200× 200 elements. The buckling constraint is set

to cs = 0.1 and the compliance constraint cmax = 8. A volume of 0.1886 is attained. Compare

with Figure 14.

18 P. A. Browne, C. J. Budd, N. I. M. Gould, H. A. Kim & J. A. Scott

Problem size

n

Objective Derivative

calculations

Analyses Time (mins)

to 3 s.f.

Proportion

of time on

∂c2/∂x

30×30 = 900 0.266 11 26 0.421 0.623

40 × 40 =

1600

0.229 12 22 1.10 0.782

50 × 50 =

2500

0.213 11 21 2.29 0.857

60 × 60 =

3600

0.183 26 31 6.73 0.901

70 × 70 =

4900

0.187 24 28 11.6 0.931

80 × 80 =

6400

0.185 21 24 18.1 0.948

90 × 90 =

8100

0.184 20 22 28.5 0.948

100 × 100 =

10000

0.184 18 23 40.6 0.966

110 × 110 =

12100

0.188 19 21 61.2 0.973

120 × 120 =

14400

0.187 18 20 84.5 0.978

130 × 130 =

16900

0.184 19 23 119. 0.980

140 × 140 =

19600

0.188 17 18 154. 0.984

175 × 175 =

30625

0.173 20 22 386. 0.985

180 × 180 =

32400

0.191 20 23 458. 0.989

200 × 200 =

40000

0.188 21 24 734. 0.990

317 × 317 =

100489

0.181 19 20 4230 0.996

Table 1: Table of results for the centrally loaded column

computed solution. As Stolpe [30] and Rozvany [31] have shown, since we do not have contin-

uous variables we do not necessarily expect the optimal solution to these binary programming

problems to be symmetric. The asymmetry in the computed solutions arise from (12) and (13)

as only a subset of elements with precisely the same sensitivity values may be chosen to be

updated and so the symmetry may be lost.

Fast binary programming using 1st-derivatives, with application to topology optimization 19

102 103 104 105 106

100

101

102

103

Gradient 2

n

T
im

e
(M

in
u
te

s)

Figure 16: Log-log plot of time against the number of optimization variables. The gradient of

this plot appears to be 2, suggesting that the time to compute the solution to a problem with

n variables is O(n2).

Table 1 summarises the results obtained when solving the problem considered in Figures

14 and 15 but with varying mesh sizes. Note the problem size that the fast binary method has

been able to solve. A computation on a two-dimensional mesh of 3 × 104 elements took less

than 8 hours on a modest desktop and 4 × 104 elements took around 12 hours. This speed

is attained because the number of derivative calculations appears to not be dependent on the

number of variables. Figure 16 shows a log-log plot of the number of optimization variables

against the wall-clock time taken to compute a solution. As the plot appears to have a gradient

close to 2 this indicates that the time to compute a solution is O(n2).

A detailed examination of the computational cost indicates that the vast majority of the

computational cost is in the computation of the derivative of the buckling constraint (see the

final column of Table 1). A massively parallel implementation of this step is possible and it is

anticipated that it should achieve near optimal speedup as no information transfer is required

for the calculation of the derivative with respect to the individual variables.

5 Conclusions

The main computational cost associated with topology optimization involving buckling is the

calculation of the derivatives of the buckling load. We have employed an analytic formula for

this but it still remains the most expensive part of the algorithm. To reduce the computational

cost we have developed an algorithm that aims to minimise the number of these computations

that are required. The method is a descent method that enforces feasibility at each step and

thus could be terminated early and would still result in a feasible structure.

We have numerically shown that the algorithm scales quadratically with the number of

elements in the finite-element mesh of the design space. This corresponds to the analytical

result that the derivative of the stress-stiffness matrix with respect to each of the design

20 P. A. Browne, C. J. Budd, N. I. M. Gould, H. A. Kim & J. A. Scott

variables is an O(n2) operation. The numerical experiments demonstrate the efficiency of the

method for binary topology optimization using compliance and buckling constraints.

References

[1] Wolsey L. Integer programming. Wiley-Interscience series in discrete mathematics and

optimization, Wiley, 1998. URL http://books.google.com/books?id=x7RvQgAACAAJ.

[2] Arora J, Huang M. Methods for optimization of nonlinear problems with discrete variables:

a review. Structural Optimization 1994; 8:69–85.

[3] Toakley A. Optimum design using available sections. Proc Amer Soc Civil Eng, J Struct

Div, 1968; 94:1219–1241.

[4] Stolpe M, Bendsøe MP. Global optima for the Zhou-Rozvany problem. Structural and

Multidisciplinary Optimization 2010; 43(2):151–164.

[5] Farkas J, Szabo L. Optimum design of beams and frames of welded I-sections by means

of backtrack programming. Acta Technica 1980; 91(1):121–135.

[6] John K, Ramakrishna C, Sharma K. Optimum design of trusses from available section-

suse of sequential linear programming with branch and bound algorithm. Engineering

Optimization 1988; 13(2):119–145.

[7] Sandgren E. Nonlinear integer and discrete programming for topological decision making

in engineering design. Journal of Mechanical Design 1990; 112(1):118–122, doi:10.1115/

1.2912568. URL http://link.aip.org/link/?JMD/112/118/1.

[8] Sandgren E. Nonlinear integer and discrete programming in mechanical design optimiza-

tion. Journal of Mechanical Design 1990; 112(2):223–229, doi:10.1115/1.2912596. URL

http://link.aip.org/link/?JMD/112/223/1.

[9] Salajegheh E, Vanderplaats G. Optimim design of trusses with discrete sizing and shape

variables. Structural Optimization 1993; 6:79–85.

[10] Beckers M. Dual methods for discrete structural optimization problems. International

Journal for Numerical Methods in Engineering 2000; (48):1761–1784.

[11] Stolpe M, Svanberg K. Modelling topology optimization problems as linear mixed 0-1 pro-

grams. International Journal for Numerical Methods in Engineering Jun 2003; 57(5):723–

739, doi:10.1002/nme.700. URL http://doi.wiley.com/10.1002/nme.700.

[12] Achtziger W, Stolpe M. Truss topology optimization with discrete design variables

- Guaranteed global optimality and benchmark examples. Structural and Multidisci-

plinary Optimization Dec 2007; 34(1):1–20, doi:10.1007/s00158-006-0074-2. URL http:

//www.springerlink.com/index/10.1007/s00158-006-0074-2.

http://books.google.com/books?id=x7RvQgAACAAJ
http://link.aip.org/link/?JMD/112/118/1
http://link.aip.org/link/?JMD/112/223/1
http://doi.wiley.com/10.1002/nme.700
http://www.springerlink.com/index/10.1007/s00158-006-0074-2
http://www.springerlink.com/index/10.1007/s00158-006-0074-2

Fast binary programming using 1st-derivatives, with application to topology optimization 21

[13] Achtziger W, Stolpe M. Global optimization of truss topology with discrete bar areas -

Part I: theory of relaxed problems. Computational Optimization and Applications Nov

2008; 40(2):247–280, doi:10.1007/s10589-007-9138-5. URL http://www.springerlink.

com/index/10.1007/s10589-007-9138-5.

[14] Achtziger W, Stolpe M. Global optimization of truss topology with discrete bar areas - Part

II : Implementation and numerical results. Computational Optimization and Applications

2009; 44(2):315–341, doi:10.1007/s10589-007-9152-7.

[15] Svanberg K. The method of moving asymptotes - a new method for structural optimiza-

tion. International Journal For Numerical Methods in Engineering 1987; 24:359–373.

[16] Bendsøe MP, Sigmund O. Topology Optimization: Theory, Methods and Applications.

Springer, 2003.

[17] Kočvara M. On the modelling and solving of the truss design problem with global stability

constraints. Structural and Multidisciplinary Optimization Apr 2002; 23(3):189–203, doi:

10.1007/s00158-002-0177-3. URL http://www.springerlink.com/openurl.asp?genre=

article&id=doi:10.1007/s00158-002-0177-3.

[18] Kočvara M, Stingl M. Solving nonconvex SDP problems of structural optimization

with stability control. Optimization Methods and Software Oct 2004; 19(5):595–

609, doi:10.1080/10556780410001682844. URL http://www.informaworld.com/

openurl?genre=article&doi=10.1080/10556780410001682844&magic=crossref|

|D404A21C5BB053405B1A640AFFD44AE3.

[19] Bogani C, Kočvara M, Stingl M. A new approach to the solution of the VTS problem

with vibration and buckling constraints. 8th World Congress on Structural and Multidis-

ciplinary Optimization, 1, 2009.

[20] Tenek LH, Hagiwara I. Eigenfrequency Maximization of Plates by Optimization of Topol-

ogy Using Homogenization and Mathematical Programming. JSME International Journal

Series C 1994; 37(4):667–677.

[21] Pedersen N. Maximization of eigenvalues using topology optimization. Structural and Mul-

tidisciplinary Optimization 2000; 20(1):2–11.

[22] Neves MM, Sigmund O, Bendsøe MP. Topology optimization of periodic microstructures

with a penalization of highly localized buckling modes. International Journal for Nu-

merical Methods in Engineering Jun 2002; 54(6):809–834, doi:10.1002/nme.449. URL

http://doi.wiley.com/10.1002/nme.449.

[23] Hunt G, Thompson J. A General Theory of Elastic Stability. Wiley-Interscience, 1973.

[24] Cook RD, Malkus DS, Plesha ME. Concepts and Applications of Finite Element Analysis.

John Wiley and Sons, 1989.

http://www.springerlink.com/index/10.1007/s10589-007-9138-5
http://www.springerlink.com/index/10.1007/s10589-007-9138-5
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s00158-002-0177-3
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s00158-002-0177-3
http://www.informaworld.com/openurl?genre=article&doi=10.1080/10556780410001682844&magic=crossref||D404A21C5BB053405B1A640AFFD44AE3
http://www.informaworld.com/openurl?genre=article&doi=10.1080/10556780410001682844&magic=crossref||D404A21C5BB053405B1A640AFFD44AE3
http://www.informaworld.com/openurl?genre=article&doi=10.1080/10556780410001682844&magic=crossref||D404A21C5BB053405B1A640AFFD44AE3
http://doi.wiley.com/10.1002/nme.449

22 P. A. Browne, C. J. Budd, N. I. M. Gould, H. A. Kim & J. A. Scott

[25] HSL(2011). A collection of Fortran codes for large scale scientific computation.

http://www.hsl.rl.ac.uk.

[26] Hogg J, Reid J, Scott J. Design of a multicore sparse cholesky factorization using DAGs.

SISC 2010; 32:3627–3649.

[27] Ovtchinnkov E, Reid J. A preconditioned block conjugate gradient algorithm for comput-

ing extreme eigenpairs of symmetric and hermitian problems. Technical Report RAL-TR-

2010-019, RAL 2010.

[28] Huang X, Xie YM. Evolutionary Topology Optimization of Continuum Structures. Wiley,

2010.

[29] Williams J. Algorithm 232: heapsort. Communications of the ACM 1964; 7(6):347–348.

[30] Stolpe M. On some fundamental properties of structural topology optimization problems.

Structural and Multidisciplinary Optimization 2010; 41(5):661–670.

[31] Rozvany GIN. Authors reply to a discussion by Gengdong Cheng and Xiaofeng Liu of

the review article On symmetry and non-uniqueness in exact topology optimization by

George I.N. Rozvany (2011, Struct Multidisc Optim 43:297317). Structural and Multi-

disciplinary Optimization Sep 2011; 44(5):719–721, doi:10.1007/s00158-011-0703-2. URL

http://www.springerlink.com/index/10.1007/s00158-011-0703-2.

http://www.springerlink.com/index/10.1007/s00158-011-0703-2

	RAL-TR-2011-022-cover.pdf
	RALTR cover&inner_2011.pdf
	RALTR cover&inner_2011.pdf
	RALTR cover&inner.pdf
	RALTR cover&inner
	DLTR-2007-004.pdf
	DLTR inner cover

	RALTR inner cover.pdf

	RALTR inner cover

	RALTR inner cover

	RALTR inner cover

	RAL-TR-2011-022-report.pdf
	Introduction
	Formulation of topology optimization to include a buckling constraint
	Derivative calculations

	Fast Binary Descent Method
	Implementation and results
	Short cantilevered beam
	Side loaded column
	Centrally loaded column

	Conclusions

