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Abstract—Most modern high performance computing plat-
forms can be described as clusters of multi-core compute nodes.
The trend for compute nodes is towards greater numbers of
lower power cores, with a decreasing memory to core ratio.
This is imposing a strong evolutionary pressure on numerical
algorithms and software to efficiently utilise the available
memory and network bandwidth.

Unstructured finite elements codes have been effectively
parallelised with domain decomposition methods by using
libraries such as the Message Passing Interface for a long time.
However, there are many algorithmic and implementation op-
timisation opportunities when threading is used for intra-node
parallelisation for the latest multi-core/many-core platforms.
For example, reduced memory requirements, cache sharing,
reduced number of partitions and less MPI communication.
While OpenMP is promoted as being easy to use and allows
incremental parallelisation of codes, naive implementations
frequently yield poor performance. In practice, as with MPI,
equal care and attention should be exercised over algorithm
and hardware details when programming with OpenMP.

In this paper, we report progress implementing hybrid
OpenMP-MPI for finite element matrix assembly within the
unstructured finite element application software named Fluid-
ity. The OpenMP parallel algorithm uses graph colouring to
identify independent sets of elements that can be assembled
simultaneously with no race conditions. Unstructured finite
element codes are well known to be memory bound, therefore,
particular attention is paid to ccNUMA architectures where
data locality is particularly important to achieve good intra-
node scaling characteristics. The profiling and the benchmark
results on the latest CRAY platforms show that the best
performance can be achieved by pure OpenMP within a node.

Keywords-Fluidity; FEM; OpenMP; MPI; ccNUMA; Graph
Colouring;

I. INTRODUCTION

Fluidity' is an open source, general purpose, multi-
phase CFD application capable of solving numerically the
Navier-Stokes and accompanying field equations on arbitrary
unstructured finite element meshes in one, two and three

Uhttp://amcg.ese.ic.ac.uk/Fluidity

dimensions. It uses a moving finite element/control volume
method which allows arbitrary movement of the mesh with
time dependent problems. It offers a wide range of finite
element/control volume element choices together with mixed
formulations. It is being used in a diverse range of geophys-
ical fluid flow applications. Fluidity uses three languages
(FORTRAN, C++, Python), is fully parallelised using MPI
and uses state-of-the-art and standardised 3rd party software
components whenever possible. Fluidity is coupled to a mesh
optimisation library allowing for dynamic mesh adaptivity.

The change of shifting from the clock speed race to using
multi-core/many-core processors is as disruptive to scientific
software as the shift from vector to distributed memory
supercomputers decades ago. The shift to multi-core/many-
core systems is driving applications to exploit much higher
levels of fine-grained parallelism and overcome significant
reductions in the bandwidth and volume of memory available
to each CPU. This scalability challenge driven by the expo-
nential increase in the amount of parallelism in the system
affects all aspects of the use of high performance computing.

Because of this, there is a growing interest in hybrid
parallel approaches where threaded parallelism is exploited
at the node level, while MPI is used for inter-process
communications. Significant benefits can be expected from
implementing such mixed-mode parallelism. First of all, this
approach decreases the memory footprint of the application
as compared with a pure MPI approach. Secondly, the mem-
ory footprint is further decreased through the removal of the
halo regions which would be otherwise required within the
node. For example, the total size of the mesh halo increases
with number of partitions (i.e. number of processes). Finally,
only one process per node will be involved in off-node
communications (in contrast to the pure MPI case where
potentially 32 processes per node could be communicating
on Phase 3 of HECToR). Depending on the I/O strategy there
could also be a significant reduction in the number of meta
data operations on the file system at large process counts.



Therefore, the use of hybrid OpenMP-MPI will decrease the
total memory footprint per compute node, decrease the load
on the inter-processor communications network and decrease
the total number of meta data operations given Fluidity’s
files-per-process 1/O strategy.

For modern multi-core architecture supercomputers, hy-
brid OpenMP-MPI also offers new possibilities for optimisa-
tion of numerical algorithms beyond pure distributed mem-
ory parallelism. For example, scaling of algebraic multi-
grid methods is hampered when the number of subdomains
is increased due to difficulties coarsening across domain
boundaries. The scaling of mesh adaptivity methods is also
adversely affected by the need to adapt across domain
boundaries.

Portability across different systems is critical for applica-
tion software development, and directive-based approaches
are an excellent way to express parallelism in a portable
manner. They offer potential capabilities for using the
same code base to explore accelerated and non-accelerator
enabled systems because OpenMP is expanding its scope
to embedded systems and accelerators. Therefore, there is
strong motivation to further develop OpenMP parallelism in
Fluidity to exploit current and future architectures.

However, writing a truly efficient OpenMP-MPI scalable
program is entirely non-trivial, despite the apparent simplic-
ity of the incremental parallelisation approach. This paper
will demonstrate how we tackle the race conditions and
performance pitfalls during OpenMP parallelisation.

The remaining part of this paper is organised as follows.
In the next section we describe in detail the finite element
matrix assembly and greedy colouring method. Section III
will address thread safety issues during OpenMP parallelisa-
tion and performance gained by solving these issues. Section
IV discusses how we optimise memory bandwidth which is
particularly important for OpenMP performance. The section
V contains summary and conclusions. There is a discussion
of further work in the last section.

II. FINITE ELEMENT MATRIX ASSEMBLY

Previous performance analysis [1] has already shown
that the two dominant costs in Fluidity are the sparse
matrix assembly (30%-40% of total computation), and the
solution of the sparse linear systems defined by these
equations. The HYPRE? library’s hybrid sparse linear sys-
tem solvers/preconditioners, which can be used by Fluidity
through the PETSc interface, are competitive with the pure
MPI implementation. Therefore, in order to run a complete
simulation using OpenMP parallelism, the sparse matrix
assembly kernel is now the most important component re-
maining to be parallelised using OpenMP. The finite element
matrix assembly kernel is expensive for a number of reasons
including: significant loop nesting, where the innermost loop

Zhttp://acts.nersc.gov/hypre/

increases in size with increasing quadrature; many matrices
have to be assembled, e.g. coupled momentum, pressure,
free-surface and one for each advected quantity; indirect
addressing; and cache re-use (a particularly severe challenge
for unstructured mesh methods). The cost of matrix as-
sembly also increases with higher order, and Discontinuous
Galerkin (DG) discretisations are used.

For a given simulation, a number of different matrices
need to be assembled, e.g. continuous and discontinuous
finite element formulations for velocity, pressure and tracer
fields for the Navier-Stokes equations and Stokes flow. Each
of these have to be individually parallelised using OpenMP.
The global matrix to be solved is formed by looping over
all the elements of the mesh (or subdomain if this is using a
domain decomposition method) and adding the contributions
from that element into the global matrix. Sparse matrices
are stored in PETSc’s (Compressed Sparse Row) CSR
containers (these include block-CSR for use with velocity
vectors for example and DG). The element contributions are
added into a sparse matrix which is stored in CSR format.
A simple illustration of this loop is given in algorithm 1.

Algorithm 1 Generic matrix assembly loop.

global_matriz — 0

for e = 1 — number_of_elements do
local_matriz = assemble_element(e)
global_matriz+ = local_matriz

end for

A. Greedy colouring method

In order to thread the assembly loop illustrated in algo-
rithm 1, it is clear that both the operation to assemble an
element into a local matrix, and the addition of that local
matrix into the global matrix must be thread safe.

This can be realised through well-established graph
colouring techniques[2]-[7], and is implemented by first
forming a graph, where the nodes of the graph correspond
to mesh elements, and the edges of the graph define data
dependencies arising from the matrix assembly between
elements. Each colour then defines an independent set of
elements whose terms can be added to the global matrix
concurrently. This approach removes data contention, and
therefore removes the need for OpenMP critical or atomic
statements, allowing efficient parallelisation.

Generally, we try to colour as many vertices as possible
with the first colour, then as many as possible of the
uncoloured vertices with the second colour, and so on. To
colour vertices with a new colour, we perform the following
steps.

1) Select some uncoloured vertex and colour it with the

new colour.

2) Scan the list of uncoloured vertices. For each un-

coloured vertex, determine whether it has an edge to



any vertex already coloured with the new colour. If
there is no such edge, colour the present vertex with
the new colour.

This approach is called “greedy” because it colours a
vertex whenever it can, without considering the potential
drawbacks inherent in making such a move. There are
situations where we could colour more vertices with one
colour if we were less “greedy” and skipped some vertex
we could legally colour.

To parallelise the matrix assembly algorithm (1) using
colouring, a loop over colours is first added around the main
assembly loop. The main assembly loop over elements will
be parallelised using the OpenMP parallel directives with
static scheduling. This will divide the loop into chunks of
size ceiling (number_of_elements/number_of _threads) and
assign a thread to each separate chunk. Within this loop
an element is only assembled into the matrix if it has the
same colour as the colour iteration.

The threaded assembly loop is summarised in algorithm
2.

Algorithm 2 Threaded matrix assembly loop.

graph «— create_graph(mesh, discretisation)
colour «— calculate_colouring(graph)
k_colouring = max(colour)
global_matrix «— 0
!$OMP PARALLEL
for k =1 — k_colouring do
independent_elements = {e|colour(e] = k}
1I$OMP DO SCHEDULE(STATIC)
for all e € independent_elements do
local_matriz = assemble_element(e)
global_matriz+ = local_matriz
end for
1I$OMP END DO
end for
!$OMP END PARALLEL

Generally, using the above colouring method, the number
of elements is not balanced between each colour group. For
OpenMP, this is not a problem as long as each thread has
enough work load. The performance is not sensitive to the
total number of colour groups.

III. PERFORMANCE IMPROVEMENT AND ANALYSIS

The benchmark tests were carried out on the HECToR
Cray XE6-Magny Cours and Cray XE6-Interlagos systems.
On the system of CRAY XE6-Magny Cours®, each node
consists of 24 cores sharing a total of 32 GB of memory
accessible through a NUMA design. The 24 cores are
packaged as 2 AMD Opteron 6172 2.1GHz processors, code-
named “Magny-Cours”. The total number of processor cores

3www.hector.ac.uk/cse/documentation/Phase2b

is 44,544. HECToR CRAY XE6-Interlagos system* offers
a total of 2816 XE6 compute nodes. Each compute node
contains two AMD 2.3 GHz 16-core processors giving a
total of 90,112 cores; offering a theoretical peak performance
of over 800 Tflops. There is presently 32 GB of main mem-
ory available per node, which is shared between its thirty-
two cores. Both systems use CRAY Gemini communication
networks.

The benchmark test case used here is wind-driven baro-
clinic gyre. The mesh used in the baroclinic gyre benchmark
test case has up to 10 million vertices; resulting in 200
million degrees of freedom for velocity due to the use of
DG. The basic configuration is set-up to run for 4 time
steps and not to adapt. It hence considers primarily the
matrix assembly and linear solver stages of a model run.
The details of solving equations and configuration can be
found in reference [1].

The momentum equation assembly kernel using Dis-
continuous Galerkin (DG) and Continuous Galerkin (CG)
methods has been parallelised with the above-mentioned
procedures. Several thread safe issues have been solved
resulting in performance benefits.

A. Local assembly versus non-local assembly

For mesh elements that are shared as part of the halo,
it is clear that more than one process can contribute to the
same rows of the global matrix. PETSc offers two different
approaches for handling this. The first approach is called
local assembly. This assumes that all processes which have
a copy of an element, will assemble that element and add
the entries into the PETSc sparse matrix. Internally, PETSc
will then quietly drop any values corresponding to rows not
owned by the local process as this entry will be handled by
the process that does own that row. For this the PETSc pa-
rameter MAT IGNORE_OFF_PROC_ENTRIES must be set.
The second approach, global assembly, assumes that across
all MPI processes each element will only be assembled once.
Any entries to the matrix rows which are not owned by the
local process are then stashed, and communicated to the
row owners when MatAssemblyEnd is called. Similarly for
vectors.

Figures 1 and 2 show the benchmark results comparing
local and non-local assembly for the oceanic gyre test
case which use DG for momentum and CG for advec-
tion/diffusion. For low core counts the difference is negligi-
ble. This highlights the fact that the redundant calculations
are not significantly impacting performance when local
assembly is used. However, at higher core counts, the scaling
is significantly better. With 768 cores, the local assembly
code is 40% faster, effectively increasing the scaling regime
by a factor of two.

“http://www.hector.ac.uk/support/documentation/userguide/hardware.php
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Figure 1.  Wall-time for non-local and local assembly are compared. Figure 3. Comparison between using critical directive and without critical

Compute nodes are 24 core AMD Opterons (HECToR Cray XE6-Magny
Cours, therefore multiply by 24 to get the number of cores).
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Figure 2. Speedup comparison between matrix local assembly and non-

local assembly.

This makes matrix assembly an inherently local process,
therefore we can focus on optimising intra-node perfor-
mance.

B. Thread safety of memory reference counting

For any defined type objects in Fluidity being allocated or
deallocated, the reference count will be plus one or minus
one. If the objects counter equals zero, the objects should
then be deallocated. In general, the element-wise physical
quantities should not perform allocation or deallocation in
the element loop, but this is not the case in the kernels.
The solution could be to either add critical directives around
reference counter or move allocation or deallocation outside
of element loop. We have implemented both solutions and

directive.

performance comparison has been made in Figure 3 with
different OpenMP and MPI combinations within a compute
node. Using critical directives, pure MPI outperformed all
the other combinations. Without using critical directives, the
performance have been improved by more than 50% for 12
and 24 threads. Therefore, the mutual synchronisation direc-
tives (e.g. critical) should be avoided. Moving allocation or
deallocation outside of element loop has also improved the
pure MPI versions performance (see 24MI1T in Figure 3).

IV. OPTIMISATION OF MEMORY BANDWIDTH

Many multi-core machines are typically cache coher-
ent Non-Uniform Memory Architectures (ccNUMA). This
means that memory latency (access time) depends on the
physical memory location relative to a processor. Within
a ccNUMA system, a processor can access its own local
memory faster than non-local memory, that is, memory local
to another processor or memory shared between processors,
Therefore, it is important that memory should be allocated
from mapped local memory nodes, so that software running
on the machine may take advantage of ccNUMA locality and
therefore have a optimal utilisation of memory bandwidth.
To achieve this, the following methods have been employed
to ensure good performance:

« First-touch initialisation ensures that page faults are
satisfied by the memory bank directly connected to the
CPU that raises the page fault.

o Thread pinning to ensure that individual threads are
bound to the same core throughout the computation.

The Linux kernel’s memory is partitioned by memory
node. By default, page faults are satisfied by memory
attached to the page-faulting CPU. Because the first CPU
to touch the page will be the CPU that faults the page in,
this default policy is called first touch.
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Thread pinning has been used through Cray aprun with
all benchmark tests. After applying the first touch policy, the
wall time has been reduced from 45.127 seconds to 38.303
seconds using 12 threads on Cray XE6-Magny Cours. From
Figure 5 and Figure 6, the speedup has been improved up to
12 threads compared between with and without first touch.
But even after applying the first-touch policy, there is still a
sharp performance drop from 12 threads to 24 threads.

This problem has been investigated by profiling with
CrayPAT. From Figure 4, we can see that the highest costs
in Momentum_DG are dominated by memory allocation. As
we have moved all explicit memory allocation outside of
element loop, the culprit appears to be the use of FORTRAN
automatic arrays in the Momentum_DG assembly kernel for
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Figure 7. Momentum DG Performance Comparison on HECToR XE6-
Interlagos.

support of p-adaptivity. There are a lot of such arrays in
the kernel. Since the compiler cannot predict their length, it
allocates the automatic arrays on the heap.

The heap memory manager must keep track of which parts
of memory have been allocated and which parts of memory
are free. In a multi-threaded environment, this task is further
complicated by multiple threads requesting allocation or
deallocation of memory from the heap memory manager.
In order to keep memory allocation thread safe, the typical
solution to this is to apply mutual synchronisation methods,
e.g. a single lock. In a multi-threaded environment, memory
allocation by all threads will be effectively serialised by
waiting at the same lock.

Thread-Caching malloc(TCMalloc)’ resolves this problem
by using a lock-free approach. It allocates and deallocates
memory (at least in some cases) without using locks for
synchronization. This delivers a significant performance
boost for the pure OpenMP version which is now better
than the pure MPI version within compute node. Figure 5
shows that the speedup of the Momentum_DG kernel using
24 threads on Cray XE6-Magny Cours is 18.46 compared
with 1 thread. On the Cray XE6-Interlagos (Figure 7), the
pure OpenMP still performs better than the pure MPI, though
the speed up for 24 threads on Cray XE6-Interlagos drop to
14.42 due to the Interlagos’s memory bandwidth per core
being smaller than the Magny Cours.

We have also compared the different combination of
number of MPI tasks and OpenMP threads within Cray XE6-
Interlagos compute node. From Figure 8, we can see that 1
MPI task with 32 OpenMP threads is competitive with 2 MPI
tasks / 16 threads and 4 MPI tasks / 8 OpenMP threads.

Shttp://goog-perftools.sourceforge.net/doc/tcmalloc.html



Figure 4. CrayPAT Sample Profiling Statistic of Momentum_DG with 24 threads.
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V. SUMMARY AND CONCLUSIONS

We have focused on matrix assembly in the Fluidity CFD
code. Performance results indicate that node optimisation
can be done mostly using OpenMP with an efficient colour-
ing method, which can avoid the use of mutual synchroniza-
tion directives, e.g. critical.

Regarding matrix stashing, it does not have any redundant
calculations. However, it does incur the cost of maintaining
and communicating stashed rows, and this overhead will in-
crease for higher MPI process counts. A further complication

of non-local assembly is that the stashing code within PETSc
is not thread safe.

Local assembly has the advantage of not requiring any
MPI communications as everything is performed locally,
and the benchmark results also highlight the fact that the
redundant calculations are not significantly impacting per-
formance when local assembly is used. Furthermore, the
scaling of local assembly is significantly better than non-
local assembly at higher core counts. This makes assembly
an inherently local process. The focus is then on optimising
local (to the compute node) performance.

The current OpenMP standard (3.0), which has been im-
plemented by most popular compilers, does not cover page
placement. For memory bandwidth bound applications, like
Fluidity, it is very important to make sure that memory gets
mapped into the local domains of cores that actually access
them, minimising ccNUMA traffic across the network. Using
thread pinning is critically important to guarantee that those
cores which had initially mapped their memory regions
maintain locality of access. Our implementation of first
touch policy also further improves data locality access.

For the Fluidity matrix assembly kernels, the performance
bottle neck becomes memory allocation for automatic arrays.
Using a ccNUMA aware heap managers, TCMalloc, can
greatly help the pure OpenMP version outperform the pure
MPI version within a single compute node.

VI. FUTURE WORK

More effort is required on solvers, including investigation
of threaded HYPRE that can be called through PETSc. We
will also be benchmarking using the PETSc development



branch that supports OpenMP. These projects offer multiple
avenues for fully parallelising Fluidity with OpenMP.

After this, we will investigate the fully OpenMP paral-
lelised Fluidity on Intel MIC and Cray XK6, which will
further guide us the future development.

Work is also ongoing to integrate Fluidity with a newly-
developed adaptive mesh library which also supports hybrid
OpenMP-MPI parallelisation’.
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