
A fast triangular solve on GPUs

JD Hogg

July 2012

Submitted for publication in SIAM Journal on Scientific Computing

 Preprint
RAL-P-2012-002

RAL Library
STFC Rutherford Appleton Laboratory
R61
Harwell Oxford
Didcot
OX11 0QX

Tel: +44(0)1235 445384
Fax: +44(0)1235 446403
email: libraryral@stfc.ac.uk

Science and Technology Facilities Council preprints are available online
at: http://epubs.stfc.ac.uk

ISSN 1361- 4762

Neither the Council nor the Laboratory accept any responsibility for
loss or damage arising from the use of information contained in any of
their reports or in any communication about their tests or
investigations.

mailto:libraryral@stfc.ac.uk�
http://epubs.stfc.ac.uk/�

A fast triangular solve on GPUs

J. D. Hogg

July 5, 2012

Abstract

The level 2 BLAS operation trsv performs a dense triangular solve, and is often used in the solve
phase of a direct solver following a matrix factorization. With the advent of manycore architectures the
importance of this memory-bound kernel is increasingly important, particularly for sparse direct solvers
used in optimization applications.

In this paper, a high performance implementation of the triangular solve is developed through a
careful analysis of theoretical and practical bounds on the possible performance. This implementation
outperforms the the CUBLAS by a factor of 5–15.

1 Introduction

The solution of a dense triangular system Lx = b (or LTx = b) through forward (or backward) substitution
is implemented as a level 2 BLAS operation trsv. The diagonal entries of the system can either be unit or
non-unit, and the solution is typically performed in place.

This operation is of particular interest in the solution of linear equations using direct methods. Users of
such algorithms often need to solve the same system repeatedly with different right-hand sides. If iterative
refinement is also used, the triangular solve can be performed tens or hundreds of times for each matrix
factorized. Further, a single solve using a sparse factor will typically employ multiple calls to the triangular
solve routine for small dense submatrices of dimension ranging from one to several hundred, and occasionally
several thousand.

The non-transposed, unit-diagonal algorithm is straightforwardly described in the following pseudocode.

Input: Lower-triangular n× n matrix L, right-hand-side vector x.
for i = 1, n do
x(i+ 1 : n) = x(i+ 1 : n)− L(i+ 1 : n, i) ∗ x(i)

end for
Output: solution vector x.

Asymptotically, for large n, a single multiply-add is performed for each read (accesses to L will not be
cached, accesses to x should be). Therefore, on modern computing hardware, the operation is memory-
bandwidth bound. For small matrices (of interest in the sparse case) the algorithm will instead be memory-
latency bound. For example, an NVIDIA C2050 can deliver approximately 9 double precision operands per
clock cycle from main memory if the bandwidth is fully saturated. If the cache latency is, say, 200 cycles
then a straightforward implementation will require n > 1800 for multithreading to fully hide the latency.
For a matrix with n = 32, at least 195 cycles per column might be spent waiting for data to arrive.

This memory-latency bound can be overcome by the separation of the data request from the data usage.
Done correctly, the main-memory latency penalty is then incurred only once. This allows a 5–10 times
performance increase to be achieved over the current version of the CUBLAS [3].

In this paper we consider the lower triangular, non-transpose, variant of trsv() where L has unit
diagonal and x has unit stride. The transpose algorithm is also briefly addressed. Non-unit diagonal and
non-unit stride of x can be trivially accommodated within the algorithms presented, but is omitted here

1

for clarity. The upper triangular versions can be derived through small changes to the lower triangular
algorithms.

The remainder of this paper is set out as follows. Section 2 describes experiments and implementation on
small blocks for n ≤ 128 on a single Streaming Multiprocessor (SM). Section 3 extends this work to larger
blocks utilising the full power of the GPU, and demonstrates advantages to using global memory rather than
kernel launches for synchronization. The use of explicit inversion methods is addressed in Section 4. Finally,
conclusions are presented in Section 6.

2 Small matrices

This section concerns the implementation of trsv() using a single thread block, and hence a single SM. This
will provide the best performance for small matrices and can be combined with an efficient matrix-vector
product (gemv()) to achieve good performance for larger matrices.

The size of these small blocks has been determined through preliminary experimentation, but can be
motivated by looking at the amount of storage and data movement required for varying size of block. The
following data looks at the amount of storage required to read the matrix fully into memory for multiples of
the warp size (32 on a C2050).

Half matrix Full matrix
n nz(L) mem nz(L) mem

32 528 4.1 KB 1024 8.0 KB
64 2080 16.3 KB 4096 32.0 KB
96 4656 36.4 KB 9216 72.0 KB

128 8256 64.5 KB 16384 128.0 KB

Max shmem/block: 48KB
Max reg/block: 32768

As all threads of a warp execute the same instruction stream, there is no requirement for synchronization
between them except to ensure that values are passed between them using volatile variables. If multiple
warps are used, then synchronization using syncthreads() is necessary. Microbenchmarking indicates that
the overhead of such synchronization is 40–90 clock cycles depending on the number of threads involved. As
a version of trsv() will be developed that requires fewer than 150 clock cycles per iteration, the cost of
using multiple warps to execute dependant operations within the same or consecutive columns is too high
to yield a feasible alternative to the algorithms presented below.

Two obvious mechanisms exist for pre-caching matrix values to avoid incurring the global memory latency
for each column. The first is to use shared memory, and the second to use registers.

The shared memory variant is shown as Listings 1 and 2. The matrix is divided into block columns as
shown in Figure 1. For each block column from left to right, the diagonal block (marked diag in the figure) is
first solved using a single warp, then a matrix-vector product is performed with the rectangular block below
it (marked rect) to update the entries for the next block column using one thread per row.

The first listing shows a subroutine dblkSolve() that performs the solve on the diagonal block, of size
blkSize × blkSize. As a single warp is used, blkSize ≤ warpSize. Best performance is obtained if
blkSize = warpSize (= 32 for the C2050). The second listing shows both how the rectangular block’s
matrix-vector product is performed and how memory is managed to avoid incurring global-memory latency
waits in dblkSolve(). A large team of non-computing threads (those with threadIdx.y > 0) is used to
load the matrix into a shared memory cache during the stalls in execution of dblkSolve().

The performance of dblkSolve() is critical to the overall performance, as each column must be solved
in sequence. Given that a (used in place of l to ensure typographic distinction from the number 1) and x

are stored in shared memory, no accesses to global memory are required. Each iteration, stalls occur due
to shared memory latency (approx 35 cycles per access) and pipeline depth (approx 5 cycles per dependant
instruction). Timing indicates that in practice each iteration takes on average of 135 cycles (corresponding

2

Figure 1: Partitioning of matrix into block columns for small matrix solves

rect

diag

Listing 1: 32× 32 solve

template <int blkS ize>
void d e v i c e dblkSo lve (const double ∗a , int lda , double &val) {

volat i le double s h a r e d xs ;

#pragma u n r o l l 16
for (int i =0; i<b l k S i z e ; i++) {

i f (threadIdx . x==i) xs = va l ;
i f (threadIdx . x>=i +1)

va l −= a [i ∗ lda+threadIdx . x] ∗ xs ;
}

}

to 12 PTX instructions and 2 shared memory loads). This provides ample time for precaching of the next
diagonal and rectangular blocks required.

Use of registers rather than shared memory is now considered. Whereas execution of a thread will block
on a write to shared memory, it will not for a load into a register. Note, however, that a thread will block
on the later use of that register. This allows instruction-level parallelism. If this property could be exploited
then it may be possible to accelerate the inner loops. However, the xs variable or equivalent will still need
to be transferred via shared memory. Each thread has a maximum of 63 registers available, some of which
are required for normal computation use; in practice, it is difficult to use more than 32 registers per thread
to store part of the matrix. Multiple warps are thus required to fully cache the matrix. Two alternative
algorithms are tested, using different mappings of registers to parts of the matrix. Variant A (shown as
Listing 3) assigns columns to warps in a cyclic fashion, while variant B (not shown) uses a block cyclic
mapping. The former requires a thread synchronization after each column, whereas the latter involves more
complex control logic.

Table 1 compares these against the shared memory implementation and the NVIDIA CUBLAS imple-
mentation of trsv(). The shared-memory implementation outperforms the register implementations. This
is probably due to synchronization overhead in variant A and complex control flow in variant B. Further, for
larger block sizes there are insufficient registers to hold the matrices and register spill occurs, resulting in a
significant performance drop. Both the shared memory and register implementations described outperform
the CUBLAS.

3

Listing 2: Cache handling for larger blocks in shared memory

// threadsx = threadIdx . x = n−b l k S i z e
// threadsy = threadIdx . y = 4 or 8 , say (autotune) .
template <int n , int blkS ize , int threadsx , int threadsy>
void g l o b a l b lkSo lve (const double ∗a , int lda , double ∗ xg loba l) {

double s h a r e d xshar ed ac tua l [n] , r e c t [(n−b l k S i z e)∗ b l k S i z e] ,
cache even [b l k S i z e ∗ b l k S i z e] , cache odd [b l k S i z e ∗ b l k S i z e] ;

int t i d = threadsx ∗ threadIdx . y+threadIdx . x ;

/∗ Precache x and f i r s t d iagona l b l o c k ∗/
i f (t id<n) xshared [t i d] = xg loba l [t i d] ;
tocache <blkS ize , threadsx ∗ threadsy> (a , lda , cache even) ;

s ync th r ead s () ;

/∗ Main loop ∗/
double ∗xshared = xshared ac tua l ;
for (int i i =0; i i <n ; i i+=b l k S i z e) {

/∗ Preload e n t r i e s f o r r e c t angu l a r b l o c k ∗/
i f (threadIdx . y !=0)

cache r e c t <blkS ize , threadsx ∗(threadsy−1)> (a+blkS ize , lda , rect ,
n−b l k S i z e) ;

/∗ So lve d iagona l b l o c k ∗/
i f (threadIdx . y==0 && threadIdx . x<b l k S i z e) {

double va l = xshared [threadIdx . x] ;
i f (i i %(2∗ b l k S i z e)==0) dblkSolve<blkS ize >(cache even , b lkS ize , va l) ;
else dblkSolve<blkS ize >(cache odd , b lkS ize , va l) ;
xshared [threadIdx . x] = va l ;

} else i f (i i+b lkS ize<n)
i f (i i %(2∗ b l k S i z e)==0) tocache <blkS ize , threadsx ∗ threadsy−32>

(&a [b l k S i z e ∗(lda +1)] , lda , cache odd) ;
else tocache <blkS ize , threadsx ∗ threadsy−32>

(&a [b l k S i z e ∗(lda +1)] , lda , cache even) ;
s ync th r ead s () ;

/∗ Apply r e c t angu l a r b l o c k ∗/
i f (threadIdx . y==0 && threadIdx . x<n−b l k S i z e)

for (int j=b l k S i z e ; j+i i <n ; j+=n−b l k S i z e) {
double va l =0;
i f (i i+j+threadIdx . x<n) {

for (int i =0; i<b l k S i z e ; i++)
va l += r e c t [i ∗(n−b l k S i z e)+j−b l k S i z e+threadIdx . x] ∗

xshared [i] ;
xshared [j+threadIdx . x] −= val ;

}
}

sync th r ead s () ;
a+=b l k S i z e ∗(lda +1); xshared+=b l k S i z e ;

}
/∗ Store x back to g l o b a l memory ∗/
i f (t id<n) xg loba l [t i d] = xshared ac tua l [t i d] ;

}

4

Listing 3: Register-based solve A

template <int threadsx , int threadsy , int n>
l aunch bounds (threadsx ∗ threadsy , 1)

void g l o b a l regSolveA (const double ∗a , int lda , double ∗ xg loba l) {
double ava l [n/ threadsx] [n/ threadsy] ;
volat i le double s h a r e d xshared [n] ;

/∗ Read x in to shared memory and a in to r e g i s t e r s ∗/
int t i d = threadsx ∗ threadIdx . y+threadIdx . x ;
i f (t id<n) xshared [t i d] = xg loba l [t i d] ;

#pragma u n r o l l
for (int i =0; i<n ; i+=threadsx) {

const double ∗mya = &a [threadIdx . y∗ lda+i+threadIdx . x] ;
#pragma u n r o l l

for (int j =0; j<n ; j+=threadsy) {
ava l [i / threadsx] [j / threadsy] = ∗mya ;
mya += lda ∗ threadsy ;

}
}

/∗ Perform so l v e ∗/
#pragma u n r o l l

for (int i =0; i<n ; i++) {
sync th r ead s () ;

i f (threadIdx . y != i % threadsy) continue ;
#pragma u n r o l l

for (int j =0; j<n ; j+=threadsx) {
i f (j+threadIdx . x>i)

xshared [j+threadIdx . x] −= aval [j / threadsx] [i / threadsy] ∗
xshared [i] ;

}
}

/∗ Copy x back from shared memory ∗/
sync th r ead s () ;

i f (t id<n) xg loba l [t i d] = xshared [t i d] ;
}

Table 1: Performance of different implementation on small sizes. A ∗ indicates register spill reported by
compiler. Times are in µs measured using nvvp.

n = 32 64 96 128
Shared-memory variant 7 13 19 25
Register variant A 17 38 68 149∗

Register variant B 19 37 75∗ 125∗

CUBLAS dtrsv() 31 58 85 113

5

Table 2: Description of hardware for machine mitchell.
System(23GB)

Node#0(12GB)

Socket#0

Node#1(11GB)

Socket#1

L3(12MB)

L3(12MB)

L2(256KB) L2(256KB) L2(256KB) L2(256KB)

L2(256KB) L2(256KB) L2(256KB) L2(256KB)

L1(32KB) L1(32KB) L1(32KB) L1(32KB)

L1(32KB) L1(32KB) L1(32KB) L1(32KB)

Core#0 Core#1 Core#9 Core#10

Core#0 Core#1 Core#9 Core#10

P#0 P#8 P#1 P#9 P#2 P#10 P#3 P#11

P#4 P#12 P#5 P#13 P#6 P#14 P#7 P#15

Host
Architecture Intel Xeon E5620
Compiler Intel Fortran 12.0.0

ifort -g -fast -openmp
BLAS MKL 10.3.0
Cores 2× 4 = 8
Memory 24GB
Memory bandwidth 25.6 GB/s

C2050
Architecture Fermi (capability 2.0)
CUDA Driver 4.20
CUDA Runtime 4.10
Cores 14× 32 = 448
Memory 3GB
Memory bandwidth 144 GB/s

3 Large matrices

By extending the approach exemplified by Figure 1 to a further level, multiple thread blocks (and hence
SMs) can be used. At the coarsest level, the work of the previous section is applied to the block diag, while
a high-performance matrix-vector product (gemv) implementation can be applied to the block rect. If the
kernels are launched in the same stream, the driver will ensure they are executed in order. Exploitation of
this for purposes of synchronization is referred to as launch-synchronization in this paper.

Figure 2 compares the performance of this approach for various block sizes nb to that of the Intel MKL
running on the host (see Table 2), and the NVIDIA CUBLAS 4.1. The maximum size of matrix that can be
held in memory on the C2050 is just under n = 20000, so the full range of possible n values is shown. If n is
not an exact multiple of nb then a variant of the blkSolve kernel is used that permits blocks of variable size
less than nb at the cost of some loss of performance. The nb = 128 version outperforms the others except
when n = 32, 64 or 96, where the variants with n = nb are better. Larger block sizes were not tested as the
decreasing returns with increasing block size suggests this is unlikely to yield significant improvement.

Close examination of the actual performance obtained shows that there is much room for improvement.
The table below highlights the two main issues, namely the kernel launch overheads and a disproportionate
amount of time spent in the blkSolve() routine.

n = 512 1024 4096
Time (µs) in blkSolve() 108.3 217.3 904.7
Time (µs) in dgemv() 37.8 95.1 842.0
Execution time (µs) 171.0 370.8 2006.5
Launch overhead 17.0% 18.7% 14.9%
Matrix entries used by blkSolve() 18% 9% 2%

To remove the kernel launch overhead, synchronization can instead be performed using global memory.
This approach involves the combination of a level 2 cache read with a threadfence() instruction, both
of which are relatively cheap. This is achieved by combining the solve for a diagonal block with the matrix-
vector multiplication in a single kernel. Two additional benefits derive from this approach. First, while
the diagonal block solve is proceeding on one SM, others can be performing matrix-vector multiplies for
remaining rows. Second, additional work is available to mask the pre-caching of matrix blocks.

6

Figure 2: Performance of CPU BLAS (MKL), CUBLAS and the launch-synchronized blkSolve/dgemv
kernels for different block sizes nb. Times are measured using clock gettime(). Lower picture shows small
n detail.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

t
(s

e
c
o

n
d

s)

n

CPU BLAS (MKL)
CUBLAS dtrsv
blkSolve/dgemv nb = 32
blkSolve/dgemv nb = 64
blkSolve/dgemv nb = 96
blkSolve/dgemv nb = 128

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0 200 400 600 800 1000

t
(s

e
c
o

n
d

s)

n

7

Figure 3: Division of matrix into block rows, then into blocks. Assignment to thread blocks is performed
dynamically at run time.

Thread Block 2

Thread Block 1

Thread Block 0

Thread Block 4

If the matrix is divided symmetrically into blocks, then a matrix-vector multiply can be associated with
each off-diagonal block and a triangular solve with each diagonal block. The work associated with a given
off-diagonal block cannot begin until the solve for the diagonal block in the column has completed. The
diagonal solve in a given row cannot commence until all matrix-vector multiplies for blocks in that row have
completed.

Listing 4 outlines an implementation that obeys these constraints. Each thread block is assigned a
block row of the matrix that is further subdivided into blocks (Figure 3). For each row the matrix-vector
multiplies are executed in order from left to right followed by the triangular solve. If the required data for
a matrix-vector multiply is not ready then execution blocks until it becomes available.

As triangular solves on diagonal blocks must occur in order, it is sufficient to track only the latest row
that has completed. This requires only a single scalar value in global memory that is incremented upon
completion of a row. A threadfence() instruction is used to ensure the solution vector is visible to all
threads before incrementing this counter.

A further global memory synchronization is required to dynamically allocate matrix rows to thread blocks.
This is required as there is no guarantee that thread blocks are scheduled to run in index order, and static
allocation is likely to lead to deadlock. Such dynamic allocation is easily accomplished using a scalar in
global memory and atomicAdd().

Both these global memory synchronizations require initialization before execution of the main kernel.
This is easily accomplished using a trivial kernel run on a single thread.

Figure 4 shows the start of a typical execution trace for a large matrix where each SM executes 4 thread
blocks simultaneously (limited by shared memory). Each thread block exhibits two modes of operation.
Mode 1 operates while col ≤ sync[0] (i.e. until it has “caught up” with the current column) and is
characterised by constant execution of useful work. Mode 2 operates once the thread block begins waiting
for data before proceeding with computation. It is characterised by short spurts of execution immediately
following release of data for a column followed by a wait for more data. As these spurts of useful execution
are dependant on the same trigger, they are synchronized between thread blocks, even within the same SM.
If no thread block on an SM is operating in mode 1, then the SM idles while waiting for the next diagonal
solve to complete. This occurs only for the first (and in some cases second) thread block executed on each
SM, for which mode 1 execution is short or non-existent. It also occurs to a lesser degree near the end of
execution when the number of thread blocks per SM decreases (not shown).

Mode 2 operation is bandwidth bound, and efficiency is relatively high. Further, any improvement is
unlikely to impact the overall performance of the kernel as mode 1 operation dominates the critical path.
Mode 1 operation is bound on the performance of the matrix-vector multiply of block (row, row − 1) and
the solve on the diagonal block that constitute the critical path required to begin execution on the next
column. The pre-caching techniques of Section 2 can be used to accelerate these operations. These suggest
loading the diagonal block into shared memory is required to minimize latency. The critical rectangular
block can also be loaded into shared memory, but registers can also be used as no internal synchronizations

8

Listing 4: Outline code for global-memory synchronized dtrsv

/∗ Se t s sync va l u e s c o r r e c t l y p r i o r to c a l l to d t r s v l u e x e c ∗/
void g l o b a l d t r s v i n i t (int ∗ sync) {

sync [0] = −1; // Last ready column
sync [1] = 0 ; // Next row to as s i gn

}

/∗ Performs d t r s v f o r Non−t ransposed Lower−t r i a n g u l a r Unit matr ices
∗ Requires d t r s v i n i t () to be c a l l e d f i r s t to i n i t i a l i z e sync [] .
∗ Best performance on C2050 with th readsx=32, threadsy=8.
∗/

template <int nb , int threadsx , int threadsy>
void g l o b a l d t r s v l u e x e c (int n , const double ∗a , int lda ,

double ∗ xgloba l , int ∗ sync) {

int nblk = n / nb ;
int t i d = threadsx ∗ threadIdx . y + threadIdx . x ;
double s h a r e d cache [nb∗nb] , partSum [threadsy ∗ threadsx] ;

/∗ Get row handled by t h i s thread b l o c k ∗/
int row = nextRow(&sync [1]) ;

/∗ Loop over b l o c k s as they become a v a i l a b l e ∗/
double va l ;
i f (threadIdx . y==0) va l = xg loba l [row∗nb+threadIdx . x] ;
else va l = 0 ;
for (int c o l =0; co l<row ; c o l++) {

/∗ app ly update from b l o c k (row , co l) ∗/
const double ∗ ava l = &a [(c o l ∗nb+threadIdx . y)∗ lda + row∗nb+threadIdx . x] ;
w a i t u n t i l g e (&sync [0] , c o l) ; // Wait f o r d iagona l b l o c k to be done
for (int j =0; j<nb ; j+=threadsy)

va l −= aval [j ∗ lda] ∗ xg loba l [c o l ∗nb+j] ;
}
partSum [threadIdx . y∗ threadsx+threadIdx . x] = va l ; s ync th r ead s () ;
i f (threadIdx . y != 0) return ; /∗ Only use f i r s t warp from here on ∗/
for (int i =1; i<threadsy ; i++) va l += partSum [i ∗ threadsx+threadIdx . x] ;

/∗ Apply update from diagona l b l o c k (row , row) ∗/
const double ∗ ava l = &a [(row∗nb+threadIdx . y)∗ lda + row∗nb+threadIdx . x] ;
dblkSolve<nb>(aval , nb , va l) ;
xg l oba l [row∗nb+t i d] = va l ;

/∗ Not i f y o ther b l o c k s t ha t so ln i s ready f o r t h i s row ∗/
colDone (sync , row) ; // Note : con ta ins t h r e ad f en c e () ;

}

9

Figure 4: Start of execution trace for global memory-synchronized code with n = 4096. Each SM executes
4 thread blocks simultaneously. The bottom black trace for each SM represents useful activity across all
thread blocks. Colour is used to indicate where different thread blocks start and stop.

SM 0

SM 1

SM 2

SM 3

SM 4

SM 5

SM 6

SM 7

SM 8

SM 9

SM 10

SM 11

SM 12

SM 13

10

Figure 5: Performance of global memory-synchronized kernel using different pre-caching techniques.
The launch-synchronized method with nb = 128 is shown for comparison. Times are measured using
clock gettime(). Lower picture shows small n detail.

 0

 0.005

 0.01

 0.015

 0.02

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

t
(s

e
c
o

n
d

s)

n

launch-synchronized blkSolve/dgemv nb = 128
gmem-sync, diag=shmem, rect=uncached
gmem-sync, diag=shmem, rect=registers
gmem-sync, diag=shmem, rect=shmem

 0

 0.0005

 0.001

 0.0015

 0.002

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

t
(s

e
c
o

n
d

s)

n

are required, unlike the triangular solve. If shared memory is only used for the diagonal block, up to four
thread blocks can execute on a single SM. If shared memory is used for both blocks, this reduces to two
thread blocks per SM.

Figure 5 shows results for different caching options for the rectangular block (no caching, shared memory
and registers) and includes a comparison against the best kernel-synchronized variant. For small matrices
pre-caching is important and the shared memory variant outperforms the non-caching variant. For large
matrices occupancy is more important and the non-caching variant outperforms the shared memory version.
Both are consistently equalled or outperformed by the register caching variant that combines their best
features. A transition from latency-bound (time linear in n) to bandwidth-bound (time quadratic in n)
behaviour is apparent around n = 1500.

4 Explicit inversion

In the memory-synchronized algorithm, each thread block spends a significant amount of time waiting for
data in its mode 2 operation. The resulting under-utilised resource can be used to perform the explicit

11

Figure 6: Speedup from using explicit inversion.

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

S
p

ee
d

u
p

n

inversion of the diagonal block, allowing the replacement of the critical path’s latency-bound solve with a
bandwidth-bound matrix-vector multiply. This is similar to the approach of Ltaief et al. [2] used in the
MAGMA library.

This differs from other approaches [4] that perform an explicit inversion of the whole matrix. A whole
matrix inversion increases the main memory traffic significantly, and often converts the problem from being
memory to compute bound.

Following the component-wise backwards stable divide and conquer approach laid out by Higham [1], the
triangular matrix L, and its inverse X = L−1, are partitioned as

L =

(
L11

L21 L22

)
X =

(
X11

X21 X22

)
.

By considering the expression LX = I, observe that L11X11 = I, L21X11 + L22X21 = 0 and L22X22 = I.
X11 and X22 can therefore be found as the inverse of L11 and L22 using recursion or a trivial base case.
Care must be taken in determination of X21 to ensure stability. Higham’s method B can be used, solving
L22X21 = −L21X11 by substitution.

Timings show that the inversion of a 32×32 block completes in the same time as 3–4 block substitutions
and their associated matrix-vector products. However, the replacement of the block substitution by a matrix-
vector product halves the execution time on the critical path. Inversion is therefore used only for the fifth
block row and beyond.

Figure 6 shows the speedup achieved against the best global-memory variant from the previous section.
For small matrices (n < 500) the extra overhead of the inversion causes a slowdown. Larger matrices are
bandwidth bound, so latency improvements are of limited effect. Further, as the inversion algorithm is
more complicated than substitution, register pressure reduces the number of threads than can be employed,
slowing the matrix-vector multiplications. However, for medium-sized matrices in the range 500–5000 up to
a 30% performance improvement is possible.

5 Transpose problem

The transpose problem can be approached in a similar manner to the non-transpose case so far treated.
However, to achieve maximal memory bandwidth it is necessary for threads of a warp to read entries in a

12

Figure 7: Non-transpose versus Transpose matrix access for optimal bandwidth. Labelling of matrix elements
x.y indicates accessing thread coordinates within thread block. Threads with the same y value belong to the
same warp.

0.0

1.0 1.1

2.0 2.1 2.2

...
...

...
. . .

31.0 31.1 31.2 · · · 31.y




Non-transpose access pattern

1.0 1.0 2.0 · · · 31.0

1.1 2.1 · · · 31.1

2.2 · · · 31.2

. . .
...

31.y




Transpose access pattern

row-wise rather than column-wise fashion (see Figure 7). This introduces the requirement for an additional
reduction.

As insufficient shared memory is available to perform the reduction in an optimal fashion at the same
time as maintaining high occupancy, it must be removed from the critical path. This can be achieved by
performing a transpose operation on the blocks belonging to the critical path as they are cached.

The results of this approach are shown in Figure 8. Observe that the performance is slightly lower
than for the non-transpose case, especially for smaller matrices, due to the additional overhead of the extra
reduction. However, the code still significantly outperforms existing CUDA implementations.

6 Conclusions

By selecting the best algorithm from the previous section for relevant domains of n values, a high performance
trsv implementation can be developed. Figures 9 and 10 demonstrate performance comparisons against

other notable implementations.
By analysing the performance limiting factors that affect triangular solve and addressing these with

different techniques depending on the size of matrix, a 5–15× improvement was achieved over the current
CUBLAS implementation. Explicit pre-fetching and selective and stable inversion to reduce dependencies
between operations are critical to reducing latency. Avoiding kernel-launch overheads and ensuring high
occupancy are necessary to maximize bandwidth utilisation for large matrices, allowing over 75% of peak to
be achieved.

The code described in this paper is available under a 3-clause BSD licence from the CCP Forge website:
http://ccpforge.cse.rl.ac.uk/gf/project/asearchralna/

ACKNOWLEDGEMENTS

With many thanks to Mike Giles and Jennifer Scott for comments on drafts of this paper. Further credit
accrues to Mike for the observation that registers can be used to pre-cache the rectangular block on the
critical path for the global memory version, allowing high occupancy.

References

[1] N. J. Higham, Stability of parallel triangular system solvers, SIAM J. Scientific Computing, 16 (1995),
pp. 400–413.

[2] H. Ltaief, S. Tomov, R. Nath, P. Du, and J. Dongarra, A scalable high performant cholesky
factorization for multicore with gpu accelerators, in High Performance Computing for Computational

13

Figure 8: Performance of best kernels adapted for transpose solve. Times are measured using
clock gettime(). Lower picture shows small n detail.

 0

 20

 40

 60

 80

 100

 120

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

G
B

/s

n

Host MKL trsv
GPU CUBLAS trsv
GPU MAGMA trsm
GPU Best Transpose Kernel

 0

 2

 4

 6

 8

 10

 12

 0 200 400 600 800 1000

G
B

/s

n

14

Figure 9: Comparison of bandwidth achieved using best kernels from this paper against Host MKL trsv,
and GPU CUBLAS trsv and GPU MAGMA trsm implementations. Lower picture shows small n detail.

 0

 20

 40

 60

 80

 100

 120

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

G
B

/s

n

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000

G
B

/s

n

Host MKL trsv
GPU CUBLAS trsv
GPU MAGMA trsm
GPU Best of paper

Figure 10: Comparison of time taken (speedup) against GPU CUBLAS trsv for best kernels from this
paper, Host MKL trsv, and GPU MAGMA trsm.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

T
im

e
/T

im
e
(G

P
U

 C
U

B
L

A
S

)

n

GPU Best of paper
Host MKL trsv

GPU MAGMA trsm

15

Science – VECPAR 2010, J. Palma, M. Dayd, O. Marques, and J. Lopes, eds., vol. 6449 of Lecture Notes
in Computer Science, Springer Berlin / Heidelberg, 2011, pp. 93–101.

[3] NVIDIA, CUDA Toolkit 4.1 CUBLAS Library, January 2012.

[4] F. Ries, T. De Marco, M. Zivieri, and R. Guerrieri, Triangular matrix inversion on graphics
processing unit, in Proceedings of the Conference on High Performance Computing Networking, Storage
and Analysis, SC ’09, New York, NY, USA, 2009, ACM, pp. 9:1–9:10.

16

	RAL-P-2012-002-cover.pdf
	RAL-P-2012-002-report.pdf

