
Parallel Implementation of Large Scale

Agent -based Models in Economics

Prof C Greenough, LS Chin and Dr DJ Worth

Software Engineering, STFC Rutherford Appleton Laboratory

Prof M Holcombe, Dr Simon Coakley and Dr Mariam Kiran

Computer Science, Sheffield University

Contents

Á Introduction ðCSED/SoftEng

Á Acknowledgement ðEURACE

Á High Performance Computing - Why ðSome issues

Á HPC hardware

Á FLAME ðthe software base

Á Parallel FLAME implementation

Á Verification and validation of FLAME

Á Performance of FLAME infrastructure

Á Performance of EURACE model

Á Conclusions

Rutherford Appleton Lab - ADACE Bielefeld 2010

The Computational Science and

Engineering Department

Á STFC (Science and Technology Facilities

Council) has two main Laboratories with

around 1500 staff in total:

ð Daresbury Laboratory (near Warrington) and at

ð the Rutherford Appleton Laboratory (near Oxford)

Á Computation Science & Engineering has

around 100 research and support staff

Á Development and application simulation

codes

ð Usually collaborating with Universities

ð Emphasis on high performance

Á Interests in Science and Engineering

Rutherford Appleton Lab - ADACE Bielefeld 2010

Daresbury

Rutherford

Appleton

Large Scale Facilities at the

Rutherford Appleton Laboratory

Rutherford Appleton Lab - ADACE Bielefeld 2010

Rutherford Appleton Lab

ISIS Neutron Source

Diamond Light Source

Computational Science & Engineering

Á Material Sciences

Á Life Sciences

Á Systems Biology

Rutherford Appleton Lab - ADACE Bielefeld 2010

Á Computational Engineering

Á Ocean/Climate Modelling

Á Advanced Algorithms

Á Numerical Analysis

Á Software Engineering

Á Novel Hardware

Software Engineering Group

Á Applications

ð CFD

ð Heat transfer

ð Electromagnetics

ð Semi-conductors

ð Space detectors

Á Parallel Algorithms

Rutherford Appleton Lab - ADACE Bielefeld 2010

Á Software Engineering Support Programme (SESP)

ð Practical/Pragmatic software engineering methods

ð Development of software engineering tools

ð Education ðworkshop, seminars, tech reports...

Á Intelligent Agent Technology

ð Agent -based frameworks and algorithm

ð Biological Systems

ð EURACE ðEU Economic Modelling

Acknowledgements

This research is funded by the European Union via the

EURACE project (No 035086) which aimed to build a large

scale agent -based model of the European economy to aid

economic policy design.

The project required the development of an integrated

multi -agent model of economic and financial markets and

the development of software techniques and a software

platform for large -scale agent -based economic

simulations.

Rutherford Appleton Lab - ADACE Bielefeld 2010

Acknowledgements

The EURACE Project Partners:

Á Economics/Finance

ð Università degli Studi di Genova (UG) Italy (Coordinator)

ð Universitaet Bielefeld (UNIBI) Germany

ð Université de la Méditerranée (GREQAM) France

ð Università Politecnica della Marche (UPM) Italy

Á Software Engineering:

ð University of Sheffield (USFD) UK

ð Università degli Studi di Cagliari (UNICA) Italy

ð STFC Computational Science & Engineering Dept (STFC) UK

ð National Research Institute of Electronics and Cryptology

(UEKAE) Turkey

Rutherford Appleton Lab - ADACE Bielefeld 2010

Why High Performance Computing?

Á Implementing software on an high performance system is

difficult and time consuming so there must be a good

reasons to embark on the task:

ðApplication can not be run on a conventional

computing system ðinsufficient power and/or

memory:

ðAgent population to large (m/p)

ðAgents are too complex (m/p)

ðNumber of simulations to large (p)

Č Policy experiments

Č Validation process

Č Optimisation

Rutherford Appleton Lab - ADACE Bielefeld 2010

Some Issues in High

Performance Computing

Á Parallel systems are in constant development

Á Their hardware architectures are ever changing

ðsimple distributed memory on multiple processors

ðshare memory between multiple processors

ðhybrid systems ð

Č clusters of share memory multiple processors

Č clusters of multi -core systems

ð the processors often have a multi -level cache system

Rutherford Appleton Lab - ADACE Bielefeld 2010

Some More Issues in High

Performance Computing

Á Most have high speed multi -level communication switches

Á Cloud/GRID architectures are now being used for very

large simulations

ðmany large high -performance systems

ð loosely coupled together over the internet

ðSpecialised programming interfaces ðno standards

Á Performance can be improved by optimising to a specific

architecture

Á Can very easily become architecture dependent

Á Cost ðmost serious HPC machines can be very expensive

Rutherford Appleton Lab - ADACE Bielefeld 2010

Computing Systems

Á Workstations/Desktop Systems:

ð Multi -core processors (4,8....)

ð Add -on processors (GPGPU..)

Á High Performance Computing (HPC)

Systems:

ð Large multi -processor system

(thousands of processors)

ð Coupled Multi -core systems

ð Complex communications hardware

ð Specialised attached processors

(vector units, cells..)

Rutherford Appleton Lab - ADACE Bielefeld 2010

Parallelism does not come for free!!

Á Cannot magically transform a program to run efficiently

on a parallel system

Á Algorithm must be suitable for parallelisation

Á There are such things as non -parallelisable algorithms

Á Elements of work must localised ðminimal dependencies

on other task!

Á Communication and synchronisation between processors

significant overheads ðso communication between task

must be minimised

Rutherford Appleton Lab - ADACE Bielefeld 2010

Á An agent -based modelling framework

Á Initially developed by Simon Coakley (University of

Sheffield). Extended in collaboration with STFC.

Á Originally targeted at biological systems

Á Developed further under the EURACE project:

ð Now support larger class of models (e.g. economic models)

ð Extension of the X -Machine Markup Language (XMML)

ð Optimised performance (serial and parallel)

ð Ported to various HPC machines (supercomputers) and

Operating Systems

Rutherford Appleton Lab - ADACE Bielefeld 2010

Rutherford Appleton Lab - ADACE Bielefeld 2010

How is FLAME different?

Á It is a generic ABM program generator

Á It has been design with HPC in mind ðwritten in C using

MPI to manage communications

Á Components are: model parser, a template library and a

run -time library

Á Uses a model definition written a dialect of XML together

with user provided C code for agent functions

Á It uses the concept of Message Boards for inter -agent

communication

Á Uses an agent dependency graph to schedule and optmise

agent function (state change) activations

Á Generates: the application and builder files for serial and

parallel execution

Rutherford Appleton Lab - ADACE Bielefeld 2010

Message Boards

Firms post

job vacancy

messages

Households

read list of

vacancies

Filters

Households can selectively

read messages using filters.

Åsalary > 1000 and skill level = 4

ÅAll inter -agent communications are through messages boards

ÅThere is a message board each message type within the model

ÅMessages only have two states ðread or write (no read/write).

ÅThe message board library (libmboard) manages these

The FLAME Process

Á Input from the modeller:

ð Model ðXMML file

ð C-code for functions

Á Input from FLAME

ð Template file

ð Header files

Á Output from FLAME

ð Applications code

ð State diagram

Rutherford Appleton Lab - ADACE Bielefeld 2010

Rutherford Appleton Lab - ADACE Bielefeld 2010

Creating a model

ÁWhat do we need to define:

Á Agents

ðMemory

ðBehaviour ðfunctions/states/communications

Á Messages (information flow between agents)

Á Optional extras

ðEnvironment constants

ðCustom data types

ðCustom time units

Rutherford Appleton Lab - ADACE Bielefeld 2010

Specifying a Model using XMML

Á XMML is a dialect of XML (X -Machine Agent Mark -up

Language)

Á Standard set of XML tags

Á Simple editable text file

Á File has three main sections: models, environment , agents

and messages

Á EURACE develop a tool set to help model developers and

users

Rutherford Appleton Lab - ADACE Bielefeld 2010

XMML ðOverall Structure

<xmodel >

<name>circles</name>

<models>

<model>.... </model>

</models>

<environment>

<constants>.... </constants>

<functionfiles>.... </functionfiles>

<timeUnits>.... </timeUnits>

</environment>

<agents>

<xagent>.... </xagent>

<messages>

<message>.... </message>

</messages>

</xmodel>

Rutherford Appleton Lab - ADACE Bielefeld 2010

Programmers FLAME API

Á Interface to agents and Framework

Á Sending & receiving messages

Č get_next_<message name>_message

Č add_<message name>_message

Á Accessing agent memory

Č get_<variable>

Č set_<variable>

Á Creating & removing agents

Application Programmers Interface

The programmers interface to agent memory and to message

board information is through the FLAME Programmers API.

Example 1 : Circle agent with memory of x, y, id and radius

communicating through the location message.

int outputdata ()
{

double x, y, radius;
int id;

x = get_x(); y = get_y();
id = get_id(); radius = get_radius();

add_location_message(id, (radius * 3), x, y, 0.0);

return 0;
}

Rutherford Appleton Lab - ADACE Bielefeld 2010

Application Programmers Interface

Example 2 : Circle agent get -ing and set-ing memory values x,

y, fx and fy using API functions.

int move()
{

double fx , fy ;

fx=get_fx();
fy =get_fy();

set_x(fx);
set_y(fy);

return 0;
}

Rutherford Appleton Lab - ADACE Bielefeld 2010

API - MACROS

The FLAME parser generates predefined macros which allow

the programmer to generate loops over message boards.

Example 3 : A loop to scan over LOCATION message board

#define START_ LOCATION _MESSAGE_LOOP
for (location_message= get_first_location_message();

location_message!= NULL;
location_message= get_next_location_message(location_message))

{

#define FINISH_ LOCATION _MESSAGE_LOOP
}

Rutherford Appleton Lab - ADACE Bielefeld 2010

The FLAME Process

Á Input from the modeller:

ð Model ðXMML file

ð C-code for functions

Á Input from FLAME

ð Template file

ð Header files

Á Output from FLAME

ð Applications code

ð State diagram

Rutherford Appleton Lab - ADACE Bielefeld 2010

Two simple models

Circles Model

Á very simple agent

Á all have position data

Á x, y, fx, fy, radius in

memory

Á moves by repulsion from

neighbours

Á 1 message type

Á 3 functions

C@S Model

Á mix of agents: Malls,

Firms, People

Á a mixture of state

complexities

Á all have position data

Á agents have range of

influence

Á 9 message types

Á 9 functions

Rutherford Appleton Lab - ADACE Bielefeld 2010

Rutherford Appleton Lab - ADACE Bielefeld 2010

Dependency Graphs

Simple three -agent model

Circle agent model

Communications

State changesFirm

Mall

Person
Circle

Issues with HPC and FLAME

Á FLAME is a applications generator

Á Parallelism is hidden in the XML model and the modeller

provided C -code ðthis is in term of agent locality or

population groupings

Á Inter -agent communications captured in XML

ð In agent function descriptions

ð In message descriptions

ðThe frequency of messages is not known

Á The agent functions are the computational load

ðTheir weight not known until run time

ðThey could be fine or course grained

ðTheir activation is irregular ðnot lock stepped

Rutherford Appleton Lab - ADACE Bielefeld 2010

Parallel Implementation

Á Based on :

ð the distribution of agents ðcomputational load

ðdistribution of message boards (MB) ðdata load

Á Agents only communicate via MBs

Á Cross-node message information is made available to

agents by message board synchronisation

Á FLAME uses MPI to manage inter -node communications

Á Communication between nodes are minimised

ðMulti -threading on computation and communication

ðMessage filtering

ðDomain/group halos

Rutherford Appleton Lab - ADACE Bielefeld 2010

Rutherford Appleton Lab - ADACE Bielefeld 2010

Parallelism in FLAME

Initial Problem Distribution

Á The goal of using a high performance parallel computer is

to minimise the time taken to perform a simulation.

Á We must balancing the use of resources available to

achieve this

Á Some issues:

ðcommunicating between processors takes time

ðcommunication must overlap computation

ð the model must contain parallelism

ð the model must be sufficiently large

Á Using all the available processors is not the solution

Rutherford Appleton Lab - ADACE Bielefeld 2010

A Very Simple Model

The circle agent is our basic test agent

Á Very simple agents ðzero size points

in 2D space

Á all have a 2D (x,y) positional data

Á all have a radius of influence

Á values of x, y and radius are in

memory

Á they move by repulsion from

neighbours

Á there is only 1 message type

Á there are 3 functions

Rutherford Appleton Lab - ADACE Bielefeld 2010

Rutherford Appleton Lab - ADACE Bielefeld 2010

Model Partitioning

ÁRound -robin: simple agent by agent allocation

ðpartitions are given a geometry

ðagents are allocated to partitionõs centroid

ðagents distributed for load balance

ÁGeometric: based on prime factors

ðusing position as separator

ðpartitions are defined uniformly over x and y space

ð for prime numbers x is preferred direction

ðcould be used of multi -variable separators

Rutherford Appleton Lab - ADACE Bielefeld 2010

Round -Robin Partitioning

centroids

range covers

whole domain

Rutherford Appleton Lab - ADACE Bielefeld 2010

Geometric Partitioning

halos

radius

P
1

P
2

P
3

P
4

P
7

P
10

P
11

P
12

P
9

P
6

P
5

P
8

Processors

P
i

Partitioning by Region

Á For economics geographical

regions seem to be natural

Á We still need to understand

the agent interaction the

work they perform ðthe

communication and

computation load

Á Very difficult in unsteady

multi -agent systems

Á Multiple agent weights

Á Start with a static analysis!

Rutherford Appleton Lab - ADACE Bielefeld 2010

Parallelism in FLAME

Parallel agents grouped on parallel nodes.

Messages synchronised across nodes as necessary

Message board library allows both serial and parallel versions to work

Rutherford Appleton Lab - ADACE Bielefeld 2010

Rutherford Appleton Lab - ADACE Bielefeld 2010

Dependency Graphs

Simple three -agent model

Circle agent model

Communications

State changesFirm

Mall

Person
Circle

S1

S1

S4a

S6a

S3

S2

S4b

S6b

S5

Message Filtering

Á The XMML filter provides a way of

selecting only the required data is

transferred

<function><name>inputdata</name>

<currentState>1</currentState>

<nextState>2</nextState>

<inputs><input>

<messageName>location</messageName>

<filter>

<lhs><value> a.id </value></lhs>

<op>NEQ</op>

<rhs><value> m.id </value></rhs>

</filter>

</input></inputs>

</function>

Á Used to control scanning loops

Á Used in message board synchronisation

Rutherford Appleton Lab - ADACE Bielefeld 2010

Message Board Synchronisation

Á At these critical points we need to synchronise the

message information

Á To continue every agent must have in place the

information it needs before the simulation can continue

Á Local message boards must be updated with necessary

current information

Á In its simplest form synchronisation by full replication of

all messages within each node ðcannot be done in large

populations ðinsufficient memory

Á We only transfer the information required as defined in

the model XMML.

Rutherford Appleton Lab - ADACE Bielefeld 2010

Multi -threading

Á Synchronisation is a potential

bottleneck as the simulation must

wait for inter -node communication

Á To reduce this problem libmboard

runs multiple threads:

ð one for communication ðdata

transfer

ð one for computation ðdoing agent

based work

Á MB_SyncStar and MB_SyncComplete

control this process

Rutherford Appleton Lab - ADACE Bielefeld 2010

Parallel Platforms

Á The FLAME framework has been successfully ported to

various HPC systems:

ð SCARF ð360x2.2 GHz AMD Opteron cores, 1.3TB total

memory

ð HAPU ð128x2.4 GHz Opteron cores, 2GB memory / core

ð NW-Grid ð384x2.4 GHz Opteron cores, 2 or 4 GB

memory/core

ð HPCx ð2560x1.5GHz Power5 cores, 2GB memory / core

ð Legion (Blue Gene/P) ð1026xPowerPC 850 MHz; 4,096 cores

ð HECToR (Cray XT4) ð1416xQuad Core Opterons, 2GB / core,

22,656 cores

ð Leviathan (UNIBI) ð3xIntel Xeon E5355 (Quad Core), 24 cores

Rutherford Appleton Lab - ADACE Bielefeld 2010

Verification and Validation

Á It is important to ensure that applications generated by the

FLAME framework execute correctly in both their serial and

parallel modes.

Á A set of simple test models and problems have been developed

based on the Circles agent:

ð Test 1: single Circles agent type; Initial population of no agents.

ð Test 2: single Circles agent type; Initial population of one agent at (0,0).

ð Test 3: Two Circles agent type; Initial population of agents at (-1,0) and (+,0).

ð Test 4: Four Circles agent type; Initial population of one agent at (+/ -1,+/ -1).

ð Test 5: Four Circles agent type; Initial population of one agent at (0,+/ -1) and

(+/ -1,0).

ð Test 6: Four Circles agent type; Initial population of one agent at random

positions.

Á In each of these models the expected results can be specified

and they can provide a very simple check of the correctness

serial and parallel implementations.

Rutherford Appleton Lab - ADACE Bielefeld 2010

Circles Model (1 Million Agents)

Rutherford Appleton Lab - ADACE Bielefeld 2010

