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The Computational Science and 

Engineering Department

Á STFC (Science and Technology Facilities 

Council) has two main Laboratories with 

around 1500 staff in total: 

ð Daresbury Laboratory (near Warrington) and at 

ð the Rutherford Appleton Laboratory (near Oxford)

Á Computation Science & Engineering has 

around 100 research and support staff

Á Development and application simulation 

codes

ð Usually collaborating with Universities

ð Emphasis on high performance

Á Interests in Science and Engineering
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Large Scale Facilities at the 

Rutherford Appleton Laboratory
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Rutherford Appleton Lab

ISIS Neutron Source

Diamond Light Source



Computational Science & Engineering

Á Material Sciences

Á Life Sciences

Á Systems Biology
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Á Computational Engineering

Á Ocean/Climate Modelling

Á Advanced Algorithms

Á Numerical Analysis

Á Software Engineering

Á Novel Hardware



Software Engineering Group

Á Applications

ð CFD

ð Heat transfer

ð Electromagnetics

ð Semi-conductors

ð Space detectors

Á Parallel Algorithms
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Á Software Engineering Support Programme (SESP)

ð Practical/Pragmatic software engineering methods

ð Development of software engineering tools

ð Education ðworkshop, seminars, tech reports...

Á Intelligent Agent Technology

ð Agent -based frameworks and algorithm

ð Biological Systems

ð EURACE ðEU Economic Modelling
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Why High Performance Computing?

Á Implementing software on an high performance system is 

difficult and time consuming so there must be a good 

reasons to embark on the task:

ðApplication can not be run on a conventional 

computing system ðinsufficient power and/or 

memory:

ðAgent population to large (m/p)

ðAgents are too complex (m/p)

ðNumber of simulations to large (p)

Č Policy experiments

Č Validation process

Č Optimisation
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Some Issues in High 

Performance Computing

Á Parallel systems are in constant development

Á Their hardware architectures are ever changing

ðsimple distributed memory on multiple processors

ðshare memory between multiple processors

ðhybrid systems ð

Č clusters of share memory multiple processors

Č clusters of multi -core systems

ð the processors often have a multi -level cache system
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Some More Issues in High 

Performance Computing

Á Most have high speed multi -level communication switches

Á Cloud/GRID architectures are now being used for very 

large simulations

ðmany large high -performance systems 

ð loosely coupled together over the internet

ðSpecialised programming interfaces ðno standards

Á Performance can be improved by optimising to a specific 

architecture

Á Can very easily become architecture dependent

Á Cost ðmost serious HPC machines can be very expensive
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Computing Systems

Á Workstations/Desktop Systems:

ð Multi -core processors (4,8....)

ð Add -on processors (GPGPU..)

Á High Performance Computing (HPC) 

Systems:

ð Large multi -processor system 

(thousands of processors)

ð Coupled Multi -core systems 

ð Complex communications hardware

ð Specialised attached processors 

(vector units, cells..)
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Parallelism does not come for free!!

Á Cannot magically transform a program to run efficiently 

on a parallel system

Á Algorithm must be suitable for parallelisation

Á There are such things as non -parallelisable algorithms

Á Elements of work must localised ðminimal dependencies 

on other task!

Á Communication and synchronisation between processors 

significant overheads ðso communication between task 

must be minimised
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Á An agent -based modelling framework 

Á Initially developed by Simon Coakley (University of 

Sheffield). Extended in collaboration with STFC.

Á Originally targeted at biological systems

Á Developed further under the EURACE project:

ð Now support larger class of models (e.g. economic models)

ð Extension of the X -Machine Markup Language (XMML)

ð Optimised performance (serial and parallel)

ð Ported to various HPC machines (supercomputers) and 

Operating Systems
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How is FLAME different?

Á It is a generic ABM program generator

Á It has been design with HPC in mind ðwritten in C using 

MPI to manage communications

Á Components are: model parser, a template library and a 

run -time library

Á Uses a model definition written a dialect of XML together 

with user provided C code for agent functions

Á It uses the concept of Message Boards for inter -agent 

communication

Á Uses an agent dependency graph to schedule and optmise 

agent function (state change) activations

Á Generates: the application and builder files for serial and 

parallel execution
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Message Boards

Firms post 

job vacancy 

messages

Households

read list of

vacancies

Filters

Households can selectively  

read messages using filters.

Åsalary > 1000 and skill level = 4

ÅAll inter -agent communications are through messages boards

ÅThere is a message board each message type within the model

ÅMessages only have two states ðread or write (no read/write ).

ÅThe message board library ( libmboard ) manages these



The FLAME Process

Á Input from the modeller:

ð Model ðXMML file

ð C-code for functions

Á Input from FLAME

ð Template file

ð Header files

Á Output from FLAME

ð Applications code

ð State diagram

Rutherford Appleton Lab  - ADACE Bielefeld 2010



Rutherford Appleton Lab  - ADACE Bielefeld 2010

Creating a model

ÁWhat do we need to define:

Á Agents

ðMemory

ðBehaviour ðfunctions/states/communications

Á Messages (information flow between agents)

Á Optional extras

ðEnvironment constants

ðCustom data types

ðCustom time units
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Specifying a Model using XMML

Á XMML is a dialect of XML (X -Machine Agent Mark -up 

Language)

Á Standard set of XML tags

Á Simple editable text file

Á File has three main sections: models, environment , agents

and messages

Á EURACE develop a tool set to help model developers and 

users
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XMML ðOverall Structure

<xmodel >

<name>circles</name>

<models>

<model>.... </model>

</models>

<environment>

<constants>.... </constants>

<functionfiles>.... </functionfiles>

<timeUnits>.... </timeUnits>

</environment>

<agents>

<xagent>.... </xagent>

<messages>

<message>.... </message>

</messages>

</xmodel>
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Programmers FLAME API

Á Interface to agents and Framework

Á Sending & receiving messages

Č get_next_<message name>_message

Č add_<message name>_message

Á Accessing agent memory

Č get_<variable>

Č set_<variable>

Á Creating & removing agents



Application Programmers Interface

The programmers interface to agent memory and to message 

board information is through the FLAME Programmers API. 

Example 1 : Circle agent with memory of x, y, id and radius 

communicating through the location message.

int outputdata ()
{

double x, y, radius;
int id;

x  = get_x();    y = get_y(); 
id = get_id();  radius = get_radius();

add_location_message(id, (radius * 3), x, y, 0.0);

return 0;
}
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Application Programmers Interface

Example 2 : Circle agent get -ing and set-ing memory values x, 

y, fx and fy using API functions.

int move()
{

double fx , fy ;

fx=get_fx();
fy =get_fy();

set_x(fx );
set_y(fy );

return 0;
}
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API - MACROS

The FLAME parser generates predefined macros which allow 

the programmer to generate loops over message boards.

Example 3 : A loop to scan over LOCATION message board

#define START_ LOCATION _MESSAGE_LOOP
for ( location_message= get_first_location_message(); 

location_message!= NULL; 
location_message= get_next_location_message(location_message)) 

{

#define FINISH_ LOCATION _MESSAGE_LOOP 
}
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The FLAME Process

Á Input from the modeller:

ð Model ðXMML file

ð C-code for functions

Á Input from FLAME

ð Template file

ð Header files

Á Output from FLAME

ð Applications code

ð State diagram
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Two simple models

Circles Model

Á very simple agent

Á all have position data

Á x, y, fx, fy, radius in 

memory

Á moves by repulsion from 

neighbours

Á 1 message type

Á 3 functions

C@S Model

Á mix of agents: Malls, 

Firms, People

Á a mixture of state 

complexities

Á all have position data

Á agents have range of 

influence

Á 9 message types

Á 9 functions
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Dependency Graphs

Simple three -agent model

Circle agent model

Communications

State changesFirm

Mall

Person
Circle



Issues with HPC and FLAME

Á FLAME is a applications generator

Á Parallelism is hidden in the XML model and the modeller 

provided C -code ðthis is in term of agent locality or 

population groupings

Á Inter -agent communications captured in XML

ð In agent function descriptions

ð In message descriptions

ðThe frequency of messages is not known

Á The agent functions are the computational load 

ðTheir weight not known until run time 

ðThey could be fine or course grained

ðTheir activation is irregular ðnot lock stepped
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Parallel Implementation

Á Based on :

ð the distribution of agents ðcomputational load

ðdistribution of message boards (MB) ðdata load

Á Agents only communicate via MBs

Á Cross-node message information is made available to 

agents by message board synchronisation

Á FLAME uses MPI to manage inter -node communications

Á Communication between nodes are minimised

ðMulti -threading on computation and communication

ðMessage filtering

ðDomain/group halos 
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Parallelism in FLAME



Initial Problem Distribution

Á The goal of using a high performance parallel computer is 

to minimise the time taken to perform a simulation.

Á We must balancing the use of resources available to 

achieve this

Á Some issues:

ðcommunicating between processors takes time

ðcommunication must overlap computation

ð the model must contain parallelism

ð the model must be sufficiently large

Á Using all the available processors is not the solution
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A Very Simple Model

The circle agent is our basic test agent 

Á Very simple agents ðzero size points 

in 2D space

Á all have a 2D ( x,y) positional data

Á all have a radius of influence

Á values of x, y and radius are in 

memory

Á they move by repulsion from 

neighbours

Á there is only 1 message type 

Á there are 3 functions
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Model Partitioning

ÁRound -robin: simple agent by agent allocation

ðpartitions are given a geometry

ðagents are allocated to partitionõs centroid

ðagents distributed for load balance

ÁGeometric: based on prime factors 

ðusing position as separator

ðpartitions are defined uniformly over x and y space

ð for prime numbers x is preferred direction

ðcould be used of multi -variable separators
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Round -Robin Partitioning

centroids

range covers 

whole domain
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Geometric Partitioning
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Partitioning by Region

Á For economics geographical 

regions seem to be natural

Á We still need to understand 

the agent interaction the 

work they perform ðthe 

communication and 

computation load

Á Very difficult in unsteady 

multi -agent systems

Á Multiple agent weights

Á Start with a static analysis!
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Parallelism in FLAME

Parallel agents grouped on parallel nodes.

Messages synchronised across nodes as necessary

Message board library allows both serial and parallel versions to work
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Dependency Graphs

Simple three -agent model

Circle agent model

Communications

State changesFirm

Mall

Person
Circle

S1

S1

S4a

S6a

S3

S2

S4b

S6b

S5



Message Filtering

Á The XMML filter provides a way of 

selecting only the required data is 

transferred

<function><name>inputdata</name>

<currentState>1</currentState>

<nextState>2</nextState>

<inputs><input>

<messageName>location</messageName>

<filter>

<lhs><value> a.id </value></lhs>

<op>NEQ</op>

<rhs><value> m.id </value></rhs>

</filter>

</input></inputs>

</function>

Á Used to control scanning loops

Á Used in message board synchronisation
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Message Board Synchronisation

Á At these critical points we need to synchronise the 

message information

Á To continue every agent must have in place the 

information it needs before the simulation can continue

Á Local message boards must be updated with necessary 

current information

Á In its simplest form synchronisation by full replication of 

all messages within each node ðcannot be done in large 

populations ðinsufficient memory

Á We only transfer the information required as defined in 

the model XMML.
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Multi -threading

Á Synchronisation is a potential 

bottleneck as the simulation must 

wait for inter -node communication

Á To reduce this problem libmboard 

runs multiple threads:

ð one for communication ðdata 

transfer

ð one for computation ðdoing agent 

based work

Á MB_SyncStar and MB_SyncComplete 

control this process
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Parallel Platforms

Á The FLAME framework has been successfully ported to 

various HPC systems:

ð SCARF ð360x2.2 GHz AMD Opteron cores, 1.3TB total 

memory

ð HAPU ð128x2.4 GHz Opteron cores, 2GB memory / core

ð NW-Grid ð384x2.4 GHz Opteron cores, 2 or 4 GB 

memory/core

ð HPCx ð2560x1.5GHz Power5 cores, 2GB memory / core

ð Legion (Blue Gene/P) ð1026xPowerPC 850 MHz; 4,096 cores

ð HECToR (Cray XT4) ð1416xQuad Core Opterons, 2GB / core, 

22,656 cores

ð Leviathan (UNIBI) ð3xIntel Xeon E5355 (Quad Core), 24 cores
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Verification and Validation

Á It is important to ensure that applications generated by the 

FLAME framework execute correctly in both their serial and 

parallel modes.

Á A set of simple test models and problems have been developed 

based on the Circles agent:

ð Test 1: single Circles agent type; Initial population of no agents.

ð Test 2: single Circles agent type; Initial population of one agent at (0,0).

ð Test 3: Two Circles agent type; Initial population of agents at ( -1,0) and (+,0).

ð Test 4: Four Circles agent type; Initial population of one agent at (+/ -1,+/ -1).

ð Test 5: Four Circles agent type; Initial population of one agent at (0,+/ -1) and 

(+/ -1,0).

ð Test 6: Four Circles agent type; Initial population of one agent at random 

positions.

Á In each of these models the expected results can be specified 

and they can provide a very simple check of the correctness 

serial and parallel implementations.
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Circles Model ( 1 Million Agents)

Rutherford Appleton Lab  - ADACE Bielefeld 2010


