AERE -R 8730
(1980 revision)

AERE -R 8730
(1980 revision)

United Kirgdom Atomic Energy Authority

FIARWELL

MA28 — A set of Fortran
subroutines for sparse
unsymmetric linear
equations

I.S. Duff

Computer Science and Systems Division
AERE Harwell, Oxfordshire

November 1980

PRICE £5.00 net from H.M. Stationery Office C13

AERE-R.8730

(1980 revision)

MA28 - A SET OF FORTRAN SUBROUTINES FOR

SPARSE UNSYMMETRIC LINEAR EQUATIONS

I.S. Duff

Abstract

Tn this report we present a suite of subroutines for the solution
of sparse unsymmetric sets of linear equations using a variant of Gaussian
elimination. The subroutines are divided into three distinct phases.
The first phase optionally preorders the matrix to block triangular form
and then performs a sparsity oriented factorization, the second
factorizes a matrix of a similar sparsity pattern, while the third uses
these decomnositions to solve the equations.

In this revised edition, the actual Fortran listings have been
replaced by a reference to their availability in machine readable form.
Other changes to the first edition are minor. This revision is
essentially a reprint of the 1979 revision, the only changes being that
the MA28A specification sheet has been typeset and has a few minor changes
and the existence of a version of the package for complex equations is
announced.

Computer Science and Systems Division
AERE Harwell

November 1980

HL80,/3459

(i)

(ii)

CONTENTS

SECTION 1

11 General introduction

1s2 Subroutine organisation

1.3 Top level data structure

1.4 Code lengths and storage requirements
1.5 A simple minded guide to time and

space requirements
SECTION 2

2.1 Subroutine MAZ28A
Gl MC23A ... the block triangularization phase
2.3 MA30A ... the ANALYZE phase

SECTION 3

Ful Subroutine MA28B
32 MA30B ... the FACTOR phase

SECTION 4

4.1 Subroutine MA28C
4.2 MA30C ... the OPERATE phase

SECTION 5
5.1 Specification sheets and availability of code

MA28A/B/C
MA30A/A
MC13D
MC20A
MCZ21A
MC22A
MC23A
MC24A

REFERENCES

ISBN-0-70-580593-X

Page No.

—t
F= oo N

—

16
19
22

35
37

40
40

43

45
57
73
77
81
85
89
95

100

1.1 General introduction

The purpose of this report is to present a set of subroutines which
implement a sparse variant of Gaussian elimination for the solution of
unsymmetric sets of linear equations.

It is sometimes possible (particularly in network analysis or
Tinear programming) to reorder the equations and variables so that the

coefficient matrix is in block triangular form. We illustrate this by

A
1A% =E Ay (1.1)

Ixcscs

N].o.ol.ﬂloa--DANN

where A is the coefficient matrix of the system before reordering and
P1 and Q1 are permutation matrices corresponding to the reordering of
the equations and variables respectively. The matrices Aii(i=1""’N)’
henceforth called "diagonal blocks", are square and, by convention,
cannot be further permuted to block triangular form. The "off-diagonal
blocks" Aij (j<i) are rectangular and some of them can be zero
matrices.

Our routines (see section 2.2) can perform this preordering. e
consider this facility to be worthwhile because it is cheap and can greatly

facilitate the solution process since we observe that the system

(P,AQ,)

| <

=b (1.2)

can be readily solved by partitioning X and b similarly to the block form

of (1.1). We then solve (1.2) by the block forward substitution

My % = by
(1.3)
i-1
b

SRR E L

Clearly, the matrices Aii(i=]""’N) can be considerably smaller than the
complete system.

We expect the user to call the three subroutines MA28A/B/C. These
subroutines manage the data and call other subroutines to perform the

real work. The effect of calling MA28A/B/C is as follows.

1. MA28A finds permutation matrices P' and Q' such that

P'AQ"

is in block lower triangular form (see Figure (1.1)) and then
performs Gaussian elimination within each diagonal block Akk to

obtain the factorizations

Pl = Lo k=1,2,...,N (1.4)

where Lk is unit lower triangular and Uk is upper triangular.
If we combine the preordering permutations with those used in the
decomposition on the diagonal blocks to form the permutation

matrices P and Q, then we can express our decomposition as

A2y Lz”z_
PAQ = Asq A3Z.'5. (1.5)
ANT ANZ..-.. L) -LrlUN

It is possible to omit the first process and perform a full
decomposition of the original matrix.

2. MA28B uses information from a previous call to MA28A to factorize
a new matrix of similar sparsity structure.

and

3. MA28C solves sets of equations

Ax=b or Ax=pb

using the factorization obtained by MA28A or MA28B.

It is expected that the user will find the code easier to use and
more efficient than the previous Harwell subroutines, MAiI8A/B/C. In
addition to having a more flexible user interface (see section 1.3) and
being in a more portable subset of Fortran, these subroutines employ an
entirely different data structure for the internal representation of the
sparse matrix (see section 2.3). The block triangularization facility
was not present in MA18 and these new routines also allow the user to
factorize rectangular matrices and obtain a solution of a rectangular
system. In such cases, the matrix must be made square by bordering it with

a zero matrix (see the MA28 specification sheet).

e —————

Some details of the algorithms employed and their differences from
MA18 (Curtis and Reid (1971)) are given by Duff and Reid (197). Here
we concentrate on describing the subroutine organisation and code itself.
The reader will find the paper by Duff and Reid (197) helpful though not
essential to an understanding of this text.

The subroutines in the MA28 package (see section 5.2) are in IBM Fortran
although special comment cards (with / as the last non-blank character in columns
2 to 72) have been inserted to indicate the statement for statement
replacement necessary to produce a standard deck. Harwell subroutine
OE04A automates this statement exchange and the standard Fortran code thus
produced has been checked by the Bell Telephone Laboratories Fortran verifier
(Ryder,1974), The main difference between IBM and standard Fortran
codes lies in the use of INTEGER*2 arrays. If the reader is
contemplating using the code on another machine range on which a short
length integer 1is availablie, then he is strongly urged to consider
replacing the INTEGER*2 declarations by the appropriate short integer.

Great care has been taken in designing the subroutines so that the use of
half-word integer arrays imposes a restriction on the order of the matrix
and not on the number of non-zeros. The savings in storage by using such
a technique is quite appreciable (see section 1.4). In order to make

the code easier to read we have avoided any backward jumps by programming
all loops using the DO statement. This additionally removes one possible
cause of infinite looping during program testing and design and makes a
complexity analysis much simpler. A1l DO loops longer than three or four
statements end with a CONTINUE statement and CQNTINUE statements are not
used for any other purpose.

If anyone wishes to understand all the technicalities of the code,

he can do so from comments embedded in the code itself. This report is

designed to satisfy the curiosity of the interested user and so, in the
following text, we make general rather than detailed comments on the code.
Although we only explicitly refer to the single length versions throughout
this paper (except Tabhle 2), the comments must be understood to apply

equally to the double precision version of the subroutines.

Because of the complexity of the total package (see section 1.4), we
have divided this report into several sections with each basic driver
routine and its dependents being described in a separate section. In the
remainder of this section, we discuss the organisation and hierarchy of
subroutines in the package, describe the user oriented data structure,
give some details of the size of the code and its storage requirements, and
provide a rough guide to the time and space required for practical problems. In
sections 2,3 and 4 we describe the drivers MA28A,MA28B and MA28C respectively
at the same time discussing any subroutines used by them. The final
section, section 5, presents specification sheets for the subroutines
involved in the package.

The author would Tike to thank J.K. Reid for reading a draft of the
original report and making some helpful suggestions. Subroutine MA20A was
written by A.l. Westerberg and J.K. Peid.

1.2 Subroutine organisation

The following diagram indicates the hierarchical interrelationships
between the subroutines in the MA28 package. The diagram is really in
three separate parts according to whether we are describing the inter-
subroutine relationships in MA28A,MA28B or MA28C. The flow from left to
right represents the sequence of calls in the code while flow down the
page represents hierarchy with the top level being nearest to the top of the
page. Note that this diagram can be used to aid in designing a program for

overlay when appropriate (see secticn 1.4),

Top A L/U decomposition
level MAZBA & biock structure
1
MC20A MC23A MA30A MC22A MC2LA
Second Orders input Permutes to Pertorms Reorders off- Calculates
level matrix block structure elimnation on diagonal blocks largest element
diagonal blocks : encountered n
/ \ decomposition
MC 21A MC130 MA300D
Finds Symmetri Dcta
Third permutation to permutation to compression
levei put non-zeras block trmangular routine
on diogonu! form
Top ;____l MAZBB Similar output
level Informatior, on as for MAZ8A
decom position
from MA2SA \
MA2B0 MA3CB
Orders mnout Pertorms
Second matrx accarding decomposition
level to decompos tory using row-Gauss
structure eliminct on
Top 4 wose | 20lUt00
level Decompased matrix vector
from MA2BA or
MA 28B and right 't
hand side vector _]_
TTohaaoc
Srves ‘he
Second T T ovster
level [ty #oeword

e iminvaton and
Sock ashtuton

1.3 Top level data structure

The MA28 input data structure is designed for ease of use and is not
compatible with efficient execution of'the elimination itself. This v
means that data reorganisation is needed prior to calling the subroutines
at the second and third‘levels which perform the real work.

For entry to-MAZSA and MA28B, the user need only specify the order
of the matrix A and its non-zeros with their row and column indices.
The elements may be in any order (see Figure 1). A check is performed
on all row and column indices and, if any index is out of range, the
routine will exit after completing this data check. However, the !
calculation will proceed if there is more than one element with the same
row and column index. In such circumstances, the data entry causing

duplication is identified to the user (although this identification can be

switched. off), its value is added to the sum of previous ones with the

same indices and, on exit, a flag informs the user of such an occurrence. -

After this data check the subroutines must then reorder the data to -

facilitate the row and column access required by Gaussian elimination, - . 1

This is further discussed in sections 2 and 3. l
On output from MA28A or MA28B, the permuted and decomposed matrix is

held by rows with the column indices in array ICN and the corresponding

real values in A, Note that these are column indices in the permuted

matrix PAQ. Any off-diagonal blocks precede the diagonal blocks, the rows

being in pivotal order with no space within or between the rows (see -

Figure 1). The length of the part of the rows in the diagonal blocks,

the off-diagonal blocks, and the lower triangular part of the

decomposition are held in array IKEEP (positicns 1 to n, 4n+1 to 5n, and

3n+1 to 4n respectively) which also holds the permutation arrays (row

permutation in positions n+1 to gn, column permutation in 2n+1 to 3n) and

Input to MA28A NZ LICN

ICN

IRN

(]

e O T

Tiirn

where element (i,j) of matrix has value a.

Output from MA28A (and MA28B)

LICN
#

A off-diag.| Diagonal blocks in element values

ICN blocks

pivot order column indices

User's input to MA28B (ICN,IKEEP input preserved from previous calls)

~NZ LICN
J
A R
i
| T
JVECT t i
i
IVECT by
| S

where element (i,j) of new matrix has value ay -

Figure 1 Top level data structure

information on the block structure and matrix singularity (by negating
elements of row and column permutations respectively).

On entry to MA28C, the user need only pass this information over
unchanged (thus he need not concern himself with its structure) and
input his right-hand side in unpermuted form in a real vector. The
real vector yields the solution on exit, again in unpermuted form. Note
that the user need not concern himself with the permutations although the
factorization is actually held in permuted form,

1.4 Code lengths and storage requirements

This package is not particularly designed for use on small
machines. Its 1795 Fortran statements require about 37K bytes of storage
on our IBM 370/168 machine when compiled using the Fortran H compiler
with OPT=2, although the structure shown in the figure in section 1.2
can be used for overlay with little loss of efficiency and a reduction in
nrogram storage (determined by the path MA28A,MC20A,MA30A and MA30D) to
approximately 16.5K bytes. Comparable figures for MA18A are 15.5K bytes
overlaying to 10.2K bytes.

Additionally, it is possible for the sophisticated user to design
his own driver routine and hence possibly avoid some of the overheads
inherent in a robust general purpose code. As a guide to the size and
core requirements of the package, we present the appropriate figures for
each subroutine in Table 1.

One of the slight drawbacks to a general purpose sparse matrix handler
is the amount of integer overhead required in addition to the storage
for the non-zero themselves. In Table 2, we give the storage required
by each subroutine when handling a matrix of order n with NZ non-zeros.

For comparison, the storage requirements for MA18 are given.

10

B L —

suroutine | nber of | lumber of e | ot RIOHZE) o

IBM 370/168 in bytes
MAZ28A 352 183 4072
MA28B 120 64 1742
MA28C 51 12 648
MAZ28D 131 107 2650
MA30A 794 £89 11204
MA308B 120 95 1996
MA30C 229 153 3026
MA30D 46 36 716
MC23A 202 135 3118
MC20A 103 72 154€
MCZ21A 139 104 2574
MC130 131 78 2144
MC22A 78 56 1304
MC24A 46 34 880
Total Package 2542 1818 37620

Table 1 Code lengths for subroutines in MAZ28 package

1"

In Table 2, LICN must be as great as the number of non-zeros in the
factors of the decomposition (often in the range 2 to 4 times NZ). LIRN
must be as great as the maximum number of non-zeros in any active matrix
(often need be only n or 2n greater than NZ). Although LIRN must be at
least as great as NZ for the MA28A -entry, it need only be as large as the
maximum number of non-zeros in the active part of a diagonal block and so
may be less than NZ for entry to MA30A. OFF is the number of non-zeros
in the off-diagonal blocks and is always less than NZ. Any overheads

independent of n or NZ have been omitted.

ey i

i Bytes: 8/real
4/integer
Subroutine| Real words|Integer words Shor;olgzeger 2/short integer
Permanent | Temporary
MA28AD LICN+n* |Incl.in short LICN+LIRN+15n+ 10n++10LICN 28n*+2LIRN
words
MA28BD | LICN+n 4n LICN+2NZ+5n™ | 10n*+10LICN| 24n+4NZ
MA28CD | LICN+2n . LIcN+5nt | 18nt+10LICN 8n
MA30ADYY| LICN 2n LICN+LIRN+10n | 10n+10LICN | 18n+2LIRN
'MA30BD*™*! LICN+n n LICN+4n 8n+10LICN 12n
MA30CD™™| LICN+2n - _LICN+5n 18n+10LICN 8n
MC20AD NZ n 2 NZ 4n+10NZ NZ
MC23AD NZ+n 2n NZ+70n 8n+10NZ 28n
MC21A - n NZ+7n 8r+2NZ "On
MC13D - n NZ+6n 10n+2NZ én
MC22AD OFF 2n OFF+3n 6n+10 OFF |8n+2 OFF
MC24AD |[LICN+n - LICN+2n 4n+10LICN 8n
MA18AD LICN 2 LICN 13n 26n+16LICN |Work arrays
MA18BD " |LICN+2n . LICN+5n | 26n+l0LICH |27€ not
**1 separatgd
MA18CD ! LICN - LICN+13n 26n+10LICN [from main
| storage

Table 2

Storage requirements for MA18 and MA28 (double precision

versions)

*
If an estimate of the largest element encountered during the decomposition
is not requested on a call to MA28AD, then n less reals and 8n less bytes
of temporary storage are needed.

*If the user is not using the block triangularization option, then n less
short integers and 2n less bytes of permanent storage are needed.

In MA18, the MA18Mentry is an entry point within subroutine MA18BD.
Additionally, MA18CDperforms a similar function to MA28BD(viz. FACTOR)
while the operate function is performed by MA28(and MA1RBD.

++5trict1y speaking, if block triangularization has been performed prior
to calling these MA30 entries, then the size of most of the arrays can be
based on the dimension of the largest block rather than th= system as a

whole,

13

1.5 A simple minded guide to time and space requirements

[t must be stressed at the outset that any figures presented in
this subsection are to be taken as a rough and ready quide rather than a
hard and fast rule. Hopefully, they will be of some assistance to the
MA28 user but they should in no way override the healthy intuition of a
sophisticated or experienced user.

Let us assume that the coefficient matrix is of order n and has NZ
non-zeros. Then, in the absence of other information, LICN might be
set to 3NZ and LIRN to NZ+2n, if space permits. Over a wide variety of
matrices, the number of arithmetic operations performed has been ﬂ
empirically observed to be about 12/4n where t is the number of non-zeros
in the decomposed form.

To estimate the time required for the three phases of

ANALYZE (MA28A), FACTOR (MA28B), and OPERATE (MA28C) we again refer to

empirical results. In each case,'theéé is a wide variation in figures but, ,
as a rough guide, we can suggest values of 25 and 10 microseconds per

arithmetic operation for ANALYZE and FACTOR respectively (on our

[CH 370/168), while the time for OPERATE is clearly proportional to t

and is, on average, 4 microseconds per decomposed matrix non-zero. Our
experimentally based results are summarised in Table 3. |

ANALYZE FACTOR OPERATE
(MA28A) (MA28B) (MA28C) "

Storage (bytes) 42n + 32NZ 34n + 34NZ | 26n + 30NZ

Time
(micro-seconds)

25/4 %/n 5/2 t%/n 41

Table 3 Rough estimate of storage and time (on the
[BM 370/168) requirements for a matrix of
order n, with NZ and t non-zeros in the
original matrix and its decomposed form
respectively.

14

Notice that our storage figures assume the values for LICN,LIRN
mentioned above. A more detailed estimate of storage requirements can be
obtained from Table 2. Also, the value of t is generally not known
a priori. Experience has shown that a value 5/2 NZ is a satisfactory
estimate for t although an estimate of order nlogn is more realistic

for problems arising from PDEs in 2 dimensions.

15

2.1 Subroutine MA28A

Subroutine MA28A is a data management driver routine which calls
other subfoutines to perform the work of block triangularization and
decomposition.

On entry to the subroutine the elements of the matrix together with
their row and column indices (arrays A(I), IRN(I),ICN(I),I=1,...,NZ) can
be in any order (see section 1.3). Although this is a very convenient user
ihterface, it is not suitable for performing Gaussian elimination where
we will require access to the matrix by both rows and columns. After an
initial check on the input data, we therefore use MC20A, whose
specification sheet is included in section 5, to reorder the matrix by
rows. The output from this subroutine (a description of which can be fc.nd
at the end of its specification sheet) consists of the matrix non-zeros
and.their column indices held in corresponding positions of a real array
A and an integer array ICN. The entries in the same row are contiguous
and there is no wasted space between the rows. The entries corresponding
to row I are held in positions IW(I) to IW(I+1)-1 for I=1,....N-1 and
in positions IW(N) to NZ for row N. The subroutine then checks for any
duplicate entries, summing the values of any such elements and adjusts the
arrays and pointers IW accordingly. This pass through the matrix is also

used to calculate the value of the maximum modulus of the matrix entries.
This will be used later to calculate a bound for the growth in the size of

matrix elements during decomposition.
Control then passes to MC23A (see section 2.2) which determines a
permutation to block lower triangular form and permutes the matrix accordingly

before passing to MA30A (see section 2.3) for the decomnosition phase.

16

Alternatively, if the logical variable LBLOCK was set by the user to
.FALSE. , then no block triangular form will be computed although the
matrix information must be moved to the end of arrays A and ICN and the
permutations set to the identity before entry to MA30A.

After decomposition using MA30A (described in section 2.3), the part
of the matrix corresponding to the diagonal blocks, which may be the whole
matrix, is held in pivotal order by rows. For each row the elements of
LK (see equation 1.4) are in pivotal order and precede the elements of
UK which can be in any order except that the pivot comes first. The
column indices of all these elements are those of the permuted matrix,
so that the column index of the pivot in row I is I, I=1,....N.

However, the off-diagonal blocks are quite unaltered by MA30A and so before
proceeding to use the decomposition to solve séts of equaticns we must first
permute the rows of the off-diagonal blocks and change the column indices

to those of the permuted matrix. This is done by MC22A which is a
simplified form of MC20A. Its action is adequately described at the end

of its specification sheet (see section 5).

Finally, unless the user sets the logical variable GROW to .FALSE. ,
the routine will use MC24A to obtain a bound on the largest element
encountered during LU decomposition. When this bound is added to the
largest element modulus of the original matrix then it gives an estimate

(an upper bound) for the value of a in equation

|91j| < 3.0'I.aﬂekm,i‘j

where

17

€ 1is the machine precision

m.. is the number of operations on position (i,j) during the

H decomposition
and

€5 is the (i,j)th element of E where

J
A+E = LU
a slight extension of a result which Reid (1971) has shown to hold when the

multipliers during the elimination are not constrained to be less than 1.

The reason for calculating an estimate for a in this manner is that
we can avoid an extra overhead in the innermost loop of the calculation
and thus increase the speed of our code (more apparent in MA28B, of
course, see Table 11 in section 3.1). MC24A calculates this bound by

using Holder's generalization of Schwarz's ineguality on the relation

k
(k)_ -
o e m§12imumj

k(iﬁﬂ; k<j<n .
This was discussed by Erisman and Reid (1974).

Notice that this argument and that for the numerical criterion for
selection of pivots in section 2.3, implicitly assumes that the elements of
the original matrix do not differ too widely in magnitude. -Although we
believe that the "best" scaling can often be performed by the person with
a knowledge of the original problem and so do not incorporate scaling
procedures within MA28, we give an example in the specification sheet for

this subroutine (see section 5) of how one might use the scaling routine

MCT19A with this package.

18

———

2.2 MC23A ... the block triangularization phase

Subroutine MC23A is, 1ike MA28A, to a large extent a data handling
routine. The real work in computing the permutation is performed by
MC21A and MC13D.

MC21A described by Duff (1978) calculates a row permutation (held
in array IP) which, when performed on the original matrix,ensures that
the new diagonal is zero-free. Elements {IP(I),I) will be non-zero unless
the matrix is structurally singular in which case N-NUMNZ of them will be
zero. The pointers to the beginning of the rows (IW(.,1)) and the row
lTengths (LENOFF) are then explicitly permuted (the permutations being
held in IW(,2) ard LENR, respectively) befcre entry to MC13D. This
subroutine, described by Duff and Reid (1978a,1978b), then finds a symmetric
permutation (held in IQ) to permute the matrix to block lower triangular
form. ODuff (1977) justifies this two-stage approach and, in
particular, proves that the final block form is essentially independent of
the particular row permutation which made the diagonal zero-free. The
remaincder of suoroutine MC23A then merely reorganises and reorders the
matrix according to the combined row permutations (row held in IP) and the
column permutation IQ.

On entry to MC23A, the non-zero values of the matrix occupy the first
positions in A and ICN while, on entry to MA3CA, the diagonal blocks should
occupy the last positions (see section 2.3). If there is only one block,
not only are the two permutations set to the identity but the NZ non-zeros
are moved to the last NZ positions in A and ICH before exiting from the
subroutine.

Otherwise the reordering of arrays A and ICN is performed so that

the output is in the form

19

Non-zeros of Non-zeros of Non-zeros of

A off-diagonal blocks first diagonal subsequent
in original row block in permuted | blocks in
order row order order

IDISP(1) IDISP(2) LICN
Original column - o
indices of Permuted column indices of
JICN corresponding corresponding entries in A

entries in A

Note that the off-diagonal blocks remain unpermuted while the diagonal
blocks are‘permuted. This is done so that after the decomposition of
the diagonal blocks, the off-diagonal blocks can easily be permuted
according to the pivot permutation and additionally only one single
permutation (of the original matrix) need be held at any stage. It is
worthwhile to describe this reordering in some detail.

Each row is treated in turn working through the permuted matrix in the
reverse order. The row is scanned also in reverse order and any columns
corresponding to entries 1ying in the diagonal blocks are placed at the
current end of available storage, their column indices changed according to
the permutation and their present position set to zero to indicate that the
space is now freed. Any time an off-diagonal block entry is encountered we
leave it in position. Counts of the number of non-zeros in the diagonal
and off-diagonal parts of the row are kept. At an intermediate state, the

storage allocation is as follows:

20

A Untreated rows and . | Diagonal blocks
off-diagonal blocks in order

Some of these column
ICN indices will be zero
corres.to "moved"elts

Permuted column
indices

T

Current end of available
storage (IEND)

If the current end of available storage comes too close to the
storage allocated to the untreated rows and off-diagonal blocks, then
danger of overwriting occurs which is avoided by simply moving information
towards the beginning of the arrays overwriting any entries with zero
column index (called a "compression"). The pointers to the beginning of
each row have then to be adjusted since we require access to intermediate
rows (in the original ordering) during the main part of the algorithm.

Finally, after all the entries in diagonal blocks have been separated
and placed at the end of the storage, a final compression-like pass is
required to remove all the copied diagonal block information (identified
by zero column indices), which has not previously been compressed, from the
off-diagonal storage.

For this separation routine to succeed, LICN (the length of arrays A
and ICN) need only be of length RMAX+NZ where RMAX is the maximum number of
non-zeros in a row and NZ the initial number of non-zeros. However,
increasing the storage allocated should decrease the number of compresses
required and thus decrease the running time as is illustrated by the

results in Table 4,

21

Order of matrix 199 363 822 - Total over 32
Number of non-zeros | 701 2454 4841 different matrices

LICN equal to
RMAX+NZ 110 180 1540 16340

LICN equal to
2n+NZ 40 110 310 3890

LICN equal to
10000 30 80 250 3190

Table 4 Some timings (in milliseconds on an IBM 370/168)
of MC23A with varying storage allocations

2.3 MA30A ...the ANALYZE phase

Subroutine MA30A is the kernel of the MA28 package. It performs a
sparse variant of Gaussian elimination choosing pivots from either the
entire matrix or pivoting and eliminating only within externally defined
diagonal blocks. We first explain how the subroutine identifies the block
structure and then examine in detail the main loop of the algorithm which
performs the decomposition within the blocks.

The matrix is input to MA30A in the same structure as was output
from MC23A (see previous section). The block structure is recognised by
negative values in the ordering array IP indicating the 1asf row of each
block (unnecessary for the last block). The length of each row must also
be supplied. MA30A first calculates the position of the beginning of each

row (necessary because they are not accessed in order) and counts the

number of blocks. Then the decomposition proceeds on each block in turn,

22

Within this main Toop, the subroutine first examines the structure
of the block before performing the decomposition within an inner loop.
Firstly, the order of the block is calculated and, if this is 1, special
simple action can be taken (really just moving one element to the
appropriate part of the storage) and we proceed with the next block. For
a larger block, we obtain the pattern of non-zeros by columns in the
following manner. We first calculate the number of non-zeros in each
column and then generate an array of pointers IPC such that IPC(I) gives
the address in the proposed column file array (IRN) of the first position
after the last non-zero in column I. We then scan the part of the row
file corresponding to the current tlock, placing each element in the
appropriate positicn in the column file and decrementing the corresponding
IPC pointer by one. Thus, the column orientation and cclumn counts are
obtained after only two passes thrcugh the block in a number of
operations proportional to n and =, where n is the order of the block and
T 1ts number of non-zeros. We then generate doubly linked lists in
preparation for the pivct selection. These lists are described further
in the following paragraph.

We use the pivotal strategy of Markowitz (1957) with the additional
censtraint that no pivot be less than u times the largest element in the
active part of its row (i.e. Ug part of row only). The quantity u is
a user set parameter which we will discuss at greater length in the
next paragraph. Markowitz's strategy is to select as pivot that non-zero
for which the product of the number of other non-zeros in its row and its
column is minimized. If the search for this ncn-zero is done crudely,
we might examine every non-zero of the active matrix at each stage, aiving
a most unsatisfactory 0(nt) operation count. To facilitate tne search for
such an element, we hold douhly linked lists (i.e. with backward and

forward pointers) of all rows and columns naving thc same rumber of non-

23

zeros. A simple implementation of this results in 6 vectors of length

n (3 each for rows and columns) but we can reduce this to 5 by utilising

only one array to point to the beginning of both lists and by chaining

together the lists for rows and columns. Thus we have

IFIRST:

NEXTR:

LASTR:

MEXTC:

LASTC:

If there are any rows with I non-zeros, then IFIRST(I) is the
row index of the first row in the chain; otherwise if there
are any columns with I non-zeros, then -IFIRST(I) is the column
index of the first column in the chain. If there are no rows
or columns with I non-zeros IFIRST(I) is

zero.

NEXTR(I) is the row index of the next row in the chain with
the same number of non-zeros as row I, or is zero at the end
of the chain,

LASTR(I) is the row index of the previous row in the chain

with the same number of non-zeros as row I. For the first

row in the chain -LASTR(I) is the index of the first column with
the same number of non-zeros as row I and is zero if no such
columns exist.

NEXTC(I) is the column index of the next column in the
chain with the same number of non-zeros as column I, or is
zero at the end of the chain.

LASTC(I) is the column index of the previous column in the
chain with the same number of non-zeros as column I, or is
zero at the beginning of the chain.

Thus, if rows 1,3,10 and columns 4,6 all have 3 non-zeros we can

represent the above data structure in the following manner:

IFIRST(3)=1

LASTR(1)| NEXTR(1)

-4 3
NEXTC(4) LASTC(4) LASTR(3) NEXTR(3)
6 0 1 10
NEXTC(6) LASTC(6) ~ LASTR(10) NEXTR(10)
0 4 | ‘ 3 0

24

e e —

These arrays enable us to search the rows and columns in increasing

number of non-zeros stopping whenever we know that there cannot be a non-
zero later in the sequence with a better Markowitz count than the present
potential pivot. Normally, we will not have to search many rows and
columns as is illustrated by the results in Table 5. Once we have selected
the pivot, we remove all rows with non-zeros in the pivot column and all
columns with non-zeros in the pivot row from the linked 1ists because the
number of non-zeros in these rows and columns will normally be altered.
After the elimination, these rows and columns (with the exception of the
pivot row and column itself) are reinserted in the lists in positions

corresponding to their new numbers of non-zeros.

Order of matrix 147 57 199 292
Number of non-zeros 2449 281 701 2208

Number of rows/columns
searched for possible
pivot 1199 158 2879 895

Average Tength of search 8.2 2.8 14,5 3.1

Table 5 Profiler counts on MA30A indicating amount
of searching to find pivot
In addition to choosing our pivot to minimize the Markowitz
count, we must also test it for stability by comparing its magnitude with
those in its row in columns which have not yet been pivotal (the

active part of the row). We use the acceptance test

|POSSIBLE PIVOT| > u. Max |ELT.IN ROW|
active row

25

with strict inequality because when handling singular matrices we may get

a row of all zeros and we wish to recognize this fact. Notice that with
the test in this form, u cannot have a value of 1.0 since otherwise we
would be unable to choose an element in a singleton row as pivot. For
this reason, values of u greater than or equal to 1.0 are reset to

.9999 (.99999999 in double precision). A value of u near to 1.0 will

bias the algorithm towards partial pivoting with its consequent good
stability properties although the fill-in (and hence the size of LICN)

may then be very high. A value of u equal to 0.0 will cause the pivots

to be chosen on the sparsity criterion alone with danger of severe
numerical instability. We have found, in practice, that a compromise

value of u in the range 0.1 to 0.25 preserves the sparsity while still providing
a numerically satisfactory decomposition. Because of the facility for
handling rectangular systems, we must also test elements in singleton
columns for stability (such an element must be chosen in tﬁe square case)
and have observed this necessity in practice. For example, on a
consistent rectangular system of dimensions 313x176, a relative residual of

108 was reduced to IO']O

when such a test was employed. Since we are not
storing the values of the non-zeros by columns, the search of a column for
possible pivots can be quite expensive since for each non-zero a row scan
is required to test for stability. We attempt to reduce this work by
biasing our pivot selection to testing possible pivots during a row scan,
This is easily achieved through using the structure of row and column
ordering vectors described earlier in this section. Each time we

examine rows and columns with I non-zeros we first examine the rows

(through IFIRST, then NEXTR) before examining the columns. The strength

of this bias is illustrated in Table 6,

26

Order of matrix 147 57 199 292
Number of non-zeros 2449 281 | 701 2208
Number of rows examined

for possible pivot 790 131 2554 548
Number of columns examined

for possible pivot 409 27 325 347

Profiler counts illustrating bias towards

Table 6
searching rows for pivots.

Nevertheless, the loop for checking the stability of potential pivots
encountered in a column scan still has one of the largest execution
counts (see Table 7). Fortunately, this loop contains only two Fortran

statements.

Order of matrix 147 199 292
Number of non-zeros 2449 701 2208
Number of elimination

operations of_ type

aij~-a1.j+a1.kakkakj 63722 2772 25864
Stability check for

pivots (during

column scan) 85946 2001 7267
Scan of non-pivot

rows in elimination

step 86952 5204 38955
Scan of non-pivot rows

to locate multiplier | 40013 2780 18495

Table 7
for MA30A

27

Some of the highest profiler counts

[t is reassuring to note that one of the major counts is that of the number
of arithmetic operations which is a measure of the actual work which must be
done to decompose the system. However, it is worthwhile noting that it

may be significantly more efficient when decomposing an mxn matrix A

(with m>n) to perform the factorization on A and not A since we wish our
rows rather than our columns to have few non-zeros.

The acceptance test and the extra loop in which the Markowitz
pivot selection procedure is embedded ensure that for any singular block
ﬁon-zeros in the successive active matrices are first chosen as pivots ,
then explicitly held zeros, and finally when the active matrix is entirely
null the two ordering arrays for the present block are completed, any
parts of the unpivoted rows in already pivoted columns (these exist for
overdetermined systems, for example) are moved to the appropriate part
of storage,and the decomposition proceeds with the next block. Motice
that since the active matrix must all be zero when such singularities
are found no numerical operations need be done until the next block. It
is also of interest to note that if a call to MC23A preceded this call, then
all the structural singularity of the original matrix will appear as
structurally singular blocks of dimension 1.

There are two basic ways of adding one sparse vector (which in our
algorithm will be a multiple of the pivot row) to another. Since this
operation is at the innermost loop of our code, it is extremely important
to do this efficiently. The first method relies on having the
column indices in sequence. We then scan the two rows simultaneously
taking appropriate action on encountering equal or unequal indices. We
reject this because of the overheads required to keep the column indices
in order and the number of comparisons in the inner loop. These overheads

are illustrated by the profiler counts in Table 8. The difference between the

28

Order of matrix 147 199 292 822
Number of non-zeros 2449 701 2208 4841

Number of elimination

operations of1the form

3355k kK%
Number of comparisons

to keep row/columns in _
order ' 102993 9557 72329 79687

Number of comparisons

when adding sparse-
vectors 71306 3805 39316 16398

51316 2535 28097 6266

Table 8 Profiler counts indicating overheads of keeping
columns in order in MA18A

number of arithmetic operations for runs on identical matrices in Tables 7
and 8 is caused by the different tie-breaking strategies used by MA18A
and MA28A when determining the non-zero with lTowest Markowitz count,

To overcome these objections we could first load the pivot row
into a full vector w, previously set to zero, so that our algcrithm
becomes:

(i) scan the pivot row i setting Wi=ay s for each non-zero

1

(ii) scan the non-pivot row k making the modification

! = . = - i i] i . =
LR (if o is the current multipler) and setting Ws 0

(iii) scan the pivot row again looking for non-zeros a5 for which
wj#O; for each we have a fill and add (-awj) to the set of
non-zeros in the non-pivot row, then setting wj=0.

In fact the double scan of the pivot row can be avoided except for the

first non-pivotal row by restoring w to the expanded pivotal row instead

of the zero vector in step (iii). However, although this avoids the

29

necessity for keeping column indices in order and can greatly reduce the
number of comparisons, it is still unsatisfactory for the following
reason. At stage (iii), a "non-zero" in the pivot row which happened

to have the value zero would not be recognised and could not cause any
fil1-in. While this does not create any problems in MA28A, the structure
of the decomposition could be altered thus causing a failure in a
subsequent entry to MA28B for which the previously numerically zero
element in the pivot row is now non-zero. For this reason, the following
ruse is adopted.

When a pivot has been selected, the non-zeros and column indices of
the pivot row are first moved to the beginning of the available storage
but the original now redundant copy of this row is not all immediately
freed. We use the entries in the active part of this row (excluding the
pivot) and the integer array IQ of length N, known to have all its
entries positive, in the following way

(i) scan the active part of the pivot row; if its pth non-zero

is in column j then we store IQ(j) in the position of the
corresponding column index in the now redundant pivot row
and reset IQ(J) to the value -p

then for each non-pivot row we

(i1) scan the non-pivot row; we make no change to a non-zero
in column j if IQ(J)>0 but if IQ(j)<0 we can use its value
to find the appropriate real element of the pivot row and
after performing the required operation we change the sign

of IQ(J);

(iii) scan the pivot row again looking for non-zeros aij for which

1Q(j)<0; for each we have a fill-in whose real value can be
calculated. If for any non-zero a5 in the pivot row IQ(j)>0,

then its sign is changed so that, at the end of this step
IQ has been reset as in (i) ready for operations on the next
non-pivotal row.

At the end of the pivot step it is an easy matter to reset the values of

IQ by a final scan of the pivot row.

30

T —

b e ey

We obtain one other useful benefit when we use these methods of
adding two sparse vectors. At the beginning 6f stage (iii), when we have
modified elements in the non-pivot row we can tell immediately how many
fill-ins there will be to that row. This enables us to examine positions
surrounding the present position of the non-pivbt row in arrays A and
ICN to see if the fill-in can be accommodated by putting the fill-in
elements immediately after the current row or by moving the row slightly
forward to enable this to be done. In this way, as the counts in Table 9
illustrate, we often avoid having to create a new copy of a row at the

beginning of our data structure.

Order of matrix 147 199 292 822
Number of non-zeros 2449 701 2208 4841

Number of times there
is fill-in to non-pivot

row 545 442 1010 914
Number of times no move

is required at all 308 253 598 561
Number of times row is

moved only locally 108 88 200 201

Number of times it must be
moved to beginning of
active block 129 101 212 152

Table 9 Profiler statistics on fill-in to non-pivot
rOwsS.

At an intermediate stage in the calculation, the data structure is:

31

Active matrix

Rows which have ' containing some Other undecomposed
already been pivotal| « free space -+|redundant information|diagonal blocks
... in pivot order identified by a zero

value in column
index (ICN)

T 1 1 1

IBEG IACTIV. [TOP LICN

Thus any time that a row must be moved to locations just prior to IACTIV
because of fill-in the "free space" available to hold the decomposed matrix
is reduced. When there is not enough "free space" to accommodate a row
that has just been Pivota1 or a ncn-pivot row which must be moved, we
recover some space from the active matrix by compressing the structure by
overwriting the redundant information. This is done by MA30D/DD in one
pass as fo11ow§. First a pass through the pointers to the beginnings of
each row in the active part of the matrix enables these positions to be
marked by overwriting the column index by the negation of the row index
after storing the column index in the pointer array. We then scan the
active block, starting from ITOP, working backwards and overwriting any
redundant information thus compressing the data to the upper end of the
storage. Whenever a negative "column index" is found we obtain the actual
column index from the pointer array and reset that entry to its new value.
A similar strategy and compression technique is used on the
arrays containing the row indices of the active matrix by columns.
However, here we do not explore the possibility of keeping filled-in
columns "in-place" quite so exhaustively. This is because the array of
row indices {IRN) will not grow in a fashion similar to the column index
file since only the active part of the matrix is stored at each stage.

Some statistics related to these "compressions" are given in Table 10.

32

Order of matrix 147 199 292 822
Number of non-zeros 2449 701 2208 4841

Space required for
row file 5812) 1528 5747 6681

Space required for
column file (active

matrix) 2607 701 2208 4841
Compresses when row:
run at minimum file 261 37 66 53
space column:

file 66 8 32 1
Time when run with '
minimum space 5260 380 1540 2170

Compresses when space row:

increased by n file 100 3 10 3
(2n for row file) column:

frem minimum file 18 3 15 1
Time for these runs 3000 260 1040 1790
Time for 7OV file length 10,000) 1540 240 830 1760

ccl.file length 5,000)

Table 10 Some statistics on compression. (Time in milliseconds
on an IBM 370/168)

It is, of course, possible that even after a compression there is
insufficient space to hold the "moved" row or column. We must abandon
the algorithm if this occurs in the file of row indices (IRN) (with
error flag -3 or -6) but we have an extra option if this happens in the
main file (ICN). Here we can (IF ABORT3 has been left at its default
value of .FALSE.) overwrite the already computed pivot rows (by setting
IBEG=1). This will usually enable us to complete the decomposition.

Although we lose some of the factors by doing this and thus cannot continue

33

with MA30C or MA30B, we do now know exactly how much space would be
required for a successful decomposition. We envisage this feature as
being very useful in cases where the user has given too low a value for
LICN on his initial run.

Quring the decomposition, we retain the column indices of the
ordering of the matrix on entry to MA30A/AD. As each multiplier
is calculated (element of an Lk) it is swopped with the element in the
row immediately after all previously calculated multipliers and when a
row becomes pivotal the pivot element is similarly swopped. Thus, after

a pivot rcw has been moved to the front of the storage, it is held as

Elements of Lk in| Pivot Elements of Uk in

pivotal order element | any order

LENRL

LENR

but the column indices held are not those of the pivot order. This
permutation would be impossible to do, since, at the time the row is

moved, we do not know the appropriate permutations to apply to the elements
of Uk' Therefore, after the decomposition has been completed, we replace
all column indices by their permuted values (thus the pivot in row I has
column index I and the column indices of the lower triangular part of the
row are in ascending order), update our global permutatioq arrays IP,IQ

by the pivot permutation held in LASTR and LASTC respectively, and permute
LENR and LENRL accordingly. We also record zero pivots by negating

corresponding entries in the IQ array before exiting from the subroutine.

(.

34

3.1 Subroutine MA28B

MA28B is intended principally for the factorization of a matrix
whose sparsity pattern is identical to that decomposed by a previous call
to MA28A, although we will see that MA28B can handle a slightly extended
set of matrices. In addition to the new matrix we require information on
the structure of the decomposition and the pivotal ordering from that
earlier call to MA28A.

The matrix is input the same way as for the MA28A entry and similar
checks are performed on the validity of the user's data. The remainder
of the subroutine is in three parts. First a call to MA28D performs a
reordering of the input matrix (next paragraph), then the matrix is
factorized by MA30B (section 3.2) and finally MC24A calculates a bound for
the growth of element size during decomposition in the same fashion as for
the MA28A entry (section 2.1).

The recrdering performed by MA28D must be considered an integral
part of our FACTOR entry and indeed as much time is sometimes spent in

this reordering as in the numerical factorization itself (see Table 11).

The Togic ¢f the main loop in this subroutine is very similar to that of
sutroutine MCZOA. On each pass through the Toop one non-zero of the input
matrix (the current element) is placed in its correct position in the

A/ICN array. (lote that no change is made to the ICN array). If this

woui? overwrite any unprocessed input element in A then the next pass has
this non-zero as its current element. At each pass, the current element is
testec to see whether its indices are within range and whether it lies in a
legitimate block of the block trianqular permutation. If it is in the
off-diagonal blocks or the UK part of the diagonal blocks, then its true
position is found by a linear search of the appropriate row. However, since
the column indices of the Ly, part of each diagonal block are in order, a binary
search suffices to find the position of each non-zero in that part of the

matrix. Once all the non-zeros of the input matrix have been processed,

35

a final pass through A and ICN sets the numerical value of any
‘unaccessed entry to zero (in A) and calculates the largest
element of the input matrix.
Notice that we do not require the input matrix to have the
same sparsity as the matrix originally decomposed but only that all
of its non-zeros are also non-zeros of the final factored form.
Additionally, since only the non-zero element values in A are moved,

the indexing arrays are unchanged on exit from this subroutine.

Order of matrix 147 199 292 822
Number of non-zeros 2449 701 2208 4841

Time to preaqrder
matrix (MA28D) 70 20 70 120

Time to factorize
(MA308B) 210 30 140 60

Time to factorize (with
calculation of growth in
inner Tloop) 290 40 180 70

Time to calculate growth in
element size using MC24A 13 3 13 17

Table 11 Some statistics on MA28B (times in milliseconds
on an IBM 370/168)

36

One important feature is that, in the event of failure due to
duplicate elements or non-zeros outside the legitimate sparsity
structure, the information returned to the user'refers to the original

row and column indices of his input matrix.

3.2 MA30B...the FACTOR phase

The task of the FACTOR subroutine MA30B is much simpler than that
of MA30A, since here we already know the pivot sequence and the
structure of the LU decomposition. Here we use the decomposition
sometimes referred to as row Gauss elimination, We decompose each
diagonal block in turn and at stage I in the decomposition, block k has

the form

<+ row i

Akk
(unchanged)

and during this stage row i is transformed from a row of Akk into a

row of Lk and Uk‘ This transformation is done in the following way.
First row i of A 1s expanded into a full vector W upon which all
arithmetic operations are subsequently performed. The sparsity structure
of row i of Lk is then examined in order to identify which previous

rows modify row i. The modifications are then performed on W and after

all have been completed it only remains for us to transfer the information

37

back into the sparse data structure by a final pass through the sparsity
structure for Ly and U, (held in ICN).

An added complication in the MA30B code Ties in detecting
singularities. We wish MA30B to decompose a singular matrix.if and
only if the singularities occur in the same place as they did during the
previous decomposition by MA30A. However, we wish to remove such checks
from the inner loop of the code. If, at stage i, no singularity
had been found by MA30A, we merely check to see if the pivot is zero and
then optionally compute the ratio of the pivot to the largest element
in the same row of Uk’ [f, however, there was a singularity found by
MA30A at this stage, then we must examine row i to ensure that no non-zeros
are present in the part of the matrix which should be zero or null. For

example, in the figure

- - -

if the pivots from the position of the x to the end of the block were
zero (or null) in the MA30A entry then the shaded region must contain no

non-zeros in the MA30B entry.

38

- S

To allow for the processing of rows like row £ in the figure above,
when the zero element y is held explicitly (x is also zero), zero
pivots are set to one when first encountered and are then reset to zero

on completion of the decomposition of the block.

39

4.1 Subroutine MA28C

Subroutine MA28C is merely used as an encapsulating interface to MA30C.
This embedding serves to facilitate the user interface by achieving
compatability with the calls to MA28A and MA28B and by shielding the user
from the sub-division of workspace. Since all the work is done by
MA30C, we now discuss this subroutine in subsection 4.2.

4,2 MA30C...the OPERATE phase

MA30C is effectively two separaté routines. The first half solves
Ax=b given the decomposition of A by MA30A or MA30A and MA30B, the
second half solves ATEﬁE given the same decomposition.

We will now discuss the Ax=b entry (MTYPE=1) before making a few
comments on the second half of the subroutine. We hold the decomposition
shown in figure 1.5 where the permutations corresponding to P and Q are
held in arrays IP and IQ, respectively. We first perform the permutation
P on the input vector and then perform the forward elimination
corresponding to the rows of L, in the first diagonal block. On
reaching the end of the block back substitution is performed using the
appropriate elements of Uqe The procedure for subsequent biocks is
similar except that prior to the forward elimination using a row of the
Tower triangular part of a diagonal block, a forward substitution should
be performed using the non-zeros in the part of the row in any sub-
diagonal blocks. The only added complication occurs if any pivot is
zero due to singularities in A, This will have been recorded by MA30A
by negating the appropriate entry in IQ. When such a negative entry is
found during the back substitution phase, no operations need be performed
and the value of the entry in the solution vector is the residual

corresponding to that unsatisfied equation. This is used to update the

40

B R

value of the maximum such residual after which it is set to zero (the
choice is arbitrary) in order to avoid problems associated with scaling.
Finally, a permutation corresponding to Q'] secures the solution,

For the transpose entry (MTYPE#1), we can express our decomposition

as
T T woF T
Uily Agp Agp -ee Ay
ULy
1, -1
Q- lap! = -,
O "
UnEN

and so the sequence is now as follows:
(i) Preorder using IQ (correct since Q operated on columns and
now 0'T operates on rows).
For each block,
(i) Perform forward elimination using appropriate elements from the
Uj updating maximum residual in the event of singularities.
(iii) Perform back substitution using columns of the LT and
1J(J<1) in reverse order, first using elements in the diagonal blocks and
then in the off-diagonal blocks,
and finally
(iv) Order the solution vector using 17l
Notice tha;, in the transpose entry, the forward elimination is
performed using'fhe U¥ which are effectively held by columns, since the Ui
are held by rows. We can use this to take advantage of any zeros in the
right hand side since, during the forward elimination, if we are performing
the elimination using the kth column of the Ul and the kN component of the

modified right hand side is zero, then no operations need be done and we can

41

immediately proceed to the next column of the U:II-- There is, however, a
slight compensation in the former entry since fhe inner loops can be
organised to reduce the number of basic operations on array elements
(see code). Indeed on runs on our 32 test matrices, the total time for
MA28C with MT.YPE='I was 610 milliseconds whereas the time for MTYPE#]

was 630 milliseconds (on our IBM 370/168).

42

5. Specification sheets and availability of code

Specification sheets for the subroutines described in sections
1-4 now follow. The order in which the subroutines are so
described is:

MA28A/B/C

MA30A/B/C

MC13D

MC20A

MC21A

MC22A

MC23A

MC24A
The codes for MC13D and MC21A are given by Duff and Reid (1978b) and
Duff (1978) respectively. Machine readable versions of all the
codes in the MA28A package can be obtained by writing to
S. Marlow, Harwell Subroutine Library, Building 8.9, A.E.R.E. Harwell,
Oxon 0X11 ORA.

A similar code for solving sparse unsymmetric equations whose
coefficient matrix is complex is also in the Harwell Subroutine Library.
The corresponding subroutines are ME28A/B/C, ME30A/B/C, ME20A, ME22A and
ME23A. Subroutine ME24A exists but is not called from the ME28 package.
Subroutines MC21A and MC13D are called by ME23A. Further details on
ME?8 can be found in Duff (1980).

43

SPECIFICATION SHEETS

F OR

SUBROUTINE

MA28A

Rt

46

[

-

FARWIELL MA28A

SUBROUTINE LIBRARY SPECIFICATION 16th July 1980
also covers MA28AD

1 SUMMARY

To solve a sparse system of linear equations. Given a sparse matrix A = {au,}ﬂxn this subroutine

decomposes A into factors, solves Ax =b (or optionally ATx= b). It will decompose a new matrix
having the same sparsity pattern as a previous one by using the same pivotal sequence taking much
less processing time than the original factorization. The matrix A is also allowed to be singular or
rectangular.

The method is a variant of Gaussian elimination for sparse systems and further information is
given in Duff, AERE R.8730, (1977).

ATTRIBUTES — Remark: Supersedes MA18A. Versions: MA28A, MA28AD. Calls: MA30A,
MC20A, MC22A, MC23A, MC24A. Language: Fortran IV (standard available) Date: April 1977.
Size: 9,600 bytes; 653 cards. Origin: 1.S.Duff, Harwell. Conditions on external use: (i), (ii), (iii) and
(iv).

2 HOW TO USE THE ROUTINE

2.1 Argument lists and calling sequences
There are three entries:

(a) MA28A decomposes A into factors using a pivotal strategy designed to compromise beiween
maintaining sparsiiy and controlling loss of accuracy through roundoff.

(b) MA28B factorizes a new matrix A of the same pattern, using the pivotal sequence determined
by an earlier entry to MA28A.

(c) MAZ28C uses the factors produced by MA28A (or MA28B) to solve Ax=b or A7 x=b.

MAZ28B is much faster than MA28A. In some applications it is expected that there will be many
calls to MA28B for each call to MA28A. Also, it is expected that MA28C may be called with many
different vectors for the same matrix A.

We first describe the argument list for MA28A. Reference should be made to this description for
information on paramaters which are common to MA28A and MA28B/C.
To decompose a matrix
The single precision version:
CALL MA28A(N,NZ,A LICN,IRN,LIRN,ICN .U,IKEEP,IW,W, K IFLAG)

The double precision version:
CALL MA2BAD(N,NZ,A,LICN,IRN,LIRN,ICN.U.IKEEP ,IW, W, IFLAG)

N is an INTEGER®4 variable which must be set by the user to the order n of the matrix A. It is
not altered by the subroutine. Restriction: 1 < n < 32767.

16th July 1980 MA28A 1

47

NZ is an INTEGER®4 variable which must be set by the user to the number of non-zeros in the
matrix A. It is not altered by the subroutine. Restriction: NZ>1.

A is a REAL®*4 array (or REAL®8 when using D version) of length LICN and A(K), K=1,NZ
must be set by the user to hold the non-zero elements of the matrix A. On exit, A holds the
non-zero elements in the factors of the matrix A. It should be preserved by the user between
calls to this routine and MA28C.

LICN isan INTEGER®4 variable which must be set by the user to the length of arrays A and ICN.
Since the decomposition is returned in A and ICN, LICN should be large enough to
accommodate this and should ordinarily be 2 to 4 times as large as NZ (see section 2.4). It is
not altered by the subroutine. Restriction: LICN>NZ.

IRN is an INTEGER®2 array of length LIRN. On entry to MA28A, IRN(K) must hold the row
index of the non-zero stored in A(K), K=1,NZ. It is used as workspace by MA28A, is altered
by MA28A, and need not be preserved for any subsequent calls.

LIRN isan INTEGER®4 variable which must be set by the user to the length of array IRN. LIRN
need not be as large as LICN, normally it will not need to be very much greater than NZ. It is
not altered by the subroutine. Restriction: LIRN>NZ.

ICN is an INTEGER®2 array of length LICN. On entry ICN(K) must hold the column index of the
non-zero stored in A(K), K=1,NZ. On output, it holds the column indices of the factors of the
matrix A. These entries should be unaltered by the user between a call to this subroutine and
subsequent calls to MA28B or MA28C.

U is a REAL*4 variable (or REAL®*8 when using D version) . On input to MA28A, the user
should set U to a value between zero and one to control the choice of pivots. A value of 0.10
has been found to work well on test examples. The subroutine will not fail if U is outside the
above range; values of U less than zero are treated as zero and values of U greater than one are
treated as one. It is unaltered by the subroutine.

IKEEP is an INTEGER®2 array of length 5*N. It need never be referenced by the user and should
be preserved between calls to this subroutine and MA28B or MA28C.

IW is an INTEGER®4 array of length 5*N. It is used as workspace by the subroutine.

W is a REAL®*4 array (or REAL®8 when using D version) of length N. W is used as workspace
and an estimate of the largest element encountered during LU decomposition (see section 2.4)
is output in W(1). If such an estimate is not requested, then W is not used at all by MA2BA.

IFLAG is an INTEGER®4 variable. On exit from MA28A, a value of zero indicates that the
subroutine has performed successfully. For non-zero values, see section 2.3.

To decompose a matrix which has a similar structure to that previously decomposed by MA28A
The single precision version:
CALL MA28B(N,NZ,A ,LICN,IVECT,JVECT,bICN,6IKEEP,IW W, IFLAG)

The double precision version:
CALL MA28BD(N,NZ,A,LICN,6IVECT,JVECT,ICN,K IKEEP,KIW, W, 6 IFLAG)

The user must input his matrix in the same way in which he input the original matrix to MA28A.
In this case, the parameters are as follows:

N INTEGER®4 variable equal to the order of the matrix. It is not altered by the subroutine.

NZ INTEGER®*4 variable equal to number of non-zeros in the matrix. It is not altered by the
subroutine.

2 MA2BA 16th July 1980
48

A REAL®4 array (or REAL*8 when using D version) of length LICN. The user must set A(K),
K=1,NZ to hold the non-zero elements of the matrix A. On exit, A holds the non-zero elements
of the factors of the matrix A. It must be preserved by the user between calls to this subroutine
and MA28C.

LICN INTEGER®4 variable equal to length of arrays A and ICN. It is not altered by the
subroutine.

IVECT,JVECT INTEGER®2 arrays of length NZ. IVECT(K) and JVECT(K) must contain
respectively the row and column index of the non-zero stored in A(K), K=1,NZ. They are not
altered by MA28B.

The other parameters are as follows:

ICN, IKEEP are the INTEGER®2 arrays (of lengths LICN, and 5*N, respectively) of the same
names as in the previous call to MA28A. They should be unchanged since this earlier call and
they are not altered by MA28B.

IW is an INTEGER®4 array of length 4*N used as workspace by MA28B.

W isa REAL®4 array (or REAL®8 when using D version) of length N. It is used as workspace
and, if an estimate of element growth is requested (see section 2.4), this will be output in W(1).

IFLAG is an INTEGER®4 variable which will be set to zero on successful exit from MA28B,
otherwise it will have a non-zero value (see section 2.3).

To solve equations Ax=b or A7 x=b, using the factors of A from MA28A or MA28B
The single precision version:
CALL MA28C(N,A ,LICN,ICN.IKEEP,RHS.W,MTYPE)

The double precision version:
CALL MA28CD(N,A,LICN,ICN,IKEEP,RHS.W,MTYPE)

Information about the factors of A is communicated to this subroutine via the parameters N, A,
LICN, ICN and IKEEP where:
N INTEGER®4 variable equal to the order of the matrix. It is not altered by the subroutine.

A REAL®4 array (or REAL®8 when using D version) of length LICN. It must be unchanged
since the last call to MA28A or MA28B. It is not altered by the subroutine.

LICN isan INTEGER®4 variable equal to the length of arrays A and ICN. It is not altered by the
subroutine.

ICN,IKEEP are the INTEGER®2 arrays (of lengths LICN and 5*N, respectively) of the same
names as in the previous call to MA28A. They should be unchanged since this earlier call and
they are not altered by MA28C.

The other parameters are as follows:

RHS is a REAL®4 array (or REAL*8 when using D version) of length N. The user must set RHS(I)
to contain the value of the Ith component of the right hand side (b J,) I=1,N. On exit, RHS(I)
contains the Ith component of the solution vector (x) I=LLN.

W isaREAL®4 array (or REAL®8 when using D version) of length N. It is used as workspace by
MA28C.

MTYPE is an INTEGER®4 variable which the user must set to determine whether MA28C will solve

16th July 1980 MA28A 3
49

Ax=b (MTYPE equal to 1) or ATx=b (MTYPE=#1, zero say). It is not altered by MA28C.

2.2 Parameter usage summary

MA28A
INPUT N, NZ, A(LICN), LICN, IRN(LIRN), LIRN, ICN(LICN), U
UNCHANGED BY MA28A N, NZ, LICN, LIRN, U
OUTPUT A, ICN, IKEEP(5*N), W(1) T, IFLAG
WORK-ARRAYS IW(5*N), W(N) t.

MA28B
INPUT (by user) NZ, A(LICN), IVECT(NZ), JVECT(NZ)
INPUT (from MA28A) N, ICN(LICN), LICN, IKEEP(5*N)
UNCHANGED BY MA28B N, NZ, ICN, LICN, IKEEP
OUTPUT A, IFLAG, W(1)t
WORK-ARRAYS IW(4*N), W(N).

MA28C
INPUT (by user) RHS(N), MTYPE
INPUT (from MA28A) N, ICN(LICN), LICN, IKEEP(5*N)
INPUT (from MA28A or MA28B) A(LICN)
UNCHANGED BY MA28C N, ICN, LICN, IKEEP, A, MTYPE
OUTPUT RHS
WORK-ARRAYS W(N)

t Optional see sections 2.1 and 2.4.

2.3 Error diagnostics

A successful return from MA28A or MA28B is indicated by a value of IFLAG equal to zero. There
are no error returns from MAZ28C. Possible non-zero values for IFLAG are given below. Unless
otherwise stated error returns are for both MA28A and MA28B entries:

—14 to -8 Error in user’s input matrix. The nature is specified in an output message.

-14 More than one non-zero in same position in matrix. Action taken is to proceed with value
equal to sum of duplicate elements. (See common block variable MP in section 2.4).

-13 Non-zero was not present in factors after previous call to MA28A. (MA28B entry only).
-12 Row or column index out-of-range.

-11 1<NL32767 violated.

-10 NZLO0

-9 LICN<NZ

-8 LIRN<NZ (MA28A entry only)

-7 Error encountered during block triangularization phase. (MA28A entry only)

—6 to -3 Storage allocation for decomposition is insufficient (see common block variables
MINICN and MINIRN, section 2.4) (all MA28A only).

-6 LIRN and LICN too small....information available from MINICN (see section 2.4).

-5 LICN too small....increase to at least value given by common block variable MINICN (see
section 2.4).
4 MA28A 16th July 1980

50

+1

+2

LICN far too small. No useful information in MINICN.
LIRN too small.
Matrix numerically singular.

Matrix structurally singular. This means that the non-zero pattern is such that the matrix
will be singular for all possible numerical values of the non-zeros (MA28A only).

Successful decomposition on a structurally singular matrix (MA28A only).

Successful decomposition on a numerically singular matrix (MA28A only).

+I1(I=1,2,.,N) Warning. Very small pivot in row I (MA28B only).

2.4 Common blocks used

In single precision version:

COMMON/MA28E/LP ,MP,LBLOCK , GROW
COMMON/MA28F /EPS ,RMIN ,RESID, IRNCP, ICNCP ,MINIRN ,MINICN . IRANK,
* ABORT1,ABORT2

In double precision version:

COMMON/MA28ED/LP ,MP ,LBLOCK , GROW
COMMON/MA28FD/EPS ,RMIN,RESID, IRNCP, ICNCP ,MINIRN . MINICN, IRANK,
* ABORT1,ABORT2

LP MP are INTEGER™4 variables used by the subroutine as the unit numbers for its warning and

diagnostic messages. Default value for both is 6 (for line printer output). The user can either
reset them to a different stream number or suppress the output by setting them to zero. While
LP directs the output of error diagnostics from the subroutines themselves and internally called
subroutines, MP controls only the output of a message which warns the user that he has input
two or more non-zeros A(I), . . ,A(K) with the same row and column indices. The action taken
in this case is to proceed using a numerical value of A(I)+...+ A(K). In the absence of other
errors, IFLAG will equal —14 on exit (see section 2.3).

LBLOCK is a LOGICAL®4 variable which controls an option of first preordering the matrix to

block lower triangular form (using Harwell subroutine MC23A) (see section 2.6). The
preordering is performed if LBLOCK is equal to its default value of . TRUE. If LBLOCK is set
to .FALSE. , the option is not invoked and the space allocated to IKEEP can be reduced to
4*N+1.

GROW is a LOGICAL®4 variable. If it is left at its default value of .TRUE. , then on return from

EPS,

MAZ28A or MA28B, W(1) will give an estimate (an upper bound) of the increase in size of
elements encountered during the decomposition. If the matrix is well scaled (see section 2.7),
then a high value for W(1) indicates that the LU decomposition may be inaccurate and the user
should be wary of his results and perhaps increase U for subsequent runs. We would like to
emphasise that this value only relates to the accuracy of our LU decomposition and gives no
indication as to the singularity of the matrix or the accuracy of the solution.

RMIN are REAL®4 variables (or REAL®8 when using D version) . If, on entry to MA28B,
EPS is less than one, then RMIN will give the smallest ratio of the pivot to the largest element
in the corresponding row of the upper triangular factor thus monitoring the stability of
successive factorizations. If RMIN becomes very large and W(1) from MA28B/BD is also very
large, it may be advisable to perform a new decomposition using MA28A/AD.

RESID isa REAL®4 variable (or REAL*8 when using D version) which on exit from MA28C/CD

16th July 1980 MA28A 5

51

gives the value of the maximum residual
max| b —) a, x|

over all the equations unsatisfied because of dependency (zero pivots) (see section 2.5).

IRNCP,ICNCP are INTEGER®4 variables which monitor the adequacy of ‘elbow room’ in IRN
and A/ICN respectively. If either is quite large (say greater than N/10), it will probably pay to
increase the size of the corresponding array for subsequent runs. If either is very low or zero
then one can perhaps save storage by reducing the size of the corresponding array.

MINIRN,MINICN are INTEGER®4 variables which, in the event of a successful return (IFLAG >
0 or IFLAG=-14) give the minimum size of IRN and A/ICN respectively which would enable
a successful run on an identical matrix. On an exit with IFLAG equal to -5, MINICN gives the
minimum value of ICN for success on subsequent runs on an identical matrix. In the event of
failure with IFLAG= -6, -4, -3, -2, or —1, then MINICN and MINIRN give the minimum
value of LICN and LIRN respectively which would be required for a successful decomposition
up to the point at which the failure occurred.

IRANK is an INTEGER®4 variable which gives an upper bound on the rank of the matrix.

ABORT1 isa LOGICAL®4 variable with default value .TRUE. If ABORT]1 is set to .FALSE. then
MA28A will decompose structurally singular matrices (including rectangular ones).

ABORT2 isa LOGICAL®4 variable with default value .TRUE. If ABORT?2 is set to .FALSE. then
MA28A will decompose numerically singular matrices.

2.5 Singular or rectangular matrices

Singular and rectangular matrices can be handled by resetting common block variables ABORTI

and/or ABORT?2 (see section 2.4). Additionally, the user must set N to the largest dimension of his

system. RESID (see section 2.4) will give useful information on the consistency of the equations.

2.6 Block lower triangular form

Many large unsymmetric matrices can be permuted to the form

A)
A2.2
PAQ = | ° - A
Ak Ak)
whereupon the system
Ax=b (AT x=b)

can be solved by block-forward—(back-) substitution giving a saving in storage and execution time if
the matrices A, are much smaller than A.

This facility is invoked as a default and information on the reordering is given by the variables in
Single precision version:
COMMON/MC23B/LP,NUMNZ ,NUM, LARGE , ABORT

Double precision version:

6 MA28A 16th July 1980
52

COMMON/MC23BD/LP ,NUMNZ ,NUM, LARGE , ABORT

where the INTEGER variables NUMNZ, NUM, LARGE give the structural rank, number of
diagonal blocks (K), and the order of the largest block respectively. ABORT is a logical variable set
by MA28A to the value of ABORT1 (section 2.4).

If the user wishes to suppress this option he may do so by setting common block variable
LBLOCK to .FALSE. He can then also reduce the length of IKEEP to 4N+1.

2.7 Badly-scaled systems

If the user’s input matrix has elements differing widely in magnitude, then an inaccurate solution may
be obtained and the estimate of the increase in element size given by MA28A or MA28B will not be
very meaningful. In such cases, the user is advised to first use MC 19A/AD to obtain scaling factors
for his matrix and then explicitely scale it prior to calling MA28A. Thereafter, both left and right
hand sides should be scaled as indicated in the code following the example in section 5.

3 GENERAL INFORMATION

Use of common: the subroutine uses common blocks MA28E/ED, MA28F/FD, MA28G/GD, see
sections 2.4 and 2.6. '

Workspace: W of length N (optional in MA28A/AD entry ...see 2.4).

Other subprograms: The following subroutines are called by the subroutines in this package.
MC20A/AD, MC22A/AD, MC23A/AD, MC24A/AD, MA30A/AD.

Input/output: Errors and warning messages only. Error messages on unit LP, warning messages on
unit MP. Both have default value 6, and output is suppressed if they are set to zero.

Restrictions:
1< ng 32767,
0 < NZ,
LICN > NZ,
LIRN > NZ.

Portability: special comments are included in the code to enable the library subroutine OEO4A to
generate a version that conforms to PFORT, a portable Fortran closely approximating the
ANSI standard of 1966. For this version, the restriction n < 32767 is removed.

16th July 1980 MA28A 17
53

4 METHOD

These subroutines are really only data management routines. A description of the initial
subroutines called is given by Duff (AERE Report R.8730.19?7)_. The method used is a sparse
variant of Gaussian elimination.

5 EXAMPLE OF USE

5.1 An example to solve sparse equations.

In the example code shown in Figure 1, we first decompose a matrix and use information from this
decomposition to solve a set of linear equations. Then we factorize a matrix of a similar sparsity
pattern and solve another set of equations.

Thus if, in this example, we wish to solve:

3.14 1.5 1.0
41 3203 |x=|20
1.0 4.1 3.0

4.7 6.2 1.1
3200031 |x={21
3.1 0.0 3.1

followed by the system:

we have as input

N,NZ: 3 7

IRN,ICN,A: 11 3.14
23 0.30
33 4.1
21 4.1
12 7.5
3 2 1.0
22 3.2

X: 1.0 2.0 3.0

(and output would be X: 0.48858D+00 —0.71219D-01 0.74908D +00) followed by input

A: 4.7 0.31 0.9 3.2 6.2 3.1 0.0
X: 1.1 2.1 3.1

(with output now being X: -0.10851D+01 0.10000D+01 0.17975D+02)

5.2 Scaling
If the user wishes to scale his matrix (see section 2.8) he should insert the following lines

(a) Between reading the input matrix and calling MA28AD.

CALL MC19AD(N,NZ,A,IRN,ICN,R,C,A(NZ+1))
DO 349 I=1,N
R(I)=EXP(R(I))
340 C(I)=EXP(C(I))
DO 350 II=1,NZ
I=IRN(II)
J=ICN(II)

8 MA28A 16th July 1980
54 '

350 A(II)=A(II)*R(I)*C(J)
(b) Before calling MA28CD

DO 425 I=1,N
425 X(I)=X(I)*R(I)

(c) After calling MA28CD

DO 475 I=1,N
475 X(I)=X(I)*C(I)

(d) and the following additional declarations are required:

REAL R(590),C(50)

16th July 1980 MA28A 9
55

DOUBLE PRECISION A(5909),W(50) .X(50).U
INTEGER IW(250)
INTEGER*2 ICN(500),IRN(300),IVECT(250),JVECT(250),IKEEP(250)
LICN=500
LIRN=300
C READ IN INPUT MATRIX.
READ(5,100) N,NZ
1900 FORMAT(2016)
IF (N.GT.50.0R.NZ.GT.250) GO TO 500
READ(5,200) (IRN(I),ICN(I),A(I),I=1,NZ)
200 FORMAT(2I6,D12.5)
C COPY INDEX INFORMATION FOR USE IN SUBSEQUENT MA28BD CALL.
DO 300 I=1,NZ
IVECT(I)=IRN(I)
300 JVECT(I)=ICN(I)
U=0.10D0Q
C DECOMPOSE MATRIX INTO ITS FACTORS.
CALL MA28BAD(N,NZ,A ,LICN,IRN,LIRN,ICN,U,IKEEP,6IW,W,IFLAG)
IF (IFLAG.LT.2) GO TO 500
C READ IN RIGHT HAND SIDE.
READ(5,400) (X(I),I=1,N)
400 FORMAT(5D13.5)
C SOLVE LINEAR SYSTEM.
CALL MA28CD(N,A,LICN,ICN,IKEEP,X.W,1)
C PRINT OUT SOLUTION VECTOR.
WRITE(6,400) (X(I),I=1,N)
C READ IN, DECOMPOSE, AND SOLVE SYSTEM OF SIMILAR EQUATIONS.
READ(5,400) (A(I),I=1,NZ)
READ(5,400) (X(I),I=1.,N)
CALL MA28BD(N,NZ,A ,LICN,IVECT,JVECT,ICN,6IKEEP,IW,W,6IFLAG)
IF (IFLAG.LT.9) GO TO 700
CALL MA28CD(N,A ,LICN,ICN,IKEEP X W, k1)
WRITE(6,400) (X(I),I=1,N)
GO TO 700
500 WRITE(6,600)
600 FORMAT(13H ERROR RETURN)
700 STOP
END

Figure 1. Code to solve a set of sparse linear equations

10 MAZ2B8A 16th July 1980

56

SPECIFICATION SHEETS

F OR

SUBROUTINE

MASOA

57

58

MA30A/AD

Harwell Subroutine Library

1 PurEose

These subroutines perform operations pertinent to the solution of a
general sparse NxN system of linear equations

i=},2,...,N.

nH-1=
W
-t
.
>
[
n
oy
-
-

j=
(i.e. solve Ax=b). Structurally singular matrices are permitted, including

those with row or columns consisting entirely of zeros (i.e. including
rectangular matrices). It is assumed that the non-zeros a5 do not

differ widely in size. If necessary a prior cali of the scaling
subroutine MC19A/AD may be made.

(a) MA30A/AD performs the LU decomposition of the diagonal blocks of the
permutation PAQ of a sparse matrix A, where input permutations P] and Q]
are used to define the diagonal blocks. There may be non-zeros

in the off-diagonal blocks but they are unaffectea by MA30A/AD. P and P1
differ only within blocks as do Q and QI‘ The permutations P1 and Q1

may be found by calling MC23A/AD or the matrix may be treated as a single
block by using P1=Q1=I. The matrix non-zeros should be held compactly

by rows, although it should be noted that the user can supply his matrix
by columns to get the LU decomposition of Al.

(b) MA30B/BD performs the LU decomposition of the diagonal blocks of

a new matrix PAQ of the same sparsity pattern, using information from a
previous call to MA30A/AD. The elements of the input matrix must
already be in their final positions in the LU decomposition structure.
This routine executes about five times faster than MA30A/AD.

(c) MA30C/CD uses the factors produced by MA30A/AD or MA30B/BD to solve
Ax=b or ATE;E_when the matrix PlAQ](PAQ) is block lower triangular

(including the case of only one diagonal blockj.
If the user requires a more convenient data interface then he should
consult MA28A/A/B/C. These subroutines call MA30A/B/C after checking the

user's input data and optionally using MC23A to permute the matrix to
block triangular form,

59

2. Argument 1lists

We first describe the argyument 1list for MA30A., This description

should also be consulted for further information on most of the parameters of

MA3CB and MA30C.

CALL MA30A(N,ICN,A,LICN,LENR,LENRL,IDISP,IP,IQ,IRN,LIRN,LENC,IFIRST,
LASTR,NEXTR,LASTC ,NEXTC,IPTR,IPC,U,IFLAG)

N is an INTEGER variable which must be set by the user to the order of
the matrix. Because of th? use of INTEGER*2 arrays, the value of N
should be less than 32768(2!5). It is not altered by MA30A.

ICN is an INTEGER*2 array of length LICN. Positions IDISP(2) to LICN
must be set by the user to contdin the column indices of the non-zeros
in the diagcnai blocks of P1AQ], Those belonging to a single

row must be ccntinguous tut the ordering of column indices within
each row is unimportent. The non-zeros of row | precede those of
row I+1,I=1,...,N=1 and no wasted space is aiiowed between the rows.

On output ‘the column indices of the LU decompositior of PAQ are
held in positions IDISP(1) to IDISP(2). The rows are in pivotal
order, and the column indices of the L part of each row are in
pivotal order and precede those of U. Again there is no wasted
space either within a row or between the rows. ICN(1) to
ICN{IDISP(1)-1), are neither required nor altered. If MC23A has
been called, these will hold information about the off-diagonal
blocks.

A s a REAL (DOUBLE PRECISION in D version) array of length LICN
whose elements IDISP(2) to LICN must be set by the user to the values
o the non-zero elements of the matrix in the order indicated by ICN.
On output A will hold the LU factors of the matrix where again the
position in the matrix is determined by the corresponding values in
ICN. A(1) to A(IDISP(1)-1) are neither required nor altered.

LICN s an integer variable which must be set by the user to the
length of arrays ICN and A. It must be big enough for A,ICN to hold
all the non-zeros of L and U and leave some "eibow room". It is
possible to calculate a minimum value for this by a preliminary run
of MA3DA (see section 6). The adequacy of the elbow room can be
Judged by the size of the common block variable ICNCP (see section 6).
[t is not altered by MA30A.

LENR is an INTEGER*2 array of length N. On input, LENR(I) should
equal the number ot ncn-zercs in row I, I=1,...,N of the diagonal
blocks of P]AQ]. On cutput, LENR(I) will equal the total number

of non-zeros in row I of L and row ! of U.

2 MA3DA/AD

60

[——r——————
.

LENRL is an INTEGER*2 array of length N. On output from MA30A,
LENRL(I) will hold the number of non-zeros in row I of L.

IDISP s an INTEGER array of length 2. The user should set IDISP(1)
to be the first available position in A/ICN for the LU decomposition
while IDISP(2) is set to the position in A/ICN of the first non-zero
in the diagonal blocks of P1AG1. On output IDISP(1) will be

unaltered while IDISP(2) will be set to the position in A/ICN of
the last non-zero of the LU decomposition.

IP is an INTEGER*2 array of length N which holds a permutation of the
integers 1 to N. On input to MA30A the absolute value of IP(I)
should indicate the row of A which is row I of PTAQ1. A negative

value for IP(I) indicates that row I is at the end of a diagonal
block. On output from MA30A, IP(I) indicates the row of A

which is Ith row in PAQ. IP(I) will still be negative for the last
row of each block (except the last).

1Q s an INTEGER*2 array of length N which acain holds a permutation
of the integers 1 to N. On input to MA30A, IQ(J) should indicate
the column of A which is column J of P1AQ1. On output from MA3O0A,

the absolute value of IQ(J) incicates the column of A which is the J
in PAQ. For rows, I say, in which structural or numerical
singularity is detected 1Q(I) is negated (see section 7).

th

IRN is an INTEGER*2 array of length LIRN used as workspace by MA30A.

LIRN s an INTEGER variable. It should Le greater than the
largest number of non-zeros in a diagonal block of P]AQ1 but need

not be as large as LICN, It is the length of array IRN and should
be large enough to hold the active part of any block, plus some
"elbow room" the a posteriori adequacy of which can be estimated by
examining the size of common block variable IRNCP (see section 6).

LENC,IFIRST,LASTR,NEXTR,LASTC,NEXTC
are all INTEGER*2 arrays of length N which are used as workspace
by MA30A.

IPTR,IPC are INTEGER arrays of length N which are used as workspace
by MA30A. ,

U is a REAL (DOUBLE PRECISION in D version) variable which should be set
by the user to a value between 0. and 1.0 If less than zero it is reset
to zero and if its value is 1.0 or greater it is reset to 0.9999
(0.999999999 in D version). It determines the balance between pivoting
for sparsity and for stability, values near zero emphasizing sparsity and
values near one emphasizing stabality. We recormend U=0.1 as a possible
first trial value. The stability can be judged by & iater call to
MC24A/AD.

MA3CA/AD 3
61

IFLAG s an INTEGER variable. It will Pave a non-negative
value if MA30A is successful. Negative values indicate error
conditions while positive values indicate that the matrix has been
successfully decomposed but is singular (see section 5).

We now describe the argument list for MA30B,
CALL MA30B(N,ICN,A,LICN,LENR,LENRL,IDISP,IP,IQ,W,IW,IFLAG)
N s an INTEGER variable set to the order of the matrix.

ICN is an INTEGER*2 array of length LICN. It should be unchanged since
the last call to MA30A. It is not altered by MA30B.

A is a REAL (DOUBLE PRECISION in D version) array of length LICN
The user must set entries IDISP(1) to IDISP(2) to contain the
elements in the diagonal blocks of the matrix PAQ whose column numbers
are held in ICN, using corresponding positions. Note that some
zeros may need to be help explicitly. On output entries IDiSP(1)
to IDISP(2) of array A contain the LU decomposition of the diagonal
blocks of PAQ. Elements A(1) to A(IDISP(1)-1) are naither
required nor altered by MA30B,

LICN is an INTEGER variable which must be set ty the user to the
iength of arrays A and ICN.

LENR, LENRL are INTEGER*2 arrays of length N. They should be unchanged
since the last call to MA30A, They are not altered by MA30B.

IDISP is an INTEGER array of length 2. It should be unchanged since
the last call to MA30A. It is not altered by MA30B.

IP,IQ are INTEGER*2 arrays of length N. They should be unchanged since
the Tast call to MA30A. They are not altered by MA30B,

W is a REAL (DOUBLE PRECISION in D version) array of length N which is
used as workspace by MA30B.

IW is an INTEGER array of length N which is used as workspace by
MA30B.

IFLAG is an INTEGER variable. On output from MA30B IFLAG has the
value zero if the factorization was successful, has the value I if pivot

I was very small (see section 5) and has the value -I if an unexpected
singularity was detected at stage I of the decomposition (see section 5).

We finally describe the argument 1ist for MA30C.
CALL MA 30C(N, ICN,A,LICN,LENR,LENRL,LENOFF,IDISP,IP,IQ,X,W,MTYPE)

N is an INTEGER variable set to the order of the matrix.

4 MA30A/AD
62

——e SR
T —————

ICN is an INTEGER*2 array of length LICN. Entries IDISP(1) to
IDISP(2) should be unchanged since the last call to MA30A. If the
matrix has more than one diagonal block, then column indices
corresponding to non-zeros in sub-diagonal blocks of PAQ must appear
in positions 1 to IDISP(1)-1. For the same row those entries must
be contiguous,with those in row I preceding those in row I+]
(1=1,...,N-1) and no wasted space between rows. Entries may be in any
order within each row. It is not altered by MA3CC.

A is a REAL (DOUBLE PRECISION in D version) array of length LICN.
Entries IDISP(1) to IDISP(2) should be unchanged since the last call
to MA30A or MA30B. If the matrix has more than one diagonal
block, then the values of the non-zeros in sub-diagonal blocks must
be in positions 1 to IDISP(1)-1 in the order given by ICN. It is
not altered by MA30QC.

LICN is an INTEGER variable set to the size of arrays ICN and A,

LENR,LENRL are INTEGER*2 arrays of length N which should be unchanged
since the last call to MAZCA. They are not altered by MA3CC.

LENOFF is an INTEGER*2 array of length N. If the matrix PAQ (or P]AQ1)
mas more than one diagcnal block, then LENCFF{I), I=1,...,N
should be set to the number of non-zeros in row I of the
matrix PAQ which are in sub-diagonal blocks. If there is oniy
one diagonal block then LENOFF(1) may be set to -1, in which case the
other elements of LENOFF are never accessed. It is not altered by
MA30C.

IDISP is an INTEGER array of length 2 which should be unchanged since the
last call to MA30A, It is not altered by MA3(C.

IP,IQ are INTEGER*2 arrays of length N which should be unchanged since
the last call to MA30A. They are not altered by MA30CC.

X is a REAL (DOUBLE PRECISICN in D version) array of length N. It must
be set by the user to the values of the right hand side vector b
for the equations he wishes to solve. Or exist from MA30C it ~
will be equal to the solution x required.

W is a REAL (DOUBLE PRECISION in D version) array of length N
which is used as workspace by MA30C.

MTYPE is an INTEGER variable which must be set by the user. I

MTYPE=1, then the solution to the system Ax=b is returned; any other
value for MTYPE will return the solution to The system

ATifg. It is not altered by MA30C.

MA30A/AD 5

63

3. Parameter usage summary

MA30A _

TRPUT by user. N,ICN(IDISP(1) to LICN),A(IDISP(1) to LICN), LICN,
LENR(N),IDISP(2),IP(N),IQ(N),LIRN,U.

UNCHANGED by MA30A. N,LICN,LIRN.

WORK ARRAYS. IRN(LIRN),LENC(N),IFIRST(N),LASTR(N),NEXTR(N),
LASTC(N) ,NEXTC(N),IPTR(N),IPC(N).

OUTPUT from MA30A. ICN,A,LENR,LENRL(N),IDISP,IP,IQ,IFLAG.

MA308B
TRPUT by user. A{IDISP(]) to IDISP(E)).
INPUT (from MA30A) N,ICN(IDISP(1) to IDISP(2)),LICN,LENR(N),LENRL(N),

IDISP(2).
UNCHANGED by MA30B. N,ICN,LICN,LENR,LENRL,IDISP.
WORK ARRAYS, W(N), IW(N).
OUTPUT from MA30B. A, IFLAG.

MA30C
TRPUT by user. LENOFF(N),X(N),MTYPE,A(IDISP(1)-1),ICN(IDISP(1)-1).

INPUT (from MA30A/B). N,A(IDISP(1) to IDISP(2)),ICN(IDISP(1) to
IDISP(2)),LICN,IDISP(2),LENR(N),LENRL(N),IP(N),IQ(N).

UNCHANGED by MA30C. N,A,ICN,LICN,IDISP,LENR,LENRL,LENOFF,IP,IQ,MTYPE.
WORK ARRAYS. W(N).

QUTPUT from MA30C. %

4. Data structures summary

a) Input to MA30A

LICN

+
unchanged element values, by rows A
and unused free —
by MA30A space col.indices ;gff;;: ICN
4 + - I S—
1 IDISP(1) IDISP(2) LENR
MA30A/AD 6

64

b) Output from MA0A and input to MA3OB (A is overwritten)

unchanged | element values of L/U decomposition frau A
and unused| by rows in pivotal order gl
by MA30B | P sp
permuted col.indices ICN
1 IDISP(1) IDISP(2) LICN

and for each row (row I, say)

- LENR(I) -
A values of row PIVOT| values of row
I of L I I of U
ICN permuted col. I permuted col.
indices in order indices in any order

A
E

LENRL(I)

N.B. Fill-ins can occur anywhere within the row.

c) Input to MA3OC

A Elements in off-diagonal| element values of L/U
blocks by rows decomposition by rows
in pivotal order
4K Corres.column indices permuted col.indices
4 + 4 4
A ®
1 LENOFF (I) IDISP(1) IDISP(2) LICN

5. Error diagnostics

MA30A

If the subroutine performs the LU decomposition without any
complications or errors, the value of IFLAG will be non-negative on exit
from MA30A. The complications which can arise are given below. Some are
more disastrous than others and the user must decide in each instance what
further action to take. In some cases messages are output on the line
printer (unless supressed (LP=0) or switched to another stream, see section
6). Possible negative values for IFLAG are as follows:

MA30A/AD

65

7

8

The matrix is structurally singular with rank given by IRANK in
COMMON block MA30F (see section 6). The message:

ERROR RETURN FROM MA30A/AD BECAUSE MATRIX IS STRUCTURALLY SINGULAR
will be output.

If, however, the user wants the LU decompositicn of a structurally
singular matrix (see section 7) and sets the common block variable
ABORT1 to .FALSE. , then in the event of singularity and a
successful decomposition IFLAG is returned with the value +1 and no
message is output.

The matrix is numerically singular (it may also be structurally
singular) with estimated rank given by IRANK in COMMON block
MA3OF (see section 6). The message:

ERROR RETURN FROM MA30A/AD BECAUSE MATRIX IS NUMERICALLY SINGULAR
will be output.

The user can choose to continue the decomposition even wken a zero
pivot is encountered by setting common bleck variable ABORTZ tu
FALSE, If a singularity is encountered, IFLAG will ther rcturn
with a value of +2 and no message is output if the decompositicn
has been completed successfully.

LIRN has not been large enough to continue with the decomposition.
Should this happen, the message:

ERROR RETURN FROM MA30A/AD BECAUSE LIRN NOT BIG CNOUGH

AT STAGE < > IN BLOCK < > WITH FIRST ROW < > AND LAST ROW < >
1s output.

If the stage was zero then cormon block variable MINIRN (see

section 6) gives the length sufficient to start the decomposition or
this block and the message:

TO CONTINUE SET LIRN TO AT LEAST <MINIRN> is output.

For a successful decomposition on this block the user should make
LIRN slightly (say about N/2) greater than this value.

LICN has not been large enough to continue with the decomposition.
Should this happen, the message:

ERROR RETURN FROM MA30A/AD BECAUSE LICN NO7 BIG ENOUGH

AT STAGE < > IN BLOCK < > WITH FIRST ROW < > AND LAST ROW < >
is output.

MA30A/AD

66

-5 The decomposition has been completed but some of the LU factors
have been discarded to create enough room in A/ICN to continue the
decomposition. The variable MINICN in COMMON block MA30F (see
section 6) then gives the size that LICN should be to enable the
factorization to be successful. Each time any of the LU factors
are destroyed, the message:

LU DECOMPOSITION DESTROYED TO CREATE MORE SPACE
is output.
If the user sets common block variable ABORT3 to .TRUE. , then the

subroutine will exit immediately instead of destroying any
factors and continuing.

-6 Both LICN and LIRN are too small. Termination has been caused
by lack of space in IRN (see error IFLAG= -3), but already some of
the LU factors in A/ICN have been lost (see error IFLAG= -5).
MINICN gives the minimum amount of space required in A/ICN for
decomposition up till this point and the message:
ERROR RETURN FROM MA3CA/AD LIRN AND LICN TOO SMALL

is output.

MA30B

If M53OB performs a successful decomposition, then IFLAG will have a
non-negative value on exit. Cther values for IFLAG are now described.

IFLAG= -1 : The routine has terminated at stage I for one of the
following reasons,

(1) A zero pivot was found at stage I where MA30A found a non-zero pivot.

(i) A non-zero was found in a part of row I which lay in a submatrix which
was entirely zero after decomposition using MA30UA (see diagram in section 7).
With this error return the messaae:

ERROR RETURN FROM MA308/BD SINGULARITY DETECTED IN ROW I

is output.

IFLAG= +1 : Although the decomposition has been successful this
return indicates that there is a small pivot in row I with possible
consequent stability problems. The common block variable RMIN gives an
idea of how severe this is. See the description of common block
MA30G (section 6) for further details on this return.

MA30C

There are no error returns from this subroutine.

MA30A/AD 9
67

10

6. Common blocks

MA30A

There are two labelled common blocks:
COMMON,/MA30E /LP ,ABORT1,ABORT2,ABORT3.

The variables in this common block (used also by MA30B) which are
used as controlling parameters by MA3CA are:

The INTEGER LP is the unit number to which the error messages
(described in section 5) are sent. A BLOCK DATA subprogram sets LP
equal to 6. This default value can be reset by the user, if desired.
A value of 0 suppresses all messages.

The logical variables ABORT1,ABORT2,ABORT3 are used to control the
conditions uncder which the subroutine will terminate.

If ABORT1 is .TRUE. then the subroutine will exit immediately
on detecting structural singularity.

If ABORT2 is .TRUE. then the subroutine will exit immediately
on detecting numericai singularity.

If ABORT3 is .TRUE. then the subroutine will exit immediately
when the available space in A/ICN is filled up by the previously
decomposed, active, and undecomposed parts of the matrix.

The default values for ABORT1,ABORT2,ABORT3 are set in a BLOCK DATA
subprogram to .TRUE. , .TRUE. and .FALSE. respectively.

COMMON/MA 3% /IRNCP,ICNCP,IRANK,MINIRN,MINICN

The variables in this common block are used to provide the user with
information on the decomposition.

The INTEGERS IRNCP and ICHCP are used to monitor the adequacy of
the allocated space in arrays IRN and A/ICN respectively, by taking account
of the number of data management compresses required on these arrays. If
IRNCP or ICNCP is fairly large (say greater than N/10), it may be .
advantaqgeous to increase the size of the corresponding array(s). IRNCP and
ICHCP zre initialized to zero on entry to MA30A and are incremented each
time the compressing routine MA30D (see section 8) is entered.

ICNCP is the number of compresses on A/ICM.
IRHCP is the number of compresses on IRN.
[RANK is an INTEGER variable which gives an estimate (actually an

upper bound) of the rank of the matrix. On an exit with IFLAG equal
to O, this will be equal to N.

MA30A/AD
68

MINIRN is an INTEGER variabie which, after a successful call to
MA30A, indicates the minimum length to which IRN can be reduced while
still permitting a successful decomposition of the same matrix. If,
however, the user were to decrease his file to that size the number of
compresses (IRNCP) may be very high and quite costly. If LIRN is not
large enough to begin the decomposition cn a diagonal block, MINIRN will
be equal to the value required to continue the decomposition and IFLAG
will be set to -3 or =6 (see section 5). A value of LIRN slightly
greater than this (say about N/2) will usually provide enough space to
complete the decomposition on that block. In the event of any other
failure MINIRN gives the minimum size of IRN required for a
successful decomposition up to that point.

MINICN is an INTEGER variable which after a successful call to MA30A,
indicates the size of LICN required to enable a successful decomposition.
In the event of failure with IFLAG= -5 (see section 6), MINICN will, if
ABORT3 is left set to .FALSE. (see beginning of this section), indicate
the minimum length that would be sufficient to prevent this error in a
subsequent run on an identical matrix. Again the user may prefer to use a
value of ICN slightly greater than MINICMN for subsequent runs to avoid too
many compresses (ICNCP). In the event of failure with IFLAG equal to any
nagative value except -4, MINICN will give the minimum length to which
LICN could be reduced to enable a successful decomposition to the point at
which failure occurred.

Notice that, on a successful entry IDISP(2) gives the amount of space
in A/ICN required for the decomposition while MINICN will usually be
slightly greater because of the need for "elbow room".

If the user is very unsure how large to make LICN, the variable
MINICN can be used to give him that information. A preliminary run
should be performed with ABORT3 left set to .FALSE. and LICN about 13 times as
big as the number of non-zeros in the original matrix. Unless his
initial problem is very sparse (when the run will be successful) or fills
in extremely badly (giving an error return with IFLAG equal to -4), an
error return with IFLAG equal to -5 should result and MINICN will give the
amount of space required for a successful decomposition.

MA30B

Again there are two labelled COMMOM blocks. The first
COMMON/MA30E/LP,ABORT1,ABORT2,ABORT3
is the same as in MA30A.

LP has the same meaning as in MA3CA and the LOGICAL variables
ABORT1,ABORT2 and ABORT3 are not referenced by MA30E.

COMMON/MA30G/EPS,RMIN

where

EPS is a REAL (DOUBLE PRECISION in D version) variable. It is used
to test for small pivots. Its default value, set by a BLOCK DATA

MA30A/AD 11
69

subprogram, is 1,0E-4 (1.0D-4 in D versicn), If the user sets EPS to any
value greater than 1.0, then no creck is made on the size of the pivots.
Although this would result in bLac instability, such an eventuality can be
checked by using MC24A, and MA30B should execute slightly faster.

RMIN is a REAL (DOUBLE PRECISION in D version) variable which
gives the user some information about the stability of the decomposition.
At each stage of the LU decomposition the magnitude of the pivot APIV
is compared with the largest off-diagonal element currently in its
row (row of U), ROWMAX say. If the ratio

mih (APIV
i

/RCWMAX)

where the minimum is taken over all the rows, is less than EPS then RMIN
is set to this minimum value and IFLAG is returned with the value
+I (see section 5) where I is the rcw in which this minimum occurs.

[f the user sets EPS greater than one, then this test is not
performed. In this case, and when ther2 are no small pivots RMIN will
be set equal to EPS,

MA30C

————

This subroutine uses only cne labelled COMMON block viz.
COMMON/MA30G/RESID

RESID 1s a REAL (DCUBLL PRECISICN in C versicn) variable. In the case of

singular or rectanguiar inatrices its final value will be equal to the

maximum residual (?bi_: ai,le] for the unsatisfied equations; otherwise
j J

its value will be set tc zero.

7. Singular or rectangular matrices

MA30A

MA30A can perform a decomposition on matrices which are singular or
rectangular. This facility is controlled by the commor block
variables ABCRT1 and ABORT2 (see section 6).

In any singular block of the matrix, MA30A will permute a null or
zero block to the end...viz.

I'"
-t

R1 C\)
PoK...Q,. = .
K kk'k D 0/

performing an LU decomposition on the first r. rows ana columns, where the

.r
K
"Xk matrix A? is non-singular. The final rank returned (IRANK) equals

12 MA30A/AD
70

k 3 - 3
a singularity is detected the corresponcing entry 1in IQ is made negative,

MA 30B

MA30B will produce the LU decomposition of a singular or rectangular
matrix provided that the matrix was successfully decomposed by MA30A and
the same singularities are found by both the MA30B and the MA30A runs.
Thus the zero block of the above figure must be zero after MA30B and the
block corresponding to the first ri rows and columns must be non-singular.

MA30C

If MA30A or MA30B have been used to decompose a singular or rectangular

matrix then MA30C will still perform the solution process using the
information in array IQ which has a negative value for any row in which a
singularity occurs. Because of the mode of operation of these earlier
codes, these singularities will always occur at the ends of blocks. The
maximum residual for the unsatisfied equations is given by the common
block variable RESID (see section 6).

B Other subroutines called

MA30A calls subroutine MA30D which garbage collects on arrays
compressing the useful information to the top end of the array
freeing earlier locations for workspace or subseguent storage. MA30D
need never be called directly by the user. MA30AD calls a similar
routine MA30DD.

There are no subroutines called MA30B or MA30C.

9. Portability and handling of larger arrays

These subroutines have been written in IBM Fortran. If it is
desired to use them on other machines appropriate special comment cards
have been included in the source code so that the preprocessor OEP4A can
be used to convert them into standard Fortran. One effect of this is to
change all INTEGER*2 declarations to INTEGER thus enabling the subroutine

to handle matrices up to order 231-1 with less than 231 non-zeros.

MA30A/AD

71

Iry where the sum is over the diagonal blocks. For each row of A in which

10. Method

MA30A uses a sparse variant of Gaussian elimination to decompose
each diagonal block into its LU factors.

MA30B utilizes knowledge of the pivotal sequence and the sparsity
structure of the LU factors from a previous call to MA30A to factorize
the new matrix into its LU factors by row Gauss elimination.

MA30C performs simple forward elimination and back substitution on each
block in turn performing back substitution on the off-diagonal parts
when required. The code for the solution of the direct problem and its
transpose are entirely separate.

A discussion of the design of these subroutines is given by
Duff and Reid (Harwell Report CSS 48, 1977) while fuller details of the
implementation are given in Duff (HarweTT Report A.E.R.E.-R.8730,1977).

March 1977

14 MA30A/AD

72

SPECIFICATTION SHEETS

F OR

SUBROUTINE

MC 13D

73

74

MC13D

Harwell Subroutine Library

1. Purpose .

Given the column numbers of the non-zeros in each row of a sparse
matrix this subroutine finds a symmetric permutation that makes the matrix
block lower triangular, It can also be interpreted as accepting the row
numbers of the non-zeros in each column and symmetrically permuting to
block upper triangular form.

2, Argument List

CALL MCi3D(N,ICN,LICN,IP,LENR,IOR,IB,NUM,IW)

N is an INTEGER variable which must be set by the user to the order of
the matrix. Boacause of the use of INTEGER*2 arrays in MC13D the
value of N should be less than 32768 (21%), It is not altered
by MC13D.

ICN 1is an INTEGER*2 array of length LICN which must be set by the user
to contain the column indices of the non-zeros. Those belonging
to a single row must be contiguous but the ordering of column indices
within each row is unimportant and wasted space between rows is
permitted. It is not changed by MC13D.

LICN is an INTEGER which must be set by the user to the length of array
ICN, It is unaltered by MC13D.

IP is an INTEGER array of length N and must be set by the user so that
IP(I) contains the position in array ICN of the first column
index of a non-zero in row I, for I=1,2,,...N, It is not altered
by MC13D.

LENR is an INTEGER*2 array of length N, The user must set LENR(I)
equal to the number of non-zeros in row I, I=1,2,....N, It is not
changed by MC13D.

IOR is an INTEGER*2 array of length N in which the permutation is
output, IOR(I) gives the position in the original ordering of the
row or column which is Ith in the permuted form.

IB is an INTEGER*2 array of length N used for output. IB(I) contains
the row number in the permuted matrix of the begirnning of the
1th block.

NUM s an INTEGER output variable which is set to the rumber of blocks in
the permuted form.

IW is an INTEGER*2 work array of length at least 3*N.

Mc1e 1

75

2

3. Error returns

There are no error returns., However, if the user submits a matrix
with zeros on the diagonal, MC13D might give a block triangular form
which could be further reduced by unsymmetric permutations. To obtain
the best results, the user is advised first to permute the matrix so
that it has a zero-free diagonal. This can be done by subroutine MC21A,

4. Portability and handling of larger arrays

This routine has been written in IBM Fortran. If it is desired
to use it on other machines appropriate special comment cards have been
included in the source code so that the preprocessor OE@4A can be used to
convert MC13D into standard Fortran. One effect of this is to change
all INTEGER*2 declarations to INTEGER thus enabling th? subroutine
to handle matrices up to order 23!-1 with less than 23! non-zeros.

5, Subroutines called

MC13D calls MCI3E, which never needs to be called directly by the
user,

6. Method
The method used is that of Tarjan (SIAM J. Computing (1972),

%, Pp.146-160) and is described by Duff and Reid (Harwell Report CSS 29,
976). |

March 1976

MC13D 76

SPECIFICATION SHEETS

F OR

SUBROUTINE

MC20A

77

78

MC20A/AD

Harwell Subroutine Library

NC

MAXA

INUM

JPTR

JNUM

Purgose

a) MC20A: To sort the non-zeros of a sparse matrix from arbitrary
order to column order, unordered within each column.

b) MC20B: To sortthe non-zeros within each column of a sparse
matrix stored by columns.

Argument Tists

CALL MC20A(NC,MAXA,A,INUM,JPTR,JINUM,IDISP)
CALL MC20B(NC,MAXA,A, INUM,JPTR)

(INTEGER) must be set by the user to the number of matrix columns,
and must not exceed 32767+JDISP. It is not alterecd by MCZ0A/B.

(INTEGER) must be set by the user to the number of matrix non-zeros.
It is not aitered by MCZ20A/B.

is a REAL (DOUBLE PRECISION in D version) array of length MAXA.

For entry tc MCZ20A the user must set it to contair the non-zeros

in any order. On exit from MC20A they are reordered so that column 1
precedes column 2 which precedes column 3, etc, but the order within
columns is arbitrary. This format is required for entry to MC20B.
Or exit from MC20B the nor-zeros are also ordered within each column.

is an INTEGER*2 array of iength MAXA. On entry to and exit from
MC20A/B the absolute value of INUM(K) is the row number of the element
in A(K}. The values, including signs, are moved so the user is at
liberty to use these signs as flags attached to the non-zeros.

is an INTEGER array of length NC. It is not required to be set

for entry to MC20A. On exit from MC20A and on entry tc and exit from
MC20B it contains the position in A of the first element of column
Jyd=1 425w NCs

is an INTEGER*2 array of length MAXA. On entry to MCZ20A
JNUM(K)+JDISP is the column number of the element held in A(K). It
is destroyed by MCZ0A.

JDISP ({IMTEGER) must be set by the user to his required displacement

for column numbers, in the range [0,32767]. Normally zero will be
suitable, but positive values permit matrices with un to 65534
columns to be handled, although JNUM is an INTEGER*2 srray. JDISP
is not altered by MC20A.

MC20A/RD
MC208B/BD

79

3 Notes

It is expected that this subroutine will be called by other library
subroutines but not by the user directly. There are no checks on the
validity of the data and no error exits.

4, Method

MCZ20A is an in-place sort algorithm which handles each item to be
sorted exactly 3 times, so it is of order MAXA. The number of elements
in each column is first obtained by a counting pass. The space needed by
each column is allocated. Each element in turn is made the "current
element" and examined to see if it is in place. If not, it is put into
the next location allotted for the column it occurs in, and the element
displaced made the current element. This chain of displacing elements
continues until the first element examined in the chain is located and
stored. Then the next item is examined. A flag prevents an element being
moved twice.

MC20B is a pairwise interchange algorithm of maximum order r(r-1)/2,
for each column, where r is the number of elements in the column.

November, 1975

MC20A/AD 2 ‘
MC20B/BD 80

| S ——

SPECIFICATION SHEETS

FOR

SUBROUTINE

MC21A

81

82

Harwell Subroutine Library

1.

MC21A/AD

Purpose

Given the pattern of non-zeros of a sparse matrix this subroutine

finds a row permutation that makes the matrix have no zeros on its diagonal.

2.

ICN

LICN

IP

LENR

Argument List

CALL MC21A(N,ICN,LICN,IP,LENR,IPERM,NUMNZ,IW)

is an INTEGER variable which must be set by the user to the order
of the matrix. Because of the use of INTEGER*2 arrays, the value of
N should be less than 32768 (215). It is not altered by MC21A.

is an INTEGER*2 array of length LICN which must be set by the

user to contain the column indices of the non-zeros. Those

belonging to a single row must be contiguous but the ordering of
column indices within each row is unimportant and wasted space between
rows is permitted. It is not altered by MC21A.

is an INTEGER which must be set by the user to the length of
array ICN. It is not altered by MC21A.

is an INTEGER array of length N and must be set by the user so that
IP(I) contains the position in array ICN of the first column

index of a non-zero in row I,for I=1,2,...,N. It is not altered
by MC21A.

is an INTEGER*2 array of length N. The user must set LENR(I)
equal to the number of non-zeros in row I, I=1,2,...,N. It is not
altered by MC21A.

IPERM is an INTEGER*2 array of length N in which the row permutation

is output. IPERM(I) gives *the position in the original matrix
of row I in the permuted matrix, I=l;eeeslNe

NUMNZ is an INTEGER output variable which gives the number of non-zeros

IW

on the diagonal of the reordered matrix. If this is less than N,
the matrix is structurally singular and will be 2 fortiori
numerically singular. For an example of this, see section 3.

is an INTEGER*2 work array of length at least 5*N.

MC21A 1

83

3. Error returns

There are no error returns, However, the user may input a matrix
for which there is no permutation that makes the diagonal zero-free.

An example of this is
X 0
X 0/.

In such instances the algorithm will produce a permutation which will put
as many non-zeros on the diagonal as possible (1 in the above example).
This number will be output in NUMNZ. The array IPERM will still hold

a permutation of the integers 1,2,...,N but in this case N-NUMNZ of the

elements (IPERM(I),I) will be zero.
4. Portability and handling of larger arrays

This routine has been written in IBM Fortran. If it is desired
to use it on other machines appropriate special comment cards have been
included in the source code so that the preprocessor OE@4A can be used to
convert MC21A into standard Fortran. One effect of this is to change
all INTEGER*2 declarations to INT%GER thus enabling th? subroutine
to handle matrices up to order 231-1 with less than 231 non-zeros.

5. Subroutines called

MC21A calls MC21B which never needs to be called directly by the
user,

6. Method

The method used is a simple depth first search with look ahead
technique and is described by Duff (Harwell report CSS 49, 1977).

April 1977

2 MC21A
84

SPECIFICATION SHEETS

F OR

SUBROUTINE

MC22A

85

86

Harwell Subroutine Library

MC22A/AD

1. Purgose

This subroutine replaces a sparse matrix A by the permuted matrix
PAQ. A is held by rows where, correspcnding to each non-zero value, the
column index is held. The elements in & single row must be contiguous
but can be in any order and, for the input matrix, row I must precede
row I+1,I=1,...,N-1 with no wasted space between the rows. On output,
PAQ will be held in the same arrays the rows being in the order
determined by P, the elements within each row being in the same order with
their column indices changed according to Q (sce section 4 for a diagram
of this data structure).

2. Argument Tlist

CALL MC22A(N,ICN,A,NZ,LENROW,IP,IQ,IW,IWY)

N is an INTEGER variable which must be set by the user to the orcer
of the matrix. Because of the use of INTEGER*2 arrays, the value
of N should be less than 32768 (219), It is not altered by MC22A.

ICN 1is an INTEGER*2 array of length at least NZ. The first NZ entries
of this array must be set by the user to contain the column indices
of the non-zeros 1in the original matrix. Those belonging to 2 single
row must be contiguous but the ordering of column indices within each
row is unimpcrtant. The non-zerosof row I precede those of row
I+1,I1=1,...,N=1 and no wasted space is allowed between the rows.
On output the column indices of PAQ are held in positions 1 to NZ
again without any wasted space between the rows.

A is a REAL (Double Precision in D version) array of length at least NZ
whose elements must be set by the user to the values of the non zero
elements of the matrix in the corresponding positions in ICN. On
output the elements of A will be permuted in an exactly similar
fashion to those of ICN.

NZ is an INTEGER variable which must be set by the user to the number
of non-zeros in the matrix.

LENRCW is an INTEGER*2 array of length N. On input, LENROW(I) should
be set by the user to be the number of non-zeros in row I
(I=1,...,N) of the original matrix. On output LENROW will bte
gﬁmnuted so that LENROW(I) is the number of non zeros in row I of

Q.

iP is an INTEGER*2 array of length N which must be set by the user so
that row I of PAQ was row |IP(I)| of the original matrix A, I=1,...,N.

;Egzsign of IP(I) is immaterial and the array is not altered by
A.

87 MC22A/AD 1

IQ is an INTEGER*2 array of length N which must be set by the user so
that column I of PAQ was column |IQ(I)| in the original matrix A,
I=1,...,N. The sign of IQ(I) is immaterial and the array is not
altered by MC22A.

IW is an INTEGER array of length 2*N which is used as workspace by
MC22A. :

IW1 1is an INTEGER*2 array of length NZ which is used as workspace by
MC22A.

3. Parameter usage summary

INPUT unchanged by MC22A N,NZ,IP,IQ.
INPUT changed by MC22A ICN,A,LENRON;
WORK ARRAYS IW(N), IWI(NZ)

QUTPUT from MC22A ICN,A,LENROW.

Data structure

(oW i gLl
A 21y i(% element values g
ICN 3| 77| cotumn indices| §
—
LENROW(I)

Valuz of element (i,j) of A is a.

Error returns

There are no error returns, if NZ or N are less than or equal to
7ero the subroutine immediately returns control to the calling program.

Common blocks and other subroutines called

There are no common blocks or other subroutines used by MC22A.

~J

Portability and handling of larger arrays

This routine has been written in IBM Fortran, If it is desired to
use it on other machines appropriate special comment cards have been included
in the source code so that the preprocessor OEP4A can be used to convert MC22A/AD
into standard Fortran. One effect of this is to change all INTEGER*2
declarations to INTEGER thus enabling the subrcutine to handle matrices

up to order 23]—1 with less than 23] non-zeros.,

MC22A/AD 88

7. Method

MC22A is an in-place sort algorithm which performs the sort in O(NZ)
operations.

A preliminary pass permutes LENROW, sets up a work array to identify
which old row is in each new position, and calculates the amount
(off-set) by which each row must be moved to achieve the desired permutation.
Each position in array ICN is then examined in turn to see whether it
contains the non-zero which should be there in the final form. If this
is not the case, its element value and column index are stored
temporarily and the element which should be in this position (accessed
through the work array and corresponding offset) is placed there. The
position from which this new element came now becomes the active position
and the prccess continues in this chainlike fashion until it is found that
the element which was in the original active position is required. At
this stage, the information is taken from the temporary storage and the
chain is complete. At each stage in the chain a flag is set in the work
array tc ensure the position is not processed during a subsequent scan
and when an element is piaced in its final position its column index is
permuted according to the array IQ.

November 1976

89 MC22A/AD 3

90

SPECIFICATION SHEETS

F OR

SUBROUTINE

MC23A

91

92

MC23A/AD

Harweﬁ1 Subroutine Library

j 5 Purgose

For a given matrix A, held by rows in a sparse storage format, this
routine discovers if it is possible to permute the rows and columns so
that the resulting matrix is in block lower triangular form. If it is
possible, then the output matrix is reordered to the form PAQ, where P
and Q are permutation matrices, so that non-zeros in the off-diagonal
blocks preceed those in the diagonal blocks which are in order. It
should be noted that if the user submits his matrix by columns, then this
subroutine will produce the block upper triangular form and appropriate
permutations.

2. Argument list

CALL MC23A(N,ICN,A,LICN,LENR,IDISP,IP,IQ,LENOFF,IW,IW2)

N is an INTEGER variable which must be set by the user to the order of
the matrix. Becausc of the use of INTEGER*2 arrays, the value of N
should be less than 32768(215). It is not altered by MC23A.

ICN is an INTEGER*2 array of length LICN which must be set by the user
to contair the column indices of the non-zeros. Those belonging
to a single row must be contiguous but the ordering of column
indices within each row is unimportant. The non-zeros of row I
precced those of row I+1,I=1,...,N-1 and no wasted space is allowed
between the rows. On a successful output, information is held
in positions 1 to IDISP(1)-1 and IDISP(2) to LICN of array ICN.
The permuted column indices of the rows in the diagonal part are
held in IDISP{2) to LICN, with the rows in permuted order, and no
spaces wasted between the rows. If there is more than one
diagonal block, the original column indices of the parts of the
rows in off-diagonal blocks will be found in original row order in
positions 1 to IDISP(1)-1, again with no wasted space between rows.

A is a REAL (DOUBLE PRECISION in D version) array of length LICN whose
elements must be set by the user to the values of the non-zero
elements of the matrix in the corresponding positions in ICN. On
output it will be reordered similarly to ICN.

LICN is an INTEGER variable which must be set by the user to the
length of arrays ICN and A. It is not altered by MC23A.

LENR s an INTEGER*2 array of length N. The user must set LENR(I)
equal to the number of non-zeros in row I,I=1,2,...,N. On output
from MC23A,LENR(I) I=1,2,...,N is equal to the number of non-zeros
in the part of row I (of the permuted matrix) in its diagoral block.

MC23A/AD
93

1

IDISP is an INTEGER array of length 2. On output from MC23A,

P

1Q

IDISP(1) is the position in arrays ICN and A of the first location
after the off-diagonal blocks (equal to onc if there are no

blocks) while IDISP(2) is the position in ICN and A of the first
non-zero in the diagonal blocks. (See section 4). In the event of
an error (see section 5) IDISP(1) is returned with a negative value.

is an INTEGER*2 array of length N. On output from MC23A
|IP(I)], I=1,...,N is the original row number of the row which is
Ith in the permuted form, The last row in the permuted form of
each diagonal block (except the last) is indicated by a negative
value for IP,

is an INTEGER*2 array of length N. On output from MC23A,
IQ(1), I=1,2,...,N holds the original column number of the column
which is Ith in the permuted form.

LENOFF is an INTEGER*2 array of length N. On output from

MC23A,LENCFF (T}, T=1,2,...,N holds the number of non-zeros in the
part of rcv i in the off-diagonal blocks, reference being to

the original row number. However, if the matrix has only one
diagonal ticck LENOFF(1) is set to -1, the other entries being
unimportant. :

is an INTEGER*2 array of length 5*N and is used as workspace by

IW
MC23A.
Il dis an INTEGER array of length Z*N which is used as workspace by
- YC22A,
3. Parameter usage summary
INPUT by user M,ICN,A,LICN,LENR,
UNCHANGED by MCZ23A. N,LICN,
WORK ARRAYS IW{E*N), IJI(Z*H).
OUTPUT FROM MC23A. ICN,A,LEMR,IDISP,IP,IQ,LENOFF,
4, Data Structures
On input
A rov i element values free
ICN col.indices space
LENR(I) T
: LICN
MC23A/AD

94

{

On oﬂtgut

LENOFF (1) LENR(I)
—— e
A | e]aneht values free

ICN | unpermuted col.indices | space | Col.indices of permuted matrix

1

-1 1

IDISP(1) IDISP(2) ' LICN
0ff-diagonal blocks. First diag.] Other diag.
Rows in original blocks. blocks in
row order sequence.
Rows are in permuted row
order.

5. Error return

There are two error returns indicated by a value of IDISP(1) equal to
-1 or -2 although one of them is only invoked if the user changes value of
the COMMON variable ABORT to .TRUE. (see section 6).

If ABORT equals ,TRUE. and it is impossible to permute the matrix so
that the diagonal of the permuted matrix is free from zeros, then the
matrix is structurally singular (and a fortiori numerically singular) and
the subroutine will terminate immediately setting IDISP(1) to -1 and
printing the message

ERROR RETURN FROM MC23A BECAUSE MATRIX IS STRUCTURALLY SINGULAR,RANK=<r>,

where r is the calculated value of the structural rank, on unit LP (see
section 6),.

The second possible error return, which cannot be switched off by
the user, occurs if there is insufficient space in A,ICN for the subroutine
to perform its reordering. The subroutine does not require much
"elbow room" needing a value of LICN equal to at most NZ+N, where NZ is
the number of non-zeros in the matrix. If the user has alloved
insufficient space the message:

ERROR RETURN FROM MC23A BECAUSE LICN NOT BIG ENOUGH INCREASE BY <N>

is output on unit LP (see section 6).

MC23A/AD 3

85

6. Common blocks

ﬁ labelled common block
COMMON/MC23B/LP ,NUMNZ ,NUM, LARGE ,ABORT

is used. The INTEGER LP is used in the output described in section 5
and has a value of 6 set by a BLOCK DATA subprogram. This default value
can be reset by the user if it is desired to surpress (LP=0) or reroute
this output.

The INTEGER variable NUMNZ is set by MC23A to the number of non-zeros
of A which can be permuted onto the diagonal of the matrix. If KUMNZ
does not equal N, the matrix is structurally singular,

The INTEGER variable NUM is set by MC23A to the number of diagoral
blocks present in the permuted form.

The INTEGER variable LARGE is set by MC23A to the order of the
largest diagonal block in the permuted form.

The LOGICAL variable ABORT is used by the routine to decide if it
should stop its reordering if the matrix is structurally singular. It
will do so if ABORT has the value .TRUE. Its default value, set in a
BLOCK DATA subprogram, is .FALSE.

7. Portability and handling of larger arrays

_ This routine has been written in IBM Fortran. If it is desired to use
it on other machines appropriate special ccmment cards have been included
in the source code so that the preprocessor OE@4A can be used to convert
MC23A/AD into standard Fortran. One effect ot this is to charge all
INTEGER*2 declarations %0 INTEGER thus enabling the subroutine to handle
matrices up to order 23'-1 with less than 231 non-zeros.

8. Subroutines called

MC23A calls Harwell subroutines MC13D,MC13E,MC21A and MC21B, The same
subroutines which need never be calied d1rect1y by the user are called by
MC23AD,

If the user is using this routine prior to solving sets of linear
equations and wishes to have a better user interface which combines block
triangularization with factorization of his matrix, then he should use
MA28A/AD which calls MC23A/AD internally,

9. Subroutine MC23A is really a data handling routine. The real work
is done by subroutine MC21A/B (Duff, Harwell report) which finds a

column permutation to make the diagonal zero free and MC13D/E (Duff and
Reid, Harwell Report CSS.29,1976) which finds a subsequent

symmetric permutation to put the matrix into block lower triangular form,

February 1977

MC23A/AD 4
96

SPECIFICATION SHEETS

F OR

SUBROUTINE

MC24A

97

98

MC24A/AD

Harwell Subroutine Library

1. Purpose

To obtain an estimate of the largest element encountered during
Gaussian elimination on a sparse matrix A of order n from the LU factors
obtained. If the matrix has been previously scaled (by using, for
example, MC19A/AD), then this estimate will give an indication of the
numerical accuracy of the decomposition.

2. How to use the subroutine

2.1 Calling sequence and argument Tist

The single precision version:

CALL MC24A(N,TCN,A,LTCN,LENP,LENRL,W)
The double precision version:

CALL MC24AD(N,ICN,A,LICN,LENR,LENRL,W).

N is an INTEGER variable which must be set Dy the user to the order n
of the matrix A. It is not altered by the subroutine.
Restriction: 1<n<32767. :

ICN is an INTEGER*Z array of Tength LICN which must contain the
column indices of the non-zeros in the decomposition., Each row (of
L and U) is neld cortiguously. Row I precedes row I+1,I=1,...,N-1
and there is no wasted space between the rows. Although the
column indices need rot be in order, those in L must precede those
in U with the pivot being the first entry in the row of U.
It is not altered by the subroutine.

A is a REAL (DOUBLE PRECISION in D version) array of length LICN
which contains the values of the non-zero elements in the LU
decomposition. The non-zero held in A(K) 1is in column ICN(K). It
is not altered by the subroutine.

LICN is an INTEGER variable which must be set by the user to be the
length of arrays ICN and A. It is not altered by the subroutine.

LENR is an INTEGER*2 array of Tength N. LENR(I) must be set by the
user to the combined number of non-zeros in rows I of L and U,
I=1,...,N. It is not altered by the subroutine.

LENRL is an INTEGER*2 array of Tength N. LENRL(I) must be set by the
user to the number of non-zeros in row I of Ly I=1,2,.:.,N. It is
not altered by the subroutine.

o4 MC24A/AD

104

